Attr.java revision 2764:c402b2856ed1
150479Speter/*
238589Sabial * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
338589Sabial * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
438589Sabial *
5139103Sru * This code is free software; you can redistribute it and/or modify it
638589Sabial * under the terms of the GNU General Public License version 2 only, as
738589Sabial * published by the Free Software Foundation.  Oracle designates this
838589Sabial * particular file as subject to the "Classpath" exception as provided
938589Sabial * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.lang.model.element.ElementKind;
31import javax.tools.JavaFileObject;
32
33import com.sun.source.tree.IdentifierTree;
34import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35import com.sun.source.tree.MemberSelectTree;
36import com.sun.source.tree.TreeVisitor;
37import com.sun.source.util.SimpleTreeVisitor;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Lint.LintCategory;
40import com.sun.tools.javac.code.Scope.WriteableScope;
41import com.sun.tools.javac.code.Symbol.*;
42import com.sun.tools.javac.code.Type.*;
43import com.sun.tools.javac.comp.Check.CheckContext;
44import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
45import com.sun.tools.javac.comp.Infer.InferenceContext;
46import com.sun.tools.javac.comp.Infer.FreeTypeListener;
47import com.sun.tools.javac.jvm.*;
48import com.sun.tools.javac.tree.*;
49import com.sun.tools.javac.tree.JCTree.*;
50import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
51import com.sun.tools.javac.util.*;
52import com.sun.tools.javac.util.DefinedBy.Api;
53import com.sun.tools.javac.util.Dependencies.AttributionKind;
54import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
55import com.sun.tools.javac.util.List;
56import static com.sun.tools.javac.code.Flags.*;
57import static com.sun.tools.javac.code.Flags.ANNOTATION;
58import static com.sun.tools.javac.code.Flags.BLOCK;
59import static com.sun.tools.javac.code.Kinds.*;
60import static com.sun.tools.javac.code.Kinds.Kind.*;
61import static com.sun.tools.javac.code.TypeTag.*;
62import static com.sun.tools.javac.code.TypeTag.WILDCARD;
63import static com.sun.tools.javac.tree.JCTree.Tag.*;
64
65/** This is the main context-dependent analysis phase in GJC. It
66 *  encompasses name resolution, type checking and constant folding as
67 *  subtasks. Some subtasks involve auxiliary classes.
68 *  @see Check
69 *  @see Resolve
70 *  @see ConstFold
71 *  @see Infer
72 *
73 *  <p><b>This is NOT part of any supported API.
74 *  If you write code that depends on this, you do so at your own risk.
75 *  This code and its internal interfaces are subject to change or
76 *  deletion without notice.</b>
77 */
78public class Attr extends JCTree.Visitor {
79    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
80
81    final Names names;
82    final Log log;
83    final Symtab syms;
84    final Resolve rs;
85    final Infer infer;
86    final Analyzer analyzer;
87    final DeferredAttr deferredAttr;
88    final Check chk;
89    final Flow flow;
90    final MemberEnter memberEnter;
91    final TypeEnter typeEnter;
92    final TreeMaker make;
93    final ConstFold cfolder;
94    final Enter enter;
95    final Target target;
96    final Types types;
97    final JCDiagnostic.Factory diags;
98    final Annotate annotate;
99    final TypeAnnotations typeAnnotations;
100    final DeferredLintHandler deferredLintHandler;
101    final TypeEnvs typeEnvs;
102    final Dependencies dependencies;
103
104    public static Attr instance(Context context) {
105        Attr instance = context.get(attrKey);
106        if (instance == null)
107            instance = new Attr(context);
108        return instance;
109    }
110
111    protected Attr(Context context) {
112        context.put(attrKey, this);
113
114        names = Names.instance(context);
115        log = Log.instance(context);
116        syms = Symtab.instance(context);
117        rs = Resolve.instance(context);
118        chk = Check.instance(context);
119        flow = Flow.instance(context);
120        memberEnter = MemberEnter.instance(context);
121        typeEnter = TypeEnter.instance(context);
122        make = TreeMaker.instance(context);
123        enter = Enter.instance(context);
124        infer = Infer.instance(context);
125        analyzer = Analyzer.instance(context);
126        deferredAttr = DeferredAttr.instance(context);
127        cfolder = ConstFold.instance(context);
128        target = Target.instance(context);
129        types = Types.instance(context);
130        diags = JCDiagnostic.Factory.instance(context);
131        annotate = Annotate.instance(context);
132        typeAnnotations = TypeAnnotations.instance(context);
133        deferredLintHandler = DeferredLintHandler.instance(context);
134        typeEnvs = TypeEnvs.instance(context);
135        dependencies = Dependencies.instance(context);
136
137        Options options = Options.instance(context);
138
139        Source source = Source.instance(context);
140        allowStringsInSwitch = source.allowStringsInSwitch();
141        allowPoly = source.allowPoly();
142        allowTypeAnnos = source.allowTypeAnnotations();
143        allowLambda = source.allowLambda();
144        allowDefaultMethods = source.allowDefaultMethods();
145        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
146        sourceName = source.name;
147        relax = (options.isSet("-retrofit") ||
148                options.isSet("-relax"));
149        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
150
151        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
152        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
153        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
154        unknownAnyPolyInfo = new ResultInfo(KindSelector.VAL, Infer.anyPoly);
155        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
156        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
157        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
158
159        noCheckTree = make.at(-1).Skip();
160    }
161
162    /** Switch: relax some constraints for retrofit mode.
163     */
164    boolean relax;
165
166    /** Switch: support target-typing inference
167     */
168    boolean allowPoly;
169
170    /** Switch: support type annotations.
171     */
172    boolean allowTypeAnnos;
173
174    /** Switch: support lambda expressions ?
175     */
176    boolean allowLambda;
177
178    /** Switch: support default methods ?
179     */
180    boolean allowDefaultMethods;
181
182    /** Switch: static interface methods enabled?
183     */
184    boolean allowStaticInterfaceMethods;
185
186    /**
187     * Switch: warn about use of variable before declaration?
188     * RFE: 6425594
189     */
190    boolean useBeforeDeclarationWarning;
191
192    /**
193     * Switch: allow strings in switch?
194     */
195    boolean allowStringsInSwitch;
196
197    /**
198     * Switch: name of source level; used for error reporting.
199     */
200    String sourceName;
201
202    /** Check kind and type of given tree against protokind and prototype.
203     *  If check succeeds, store type in tree and return it.
204     *  If check fails, store errType in tree and return it.
205     *  No checks are performed if the prototype is a method type.
206     *  It is not necessary in this case since we know that kind and type
207     *  are correct.
208     *
209     *  @param tree     The tree whose kind and type is checked
210     *  @param ownkind  The computed kind of the tree
211     *  @param resultInfo  The expected result of the tree
212     */
213    Type check(final JCTree tree,
214               final Type found,
215               final KindSelector ownkind,
216               final ResultInfo resultInfo) {
217        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
218        Type owntype;
219        boolean shouldCheck = !found.hasTag(ERROR) &&
220                !resultInfo.pt.hasTag(METHOD) &&
221                !resultInfo.pt.hasTag(FORALL);
222        if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
223            log.error(tree.pos(), "unexpected.type",
224            resultInfo.pkind.kindNames(),
225            ownkind.kindNames());
226            owntype = types.createErrorType(found);
227        } else if (allowPoly && inferenceContext.free(found)) {
228            //delay the check if there are inference variables in the found type
229            //this means we are dealing with a partially inferred poly expression
230            owntype = shouldCheck ? resultInfo.pt : found;
231            inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt),
232                    instantiatedContext -> {
233                        ResultInfo pendingResult =
234                                resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
235                        check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
236                    });
237        } else {
238            owntype = shouldCheck ?
239            resultInfo.check(tree, found) :
240            found;
241        }
242        if (tree != noCheckTree) {
243            tree.type = owntype;
244        }
245        return owntype;
246    }
247
248    /** Is given blank final variable assignable, i.e. in a scope where it
249     *  may be assigned to even though it is final?
250     *  @param v      The blank final variable.
251     *  @param env    The current environment.
252     */
253    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
254        Symbol owner = env.info.scope.owner;
255           // owner refers to the innermost variable, method or
256           // initializer block declaration at this point.
257        return
258            v.owner == owner
259            ||
260            ((owner.name == names.init ||    // i.e. we are in a constructor
261              owner.kind == VAR ||           // i.e. we are in a variable initializer
262              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
263             &&
264             v.owner == owner.owner
265             &&
266             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
267    }
268
269    /** Check that variable can be assigned to.
270     *  @param pos    The current source code position.
271     *  @param v      The assigned varaible
272     *  @param base   If the variable is referred to in a Select, the part
273     *                to the left of the `.', null otherwise.
274     *  @param env    The current environment.
275     */
276    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
277        if ((v.flags() & FINAL) != 0 &&
278            ((v.flags() & HASINIT) != 0
279             ||
280             !((base == null ||
281               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
282               isAssignableAsBlankFinal(v, env)))) {
283            if (v.isResourceVariable()) { //TWR resource
284                log.error(pos, "try.resource.may.not.be.assigned", v);
285            } else {
286                log.error(pos, "cant.assign.val.to.final.var", v);
287            }
288        }
289    }
290
291    /** Does tree represent a static reference to an identifier?
292     *  It is assumed that tree is either a SELECT or an IDENT.
293     *  We have to weed out selects from non-type names here.
294     *  @param tree    The candidate tree.
295     */
296    boolean isStaticReference(JCTree tree) {
297        if (tree.hasTag(SELECT)) {
298            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
299            if (lsym == null || lsym.kind != TYP) {
300                return false;
301            }
302        }
303        return true;
304    }
305
306    /** Is this symbol a type?
307     */
308    static boolean isType(Symbol sym) {
309        return sym != null && sym.kind == TYP;
310    }
311
312    /** The current `this' symbol.
313     *  @param env    The current environment.
314     */
315    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
316        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
317    }
318
319    /** Attribute a parsed identifier.
320     * @param tree Parsed identifier name
321     * @param topLevel The toplevel to use
322     */
323    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
324        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
325        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
326                                           syms.errSymbol.name,
327                                           null, null, null, null);
328        localEnv.enclClass.sym = syms.errSymbol;
329        return tree.accept(identAttributer, localEnv);
330    }
331    // where
332        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
333        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
334            @Override @DefinedBy(Api.COMPILER_TREE)
335            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
336                Symbol site = visit(node.getExpression(), env);
337                if (site.kind == ERR || site.kind == ABSENT_TYP)
338                    return site;
339                Name name = (Name)node.getIdentifier();
340                if (site.kind == PCK) {
341                    env.toplevel.packge = (PackageSymbol)site;
342                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
343                            KindSelector.TYP_PCK);
344                } else {
345                    env.enclClass.sym = (ClassSymbol)site;
346                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
347                }
348            }
349
350            @Override @DefinedBy(Api.COMPILER_TREE)
351            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
352                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
353            }
354        }
355
356    public Type coerce(Type etype, Type ttype) {
357        return cfolder.coerce(etype, ttype);
358    }
359
360    public Type attribType(JCTree node, TypeSymbol sym) {
361        Env<AttrContext> env = typeEnvs.get(sym);
362        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
363        return attribTree(node, localEnv, unknownTypeInfo);
364    }
365
366    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
367        // Attribute qualifying package or class.
368        JCFieldAccess s = (JCFieldAccess)tree.qualid;
369        return attribTree(s.selected, env,
370                          new ResultInfo(tree.staticImport ?
371                                         KindSelector.TYP : KindSelector.TYP_PCK,
372                       Type.noType));
373    }
374
375    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
376        breakTree = tree;
377        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
378        try {
379            attribExpr(expr, env);
380        } catch (BreakAttr b) {
381            return b.env;
382        } catch (AssertionError ae) {
383            if (ae.getCause() instanceof BreakAttr) {
384                return ((BreakAttr)(ae.getCause())).env;
385            } else {
386                throw ae;
387            }
388        } finally {
389            breakTree = null;
390            log.useSource(prev);
391        }
392        return env;
393    }
394
395    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
396        breakTree = tree;
397        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
398        try {
399            attribStat(stmt, env);
400        } catch (BreakAttr b) {
401            return b.env;
402        } catch (AssertionError ae) {
403            if (ae.getCause() instanceof BreakAttr) {
404                return ((BreakAttr)(ae.getCause())).env;
405            } else {
406                throw ae;
407            }
408        } finally {
409            breakTree = null;
410            log.useSource(prev);
411        }
412        return env;
413    }
414
415    private JCTree breakTree = null;
416
417    private static class BreakAttr extends RuntimeException {
418        static final long serialVersionUID = -6924771130405446405L;
419        private Env<AttrContext> env;
420        private BreakAttr(Env<AttrContext> env) {
421            this.env = env;
422        }
423    }
424
425    class ResultInfo {
426        final KindSelector pkind;
427        final Type pt;
428        final CheckContext checkContext;
429
430        ResultInfo(KindSelector pkind, Type pt) {
431            this(pkind, pt, chk.basicHandler);
432        }
433
434        protected ResultInfo(KindSelector pkind,
435                             Type pt, CheckContext checkContext) {
436            this.pkind = pkind;
437            this.pt = pt;
438            this.checkContext = checkContext;
439        }
440
441        protected Type check(final DiagnosticPosition pos, final Type found) {
442            return chk.checkType(pos, found, pt, checkContext);
443        }
444
445        protected ResultInfo dup(Type newPt) {
446            return new ResultInfo(pkind, newPt, checkContext);
447        }
448
449        protected ResultInfo dup(CheckContext newContext) {
450            return new ResultInfo(pkind, pt, newContext);
451        }
452
453        protected ResultInfo dup(Type newPt, CheckContext newContext) {
454            return new ResultInfo(pkind, newPt, newContext);
455        }
456
457        @Override
458        public String toString() {
459            if (pt != null) {
460                return pt.toString();
461            } else {
462                return "";
463            }
464        }
465    }
466
467    class RecoveryInfo extends ResultInfo {
468
469        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
470            super(KindSelector.VAL, Type.recoveryType,
471                  new Check.NestedCheckContext(chk.basicHandler) {
472                @Override
473                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
474                    return deferredAttrContext;
475                }
476                @Override
477                public boolean compatible(Type found, Type req, Warner warn) {
478                    return true;
479                }
480                @Override
481                public void report(DiagnosticPosition pos, JCDiagnostic details) {
482                    chk.basicHandler.report(pos, details);
483                }
484            });
485        }
486    }
487
488    final ResultInfo statInfo;
489    final ResultInfo varAssignmentInfo;
490    final ResultInfo unknownAnyPolyInfo;
491    final ResultInfo unknownExprInfo;
492    final ResultInfo unknownTypeInfo;
493    final ResultInfo unknownTypeExprInfo;
494    final ResultInfo recoveryInfo;
495
496    Type pt() {
497        return resultInfo.pt;
498    }
499
500    KindSelector pkind() {
501        return resultInfo.pkind;
502    }
503
504/* ************************************************************************
505 * Visitor methods
506 *************************************************************************/
507
508    /** Visitor argument: the current environment.
509     */
510    Env<AttrContext> env;
511
512    /** Visitor argument: the currently expected attribution result.
513     */
514    ResultInfo resultInfo;
515
516    /** Visitor result: the computed type.
517     */
518    Type result;
519
520    /** Synthetic tree to be used during 'fake' checks.
521     */
522    JCTree noCheckTree;
523
524    /** Visitor method: attribute a tree, catching any completion failure
525     *  exceptions. Return the tree's type.
526     *
527     *  @param tree    The tree to be visited.
528     *  @param env     The environment visitor argument.
529     *  @param resultInfo   The result info visitor argument.
530     */
531    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
532        Env<AttrContext> prevEnv = this.env;
533        ResultInfo prevResult = this.resultInfo;
534        try {
535            this.env = env;
536            this.resultInfo = resultInfo;
537            tree.accept(this);
538            if (tree == breakTree &&
539                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
540                throw new BreakAttr(copyEnv(env));
541            }
542            return result;
543        } catch (CompletionFailure ex) {
544            tree.type = syms.errType;
545            return chk.completionError(tree.pos(), ex);
546        } finally {
547            this.env = prevEnv;
548            this.resultInfo = prevResult;
549        }
550    }
551
552    Env<AttrContext> copyEnv(Env<AttrContext> env) {
553        Env<AttrContext> newEnv =
554                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
555        if (newEnv.outer != null) {
556            newEnv.outer = copyEnv(newEnv.outer);
557        }
558        return newEnv;
559    }
560
561    WriteableScope copyScope(WriteableScope sc) {
562        WriteableScope newScope = WriteableScope.create(sc.owner);
563        List<Symbol> elemsList = List.nil();
564        for (Symbol sym : sc.getSymbols()) {
565            elemsList = elemsList.prepend(sym);
566        }
567        for (Symbol s : elemsList) {
568            newScope.enter(s);
569        }
570        return newScope;
571    }
572
573    /** Derived visitor method: attribute an expression tree.
574     */
575    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
576        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
577    }
578
579    /** Derived visitor method: attribute an expression tree with
580     *  no constraints on the computed type.
581     */
582    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
583        return attribTree(tree, env, unknownExprInfo);
584    }
585
586    /** Derived visitor method: attribute a type tree.
587     */
588    public Type attribType(JCTree tree, Env<AttrContext> env) {
589        Type result = attribType(tree, env, Type.noType);
590        return result;
591    }
592
593    /** Derived visitor method: attribute a type tree.
594     */
595    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
596        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
597        return result;
598    }
599
600    /** Derived visitor method: attribute a statement or definition tree.
601     */
602    public Type attribStat(JCTree tree, Env<AttrContext> env) {
603        Env<AttrContext> analyzeEnv =
604                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
605        try {
606            return attribTree(tree, env, statInfo);
607        } finally {
608            analyzer.analyzeIfNeeded(tree, analyzeEnv);
609        }
610    }
611
612    /** Attribute a list of expressions, returning a list of types.
613     */
614    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
615        ListBuffer<Type> ts = new ListBuffer<>();
616        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
617            ts.append(attribExpr(l.head, env, pt));
618        return ts.toList();
619    }
620
621    /** Attribute a list of statements, returning nothing.
622     */
623    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
624        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
625            attribStat(l.head, env);
626    }
627
628    /** Attribute the arguments in a method call, returning the method kind.
629     */
630    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
631        KindSelector kind = initialKind;
632        for (JCExpression arg : trees) {
633            Type argtype;
634            if (allowPoly && deferredAttr.isDeferred(env, arg)) {
635                argtype = deferredAttr.new DeferredType(arg, env);
636                kind = KindSelector.of(KindSelector.POLY, kind);
637            } else {
638                argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
639            }
640            argtypes.append(argtype);
641        }
642        return kind;
643    }
644
645    /** Attribute a type argument list, returning a list of types.
646     *  Caller is responsible for calling checkRefTypes.
647     */
648    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
649        ListBuffer<Type> argtypes = new ListBuffer<>();
650        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
651            argtypes.append(attribType(l.head, env));
652        return argtypes.toList();
653    }
654
655    /** Attribute a type argument list, returning a list of types.
656     *  Check that all the types are references.
657     */
658    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
659        List<Type> types = attribAnyTypes(trees, env);
660        return chk.checkRefTypes(trees, types);
661    }
662
663    /**
664     * Attribute type variables (of generic classes or methods).
665     * Compound types are attributed later in attribBounds.
666     * @param typarams the type variables to enter
667     * @param env      the current environment
668     */
669    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
670        for (JCTypeParameter tvar : typarams) {
671            dependencies.push(AttributionKind.TVAR, tvar);
672            TypeVar a = (TypeVar)tvar.type;
673            a.tsym.flags_field |= UNATTRIBUTED;
674            a.bound = Type.noType;
675            if (!tvar.bounds.isEmpty()) {
676                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
677                for (JCExpression bound : tvar.bounds.tail)
678                    bounds = bounds.prepend(attribType(bound, env));
679                types.setBounds(a, bounds.reverse());
680            } else {
681                // if no bounds are given, assume a single bound of
682                // java.lang.Object.
683                types.setBounds(a, List.of(syms.objectType));
684            }
685            a.tsym.flags_field &= ~UNATTRIBUTED;
686            dependencies.pop();
687        }
688        for (JCTypeParameter tvar : typarams) {
689            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
690        }
691    }
692
693    /**
694     * Attribute the type references in a list of annotations.
695     */
696    void attribAnnotationTypes(List<JCAnnotation> annotations,
697                               Env<AttrContext> env) {
698        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
699            JCAnnotation a = al.head;
700            attribType(a.annotationType, env);
701        }
702    }
703
704    /**
705     * Attribute a "lazy constant value".
706     *  @param env         The env for the const value
707     *  @param initializer The initializer for the const value
708     *  @param type        The expected type, or null
709     *  @see VarSymbol#setLazyConstValue
710     */
711    public Object attribLazyConstantValue(Env<AttrContext> env,
712                                      JCVariableDecl variable,
713                                      Type type) {
714
715        DiagnosticPosition prevLintPos
716                = deferredLintHandler.setPos(variable.pos());
717
718        try {
719            Type itype = attribExpr(variable.init, env, type);
720            if (itype.constValue() != null) {
721                return coerce(itype, type).constValue();
722            } else {
723                return null;
724            }
725        } finally {
726            deferredLintHandler.setPos(prevLintPos);
727        }
728    }
729
730    /** Attribute type reference in an `extends' or `implements' clause.
731     *  Supertypes of anonymous inner classes are usually already attributed.
732     *
733     *  @param tree              The tree making up the type reference.
734     *  @param env               The environment current at the reference.
735     *  @param classExpected     true if only a class is expected here.
736     *  @param interfaceExpected true if only an interface is expected here.
737     */
738    Type attribBase(JCTree tree,
739                    Env<AttrContext> env,
740                    boolean classExpected,
741                    boolean interfaceExpected,
742                    boolean checkExtensible) {
743        Type t = tree.type != null ?
744            tree.type :
745            attribType(tree, env);
746        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
747    }
748    Type checkBase(Type t,
749                   JCTree tree,
750                   Env<AttrContext> env,
751                   boolean classExpected,
752                   boolean interfaceExpected,
753                   boolean checkExtensible) {
754        if (t.tsym.isAnonymous()) {
755            log.error(tree.pos(), "cant.inherit.from.anon");
756            return types.createErrorType(t);
757        }
758        if (t.isErroneous())
759            return t;
760        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
761            // check that type variable is already visible
762            if (t.getUpperBound() == null) {
763                log.error(tree.pos(), "illegal.forward.ref");
764                return types.createErrorType(t);
765            }
766        } else {
767            t = chk.checkClassType(tree.pos(), t, checkExtensible);
768        }
769        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
770            log.error(tree.pos(), "intf.expected.here");
771            // return errType is necessary since otherwise there might
772            // be undetected cycles which cause attribution to loop
773            return types.createErrorType(t);
774        } else if (checkExtensible &&
775                   classExpected &&
776                   (t.tsym.flags() & INTERFACE) != 0) {
777            log.error(tree.pos(), "no.intf.expected.here");
778            return types.createErrorType(t);
779        }
780        if (checkExtensible &&
781            ((t.tsym.flags() & FINAL) != 0)) {
782            log.error(tree.pos(),
783                      "cant.inherit.from.final", t.tsym);
784        }
785        chk.checkNonCyclic(tree.pos(), t);
786        return t;
787    }
788
789    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
790        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
791        id.type = env.info.scope.owner.enclClass().type;
792        id.sym = env.info.scope.owner.enclClass();
793        return id.type;
794    }
795
796    public void visitClassDef(JCClassDecl tree) {
797        // Local and anonymous classes have not been entered yet, so we need to
798        // do it now.
799        if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
800            enter.classEnter(tree, env);
801        } else {
802            // If this class declaration is part of a class level annotation,
803            // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
804            // order to simplify later steps and allow for sensible error
805            // messages.
806            if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
807                enter.classEnter(tree, env);
808        }
809
810        ClassSymbol c = tree.sym;
811        if (c == null) {
812            // exit in case something drastic went wrong during enter.
813            result = null;
814        } else {
815            // make sure class has been completed:
816            c.complete();
817
818            // If this class appears as an anonymous class
819            // in a superclass constructor call where
820            // no explicit outer instance is given,
821            // disable implicit outer instance from being passed.
822            // (This would be an illegal access to "this before super").
823            if (env.info.isSelfCall &&
824                env.tree.hasTag(NEWCLASS) &&
825                ((JCNewClass) env.tree).encl == null)
826            {
827                c.flags_field |= NOOUTERTHIS;
828            }
829            attribClass(tree.pos(), c);
830            result = tree.type = c.type;
831        }
832    }
833
834    public void visitMethodDef(JCMethodDecl tree) {
835        MethodSymbol m = tree.sym;
836        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
837
838        Lint lint = env.info.lint.augment(m);
839        Lint prevLint = chk.setLint(lint);
840        MethodSymbol prevMethod = chk.setMethod(m);
841        try {
842            deferredLintHandler.flush(tree.pos());
843            chk.checkDeprecatedAnnotation(tree.pos(), m);
844
845
846            // Create a new environment with local scope
847            // for attributing the method.
848            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
849            localEnv.info.lint = lint;
850
851            attribStats(tree.typarams, localEnv);
852
853            // If we override any other methods, check that we do so properly.
854            // JLS ???
855            if (m.isStatic()) {
856                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
857            } else {
858                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
859            }
860            chk.checkOverride(tree, m);
861
862            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
863                log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
864            }
865
866            // Enter all type parameters into the local method scope.
867            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
868                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
869
870            ClassSymbol owner = env.enclClass.sym;
871            if ((owner.flags() & ANNOTATION) != 0 &&
872                    tree.params.nonEmpty())
873                log.error(tree.params.head.pos(),
874                        "intf.annotation.members.cant.have.params");
875
876            // Attribute all value parameters.
877            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
878                attribStat(l.head, localEnv);
879            }
880
881            chk.checkVarargsMethodDecl(localEnv, tree);
882
883            // Check that type parameters are well-formed.
884            chk.validate(tree.typarams, localEnv);
885
886            // Check that result type is well-formed.
887            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
888                chk.validate(tree.restype, localEnv);
889
890            // Check that receiver type is well-formed.
891            if (tree.recvparam != null) {
892                // Use a new environment to check the receiver parameter.
893                // Otherwise I get "might not have been initialized" errors.
894                // Is there a better way?
895                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
896                attribType(tree.recvparam, newEnv);
897                chk.validate(tree.recvparam, newEnv);
898            }
899
900            // annotation method checks
901            if ((owner.flags() & ANNOTATION) != 0) {
902                // annotation method cannot have throws clause
903                if (tree.thrown.nonEmpty()) {
904                    log.error(tree.thrown.head.pos(),
905                            "throws.not.allowed.in.intf.annotation");
906                }
907                // annotation method cannot declare type-parameters
908                if (tree.typarams.nonEmpty()) {
909                    log.error(tree.typarams.head.pos(),
910                            "intf.annotation.members.cant.have.type.params");
911                }
912                // validate annotation method's return type (could be an annotation type)
913                chk.validateAnnotationType(tree.restype);
914                // ensure that annotation method does not clash with members of Object/Annotation
915                chk.validateAnnotationMethod(tree.pos(), m);
916            }
917
918            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
919                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
920
921            if (tree.body == null) {
922                // Empty bodies are only allowed for
923                // abstract, native, or interface methods, or for methods
924                // in a retrofit signature class.
925                if (tree.defaultValue != null) {
926                    if ((owner.flags() & ANNOTATION) == 0)
927                        log.error(tree.pos(),
928                                  "default.allowed.in.intf.annotation.member");
929                }
930                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
931                    !relax)
932                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
933            } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
934                if ((owner.flags() & INTERFACE) != 0) {
935                    log.error(tree.body.pos(), "intf.meth.cant.have.body");
936                } else {
937                    log.error(tree.pos(), "abstract.meth.cant.have.body");
938                }
939            } else if ((tree.mods.flags & NATIVE) != 0) {
940                log.error(tree.pos(), "native.meth.cant.have.body");
941            } else {
942                // Add an implicit super() call unless an explicit call to
943                // super(...) or this(...) is given
944                // or we are compiling class java.lang.Object.
945                if (tree.name == names.init && owner.type != syms.objectType) {
946                    JCBlock body = tree.body;
947                    if (body.stats.isEmpty() ||
948                            !TreeInfo.isSelfCall(body.stats.head)) {
949                        body.stats = body.stats.
950                                prepend(typeEnter.SuperCall(make.at(body.pos),
951                                        List.<Type>nil(),
952                                        List.<JCVariableDecl>nil(),
953                                        false));
954                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
955                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
956                            TreeInfo.isSuperCall(body.stats.head)) {
957                        // enum constructors are not allowed to call super
958                        // directly, so make sure there aren't any super calls
959                        // in enum constructors, except in the compiler
960                        // generated one.
961                        log.error(tree.body.stats.head.pos(),
962                                "call.to.super.not.allowed.in.enum.ctor",
963                                env.enclClass.sym);
964                    }
965                }
966
967                // Attribute all type annotations in the body
968                annotate.annotateTypeLater(tree.body, localEnv, m, null);
969                annotate.flush();
970
971                // Attribute method body.
972                attribStat(tree.body, localEnv);
973            }
974
975            localEnv.info.scope.leave();
976            result = tree.type = m.type;
977        } finally {
978            chk.setLint(prevLint);
979            chk.setMethod(prevMethod);
980        }
981    }
982
983    public void visitVarDef(JCVariableDecl tree) {
984        // Local variables have not been entered yet, so we need to do it now:
985        if (env.info.scope.owner.kind == MTH) {
986            if (tree.sym != null) {
987                // parameters have already been entered
988                env.info.scope.enter(tree.sym);
989            } else {
990                try {
991                    annotate.enterStart();
992                    memberEnter.memberEnter(tree, env);
993                } finally {
994                    annotate.enterDone();
995                }
996            }
997        } else {
998            if (tree.init != null) {
999                // Field initializer expression need to be entered.
1000                annotate.annotateTypeLater(tree.init, env, tree.sym, tree.pos());
1001                annotate.flush();
1002            }
1003        }
1004
1005        VarSymbol v = tree.sym;
1006        Lint lint = env.info.lint.augment(v);
1007        Lint prevLint = chk.setLint(lint);
1008
1009        // Check that the variable's declared type is well-formed.
1010        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1011                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1012                (tree.sym.flags() & PARAMETER) != 0;
1013        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1014
1015        try {
1016            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1017            deferredLintHandler.flush(tree.pos());
1018            chk.checkDeprecatedAnnotation(tree.pos(), v);
1019
1020            if (tree.init != null) {
1021                if ((v.flags_field & FINAL) == 0 ||
1022                    !memberEnter.needsLazyConstValue(tree.init)) {
1023                    // Not a compile-time constant
1024                    // Attribute initializer in a new environment
1025                    // with the declared variable as owner.
1026                    // Check that initializer conforms to variable's declared type.
1027                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1028                    initEnv.info.lint = lint;
1029                    // In order to catch self-references, we set the variable's
1030                    // declaration position to maximal possible value, effectively
1031                    // marking the variable as undefined.
1032                    initEnv.info.enclVar = v;
1033                    attribExpr(tree.init, initEnv, v.type);
1034                }
1035            }
1036            result = tree.type = v.type;
1037        }
1038        finally {
1039            chk.setLint(prevLint);
1040        }
1041    }
1042
1043    public void visitSkip(JCSkip tree) {
1044        result = null;
1045    }
1046
1047    public void visitBlock(JCBlock tree) {
1048        if (env.info.scope.owner.kind == TYP) {
1049            // Block is a static or instance initializer;
1050            // let the owner of the environment be a freshly
1051            // created BLOCK-method.
1052            Symbol fakeOwner =
1053                new MethodSymbol(tree.flags | BLOCK |
1054                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1055                    env.info.scope.owner);
1056            final Env<AttrContext> localEnv =
1057                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1058
1059            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1060            // Attribute all type annotations in the block
1061            annotate.annotateTypeLater(tree, localEnv, localEnv.info.scope.owner, null);
1062            annotate.flush();
1063            attribStats(tree.stats, localEnv);
1064
1065            {
1066                // Store init and clinit type annotations with the ClassSymbol
1067                // to allow output in Gen.normalizeDefs.
1068                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1069                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1070                if ((tree.flags & STATIC) != 0) {
1071                    cs.appendClassInitTypeAttributes(tas);
1072                } else {
1073                    cs.appendInitTypeAttributes(tas);
1074                }
1075            }
1076        } else {
1077            // Create a new local environment with a local scope.
1078            Env<AttrContext> localEnv =
1079                env.dup(tree, env.info.dup(env.info.scope.dup()));
1080            try {
1081                attribStats(tree.stats, localEnv);
1082            } finally {
1083                localEnv.info.scope.leave();
1084            }
1085        }
1086        result = null;
1087    }
1088
1089    public void visitDoLoop(JCDoWhileLoop tree) {
1090        attribStat(tree.body, env.dup(tree));
1091        attribExpr(tree.cond, env, syms.booleanType);
1092        result = null;
1093    }
1094
1095    public void visitWhileLoop(JCWhileLoop tree) {
1096        attribExpr(tree.cond, env, syms.booleanType);
1097        attribStat(tree.body, env.dup(tree));
1098        result = null;
1099    }
1100
1101    public void visitForLoop(JCForLoop tree) {
1102        Env<AttrContext> loopEnv =
1103            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1104        try {
1105            attribStats(tree.init, loopEnv);
1106            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1107            loopEnv.tree = tree; // before, we were not in loop!
1108            attribStats(tree.step, loopEnv);
1109            attribStat(tree.body, loopEnv);
1110            result = null;
1111        }
1112        finally {
1113            loopEnv.info.scope.leave();
1114        }
1115    }
1116
1117    public void visitForeachLoop(JCEnhancedForLoop tree) {
1118        Env<AttrContext> loopEnv =
1119            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1120        try {
1121            //the Formal Parameter of a for-each loop is not in the scope when
1122            //attributing the for-each expression; we mimick this by attributing
1123            //the for-each expression first (against original scope).
1124            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1125            attribStat(tree.var, loopEnv);
1126            chk.checkNonVoid(tree.pos(), exprType);
1127            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1128            if (elemtype == null) {
1129                // or perhaps expr implements Iterable<T>?
1130                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1131                if (base == null) {
1132                    log.error(tree.expr.pos(),
1133                            "foreach.not.applicable.to.type",
1134                            exprType,
1135                            diags.fragment("type.req.array.or.iterable"));
1136                    elemtype = types.createErrorType(exprType);
1137                } else {
1138                    List<Type> iterableParams = base.allparams();
1139                    elemtype = iterableParams.isEmpty()
1140                        ? syms.objectType
1141                        : types.wildUpperBound(iterableParams.head);
1142                }
1143            }
1144            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1145            loopEnv.tree = tree; // before, we were not in loop!
1146            attribStat(tree.body, loopEnv);
1147            result = null;
1148        }
1149        finally {
1150            loopEnv.info.scope.leave();
1151        }
1152    }
1153
1154    public void visitLabelled(JCLabeledStatement tree) {
1155        // Check that label is not used in an enclosing statement
1156        Env<AttrContext> env1 = env;
1157        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1158            if (env1.tree.hasTag(LABELLED) &&
1159                ((JCLabeledStatement) env1.tree).label == tree.label) {
1160                log.error(tree.pos(), "label.already.in.use",
1161                          tree.label);
1162                break;
1163            }
1164            env1 = env1.next;
1165        }
1166
1167        attribStat(tree.body, env.dup(tree));
1168        result = null;
1169    }
1170
1171    public void visitSwitch(JCSwitch tree) {
1172        Type seltype = attribExpr(tree.selector, env);
1173
1174        Env<AttrContext> switchEnv =
1175            env.dup(tree, env.info.dup(env.info.scope.dup()));
1176
1177        try {
1178
1179            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1180            boolean stringSwitch = false;
1181            if (types.isSameType(seltype, syms.stringType)) {
1182                if (allowStringsInSwitch) {
1183                    stringSwitch = true;
1184                } else {
1185                    log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1186                }
1187            }
1188            if (!enumSwitch && !stringSwitch)
1189                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1190
1191            // Attribute all cases and
1192            // check that there are no duplicate case labels or default clauses.
1193            Set<Object> labels = new HashSet<>(); // The set of case labels.
1194            boolean hasDefault = false;      // Is there a default label?
1195            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1196                JCCase c = l.head;
1197                if (c.pat != null) {
1198                    if (enumSwitch) {
1199                        Symbol sym = enumConstant(c.pat, seltype);
1200                        if (sym == null) {
1201                            log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1202                        } else if (!labels.add(sym)) {
1203                            log.error(c.pos(), "duplicate.case.label");
1204                        }
1205                    } else {
1206                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1207                        if (!pattype.hasTag(ERROR)) {
1208                            if (pattype.constValue() == null) {
1209                                log.error(c.pat.pos(),
1210                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1211                            } else if (labels.contains(pattype.constValue())) {
1212                                log.error(c.pos(), "duplicate.case.label");
1213                            } else {
1214                                labels.add(pattype.constValue());
1215                            }
1216                        }
1217                    }
1218                } else if (hasDefault) {
1219                    log.error(c.pos(), "duplicate.default.label");
1220                } else {
1221                    hasDefault = true;
1222                }
1223                Env<AttrContext> caseEnv =
1224                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1225                try {
1226                    attribStats(c.stats, caseEnv);
1227                } finally {
1228                    caseEnv.info.scope.leave();
1229                    addVars(c.stats, switchEnv.info.scope);
1230                }
1231            }
1232
1233            result = null;
1234        }
1235        finally {
1236            switchEnv.info.scope.leave();
1237        }
1238    }
1239    // where
1240        /** Add any variables defined in stats to the switch scope. */
1241        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1242            for (;stats.nonEmpty(); stats = stats.tail) {
1243                JCTree stat = stats.head;
1244                if (stat.hasTag(VARDEF))
1245                    switchScope.enter(((JCVariableDecl) stat).sym);
1246            }
1247        }
1248    // where
1249    /** Return the selected enumeration constant symbol, or null. */
1250    private Symbol enumConstant(JCTree tree, Type enumType) {
1251        if (!tree.hasTag(IDENT)) {
1252            log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
1253            return syms.errSymbol;
1254        }
1255        JCIdent ident = (JCIdent)tree;
1256        Name name = ident.name;
1257        for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1258            if (sym.kind == VAR) {
1259                Symbol s = ident.sym = sym;
1260                ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1261                ident.type = s.type;
1262                return ((s.flags_field & Flags.ENUM) == 0)
1263                    ? null : s;
1264            }
1265        }
1266        return null;
1267    }
1268
1269    public void visitSynchronized(JCSynchronized tree) {
1270        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1271        attribStat(tree.body, env);
1272        result = null;
1273    }
1274
1275    public void visitTry(JCTry tree) {
1276        // Create a new local environment with a local
1277        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1278        try {
1279            boolean isTryWithResource = tree.resources.nonEmpty();
1280            // Create a nested environment for attributing the try block if needed
1281            Env<AttrContext> tryEnv = isTryWithResource ?
1282                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1283                localEnv;
1284            try {
1285                // Attribute resource declarations
1286                for (JCTree resource : tree.resources) {
1287                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1288                        @Override
1289                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1290                            chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1291                        }
1292                    };
1293                    ResultInfo twrResult =
1294                        new ResultInfo(KindSelector.VAR,
1295                                       syms.autoCloseableType,
1296                                       twrContext);
1297                    if (resource.hasTag(VARDEF)) {
1298                        attribStat(resource, tryEnv);
1299                        twrResult.check(resource, resource.type);
1300
1301                        //check that resource type cannot throw InterruptedException
1302                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1303
1304                        VarSymbol var = ((JCVariableDecl) resource).sym;
1305                        var.setData(ElementKind.RESOURCE_VARIABLE);
1306                    } else {
1307                        attribTree(resource, tryEnv, twrResult);
1308                    }
1309                }
1310                // Attribute body
1311                attribStat(tree.body, tryEnv);
1312            } finally {
1313                if (isTryWithResource)
1314                    tryEnv.info.scope.leave();
1315            }
1316
1317            // Attribute catch clauses
1318            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1319                JCCatch c = l.head;
1320                Env<AttrContext> catchEnv =
1321                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1322                try {
1323                    Type ctype = attribStat(c.param, catchEnv);
1324                    if (TreeInfo.isMultiCatch(c)) {
1325                        //multi-catch parameter is implicitly marked as final
1326                        c.param.sym.flags_field |= FINAL | UNION;
1327                    }
1328                    if (c.param.sym.kind == VAR) {
1329                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1330                    }
1331                    chk.checkType(c.param.vartype.pos(),
1332                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1333                                  syms.throwableType);
1334                    attribStat(c.body, catchEnv);
1335                } finally {
1336                    catchEnv.info.scope.leave();
1337                }
1338            }
1339
1340            // Attribute finalizer
1341            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1342            result = null;
1343        }
1344        finally {
1345            localEnv.info.scope.leave();
1346        }
1347    }
1348
1349    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1350        if (!resource.isErroneous() &&
1351            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1352            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1353            Symbol close = syms.noSymbol;
1354            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1355            try {
1356                close = rs.resolveQualifiedMethod(pos,
1357                        env,
1358                        resource,
1359                        names.close,
1360                        List.<Type>nil(),
1361                        List.<Type>nil());
1362            }
1363            finally {
1364                log.popDiagnosticHandler(discardHandler);
1365            }
1366            if (close.kind == MTH &&
1367                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1368                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1369                    env.info.lint.isEnabled(LintCategory.TRY)) {
1370                log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1371            }
1372        }
1373    }
1374
1375    public void visitConditional(JCConditional tree) {
1376        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1377
1378        tree.polyKind = (!allowPoly ||
1379                pt().hasTag(NONE) && pt() != Type.recoveryType ||
1380                isBooleanOrNumeric(env, tree)) ?
1381                PolyKind.STANDALONE : PolyKind.POLY;
1382
1383        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1384            //cannot get here (i.e. it means we are returning from void method - which is already an error)
1385            resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1386            result = tree.type = types.createErrorType(resultInfo.pt);
1387            return;
1388        }
1389
1390        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1391                unknownExprInfo :
1392                resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1393                    //this will use enclosing check context to check compatibility of
1394                    //subexpression against target type; if we are in a method check context,
1395                    //depending on whether boxing is allowed, we could have incompatibilities
1396                    @Override
1397                    public void report(DiagnosticPosition pos, JCDiagnostic details) {
1398                        enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1399                    }
1400                });
1401
1402        Type truetype = attribTree(tree.truepart, env, condInfo);
1403        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1404
1405        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1406        if (condtype.constValue() != null &&
1407                truetype.constValue() != null &&
1408                falsetype.constValue() != null &&
1409                !owntype.hasTag(NONE)) {
1410            //constant folding
1411            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1412        }
1413        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1414    }
1415    //where
1416        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1417            switch (tree.getTag()) {
1418                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1419                              ((JCLiteral)tree).typetag == BOOLEAN ||
1420                              ((JCLiteral)tree).typetag == BOT;
1421                case LAMBDA: case REFERENCE: return false;
1422                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1423                case CONDEXPR:
1424                    JCConditional condTree = (JCConditional)tree;
1425                    return isBooleanOrNumeric(env, condTree.truepart) &&
1426                            isBooleanOrNumeric(env, condTree.falsepart);
1427                case APPLY:
1428                    JCMethodInvocation speculativeMethodTree =
1429                            (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1430                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1431                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1432                            env.enclClass.type :
1433                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1434                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1435                    return primitiveOrBoxed(owntype);
1436                case NEWCLASS:
1437                    JCExpression className =
1438                            removeClassParams.translate(((JCNewClass)tree).clazz);
1439                    JCExpression speculativeNewClassTree =
1440                            (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1441                    return primitiveOrBoxed(speculativeNewClassTree.type);
1442                default:
1443                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1444                    return primitiveOrBoxed(speculativeType);
1445            }
1446        }
1447        //where
1448            boolean primitiveOrBoxed(Type t) {
1449                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1450            }
1451
1452            TreeTranslator removeClassParams = new TreeTranslator() {
1453                @Override
1454                public void visitTypeApply(JCTypeApply tree) {
1455                    result = translate(tree.clazz);
1456                }
1457            };
1458
1459        /** Compute the type of a conditional expression, after
1460         *  checking that it exists.  See JLS 15.25. Does not take into
1461         *  account the special case where condition and both arms
1462         *  are constants.
1463         *
1464         *  @param pos      The source position to be used for error
1465         *                  diagnostics.
1466         *  @param thentype The type of the expression's then-part.
1467         *  @param elsetype The type of the expression's else-part.
1468         */
1469        private Type condType(DiagnosticPosition pos,
1470                               Type thentype, Type elsetype) {
1471            // If same type, that is the result
1472            if (types.isSameType(thentype, elsetype))
1473                return thentype.baseType();
1474
1475            Type thenUnboxed = (thentype.isPrimitive())
1476                ? thentype : types.unboxedType(thentype);
1477            Type elseUnboxed = (elsetype.isPrimitive())
1478                ? elsetype : types.unboxedType(elsetype);
1479
1480            // Otherwise, if both arms can be converted to a numeric
1481            // type, return the least numeric type that fits both arms
1482            // (i.e. return larger of the two, or return int if one
1483            // arm is short, the other is char).
1484            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1485                // If one arm has an integer subrange type (i.e., byte,
1486                // short, or char), and the other is an integer constant
1487                // that fits into the subrange, return the subrange type.
1488                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1489                    elseUnboxed.hasTag(INT) &&
1490                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1491                    return thenUnboxed.baseType();
1492                }
1493                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1494                    thenUnboxed.hasTag(INT) &&
1495                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1496                    return elseUnboxed.baseType();
1497                }
1498
1499                for (TypeTag tag : primitiveTags) {
1500                    Type candidate = syms.typeOfTag[tag.ordinal()];
1501                    if (types.isSubtype(thenUnboxed, candidate) &&
1502                        types.isSubtype(elseUnboxed, candidate)) {
1503                        return candidate;
1504                    }
1505                }
1506            }
1507
1508            // Those were all the cases that could result in a primitive
1509            if (thentype.isPrimitive())
1510                thentype = types.boxedClass(thentype).type;
1511            if (elsetype.isPrimitive())
1512                elsetype = types.boxedClass(elsetype).type;
1513
1514            if (types.isSubtype(thentype, elsetype))
1515                return elsetype.baseType();
1516            if (types.isSubtype(elsetype, thentype))
1517                return thentype.baseType();
1518
1519            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1520                log.error(pos, "neither.conditional.subtype",
1521                          thentype, elsetype);
1522                return thentype.baseType();
1523            }
1524
1525            // both are known to be reference types.  The result is
1526            // lub(thentype,elsetype). This cannot fail, as it will
1527            // always be possible to infer "Object" if nothing better.
1528            return types.lub(thentype.baseType(), elsetype.baseType());
1529        }
1530
1531    final static TypeTag[] primitiveTags = new TypeTag[]{
1532        BYTE,
1533        CHAR,
1534        SHORT,
1535        INT,
1536        LONG,
1537        FLOAT,
1538        DOUBLE,
1539        BOOLEAN,
1540    };
1541
1542    public void visitIf(JCIf tree) {
1543        attribExpr(tree.cond, env, syms.booleanType);
1544        attribStat(tree.thenpart, env);
1545        if (tree.elsepart != null)
1546            attribStat(tree.elsepart, env);
1547        chk.checkEmptyIf(tree);
1548        result = null;
1549    }
1550
1551    public void visitExec(JCExpressionStatement tree) {
1552        //a fresh environment is required for 292 inference to work properly ---
1553        //see Infer.instantiatePolymorphicSignatureInstance()
1554        Env<AttrContext> localEnv = env.dup(tree);
1555        attribExpr(tree.expr, localEnv);
1556        result = null;
1557    }
1558
1559    public void visitBreak(JCBreak tree) {
1560        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1561        result = null;
1562    }
1563
1564    public void visitContinue(JCContinue tree) {
1565        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1566        result = null;
1567    }
1568    //where
1569        /** Return the target of a break or continue statement, if it exists,
1570         *  report an error if not.
1571         *  Note: The target of a labelled break or continue is the
1572         *  (non-labelled) statement tree referred to by the label,
1573         *  not the tree representing the labelled statement itself.
1574         *
1575         *  @param pos     The position to be used for error diagnostics
1576         *  @param tag     The tag of the jump statement. This is either
1577         *                 Tree.BREAK or Tree.CONTINUE.
1578         *  @param label   The label of the jump statement, or null if no
1579         *                 label is given.
1580         *  @param env     The environment current at the jump statement.
1581         */
1582        private JCTree findJumpTarget(DiagnosticPosition pos,
1583                                    JCTree.Tag tag,
1584                                    Name label,
1585                                    Env<AttrContext> env) {
1586            // Search environments outwards from the point of jump.
1587            Env<AttrContext> env1 = env;
1588            LOOP:
1589            while (env1 != null) {
1590                switch (env1.tree.getTag()) {
1591                    case LABELLED:
1592                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1593                        if (label == labelled.label) {
1594                            // If jump is a continue, check that target is a loop.
1595                            if (tag == CONTINUE) {
1596                                if (!labelled.body.hasTag(DOLOOP) &&
1597                                        !labelled.body.hasTag(WHILELOOP) &&
1598                                        !labelled.body.hasTag(FORLOOP) &&
1599                                        !labelled.body.hasTag(FOREACHLOOP))
1600                                    log.error(pos, "not.loop.label", label);
1601                                // Found labelled statement target, now go inwards
1602                                // to next non-labelled tree.
1603                                return TreeInfo.referencedStatement(labelled);
1604                            } else {
1605                                return labelled;
1606                            }
1607                        }
1608                        break;
1609                    case DOLOOP:
1610                    case WHILELOOP:
1611                    case FORLOOP:
1612                    case FOREACHLOOP:
1613                        if (label == null) return env1.tree;
1614                        break;
1615                    case SWITCH:
1616                        if (label == null && tag == BREAK) return env1.tree;
1617                        break;
1618                    case LAMBDA:
1619                    case METHODDEF:
1620                    case CLASSDEF:
1621                        break LOOP;
1622                    default:
1623                }
1624                env1 = env1.next;
1625            }
1626            if (label != null)
1627                log.error(pos, "undef.label", label);
1628            else if (tag == CONTINUE)
1629                log.error(pos, "cont.outside.loop");
1630            else
1631                log.error(pos, "break.outside.switch.loop");
1632            return null;
1633        }
1634
1635    public void visitReturn(JCReturn tree) {
1636        // Check that there is an enclosing method which is
1637        // nested within than the enclosing class.
1638        if (env.info.returnResult == null) {
1639            log.error(tree.pos(), "ret.outside.meth");
1640        } else {
1641            // Attribute return expression, if it exists, and check that
1642            // it conforms to result type of enclosing method.
1643            if (tree.expr != null) {
1644                if (env.info.returnResult.pt.hasTag(VOID)) {
1645                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1646                              diags.fragment("unexpected.ret.val"));
1647                }
1648                attribTree(tree.expr, env, env.info.returnResult);
1649            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1650                    !env.info.returnResult.pt.hasTag(NONE)) {
1651                env.info.returnResult.checkContext.report(tree.pos(),
1652                              diags.fragment("missing.ret.val"));
1653            }
1654        }
1655        result = null;
1656    }
1657
1658    public void visitThrow(JCThrow tree) {
1659        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1660        if (allowPoly) {
1661            chk.checkType(tree, owntype, syms.throwableType);
1662        }
1663        result = null;
1664    }
1665
1666    public void visitAssert(JCAssert tree) {
1667        attribExpr(tree.cond, env, syms.booleanType);
1668        if (tree.detail != null) {
1669            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1670        }
1671        result = null;
1672    }
1673
1674     /** Visitor method for method invocations.
1675     *  NOTE: The method part of an application will have in its type field
1676     *        the return type of the method, not the method's type itself!
1677     */
1678    public void visitApply(JCMethodInvocation tree) {
1679        // The local environment of a method application is
1680        // a new environment nested in the current one.
1681        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1682
1683        // The types of the actual method arguments.
1684        List<Type> argtypes;
1685
1686        // The types of the actual method type arguments.
1687        List<Type> typeargtypes = null;
1688
1689        Name methName = TreeInfo.name(tree.meth);
1690
1691        boolean isConstructorCall =
1692            methName == names._this || methName == names._super;
1693
1694        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1695        if (isConstructorCall) {
1696            // We are seeing a ...this(...) or ...super(...) call.
1697            // Check that this is the first statement in a constructor.
1698            if (checkFirstConstructorStat(tree, env)) {
1699
1700                // Record the fact
1701                // that this is a constructor call (using isSelfCall).
1702                localEnv.info.isSelfCall = true;
1703
1704                // Attribute arguments, yielding list of argument types.
1705                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1706                argtypes = argtypesBuf.toList();
1707                typeargtypes = attribTypes(tree.typeargs, localEnv);
1708
1709                // Variable `site' points to the class in which the called
1710                // constructor is defined.
1711                Type site = env.enclClass.sym.type;
1712                if (methName == names._super) {
1713                    if (site == syms.objectType) {
1714                        log.error(tree.meth.pos(), "no.superclass", site);
1715                        site = types.createErrorType(syms.objectType);
1716                    } else {
1717                        site = types.supertype(site);
1718                    }
1719                }
1720
1721                if (site.hasTag(CLASS)) {
1722                    Type encl = site.getEnclosingType();
1723                    while (encl != null && encl.hasTag(TYPEVAR))
1724                        encl = encl.getUpperBound();
1725                    if (encl.hasTag(CLASS)) {
1726                        // we are calling a nested class
1727
1728                        if (tree.meth.hasTag(SELECT)) {
1729                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1730
1731                            // We are seeing a prefixed call, of the form
1732                            //     <expr>.super(...).
1733                            // Check that the prefix expression conforms
1734                            // to the outer instance type of the class.
1735                            chk.checkRefType(qualifier.pos(),
1736                                             attribExpr(qualifier, localEnv,
1737                                                        encl));
1738                        } else if (methName == names._super) {
1739                            // qualifier omitted; check for existence
1740                            // of an appropriate implicit qualifier.
1741                            rs.resolveImplicitThis(tree.meth.pos(),
1742                                                   localEnv, site, true);
1743                        }
1744                    } else if (tree.meth.hasTag(SELECT)) {
1745                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
1746                                  site.tsym);
1747                    }
1748
1749                    // if we're calling a java.lang.Enum constructor,
1750                    // prefix the implicit String and int parameters
1751                    if (site.tsym == syms.enumSym)
1752                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1753
1754                    // Resolve the called constructor under the assumption
1755                    // that we are referring to a superclass instance of the
1756                    // current instance (JLS ???).
1757                    boolean selectSuperPrev = localEnv.info.selectSuper;
1758                    localEnv.info.selectSuper = true;
1759                    localEnv.info.pendingResolutionPhase = null;
1760                    Symbol sym = rs.resolveConstructor(
1761                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1762                    localEnv.info.selectSuper = selectSuperPrev;
1763
1764                    // Set method symbol to resolved constructor...
1765                    TreeInfo.setSymbol(tree.meth, sym);
1766
1767                    // ...and check that it is legal in the current context.
1768                    // (this will also set the tree's type)
1769                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1770                    checkId(tree.meth, site, sym, localEnv,
1771                            new ResultInfo(kind, mpt));
1772                }
1773                // Otherwise, `site' is an error type and we do nothing
1774            }
1775            result = tree.type = syms.voidType;
1776        } else {
1777            // Otherwise, we are seeing a regular method call.
1778            // Attribute the arguments, yielding list of argument types, ...
1779            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1780            argtypes = argtypesBuf.toList();
1781            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1782
1783            // ... and attribute the method using as a prototype a methodtype
1784            // whose formal argument types is exactly the list of actual
1785            // arguments (this will also set the method symbol).
1786            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1787            localEnv.info.pendingResolutionPhase = null;
1788            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1789
1790            // Compute the result type.
1791            Type restype = mtype.getReturnType();
1792            if (restype.hasTag(WILDCARD))
1793                throw new AssertionError(mtype);
1794
1795            Type qualifier = (tree.meth.hasTag(SELECT))
1796                    ? ((JCFieldAccess) tree.meth).selected.type
1797                    : env.enclClass.sym.type;
1798            restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1799
1800            chk.checkRefTypes(tree.typeargs, typeargtypes);
1801
1802            // Check that value of resulting type is admissible in the
1803            // current context.  Also, capture the return type
1804            result = check(tree, capture(restype), KindSelector.VAL, resultInfo);
1805        }
1806        chk.validate(tree.typeargs, localEnv);
1807    }
1808    //where
1809        Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1810            if (methodName == names.clone && types.isArray(qualifierType)) {
1811                // as a special case, array.clone() has a result that is
1812                // the same as static type of the array being cloned
1813                return qualifierType;
1814            } else if (methodName == names.getClass && argtypes.isEmpty()) {
1815                // as a special case, x.getClass() has type Class<? extends |X|>
1816                return new ClassType(restype.getEnclosingType(),
1817                              List.<Type>of(new WildcardType(types.erasure(qualifierType),
1818                                                               BoundKind.EXTENDS,
1819                                                             syms.boundClass)),
1820                                     restype.tsym,
1821                                     restype.getMetadata());
1822            } else {
1823                return restype;
1824            }
1825        }
1826
1827        /** Check that given application node appears as first statement
1828         *  in a constructor call.
1829         *  @param tree   The application node
1830         *  @param env    The environment current at the application.
1831         */
1832        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1833            JCMethodDecl enclMethod = env.enclMethod;
1834            if (enclMethod != null && enclMethod.name == names.init) {
1835                JCBlock body = enclMethod.body;
1836                if (body.stats.head.hasTag(EXEC) &&
1837                    ((JCExpressionStatement) body.stats.head).expr == tree)
1838                    return true;
1839            }
1840            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1841                      TreeInfo.name(tree.meth));
1842            return false;
1843        }
1844
1845        /** Obtain a method type with given argument types.
1846         */
1847        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1848            MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1849            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1850        }
1851
1852    public void visitNewClass(final JCNewClass tree) {
1853        Type owntype = types.createErrorType(tree.type);
1854
1855        // The local environment of a class creation is
1856        // a new environment nested in the current one.
1857        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1858
1859        // The anonymous inner class definition of the new expression,
1860        // if one is defined by it.
1861        JCClassDecl cdef = tree.def;
1862
1863        // If enclosing class is given, attribute it, and
1864        // complete class name to be fully qualified
1865        JCExpression clazz = tree.clazz; // Class field following new
1866        JCExpression clazzid;            // Identifier in class field
1867        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1868        annoclazzid = null;
1869
1870        if (clazz.hasTag(TYPEAPPLY)) {
1871            clazzid = ((JCTypeApply) clazz).clazz;
1872            if (clazzid.hasTag(ANNOTATED_TYPE)) {
1873                annoclazzid = (JCAnnotatedType) clazzid;
1874                clazzid = annoclazzid.underlyingType;
1875            }
1876        } else {
1877            if (clazz.hasTag(ANNOTATED_TYPE)) {
1878                annoclazzid = (JCAnnotatedType) clazz;
1879                clazzid = annoclazzid.underlyingType;
1880            } else {
1881                clazzid = clazz;
1882            }
1883        }
1884
1885        JCExpression clazzid1 = clazzid; // The same in fully qualified form
1886
1887        if (tree.encl != null) {
1888            // We are seeing a qualified new, of the form
1889            //    <expr>.new C <...> (...) ...
1890            // In this case, we let clazz stand for the name of the
1891            // allocated class C prefixed with the type of the qualifier
1892            // expression, so that we can
1893            // resolve it with standard techniques later. I.e., if
1894            // <expr> has type T, then <expr>.new C <...> (...)
1895            // yields a clazz T.C.
1896            Type encltype = chk.checkRefType(tree.encl.pos(),
1897                                             attribExpr(tree.encl, env));
1898            // TODO 308: in <expr>.new C, do we also want to add the type annotations
1899            // from expr to the combined type, or not? Yes, do this.
1900            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1901                                                 ((JCIdent) clazzid).name);
1902
1903            EndPosTable endPosTable = this.env.toplevel.endPositions;
1904            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
1905            if (clazz.hasTag(ANNOTATED_TYPE)) {
1906                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1907                List<JCAnnotation> annos = annoType.annotations;
1908
1909                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1910                    clazzid1 = make.at(tree.pos).
1911                        TypeApply(clazzid1,
1912                                  ((JCTypeApply) clazz).arguments);
1913                }
1914
1915                clazzid1 = make.at(tree.pos).
1916                    AnnotatedType(annos, clazzid1);
1917            } else if (clazz.hasTag(TYPEAPPLY)) {
1918                clazzid1 = make.at(tree.pos).
1919                    TypeApply(clazzid1,
1920                              ((JCTypeApply) clazz).arguments);
1921            }
1922
1923            clazz = clazzid1;
1924        }
1925
1926        // Attribute clazz expression and store
1927        // symbol + type back into the attributed tree.
1928        Type clazztype = TreeInfo.isEnumInit(env.tree) ?
1929            attribIdentAsEnumType(env, (JCIdent)clazz) :
1930            attribType(clazz, env);
1931
1932        clazztype = chk.checkDiamond(tree, clazztype);
1933        chk.validate(clazz, localEnv);
1934        if (tree.encl != null) {
1935            // We have to work in this case to store
1936            // symbol + type back into the attributed tree.
1937            tree.clazz.type = clazztype;
1938            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1939            clazzid.type = ((JCIdent) clazzid).sym.type;
1940            if (annoclazzid != null) {
1941                annoclazzid.type = clazzid.type;
1942            }
1943            if (!clazztype.isErroneous()) {
1944                if (cdef != null && clazztype.tsym.isInterface()) {
1945                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1946                } else if (clazztype.tsym.isStatic()) {
1947                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1948                }
1949            }
1950        } else if (!clazztype.tsym.isInterface() &&
1951                   clazztype.getEnclosingType().hasTag(CLASS)) {
1952            // Check for the existence of an apropos outer instance
1953            rs.resolveImplicitThis(tree.pos(), env, clazztype);
1954        }
1955
1956        // Attribute constructor arguments.
1957        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1958        final KindSelector pkind =
1959            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1960        List<Type> argtypes = argtypesBuf.toList();
1961        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1962
1963        // If we have made no mistakes in the class type...
1964        if (clazztype.hasTag(CLASS)) {
1965            // Enums may not be instantiated except implicitly
1966            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
1967                (!env.tree.hasTag(VARDEF) ||
1968                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
1969                 ((JCVariableDecl) env.tree).init != tree))
1970                log.error(tree.pos(), "enum.cant.be.instantiated");
1971            // Check that class is not abstract
1972            if (cdef == null &&
1973                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
1974                log.error(tree.pos(), "abstract.cant.be.instantiated",
1975                          clazztype.tsym);
1976            } else if (cdef != null && clazztype.tsym.isInterface()) {
1977                // Check that no constructor arguments are given to
1978                // anonymous classes implementing an interface
1979                if (!argtypes.isEmpty())
1980                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
1981
1982                if (!typeargtypes.isEmpty())
1983                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
1984
1985                // Error recovery: pretend no arguments were supplied.
1986                argtypes = List.nil();
1987                typeargtypes = List.nil();
1988            } else if (TreeInfo.isDiamond(tree)) {
1989                ClassType site = new ClassType(clazztype.getEnclosingType(),
1990                            clazztype.tsym.type.getTypeArguments(),
1991                                               clazztype.tsym,
1992                                               clazztype.getMetadata());
1993
1994                Env<AttrContext> diamondEnv = localEnv.dup(tree);
1995                diamondEnv.info.selectSuper = cdef != null;
1996                diamondEnv.info.pendingResolutionPhase = null;
1997
1998                //if the type of the instance creation expression is a class type
1999                //apply method resolution inference (JLS 15.12.2.7). The return type
2000                //of the resolved constructor will be a partially instantiated type
2001                Symbol constructor = rs.resolveDiamond(tree.pos(),
2002                            diamondEnv,
2003                            site,
2004                            argtypes,
2005                            typeargtypes);
2006                tree.constructor = constructor.baseSymbol();
2007
2008                final TypeSymbol csym = clazztype.tsym;
2009                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2010                    @Override
2011                    public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2012                        enclosingContext.report(tree.clazz,
2013                                diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2014                    }
2015                });
2016                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2017                constructorType = checkId(noCheckTree, site,
2018                        constructor,
2019                        diamondEnv,
2020                        diamondResult);
2021
2022                tree.clazz.type = types.createErrorType(clazztype);
2023                if (!constructorType.isErroneous()) {
2024                    tree.clazz.type = clazztype = constructorType.getReturnType();
2025                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2026                }
2027                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2028            }
2029
2030            // Resolve the called constructor under the assumption
2031            // that we are referring to a superclass instance of the
2032            // current instance (JLS ???).
2033            else {
2034                //the following code alters some of the fields in the current
2035                //AttrContext - hence, the current context must be dup'ed in
2036                //order to avoid downstream failures
2037                Env<AttrContext> rsEnv = localEnv.dup(tree);
2038                rsEnv.info.selectSuper = cdef != null;
2039                rsEnv.info.pendingResolutionPhase = null;
2040                tree.constructor = rs.resolveConstructor(
2041                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2042                if (cdef == null) { //do not check twice!
2043                    tree.constructorType = checkId(noCheckTree,
2044                            clazztype,
2045                            tree.constructor,
2046                            rsEnv,
2047                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2048                    if (rsEnv.info.lastResolveVarargs())
2049                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2050                }
2051            }
2052
2053            if (cdef != null) {
2054                // We are seeing an anonymous class instance creation.
2055                // In this case, the class instance creation
2056                // expression
2057                //
2058                //    E.new <typeargs1>C<typargs2>(args) { ... }
2059                //
2060                // is represented internally as
2061                //
2062                //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2063                //
2064                // This expression is then *transformed* as follows:
2065                //
2066                // (1) add an extends or implements clause
2067                // (2) add a constructor.
2068                //
2069                // For instance, if C is a class, and ET is the type of E,
2070                // the expression
2071                //
2072                //    E.new <typeargs1>C<typargs2>(args) { ... }
2073                //
2074                // is translated to (where X is a fresh name and typarams is the
2075                // parameter list of the super constructor):
2076                //
2077                //   new <typeargs1>X(<*nullchk*>E, args) where
2078                //     X extends C<typargs2> {
2079                //       <typarams> X(ET e, args) {
2080                //         e.<typeargs1>super(args)
2081                //       }
2082                //       ...
2083                //     }
2084
2085                if (clazztype.tsym.isInterface()) {
2086                    cdef.implementing = List.of(clazz);
2087                } else {
2088                    cdef.extending = clazz;
2089                }
2090
2091                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2092                    isSerializable(clazztype)) {
2093                    localEnv.info.isSerializable = true;
2094                }
2095
2096                attribStat(cdef, localEnv);
2097
2098                // If an outer instance is given,
2099                // prefix it to the constructor arguments
2100                // and delete it from the new expression
2101                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2102                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2103                    argtypes = argtypes.prepend(tree.encl.type);
2104                    tree.encl = null;
2105                }
2106
2107                // Reassign clazztype and recompute constructor.
2108                clazztype = cdef.sym.type;
2109                Symbol sym = tree.constructor = rs.resolveConstructor(
2110                    tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
2111                Assert.check(!sym.kind.isOverloadError());
2112                tree.constructor = sym;
2113                tree.constructorType = checkId(noCheckTree,
2114                    clazztype,
2115                    tree.constructor,
2116                    localEnv,
2117                    new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2118            }
2119
2120            if (tree.constructor != null && tree.constructor.kind == MTH)
2121                owntype = clazztype;
2122        }
2123        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2124        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2125        if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2126            //we need to wait for inference to finish and then replace inference vars in the constructor type
2127            inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2128                    instantiatedContext -> {
2129                        tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2130                    });
2131        }
2132        chk.validate(tree.typeargs, localEnv);
2133    }
2134
2135    /** Make an attributed null check tree.
2136     */
2137    public JCExpression makeNullCheck(JCExpression arg) {
2138        // optimization: X.this is never null; skip null check
2139        Name name = TreeInfo.name(arg);
2140        if (name == names._this || name == names._super) return arg;
2141
2142        JCTree.Tag optag = NULLCHK;
2143        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2144        tree.operator = syms.nullcheck;
2145        tree.type = arg.type;
2146        return tree;
2147    }
2148
2149    public void visitNewArray(JCNewArray tree) {
2150        Type owntype = types.createErrorType(tree.type);
2151        Env<AttrContext> localEnv = env.dup(tree);
2152        Type elemtype;
2153        if (tree.elemtype != null) {
2154            elemtype = attribType(tree.elemtype, localEnv);
2155            chk.validate(tree.elemtype, localEnv);
2156            owntype = elemtype;
2157            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2158                attribExpr(l.head, localEnv, syms.intType);
2159                owntype = new ArrayType(owntype, syms.arrayClass);
2160            }
2161        } else {
2162            // we are seeing an untyped aggregate { ... }
2163            // this is allowed only if the prototype is an array
2164            if (pt().hasTag(ARRAY)) {
2165                elemtype = types.elemtype(pt());
2166            } else {
2167                if (!pt().hasTag(ERROR)) {
2168                    log.error(tree.pos(), "illegal.initializer.for.type",
2169                              pt());
2170                }
2171                elemtype = types.createErrorType(pt());
2172            }
2173        }
2174        if (tree.elems != null) {
2175            attribExprs(tree.elems, localEnv, elemtype);
2176            owntype = new ArrayType(elemtype, syms.arrayClass);
2177        }
2178        if (!types.isReifiable(elemtype))
2179            log.error(tree.pos(), "generic.array.creation");
2180        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2181    }
2182
2183    /*
2184     * A lambda expression can only be attributed when a target-type is available.
2185     * In addition, if the target-type is that of a functional interface whose
2186     * descriptor contains inference variables in argument position the lambda expression
2187     * is 'stuck' (see DeferredAttr).
2188     */
2189    @Override
2190    public void visitLambda(final JCLambda that) {
2191        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2192            if (pt().hasTag(NONE)) {
2193                //lambda only allowed in assignment or method invocation/cast context
2194                log.error(that.pos(), "unexpected.lambda");
2195            }
2196            result = that.type = types.createErrorType(pt());
2197            return;
2198        }
2199        //create an environment for attribution of the lambda expression
2200        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2201        boolean needsRecovery =
2202                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2203        try {
2204            Type currentTarget = pt();
2205            if (needsRecovery && isSerializable(currentTarget)) {
2206                localEnv.info.isSerializable = true;
2207            }
2208            List<Type> explicitParamTypes = null;
2209            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2210                //attribute lambda parameters
2211                attribStats(that.params, localEnv);
2212                explicitParamTypes = TreeInfo.types(that.params);
2213            }
2214
2215            Type lambdaType;
2216            if (pt() != Type.recoveryType) {
2217                /* We need to adjust the target. If the target is an
2218                 * intersection type, for example: SAM & I1 & I2 ...
2219                 * the target will be updated to SAM
2220                 */
2221                currentTarget = targetChecker.visit(currentTarget, that);
2222                if (explicitParamTypes != null) {
2223                    currentTarget = infer.instantiateFunctionalInterface(that,
2224                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2225                }
2226                currentTarget = types.removeWildcards(currentTarget);
2227                lambdaType = types.findDescriptorType(currentTarget);
2228            } else {
2229                currentTarget = Type.recoveryType;
2230                lambdaType = fallbackDescriptorType(that);
2231            }
2232
2233            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2234
2235            if (lambdaType.hasTag(FORALL)) {
2236                //lambda expression target desc cannot be a generic method
2237                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2238                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2239                result = that.type = types.createErrorType(pt());
2240                return;
2241            }
2242
2243            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2244                //add param type info in the AST
2245                List<Type> actuals = lambdaType.getParameterTypes();
2246                List<JCVariableDecl> params = that.params;
2247
2248                boolean arityMismatch = false;
2249
2250                while (params.nonEmpty()) {
2251                    if (actuals.isEmpty()) {
2252                        //not enough actuals to perform lambda parameter inference
2253                        arityMismatch = true;
2254                    }
2255                    //reset previously set info
2256                    Type argType = arityMismatch ?
2257                            syms.errType :
2258                            actuals.head;
2259                    params.head.vartype = make.at(params.head).Type(argType);
2260                    params.head.sym = null;
2261                    actuals = actuals.isEmpty() ?
2262                            actuals :
2263                            actuals.tail;
2264                    params = params.tail;
2265                }
2266
2267                //attribute lambda parameters
2268                attribStats(that.params, localEnv);
2269
2270                if (arityMismatch) {
2271                    resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2272                        result = that.type = types.createErrorType(currentTarget);
2273                        return;
2274                }
2275            }
2276
2277            //from this point on, no recovery is needed; if we are in assignment context
2278            //we will be able to attribute the whole lambda body, regardless of errors;
2279            //if we are in a 'check' method context, and the lambda is not compatible
2280            //with the target-type, it will be recovered anyway in Attr.checkId
2281            needsRecovery = false;
2282
2283            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2284                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2285                    new FunctionalReturnContext(resultInfo.checkContext);
2286
2287            ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2288                recoveryInfo :
2289                new ResultInfo(KindSelector.VAL,
2290                               lambdaType.getReturnType(), funcContext);
2291            localEnv.info.returnResult = bodyResultInfo;
2292
2293            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2294                attribTree(that.getBody(), localEnv, bodyResultInfo);
2295            } else {
2296                JCBlock body = (JCBlock)that.body;
2297                attribStats(body.stats, localEnv);
2298            }
2299
2300            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2301
2302            boolean isSpeculativeRound =
2303                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2304
2305            preFlow(that);
2306            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2307
2308            that.type = currentTarget; //avoids recovery at this stage
2309            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2310
2311            if (!isSpeculativeRound) {
2312                //add thrown types as bounds to the thrown types free variables if needed:
2313                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2314                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2315                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2316
2317                    chk.unhandled(inferredThrownTypes, thrownTypes);
2318                }
2319
2320                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2321            }
2322            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2323        } catch (Types.FunctionDescriptorLookupError ex) {
2324            JCDiagnostic cause = ex.getDiagnostic();
2325            resultInfo.checkContext.report(that, cause);
2326            result = that.type = types.createErrorType(pt());
2327            return;
2328        } finally {
2329            localEnv.info.scope.leave();
2330            if (needsRecovery) {
2331                attribTree(that, env, recoveryInfo);
2332            }
2333        }
2334    }
2335    //where
2336        void preFlow(JCLambda tree) {
2337            new PostAttrAnalyzer() {
2338                @Override
2339                public void scan(JCTree tree) {
2340                    if (tree == null ||
2341                            (tree.type != null &&
2342                            tree.type == Type.stuckType)) {
2343                        //don't touch stuck expressions!
2344                        return;
2345                    }
2346                    super.scan(tree);
2347                }
2348            }.scan(tree);
2349        }
2350
2351        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2352
2353            @Override
2354            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2355                return t.isCompound() ?
2356                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2357            }
2358
2359            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2360                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2361                Type target = null;
2362                for (Type bound : ict.getExplicitComponents()) {
2363                    TypeSymbol boundSym = bound.tsym;
2364                    if (types.isFunctionalInterface(boundSym) &&
2365                            types.findDescriptorSymbol(boundSym) == desc) {
2366                        target = bound;
2367                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2368                        //bound must be an interface
2369                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2370                    }
2371                }
2372                return target != null ?
2373                        target :
2374                        ict.getExplicitComponents().head; //error recovery
2375            }
2376
2377            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2378                ListBuffer<Type> targs = new ListBuffer<>();
2379                ListBuffer<Type> supertypes = new ListBuffer<>();
2380                for (Type i : ict.interfaces_field) {
2381                    if (i.isParameterized()) {
2382                        targs.appendList(i.tsym.type.allparams());
2383                    }
2384                    supertypes.append(i.tsym.type);
2385                }
2386                IntersectionClassType notionalIntf =
2387                        (IntersectionClassType)types.makeCompoundType(supertypes.toList());
2388                notionalIntf.allparams_field = targs.toList();
2389                notionalIntf.tsym.flags_field |= INTERFACE;
2390                return notionalIntf.tsym;
2391            }
2392
2393            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2394                resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2395                        diags.fragment(key, args)));
2396            }
2397        };
2398
2399        private Type fallbackDescriptorType(JCExpression tree) {
2400            switch (tree.getTag()) {
2401                case LAMBDA:
2402                    JCLambda lambda = (JCLambda)tree;
2403                    List<Type> argtypes = List.nil();
2404                    for (JCVariableDecl param : lambda.params) {
2405                        argtypes = param.vartype != null ?
2406                                argtypes.append(param.vartype.type) :
2407                                argtypes.append(syms.errType);
2408                    }
2409                    return new MethodType(argtypes, Type.recoveryType,
2410                            List.of(syms.throwableType), syms.methodClass);
2411                case REFERENCE:
2412                    return new MethodType(List.<Type>nil(), Type.recoveryType,
2413                            List.of(syms.throwableType), syms.methodClass);
2414                default:
2415                    Assert.error("Cannot get here!");
2416            }
2417            return null;
2418        }
2419
2420        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2421                final InferenceContext inferenceContext, final Type... ts) {
2422            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2423        }
2424
2425        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2426                final InferenceContext inferenceContext, final List<Type> ts) {
2427            if (inferenceContext.free(ts)) {
2428                inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2429                    @Override
2430                    public void typesInferred(InferenceContext inferenceContext) {
2431                        checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2432                    }
2433                });
2434            } else {
2435                for (Type t : ts) {
2436                    rs.checkAccessibleType(env, t);
2437                }
2438            }
2439        }
2440
2441        /**
2442         * Lambda/method reference have a special check context that ensures
2443         * that i.e. a lambda return type is compatible with the expected
2444         * type according to both the inherited context and the assignment
2445         * context.
2446         */
2447        class FunctionalReturnContext extends Check.NestedCheckContext {
2448
2449            FunctionalReturnContext(CheckContext enclosingContext) {
2450                super(enclosingContext);
2451            }
2452
2453            @Override
2454            public boolean compatible(Type found, Type req, Warner warn) {
2455                //return type must be compatible in both current context and assignment context
2456                return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
2457            }
2458
2459            @Override
2460            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2461                enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2462            }
2463        }
2464
2465        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2466
2467            JCExpression expr;
2468
2469            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2470                super(enclosingContext);
2471                this.expr = expr;
2472            }
2473
2474            @Override
2475            public boolean compatible(Type found, Type req, Warner warn) {
2476                //a void return is compatible with an expression statement lambda
2477                return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2478                        super.compatible(found, req, warn);
2479            }
2480        }
2481
2482        /**
2483        * Lambda compatibility. Check that given return types, thrown types, parameter types
2484        * are compatible with the expected functional interface descriptor. This means that:
2485        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2486        * types must be compatible with the return type of the expected descriptor.
2487        */
2488        private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2489            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2490
2491            //return values have already been checked - but if lambda has no return
2492            //values, we must ensure that void/value compatibility is correct;
2493            //this amounts at checking that, if a lambda body can complete normally,
2494            //the descriptor's return type must be void
2495            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2496                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2497                checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2498                        diags.fragment("missing.ret.val", returnType)));
2499            }
2500
2501            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2502            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2503                checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2504            }
2505        }
2506
2507        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2508         * static field and that lambda has type annotations, these annotations will
2509         * also be stored at these fake clinit methods.
2510         *
2511         * LambdaToMethod also use fake clinit methods so they can be reused.
2512         * Also as LTM is a phase subsequent to attribution, the methods from
2513         * clinits can be safely removed by LTM to save memory.
2514         */
2515        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2516
2517        public MethodSymbol removeClinit(ClassSymbol sym) {
2518            return clinits.remove(sym);
2519        }
2520
2521        /* This method returns an environment to be used to attribute a lambda
2522         * expression.
2523         *
2524         * The owner of this environment is a method symbol. If the current owner
2525         * is not a method, for example if the lambda is used to initialize
2526         * a field, then if the field is:
2527         *
2528         * - an instance field, we use the first constructor.
2529         * - a static field, we create a fake clinit method.
2530         */
2531        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2532            Env<AttrContext> lambdaEnv;
2533            Symbol owner = env.info.scope.owner;
2534            if (owner.kind == VAR && owner.owner.kind == TYP) {
2535                //field initializer
2536                ClassSymbol enclClass = owner.enclClass();
2537                Symbol newScopeOwner = env.info.scope.owner;
2538                /* if the field isn't static, then we can get the first constructor
2539                 * and use it as the owner of the environment. This is what
2540                 * LTM code is doing to look for type annotations so we are fine.
2541                 */
2542                if ((owner.flags() & STATIC) == 0) {
2543                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2544                        newScopeOwner = s;
2545                        break;
2546                    }
2547                } else {
2548                    /* if the field is static then we need to create a fake clinit
2549                     * method, this method can later be reused by LTM.
2550                     */
2551                    MethodSymbol clinit = clinits.get(enclClass);
2552                    if (clinit == null) {
2553                        Type clinitType = new MethodType(List.<Type>nil(),
2554                                syms.voidType, List.<Type>nil(), syms.methodClass);
2555                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2556                                names.clinit, clinitType, enclClass);
2557                        clinit.params = List.<VarSymbol>nil();
2558                        clinits.put(enclClass, clinit);
2559                    }
2560                    newScopeOwner = clinit;
2561                }
2562                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2563            } else {
2564                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2565            }
2566            return lambdaEnv;
2567        }
2568
2569    @Override
2570    public void visitReference(final JCMemberReference that) {
2571        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2572            if (pt().hasTag(NONE)) {
2573                //method reference only allowed in assignment or method invocation/cast context
2574                log.error(that.pos(), "unexpected.mref");
2575            }
2576            result = that.type = types.createErrorType(pt());
2577            return;
2578        }
2579        final Env<AttrContext> localEnv = env.dup(that);
2580        try {
2581            //attribute member reference qualifier - if this is a constructor
2582            //reference, the expected kind must be a type
2583            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2584
2585            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2586                exprType = chk.checkConstructorRefType(that.expr, exprType);
2587                if (!exprType.isErroneous() &&
2588                    exprType.isRaw() &&
2589                    that.typeargs != null) {
2590                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2591                        diags.fragment("mref.infer.and.explicit.params"));
2592                    exprType = types.createErrorType(exprType);
2593                }
2594            }
2595
2596            if (exprType.isErroneous()) {
2597                //if the qualifier expression contains problems,
2598                //give up attribution of method reference
2599                result = that.type = exprType;
2600                return;
2601            }
2602
2603            if (TreeInfo.isStaticSelector(that.expr, names)) {
2604                //if the qualifier is a type, validate it; raw warning check is
2605                //omitted as we don't know at this stage as to whether this is a
2606                //raw selector (because of inference)
2607                chk.validate(that.expr, env, false);
2608            }
2609
2610            //attrib type-arguments
2611            List<Type> typeargtypes = List.nil();
2612            if (that.typeargs != null) {
2613                typeargtypes = attribTypes(that.typeargs, localEnv);
2614            }
2615
2616            Type desc;
2617            Type currentTarget = pt();
2618            boolean isTargetSerializable =
2619                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2620                    isSerializable(currentTarget);
2621            if (currentTarget != Type.recoveryType) {
2622                currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
2623                desc = types.findDescriptorType(currentTarget);
2624            } else {
2625                currentTarget = Type.recoveryType;
2626                desc = fallbackDescriptorType(that);
2627            }
2628
2629            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2630            List<Type> argtypes = desc.getParameterTypes();
2631            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2632
2633            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2634                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2635            }
2636
2637            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2638            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2639            try {
2640                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2641                        that.name, argtypes, typeargtypes, referenceCheck,
2642                        resultInfo.checkContext.inferenceContext(),
2643                        resultInfo.checkContext.deferredAttrContext().mode);
2644            } finally {
2645                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2646            }
2647
2648            Symbol refSym = refResult.fst;
2649            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2650
2651            if (refSym.kind != MTH) {
2652                boolean targetError;
2653                switch (refSym.kind) {
2654                    case ABSENT_MTH:
2655                        targetError = false;
2656                        break;
2657                    case WRONG_MTH:
2658                    case WRONG_MTHS:
2659                    case AMBIGUOUS:
2660                    case HIDDEN:
2661                    case STATICERR:
2662                    case MISSING_ENCL:
2663                    case WRONG_STATICNESS:
2664                        targetError = true;
2665                        break;
2666                    default:
2667                        Assert.error("unexpected result kind " + refSym.kind);
2668                        targetError = false;
2669                }
2670
2671                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2672                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2673
2674                JCDiagnostic.DiagnosticType diagKind = targetError ?
2675                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2676
2677                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2678                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2679
2680                if (targetError && currentTarget == Type.recoveryType) {
2681                    //a target error doesn't make sense during recovery stage
2682                    //as we don't know what actual parameter types are
2683                    result = that.type = currentTarget;
2684                    return;
2685                } else {
2686                    if (targetError) {
2687                        resultInfo.checkContext.report(that, diag);
2688                    } else {
2689                        log.report(diag);
2690                    }
2691                    result = that.type = types.createErrorType(currentTarget);
2692                    return;
2693                }
2694            }
2695
2696            that.sym = refSym.baseSymbol();
2697            that.kind = lookupHelper.referenceKind(that.sym);
2698            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2699
2700            if (desc.getReturnType() == Type.recoveryType) {
2701                // stop here
2702                result = that.type = currentTarget;
2703                return;
2704            }
2705
2706            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2707
2708                if (that.getMode() == ReferenceMode.INVOKE &&
2709                        TreeInfo.isStaticSelector(that.expr, names) &&
2710                        that.kind.isUnbound() &&
2711                        !desc.getParameterTypes().head.isParameterized()) {
2712                    chk.checkRaw(that.expr, localEnv);
2713                }
2714
2715                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2716                        exprType.getTypeArguments().nonEmpty()) {
2717                    //static ref with class type-args
2718                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2719                            diags.fragment("static.mref.with.targs"));
2720                    result = that.type = types.createErrorType(currentTarget);
2721                    return;
2722                }
2723
2724                if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
2725                        !that.kind.isUnbound()) {
2726                    //no static bound mrefs
2727                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2728                            diags.fragment("static.bound.mref"));
2729                    result = that.type = types.createErrorType(currentTarget);
2730                    return;
2731                }
2732
2733                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2734                    // Check that super-qualified symbols are not abstract (JLS)
2735                    rs.checkNonAbstract(that.pos(), that.sym);
2736                }
2737
2738                if (isTargetSerializable) {
2739                    chk.checkElemAccessFromSerializableLambda(that);
2740                }
2741            }
2742
2743            ResultInfo checkInfo =
2744                    resultInfo.dup(newMethodTemplate(
2745                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2746                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2747                        new FunctionalReturnContext(resultInfo.checkContext));
2748
2749            Type refType = checkId(noCheckTree, lookupHelper.site, refSym, localEnv, checkInfo);
2750
2751            if (that.kind.isUnbound() &&
2752                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2753                //re-generate inference constraints for unbound receiver
2754                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2755                    //cannot happen as this has already been checked - we just need
2756                    //to regenerate the inference constraints, as that has been lost
2757                    //as a result of the call to inferenceContext.save()
2758                    Assert.error("Can't get here");
2759                }
2760            }
2761
2762            if (!refType.isErroneous()) {
2763                refType = types.createMethodTypeWithReturn(refType,
2764                        adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2765            }
2766
2767            //go ahead with standard method reference compatibility check - note that param check
2768            //is a no-op (as this has been taken care during method applicability)
2769            boolean isSpeculativeRound =
2770                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2771
2772            that.type = currentTarget; //avoids recovery at this stage
2773            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2774            if (!isSpeculativeRound) {
2775                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
2776            }
2777            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2778        } catch (Types.FunctionDescriptorLookupError ex) {
2779            JCDiagnostic cause = ex.getDiagnostic();
2780            resultInfo.checkContext.report(that, cause);
2781            result = that.type = types.createErrorType(pt());
2782            return;
2783        }
2784    }
2785    //where
2786        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2787            //if this is a constructor reference, the expected kind must be a type
2788            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
2789                                  KindSelector.VAL_TYP : KindSelector.TYP,
2790                                  Type.noType);
2791        }
2792
2793
2794    @SuppressWarnings("fallthrough")
2795    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2796        Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2797
2798        Type resType;
2799        switch (tree.getMode()) {
2800            case NEW:
2801                if (!tree.expr.type.isRaw()) {
2802                    resType = tree.expr.type;
2803                    break;
2804                }
2805            default:
2806                resType = refType.getReturnType();
2807        }
2808
2809        Type incompatibleReturnType = resType;
2810
2811        if (returnType.hasTag(VOID)) {
2812            incompatibleReturnType = null;
2813        }
2814
2815        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2816            if (resType.isErroneous() ||
2817                    new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2818                incompatibleReturnType = null;
2819            }
2820        }
2821
2822        if (incompatibleReturnType != null) {
2823            checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2824                    diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2825        }
2826
2827        if (!speculativeAttr) {
2828            List<Type> thrownTypes = checkContext.inferenceContext().asUndetVars(descriptor.getThrownTypes());
2829            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2830                log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2831            }
2832        }
2833    }
2834
2835    /**
2836     * Set functional type info on the underlying AST. Note: as the target descriptor
2837     * might contain inference variables, we might need to register an hook in the
2838     * current inference context.
2839     */
2840    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
2841            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
2842        if (checkContext.inferenceContext().free(descriptorType)) {
2843            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2844                public void typesInferred(InferenceContext inferenceContext) {
2845                    setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
2846                            inferenceContext.asInstType(primaryTarget), checkContext);
2847                }
2848            });
2849        } else {
2850            ListBuffer<Type> targets = new ListBuffer<>();
2851            if (pt.hasTag(CLASS)) {
2852                if (pt.isCompound()) {
2853                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
2854                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2855                        if (t != primaryTarget) {
2856                            targets.append(types.removeWildcards(t));
2857                        }
2858                    }
2859                } else {
2860                    targets.append(types.removeWildcards(primaryTarget));
2861                }
2862            }
2863            fExpr.targets = targets.toList();
2864            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2865                    pt != Type.recoveryType) {
2866                //check that functional interface class is well-formed
2867                try {
2868                    /* Types.makeFunctionalInterfaceClass() may throw an exception
2869                     * when it's executed post-inference. See the listener code
2870                     * above.
2871                     */
2872                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
2873                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
2874                    if (csym != null) {
2875                        chk.checkImplementations(env.tree, csym, csym);
2876                    }
2877                } catch (Types.FunctionDescriptorLookupError ex) {
2878                    JCDiagnostic cause = ex.getDiagnostic();
2879                    resultInfo.checkContext.report(env.tree, cause);
2880                }
2881            }
2882        }
2883    }
2884
2885    public void visitParens(JCParens tree) {
2886        Type owntype = attribTree(tree.expr, env, resultInfo);
2887        result = check(tree, owntype, pkind(), resultInfo);
2888        Symbol sym = TreeInfo.symbol(tree);
2889        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
2890            log.error(tree.pos(), "illegal.start.of.type");
2891    }
2892
2893    public void visitAssign(JCAssign tree) {
2894        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
2895        Type capturedType = capture(owntype);
2896        attribExpr(tree.rhs, env, owntype);
2897        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
2898    }
2899
2900    public void visitAssignop(JCAssignOp tree) {
2901        // Attribute arguments.
2902        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
2903        Type operand = attribExpr(tree.rhs, env);
2904        // Find operator.
2905        Symbol operator = tree.operator = rs.resolveBinaryOperator(
2906            tree.pos(), tree.getTag().noAssignOp(), env,
2907            owntype, operand);
2908
2909        if (operator.kind == MTH &&
2910                !owntype.isErroneous() &&
2911                !operand.isErroneous()) {
2912            chk.checkOperator(tree.pos(),
2913                              (OperatorSymbol)operator,
2914                              tree.getTag().noAssignOp(),
2915                              owntype,
2916                              operand);
2917            chk.checkDivZero(tree.rhs.pos(), operator, operand);
2918            chk.checkCastable(tree.rhs.pos(),
2919                              operator.type.getReturnType(),
2920                              owntype);
2921        }
2922        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2923    }
2924
2925    public void visitUnary(JCUnary tree) {
2926        // Attribute arguments.
2927        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
2928            ? attribTree(tree.arg, env, varAssignmentInfo)
2929            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
2930
2931        // Find operator.
2932        Symbol operator = tree.operator =
2933            rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
2934
2935        Type owntype = types.createErrorType(tree.type);
2936        if (operator.kind == MTH &&
2937                !argtype.isErroneous()) {
2938            owntype = (tree.getTag().isIncOrDecUnaryOp())
2939                ? tree.arg.type
2940                : operator.type.getReturnType();
2941            int opc = ((OperatorSymbol)operator).opcode;
2942
2943            // If the argument is constant, fold it.
2944            if (argtype.constValue() != null) {
2945                Type ctype = cfolder.fold1(opc, argtype);
2946                if (ctype != null) {
2947                    owntype = cfolder.coerce(ctype, owntype);
2948                }
2949            }
2950        }
2951        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2952    }
2953
2954    public void visitBinary(JCBinary tree) {
2955        // Attribute arguments.
2956        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
2957        Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
2958        // Find operator.
2959        Symbol operator = tree.operator =
2960            rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
2961
2962        Type owntype = types.createErrorType(tree.type);
2963        if (operator.kind == MTH &&
2964                !left.isErroneous() &&
2965                !right.isErroneous()) {
2966            owntype = operator.type.getReturnType();
2967            // This will figure out when unboxing can happen and
2968            // choose the right comparison operator.
2969            int opc = chk.checkOperator(tree.lhs.pos(),
2970                                        (OperatorSymbol)operator,
2971                                        tree.getTag(),
2972                                        left,
2973                                        right);
2974
2975            // If both arguments are constants, fold them.
2976            if (left.constValue() != null && right.constValue() != null) {
2977                Type ctype = cfolder.fold2(opc, left, right);
2978                if (ctype != null) {
2979                    owntype = cfolder.coerce(ctype, owntype);
2980                }
2981            }
2982
2983            // Check that argument types of a reference ==, != are
2984            // castable to each other, (JLS 15.21).  Note: unboxing
2985            // comparisons will not have an acmp* opc at this point.
2986            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
2987                if (!types.isEqualityComparable(left, right,
2988                                                new Warner(tree.pos()))) {
2989                    log.error(tree.pos(), "incomparable.types", left, right);
2990                }
2991            }
2992
2993            chk.checkDivZero(tree.rhs.pos(), operator, right);
2994        }
2995        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2996    }
2997
2998    public void visitTypeCast(final JCTypeCast tree) {
2999        Type clazztype = attribType(tree.clazz, env);
3000        chk.validate(tree.clazz, env, false);
3001        //a fresh environment is required for 292 inference to work properly ---
3002        //see Infer.instantiatePolymorphicSignatureInstance()
3003        Env<AttrContext> localEnv = env.dup(tree);
3004        //should we propagate the target type?
3005        final ResultInfo castInfo;
3006        JCExpression expr = TreeInfo.skipParens(tree.expr);
3007        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3008        if (isPoly) {
3009            //expression is a poly - we need to propagate target type info
3010            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3011                                      new Check.NestedCheckContext(resultInfo.checkContext) {
3012                @Override
3013                public boolean compatible(Type found, Type req, Warner warn) {
3014                    return types.isCastable(found, req, warn);
3015                }
3016            });
3017        } else {
3018            //standalone cast - target-type info is not propagated
3019            castInfo = unknownExprInfo;
3020        }
3021        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3022        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3023        if (exprtype.constValue() != null)
3024            owntype = cfolder.coerce(exprtype, owntype);
3025        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3026        if (!isPoly)
3027            chk.checkRedundantCast(localEnv, tree);
3028    }
3029
3030    public void visitTypeTest(JCInstanceOf tree) {
3031        Type exprtype = chk.checkNullOrRefType(
3032                tree.expr.pos(), attribExpr(tree.expr, env));
3033        Type clazztype = attribType(tree.clazz, env);
3034        if (!clazztype.hasTag(TYPEVAR)) {
3035            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3036        }
3037        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3038            log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3039            clazztype = types.createErrorType(clazztype);
3040        }
3041        chk.validate(tree.clazz, env, false);
3042        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3043        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3044    }
3045
3046    public void visitIndexed(JCArrayAccess tree) {
3047        Type owntype = types.createErrorType(tree.type);
3048        Type atype = attribExpr(tree.indexed, env);
3049        attribExpr(tree.index, env, syms.intType);
3050        if (types.isArray(atype))
3051            owntype = types.elemtype(atype);
3052        else if (!atype.hasTag(ERROR))
3053            log.error(tree.pos(), "array.req.but.found", atype);
3054        if (!pkind().contains(KindSelector.VAL))
3055            owntype = capture(owntype);
3056        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3057    }
3058
3059    public void visitIdent(JCIdent tree) {
3060        Symbol sym;
3061
3062        // Find symbol
3063        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3064            // If we are looking for a method, the prototype `pt' will be a
3065            // method type with the type of the call's arguments as parameters.
3066            env.info.pendingResolutionPhase = null;
3067            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3068        } else if (tree.sym != null && tree.sym.kind != VAR) {
3069            sym = tree.sym;
3070        } else {
3071            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3072        }
3073        tree.sym = sym;
3074
3075        // (1) Also find the environment current for the class where
3076        //     sym is defined (`symEnv').
3077        // Only for pre-tiger versions (1.4 and earlier):
3078        // (2) Also determine whether we access symbol out of an anonymous
3079        //     class in a this or super call.  This is illegal for instance
3080        //     members since such classes don't carry a this$n link.
3081        //     (`noOuterThisPath').
3082        Env<AttrContext> symEnv = env;
3083        boolean noOuterThisPath = false;
3084        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3085            sym.kind.matches(KindSelector.VAL_MTH) &&
3086            sym.owner.kind == TYP &&
3087            tree.name != names._this && tree.name != names._super) {
3088
3089            // Find environment in which identifier is defined.
3090            while (symEnv.outer != null &&
3091                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3092                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3093                    noOuterThisPath = false;
3094                symEnv = symEnv.outer;
3095            }
3096        }
3097
3098        // If symbol is a variable, ...
3099        if (sym.kind == VAR) {
3100            VarSymbol v = (VarSymbol)sym;
3101
3102            // ..., evaluate its initializer, if it has one, and check for
3103            // illegal forward reference.
3104            checkInit(tree, env, v, false);
3105
3106            // If we are expecting a variable (as opposed to a value), check
3107            // that the variable is assignable in the current environment.
3108            if (KindSelector.ASG.subset(pkind()))
3109                checkAssignable(tree.pos(), v, null, env);
3110        }
3111
3112        // In a constructor body,
3113        // if symbol is a field or instance method, check that it is
3114        // not accessed before the supertype constructor is called.
3115        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3116            sym.kind.matches(KindSelector.VAL_MTH) &&
3117            sym.owner.kind == TYP &&
3118            (sym.flags() & STATIC) == 0) {
3119            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3120                                          sym : thisSym(tree.pos(), env));
3121        }
3122        Env<AttrContext> env1 = env;
3123        if (sym.kind != ERR && sym.kind != TYP &&
3124            sym.owner != null && sym.owner != env1.enclClass.sym) {
3125            // If the found symbol is inaccessible, then it is
3126            // accessed through an enclosing instance.  Locate this
3127            // enclosing instance:
3128            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3129                env1 = env1.outer;
3130        }
3131
3132        if (env.info.isSerializable) {
3133            chk.checkElemAccessFromSerializableLambda(tree);
3134        }
3135
3136        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3137    }
3138
3139    public void visitSelect(JCFieldAccess tree) {
3140        // Determine the expected kind of the qualifier expression.
3141        KindSelector skind = KindSelector.NIL;
3142        if (tree.name == names._this || tree.name == names._super ||
3143                tree.name == names._class)
3144        {
3145            skind = KindSelector.TYP;
3146        } else {
3147            if (pkind().contains(KindSelector.PCK))
3148                skind = KindSelector.of(skind, KindSelector.PCK);
3149            if (pkind().contains(KindSelector.TYP))
3150                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3151            if (pkind().contains(KindSelector.VAL_MTH))
3152                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3153        }
3154
3155        // Attribute the qualifier expression, and determine its symbol (if any).
3156        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3157        if (!pkind().contains(KindSelector.TYP_PCK))
3158            site = capture(site); // Capture field access
3159
3160        // don't allow T.class T[].class, etc
3161        if (skind == KindSelector.TYP) {
3162            Type elt = site;
3163            while (elt.hasTag(ARRAY))
3164                elt = ((ArrayType)elt).elemtype;
3165            if (elt.hasTag(TYPEVAR)) {
3166                log.error(tree.pos(), "type.var.cant.be.deref");
3167                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3168                tree.sym = tree.type.tsym;
3169                return ;
3170            }
3171        }
3172
3173        // If qualifier symbol is a type or `super', assert `selectSuper'
3174        // for the selection. This is relevant for determining whether
3175        // protected symbols are accessible.
3176        Symbol sitesym = TreeInfo.symbol(tree.selected);
3177        boolean selectSuperPrev = env.info.selectSuper;
3178        env.info.selectSuper =
3179            sitesym != null &&
3180            sitesym.name == names._super;
3181
3182        // Determine the symbol represented by the selection.
3183        env.info.pendingResolutionPhase = null;
3184        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3185        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3186            log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3187            sym = syms.errSymbol;
3188        }
3189        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3190            site = capture(site);
3191            sym = selectSym(tree, sitesym, site, env, resultInfo);
3192        }
3193        boolean varArgs = env.info.lastResolveVarargs();
3194        tree.sym = sym;
3195
3196        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3197            while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
3198            site = capture(site);
3199        }
3200
3201        // If that symbol is a variable, ...
3202        if (sym.kind == VAR) {
3203            VarSymbol v = (VarSymbol)sym;
3204
3205            // ..., evaluate its initializer, if it has one, and check for
3206            // illegal forward reference.
3207            checkInit(tree, env, v, true);
3208
3209            // If we are expecting a variable (as opposed to a value), check
3210            // that the variable is assignable in the current environment.
3211            if (KindSelector.ASG.subset(pkind()))
3212                checkAssignable(tree.pos(), v, tree.selected, env);
3213        }
3214
3215        if (sitesym != null &&
3216                sitesym.kind == VAR &&
3217                ((VarSymbol)sitesym).isResourceVariable() &&
3218                sym.kind == MTH &&
3219                sym.name.equals(names.close) &&
3220                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3221                env.info.lint.isEnabled(LintCategory.TRY)) {
3222            log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3223        }
3224
3225        // Disallow selecting a type from an expression
3226        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3227            tree.type = check(tree.selected, pt(),
3228                              sitesym == null ?
3229                                      KindSelector.VAL : sitesym.kind.toSelector(),
3230                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3231        }
3232
3233        if (isType(sitesym)) {
3234            if (sym.name == names._this) {
3235                // If `C' is the currently compiled class, check that
3236                // C.this' does not appear in a call to a super(...)
3237                if (env.info.isSelfCall &&
3238                    site.tsym == env.enclClass.sym) {
3239                    chk.earlyRefError(tree.pos(), sym);
3240                }
3241            } else {
3242                // Check if type-qualified fields or methods are static (JLS)
3243                if ((sym.flags() & STATIC) == 0 &&
3244                    !env.next.tree.hasTag(REFERENCE) &&
3245                    sym.name != names._super &&
3246                    (sym.kind == VAR || sym.kind == MTH)) {
3247                    rs.accessBase(rs.new StaticError(sym),
3248                              tree.pos(), site, sym.name, true);
3249                }
3250            }
3251            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3252                    sym.isStatic() && sym.kind == MTH) {
3253                log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3254            }
3255        } else if (sym.kind != ERR &&
3256                   (sym.flags() & STATIC) != 0 &&
3257                   sym.name != names._class) {
3258            // If the qualified item is not a type and the selected item is static, report
3259            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3260            chk.warnStatic(tree, "static.not.qualified.by.type",
3261                           sym.kind.kindName(), sym.owner);
3262        }
3263
3264        // If we are selecting an instance member via a `super', ...
3265        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3266
3267            // Check that super-qualified symbols are not abstract (JLS)
3268            rs.checkNonAbstract(tree.pos(), sym);
3269
3270            if (site.isRaw()) {
3271                // Determine argument types for site.
3272                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3273                if (site1 != null) site = site1;
3274            }
3275        }
3276
3277        if (env.info.isSerializable) {
3278            chk.checkElemAccessFromSerializableLambda(tree);
3279        }
3280
3281        env.info.selectSuper = selectSuperPrev;
3282        result = checkId(tree, site, sym, env, resultInfo);
3283    }
3284    //where
3285        /** Determine symbol referenced by a Select expression,
3286         *
3287         *  @param tree   The select tree.
3288         *  @param site   The type of the selected expression,
3289         *  @param env    The current environment.
3290         *  @param resultInfo The current result.
3291         */
3292        private Symbol selectSym(JCFieldAccess tree,
3293                                 Symbol location,
3294                                 Type site,
3295                                 Env<AttrContext> env,
3296                                 ResultInfo resultInfo) {
3297            DiagnosticPosition pos = tree.pos();
3298            Name name = tree.name;
3299            switch (site.getTag()) {
3300            case PACKAGE:
3301                return rs.accessBase(
3302                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3303                    pos, location, site, name, true);
3304            case ARRAY:
3305            case CLASS:
3306                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3307                    return rs.resolveQualifiedMethod(
3308                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3309                } else if (name == names._this || name == names._super) {
3310                    return rs.resolveSelf(pos, env, site.tsym, name);
3311                } else if (name == names._class) {
3312                    // In this case, we have already made sure in
3313                    // visitSelect that qualifier expression is a type.
3314                    Type t = syms.classType;
3315                    List<Type> typeargs = List.of(types.erasure(site));
3316                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3317                    return new VarSymbol(
3318                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3319                } else {
3320                    // We are seeing a plain identifier as selector.
3321                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3322                        sym = rs.accessBase(sym, pos, location, site, name, true);
3323                    return sym;
3324                }
3325            case WILDCARD:
3326                throw new AssertionError(tree);
3327            case TYPEVAR:
3328                // Normally, site.getUpperBound() shouldn't be null.
3329                // It should only happen during memberEnter/attribBase
3330                // when determining the super type which *must* beac
3331                // done before attributing the type variables.  In
3332                // other words, we are seeing this illegal program:
3333                // class B<T> extends A<T.foo> {}
3334                Symbol sym = (site.getUpperBound() != null)
3335                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3336                    : null;
3337                if (sym == null) {
3338                    log.error(pos, "type.var.cant.be.deref");
3339                    return syms.errSymbol;
3340                } else {
3341                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3342                        rs.new AccessError(env, site, sym) :
3343                                sym;
3344                    rs.accessBase(sym2, pos, location, site, name, true);
3345                    return sym;
3346                }
3347            case ERROR:
3348                // preserve identifier names through errors
3349                return types.createErrorType(name, site.tsym, site).tsym;
3350            default:
3351                // The qualifier expression is of a primitive type -- only
3352                // .class is allowed for these.
3353                if (name == names._class) {
3354                    // In this case, we have already made sure in Select that
3355                    // qualifier expression is a type.
3356                    Type t = syms.classType;
3357                    Type arg = types.boxedClass(site).type;
3358                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3359                    return new VarSymbol(
3360                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3361                } else {
3362                    log.error(pos, "cant.deref", site);
3363                    return syms.errSymbol;
3364                }
3365            }
3366        }
3367
3368        /** Determine type of identifier or select expression and check that
3369         *  (1) the referenced symbol is not deprecated
3370         *  (2) the symbol's type is safe (@see checkSafe)
3371         *  (3) if symbol is a variable, check that its type and kind are
3372         *      compatible with the prototype and protokind.
3373         *  (4) if symbol is an instance field of a raw type,
3374         *      which is being assigned to, issue an unchecked warning if its
3375         *      type changes under erasure.
3376         *  (5) if symbol is an instance method of a raw type, issue an
3377         *      unchecked warning if its argument types change under erasure.
3378         *  If checks succeed:
3379         *    If symbol is a constant, return its constant type
3380         *    else if symbol is a method, return its result type
3381         *    otherwise return its type.
3382         *  Otherwise return errType.
3383         *
3384         *  @param tree       The syntax tree representing the identifier
3385         *  @param site       If this is a select, the type of the selected
3386         *                    expression, otherwise the type of the current class.
3387         *  @param sym        The symbol representing the identifier.
3388         *  @param env        The current environment.
3389         *  @param resultInfo    The expected result
3390         */
3391        Type checkId(JCTree tree,
3392                     Type site,
3393                     Symbol sym,
3394                     Env<AttrContext> env,
3395                     ResultInfo resultInfo) {
3396            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3397                    checkMethodId(tree, site, sym, env, resultInfo) :
3398                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3399        }
3400
3401        Type checkMethodId(JCTree tree,
3402                     Type site,
3403                     Symbol sym,
3404                     Env<AttrContext> env,
3405                     ResultInfo resultInfo) {
3406            boolean isPolymorhicSignature =
3407                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3408            return isPolymorhicSignature ?
3409                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3410                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3411        }
3412
3413        Type checkSigPolyMethodId(JCTree tree,
3414                     Type site,
3415                     Symbol sym,
3416                     Env<AttrContext> env,
3417                     ResultInfo resultInfo) {
3418            //recover original symbol for signature polymorphic methods
3419            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3420            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3421            return sym.type;
3422        }
3423
3424        Type checkMethodIdInternal(JCTree tree,
3425                     Type site,
3426                     Symbol sym,
3427                     Env<AttrContext> env,
3428                     ResultInfo resultInfo) {
3429            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3430                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3431                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3432                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3433                return owntype;
3434            } else {
3435                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3436            }
3437        }
3438
3439        Type checkIdInternal(JCTree tree,
3440                     Type site,
3441                     Symbol sym,
3442                     Type pt,
3443                     Env<AttrContext> env,
3444                     ResultInfo resultInfo) {
3445            if (pt.isErroneous()) {
3446                return types.createErrorType(site);
3447            }
3448            Type owntype; // The computed type of this identifier occurrence.
3449            switch (sym.kind) {
3450            case TYP:
3451                // For types, the computed type equals the symbol's type,
3452                // except for two situations:
3453                owntype = sym.type;
3454                if (owntype.hasTag(CLASS)) {
3455                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3456                    Type ownOuter = owntype.getEnclosingType();
3457
3458                    // (a) If the symbol's type is parameterized, erase it
3459                    // because no type parameters were given.
3460                    // We recover generic outer type later in visitTypeApply.
3461                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3462                        owntype = types.erasure(owntype);
3463                    }
3464
3465                    // (b) If the symbol's type is an inner class, then
3466                    // we have to interpret its outer type as a superclass
3467                    // of the site type. Example:
3468                    //
3469                    // class Tree<A> { class Visitor { ... } }
3470                    // class PointTree extends Tree<Point> { ... }
3471                    // ...PointTree.Visitor...
3472                    //
3473                    // Then the type of the last expression above is
3474                    // Tree<Point>.Visitor.
3475                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3476                        Type normOuter = site;
3477                        if (normOuter.hasTag(CLASS)) {
3478                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3479                        }
3480                        if (normOuter == null) // perhaps from an import
3481                            normOuter = types.erasure(ownOuter);
3482                        if (normOuter != ownOuter)
3483                            owntype = new ClassType(
3484                                normOuter, List.<Type>nil(), owntype.tsym,
3485                                owntype.getMetadata());
3486                    }
3487                }
3488                break;
3489            case VAR:
3490                VarSymbol v = (VarSymbol)sym;
3491                // Test (4): if symbol is an instance field of a raw type,
3492                // which is being assigned to, issue an unchecked warning if
3493                // its type changes under erasure.
3494                if (KindSelector.ASG.subset(pkind()) &&
3495                    v.owner.kind == TYP &&
3496                    (v.flags() & STATIC) == 0 &&
3497                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3498                    Type s = types.asOuterSuper(site, v.owner);
3499                    if (s != null &&
3500                        s.isRaw() &&
3501                        !types.isSameType(v.type, v.erasure(types))) {
3502                        chk.warnUnchecked(tree.pos(),
3503                                          "unchecked.assign.to.var",
3504                                          v, s);
3505                    }
3506                }
3507                // The computed type of a variable is the type of the
3508                // variable symbol, taken as a member of the site type.
3509                owntype = (sym.owner.kind == TYP &&
3510                           sym.name != names._this && sym.name != names._super)
3511                    ? types.memberType(site, sym)
3512                    : sym.type;
3513
3514                // If the variable is a constant, record constant value in
3515                // computed type.
3516                if (v.getConstValue() != null && isStaticReference(tree))
3517                    owntype = owntype.constType(v.getConstValue());
3518
3519                if (resultInfo.pkind == KindSelector.VAL) {
3520                    owntype = capture(owntype); // capture "names as expressions"
3521                }
3522                break;
3523            case MTH: {
3524                owntype = checkMethod(site, sym,
3525                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3526                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3527                        resultInfo.pt.getTypeArguments());
3528                break;
3529            }
3530            case PCK: case ERR:
3531                owntype = sym.type;
3532                break;
3533            default:
3534                throw new AssertionError("unexpected kind: " + sym.kind +
3535                                         " in tree " + tree);
3536            }
3537
3538            // Test (1): emit a `deprecation' warning if symbol is deprecated.
3539            // (for constructors, the error was given when the constructor was
3540            // resolved)
3541
3542            if (sym.name != names.init) {
3543                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3544                chk.checkSunAPI(tree.pos(), sym);
3545                chk.checkProfile(tree.pos(), sym);
3546            }
3547
3548            // Test (3): if symbol is a variable, check that its type and
3549            // kind are compatible with the prototype and protokind.
3550            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3551        }
3552
3553        /** Check that variable is initialized and evaluate the variable's
3554         *  initializer, if not yet done. Also check that variable is not
3555         *  referenced before it is defined.
3556         *  @param tree    The tree making up the variable reference.
3557         *  @param env     The current environment.
3558         *  @param v       The variable's symbol.
3559         */
3560        private void checkInit(JCTree tree,
3561                               Env<AttrContext> env,
3562                               VarSymbol v,
3563                               boolean onlyWarning) {
3564//          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3565//                             tree.pos + " " + v.pos + " " +
3566//                             Resolve.isStatic(env));//DEBUG
3567
3568            // A forward reference is diagnosed if the declaration position
3569            // of the variable is greater than the current tree position
3570            // and the tree and variable definition occur in the same class
3571            // definition.  Note that writes don't count as references.
3572            // This check applies only to class and instance
3573            // variables.  Local variables follow different scope rules,
3574            // and are subject to definite assignment checking.
3575            if ((env.info.enclVar == v || v.pos > tree.pos) &&
3576                v.owner.kind == TYP &&
3577                enclosingInitEnv(env) != null &&
3578                v.owner == env.info.scope.owner.enclClass() &&
3579                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3580                (!env.tree.hasTag(ASSIGN) ||
3581                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3582                String suffix = (env.info.enclVar == v) ?
3583                                "self.ref" : "forward.ref";
3584                if (!onlyWarning || isStaticEnumField(v)) {
3585                    log.error(tree.pos(), "illegal." + suffix);
3586                } else if (useBeforeDeclarationWarning) {
3587                    log.warning(tree.pos(), suffix, v);
3588                }
3589            }
3590
3591            v.getConstValue(); // ensure initializer is evaluated
3592
3593            checkEnumInitializer(tree, env, v);
3594        }
3595
3596        /**
3597         * Returns the enclosing init environment associated with this env (if any). An init env
3598         * can be either a field declaration env or a static/instance initializer env.
3599         */
3600        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3601            while (true) {
3602                switch (env.tree.getTag()) {
3603                    case VARDEF:
3604                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3605                        if (vdecl.sym.owner.kind == TYP) {
3606                            //field
3607                            return env;
3608                        }
3609                        break;
3610                    case BLOCK:
3611                        if (env.next.tree.hasTag(CLASSDEF)) {
3612                            //instance/static initializer
3613                            return env;
3614                        }
3615                        break;
3616                    case METHODDEF:
3617                    case CLASSDEF:
3618                    case TOPLEVEL:
3619                        return null;
3620                }
3621                Assert.checkNonNull(env.next);
3622                env = env.next;
3623            }
3624        }
3625
3626        /**
3627         * Check for illegal references to static members of enum.  In
3628         * an enum type, constructors and initializers may not
3629         * reference its static members unless they are constant.
3630         *
3631         * @param tree    The tree making up the variable reference.
3632         * @param env     The current environment.
3633         * @param v       The variable's symbol.
3634         * @jls  section 8.9 Enums
3635         */
3636        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3637            // JLS:
3638            //
3639            // "It is a compile-time error to reference a static field
3640            // of an enum type that is not a compile-time constant
3641            // (15.28) from constructors, instance initializer blocks,
3642            // or instance variable initializer expressions of that
3643            // type. It is a compile-time error for the constructors,
3644            // instance initializer blocks, or instance variable
3645            // initializer expressions of an enum constant e to refer
3646            // to itself or to an enum constant of the same type that
3647            // is declared to the right of e."
3648            if (isStaticEnumField(v)) {
3649                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3650
3651                if (enclClass == null || enclClass.owner == null)
3652                    return;
3653
3654                // See if the enclosing class is the enum (or a
3655                // subclass thereof) declaring v.  If not, this
3656                // reference is OK.
3657                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3658                    return;
3659
3660                // If the reference isn't from an initializer, then
3661                // the reference is OK.
3662                if (!Resolve.isInitializer(env))
3663                    return;
3664
3665                log.error(tree.pos(), "illegal.enum.static.ref");
3666            }
3667        }
3668
3669        /** Is the given symbol a static, non-constant field of an Enum?
3670         *  Note: enum literals should not be regarded as such
3671         */
3672        private boolean isStaticEnumField(VarSymbol v) {
3673            return Flags.isEnum(v.owner) &&
3674                   Flags.isStatic(v) &&
3675                   !Flags.isConstant(v) &&
3676                   v.name != names._class;
3677        }
3678
3679    Warner noteWarner = new Warner();
3680
3681    /**
3682     * Check that method arguments conform to its instantiation.
3683     **/
3684    public Type checkMethod(Type site,
3685                            final Symbol sym,
3686                            ResultInfo resultInfo,
3687                            Env<AttrContext> env,
3688                            final List<JCExpression> argtrees,
3689                            List<Type> argtypes,
3690                            List<Type> typeargtypes) {
3691        // Test (5): if symbol is an instance method of a raw type, issue
3692        // an unchecked warning if its argument types change under erasure.
3693        if ((sym.flags() & STATIC) == 0 &&
3694            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3695            Type s = types.asOuterSuper(site, sym.owner);
3696            if (s != null && s.isRaw() &&
3697                !types.isSameTypes(sym.type.getParameterTypes(),
3698                                   sym.erasure(types).getParameterTypes())) {
3699                chk.warnUnchecked(env.tree.pos(),
3700                                  "unchecked.call.mbr.of.raw.type",
3701                                  sym, s);
3702            }
3703        }
3704
3705        if (env.info.defaultSuperCallSite != null) {
3706            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3707                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3708                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3709                List<MethodSymbol> icand_sup =
3710                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3711                if (icand_sup.nonEmpty() &&
3712                        icand_sup.head != sym &&
3713                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3714                    log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3715                        diags.fragment("overridden.default", sym, sup));
3716                    break;
3717                }
3718            }
3719            env.info.defaultSuperCallSite = null;
3720        }
3721
3722        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3723            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3724            if (app.meth.hasTag(SELECT) &&
3725                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3726                log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3727            }
3728        }
3729
3730        // Compute the identifier's instantiated type.
3731        // For methods, we need to compute the instance type by
3732        // Resolve.instantiate from the symbol's type as well as
3733        // any type arguments and value arguments.
3734        noteWarner.clear();
3735        try {
3736            Type owntype = rs.checkMethod(
3737                    env,
3738                    site,
3739                    sym,
3740                    resultInfo,
3741                    argtypes,
3742                    typeargtypes,
3743                    noteWarner);
3744
3745            DeferredAttr.DeferredTypeMap checkDeferredMap =
3746                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3747
3748            argtypes = Type.map(argtypes, checkDeferredMap);
3749
3750            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3751                chk.warnUnchecked(env.tree.pos(),
3752                        "unchecked.meth.invocation.applied",
3753                        kindName(sym),
3754                        sym.name,
3755                        rs.methodArguments(sym.type.getParameterTypes()),
3756                        rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
3757                        kindName(sym.location()),
3758                        sym.location());
3759               owntype = new MethodType(owntype.getParameterTypes(),
3760                       types.erasure(owntype.getReturnType()),
3761                       types.erasure(owntype.getThrownTypes()),
3762                       syms.methodClass);
3763            }
3764
3765            return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3766                    resultInfo.checkContext.inferenceContext());
3767        } catch (Infer.InferenceException ex) {
3768            //invalid target type - propagate exception outwards or report error
3769            //depending on the current check context
3770            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3771            return types.createErrorType(site);
3772        } catch (Resolve.InapplicableMethodException ex) {
3773            final JCDiagnostic diag = ex.getDiagnostic();
3774            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3775                @Override
3776                protected Pair<Symbol, JCDiagnostic> errCandidate() {
3777                    return new Pair<>(sym, diag);
3778                }
3779            };
3780            List<Type> argtypes2 = Type.map(argtypes,
3781                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3782            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3783                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3784            log.report(errDiag);
3785            return types.createErrorType(site);
3786        }
3787    }
3788
3789    public void visitLiteral(JCLiteral tree) {
3790        result = check(tree, litType(tree.typetag).constType(tree.value),
3791                KindSelector.VAL, resultInfo);
3792    }
3793    //where
3794    /** Return the type of a literal with given type tag.
3795     */
3796    Type litType(TypeTag tag) {
3797        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3798    }
3799
3800    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3801        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
3802    }
3803
3804    public void visitTypeArray(JCArrayTypeTree tree) {
3805        Type etype = attribType(tree.elemtype, env);
3806        Type type = new ArrayType(etype, syms.arrayClass);
3807        result = check(tree, type, KindSelector.TYP, resultInfo);
3808    }
3809
3810    /** Visitor method for parameterized types.
3811     *  Bound checking is left until later, since types are attributed
3812     *  before supertype structure is completely known
3813     */
3814    public void visitTypeApply(JCTypeApply tree) {
3815        Type owntype = types.createErrorType(tree.type);
3816
3817        // Attribute functor part of application and make sure it's a class.
3818        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3819
3820        // Attribute type parameters
3821        List<Type> actuals = attribTypes(tree.arguments, env);
3822
3823        if (clazztype.hasTag(CLASS)) {
3824            List<Type> formals = clazztype.tsym.type.getTypeArguments();
3825            if (actuals.isEmpty()) //diamond
3826                actuals = formals;
3827
3828            if (actuals.length() == formals.length()) {
3829                List<Type> a = actuals;
3830                List<Type> f = formals;
3831                while (a.nonEmpty()) {
3832                    a.head = a.head.withTypeVar(f.head);
3833                    a = a.tail;
3834                    f = f.tail;
3835                }
3836                // Compute the proper generic outer
3837                Type clazzOuter = clazztype.getEnclosingType();
3838                if (clazzOuter.hasTag(CLASS)) {
3839                    Type site;
3840                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3841                    if (clazz.hasTag(IDENT)) {
3842                        site = env.enclClass.sym.type;
3843                    } else if (clazz.hasTag(SELECT)) {
3844                        site = ((JCFieldAccess) clazz).selected.type;
3845                    } else throw new AssertionError(""+tree);
3846                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3847                        if (site.hasTag(CLASS))
3848                            site = types.asOuterSuper(site, clazzOuter.tsym);
3849                        if (site == null)
3850                            site = types.erasure(clazzOuter);
3851                        clazzOuter = site;
3852                    }
3853                }
3854                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
3855                                        clazztype.getMetadata());
3856            } else {
3857                if (formals.length() != 0) {
3858                    log.error(tree.pos(), "wrong.number.type.args",
3859                              Integer.toString(formals.length()));
3860                } else {
3861                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3862                }
3863                owntype = types.createErrorType(tree.type);
3864            }
3865        }
3866        result = check(tree, owntype, KindSelector.TYP, resultInfo);
3867    }
3868
3869    public void visitTypeUnion(JCTypeUnion tree) {
3870        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
3871        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3872        for (JCExpression typeTree : tree.alternatives) {
3873            Type ctype = attribType(typeTree, env);
3874            ctype = chk.checkType(typeTree.pos(),
3875                          chk.checkClassType(typeTree.pos(), ctype),
3876                          syms.throwableType);
3877            if (!ctype.isErroneous()) {
3878                //check that alternatives of a union type are pairwise
3879                //unrelated w.r.t. subtyping
3880                if (chk.intersects(ctype,  multicatchTypes.toList())) {
3881                    for (Type t : multicatchTypes) {
3882                        boolean sub = types.isSubtype(ctype, t);
3883                        boolean sup = types.isSubtype(t, ctype);
3884                        if (sub || sup) {
3885                            //assume 'a' <: 'b'
3886                            Type a = sub ? ctype : t;
3887                            Type b = sub ? t : ctype;
3888                            log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3889                        }
3890                    }
3891                }
3892                multicatchTypes.append(ctype);
3893                if (all_multicatchTypes != null)
3894                    all_multicatchTypes.append(ctype);
3895            } else {
3896                if (all_multicatchTypes == null) {
3897                    all_multicatchTypes = new ListBuffer<>();
3898                    all_multicatchTypes.appendList(multicatchTypes);
3899                }
3900                all_multicatchTypes.append(ctype);
3901            }
3902        }
3903        Type t = check(noCheckTree, types.lub(multicatchTypes.toList()),
3904                KindSelector.TYP, resultInfo);
3905        if (t.hasTag(CLASS)) {
3906            List<Type> alternatives =
3907                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3908            t = new UnionClassType((ClassType) t, alternatives);
3909        }
3910        tree.type = result = t;
3911    }
3912
3913    public void visitTypeIntersection(JCTypeIntersection tree) {
3914        attribTypes(tree.bounds, env);
3915        tree.type = result = checkIntersection(tree, tree.bounds);
3916    }
3917
3918    public void visitTypeParameter(JCTypeParameter tree) {
3919        TypeVar typeVar = (TypeVar) tree.type;
3920
3921        if (tree.annotations != null && tree.annotations.nonEmpty()) {
3922            annotateType(tree, tree.annotations);
3923        }
3924
3925        if (!typeVar.bound.isErroneous()) {
3926            //fixup type-parameter bound computed in 'attribTypeVariables'
3927            typeVar.bound = checkIntersection(tree, tree.bounds);
3928        }
3929    }
3930
3931    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
3932        Set<Type> boundSet = new HashSet<>();
3933        if (bounds.nonEmpty()) {
3934            // accept class or interface or typevar as first bound.
3935            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
3936            boundSet.add(types.erasure(bounds.head.type));
3937            if (bounds.head.type.isErroneous()) {
3938                return bounds.head.type;
3939            }
3940            else if (bounds.head.type.hasTag(TYPEVAR)) {
3941                // if first bound was a typevar, do not accept further bounds.
3942                if (bounds.tail.nonEmpty()) {
3943                    log.error(bounds.tail.head.pos(),
3944                              "type.var.may.not.be.followed.by.other.bounds");
3945                    return bounds.head.type;
3946                }
3947            } else {
3948                // if first bound was a class or interface, accept only interfaces
3949                // as further bounds.
3950                for (JCExpression bound : bounds.tail) {
3951                    bound.type = checkBase(bound.type, bound, env, false, true, false);
3952                    if (bound.type.isErroneous()) {
3953                        bounds = List.of(bound);
3954                    }
3955                    else if (bound.type.hasTag(CLASS)) {
3956                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
3957                    }
3958                }
3959            }
3960        }
3961
3962        if (bounds.length() == 0) {
3963            return syms.objectType;
3964        } else if (bounds.length() == 1) {
3965            return bounds.head.type;
3966        } else {
3967            Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
3968            // ... the variable's bound is a class type flagged COMPOUND
3969            // (see comment for TypeVar.bound).
3970            // In this case, generate a class tree that represents the
3971            // bound class, ...
3972            JCExpression extending;
3973            List<JCExpression> implementing;
3974            if (!bounds.head.type.isInterface()) {
3975                extending = bounds.head;
3976                implementing = bounds.tail;
3977            } else {
3978                extending = null;
3979                implementing = bounds;
3980            }
3981            JCClassDecl cd = make.at(tree).ClassDef(
3982                make.Modifiers(PUBLIC | ABSTRACT),
3983                names.empty, List.<JCTypeParameter>nil(),
3984                extending, implementing, List.<JCTree>nil());
3985
3986            ClassSymbol c = (ClassSymbol)owntype.tsym;
3987            Assert.check((c.flags() & COMPOUND) != 0);
3988            cd.sym = c;
3989            c.sourcefile = env.toplevel.sourcefile;
3990
3991            // ... and attribute the bound class
3992            c.flags_field |= UNATTRIBUTED;
3993            Env<AttrContext> cenv = enter.classEnv(cd, env);
3994            typeEnvs.put(c, cenv);
3995            attribClass(c);
3996            return owntype;
3997        }
3998    }
3999
4000    public void visitWildcard(JCWildcard tree) {
4001        //- System.err.println("visitWildcard("+tree+");");//DEBUG
4002        Type type = (tree.kind.kind == BoundKind.UNBOUND)
4003            ? syms.objectType
4004            : attribType(tree.inner, env);
4005        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4006                                              tree.kind.kind,
4007                                              syms.boundClass),
4008                KindSelector.TYP, resultInfo);
4009    }
4010
4011    public void visitAnnotation(JCAnnotation tree) {
4012        Assert.error("should be handled in Annotate");
4013    }
4014
4015    public void visitAnnotatedType(JCAnnotatedType tree) {
4016        Type underlyingType = attribType(tree.getUnderlyingType(), env);
4017        this.attribAnnotationTypes(tree.annotations, env);
4018        annotateType(tree, tree.annotations);
4019        result = tree.type = underlyingType;
4020    }
4021
4022    /**
4023     * Apply the annotations to the particular type.
4024     */
4025    public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
4026        annotate.typeAnnotation(new Annotate.Worker() {
4027            @Override
4028            public String toString() {
4029                return "annotate " + annotations + " onto " + tree;
4030            }
4031            @Override
4032            public void run() {
4033                List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
4034                Assert.check(annotations.size() == compounds.size());
4035                tree.type = tree.type.annotatedType(compounds);
4036                }
4037        });
4038    }
4039
4040    private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
4041        if (annotations.isEmpty()) {
4042            return List.nil();
4043        }
4044
4045        ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
4046        for (JCAnnotation anno : annotations) {
4047            Assert.checkNonNull(anno.attribute);
4048            buf.append((Attribute.TypeCompound) anno.attribute);
4049        }
4050        return buf.toList();
4051    }
4052
4053    public void visitErroneous(JCErroneous tree) {
4054        if (tree.errs != null)
4055            for (JCTree err : tree.errs)
4056                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4057        result = tree.type = syms.errType;
4058    }
4059
4060    /** Default visitor method for all other trees.
4061     */
4062    public void visitTree(JCTree tree) {
4063        throw new AssertionError();
4064    }
4065
4066    /**
4067     * Attribute an env for either a top level tree or class declaration.
4068     */
4069    public void attrib(Env<AttrContext> env) {
4070        if (env.tree.hasTag(TOPLEVEL))
4071            attribTopLevel(env);
4072        else
4073            attribClass(env.tree.pos(), env.enclClass.sym);
4074    }
4075
4076    /**
4077     * Attribute a top level tree. These trees are encountered when the
4078     * package declaration has annotations.
4079     */
4080    public void attribTopLevel(Env<AttrContext> env) {
4081        JCCompilationUnit toplevel = env.toplevel;
4082        try {
4083            annotate.flush();
4084        } catch (CompletionFailure ex) {
4085            chk.completionError(toplevel.pos(), ex);
4086        }
4087    }
4088
4089    /** Main method: attribute class definition associated with given class symbol.
4090     *  reporting completion failures at the given position.
4091     *  @param pos The source position at which completion errors are to be
4092     *             reported.
4093     *  @param c   The class symbol whose definition will be attributed.
4094     */
4095    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4096        try {
4097            annotate.flush();
4098            attribClass(c);
4099        } catch (CompletionFailure ex) {
4100            chk.completionError(pos, ex);
4101        }
4102    }
4103
4104    /** Attribute class definition associated with given class symbol.
4105     *  @param c   The class symbol whose definition will be attributed.
4106     */
4107    void attribClass(ClassSymbol c) throws CompletionFailure {
4108        if (c.type.hasTag(ERROR)) return;
4109
4110        // Check for cycles in the inheritance graph, which can arise from
4111        // ill-formed class files.
4112        chk.checkNonCyclic(null, c.type);
4113
4114        Type st = types.supertype(c.type);
4115        if ((c.flags_field & Flags.COMPOUND) == 0) {
4116            // First, attribute superclass.
4117            if (st.hasTag(CLASS))
4118                attribClass((ClassSymbol)st.tsym);
4119
4120            // Next attribute owner, if it is a class.
4121            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4122                attribClass((ClassSymbol)c.owner);
4123        }
4124
4125        // The previous operations might have attributed the current class
4126        // if there was a cycle. So we test first whether the class is still
4127        // UNATTRIBUTED.
4128        if ((c.flags_field & UNATTRIBUTED) != 0) {
4129            c.flags_field &= ~UNATTRIBUTED;
4130
4131            // Get environment current at the point of class definition.
4132            Env<AttrContext> env = typeEnvs.get(c);
4133
4134            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4135            // because the annotations were not available at the time the env was created. Therefore,
4136            // we look up the environment chain for the first enclosing environment for which the
4137            // lint value is set. Typically, this is the parent env, but might be further if there
4138            // are any envs created as a result of TypeParameter nodes.
4139            Env<AttrContext> lintEnv = env;
4140            while (lintEnv.info.lint == null)
4141                lintEnv = lintEnv.next;
4142
4143            // Having found the enclosing lint value, we can initialize the lint value for this class
4144            env.info.lint = lintEnv.info.lint.augment(c);
4145
4146            Lint prevLint = chk.setLint(env.info.lint);
4147            JavaFileObject prev = log.useSource(c.sourcefile);
4148            ResultInfo prevReturnRes = env.info.returnResult;
4149
4150            try {
4151                deferredLintHandler.flush(env.tree);
4152                env.info.returnResult = null;
4153                // java.lang.Enum may not be subclassed by a non-enum
4154                if (st.tsym == syms.enumSym &&
4155                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4156                    log.error(env.tree.pos(), "enum.no.subclassing");
4157
4158                // Enums may not be extended by source-level classes
4159                if (st.tsym != null &&
4160                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4161                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4162                    log.error(env.tree.pos(), "enum.types.not.extensible");
4163                }
4164
4165                if (isSerializable(c.type)) {
4166                    env.info.isSerializable = true;
4167                }
4168
4169                attribClassBody(env, c);
4170
4171                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4172                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4173                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4174            } finally {
4175                env.info.returnResult = prevReturnRes;
4176                log.useSource(prev);
4177                chk.setLint(prevLint);
4178            }
4179
4180        }
4181    }
4182
4183    public void visitImport(JCImport tree) {
4184        // nothing to do
4185    }
4186
4187    /** Finish the attribution of a class. */
4188    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4189        JCClassDecl tree = (JCClassDecl)env.tree;
4190        Assert.check(c == tree.sym);
4191
4192        // Validate type parameters, supertype and interfaces.
4193        attribStats(tree.typarams, env);
4194        if (!c.isAnonymous()) {
4195            //already checked if anonymous
4196            chk.validate(tree.typarams, env);
4197            chk.validate(tree.extending, env);
4198            chk.validate(tree.implementing, env);
4199        }
4200
4201        // If this is a non-abstract class, check that it has no abstract
4202        // methods or unimplemented methods of an implemented interface.
4203        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4204            if (!relax)
4205                chk.checkAllDefined(tree.pos(), c);
4206        }
4207
4208        if ((c.flags() & ANNOTATION) != 0) {
4209            if (tree.implementing.nonEmpty())
4210                log.error(tree.implementing.head.pos(),
4211                          "cant.extend.intf.annotation");
4212            if (tree.typarams.nonEmpty())
4213                log.error(tree.typarams.head.pos(),
4214                          "intf.annotation.cant.have.type.params");
4215
4216            // If this annotation has a @Repeatable, validate
4217            Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
4218            if (repeatable != null) {
4219                // get diagnostic position for error reporting
4220                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4221                Assert.checkNonNull(cbPos);
4222
4223                chk.validateRepeatable(c, repeatable, cbPos);
4224            }
4225        } else {
4226            // Check that all extended classes and interfaces
4227            // are compatible (i.e. no two define methods with same arguments
4228            // yet different return types).  (JLS 8.4.6.3)
4229            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4230            if (allowDefaultMethods) {
4231                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4232            }
4233        }
4234
4235        // Check that class does not import the same parameterized interface
4236        // with two different argument lists.
4237        chk.checkClassBounds(tree.pos(), c.type);
4238
4239        tree.type = c.type;
4240
4241        for (List<JCTypeParameter> l = tree.typarams;
4242             l.nonEmpty(); l = l.tail) {
4243             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4244        }
4245
4246        // Check that a generic class doesn't extend Throwable
4247        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4248            log.error(tree.extending.pos(), "generic.throwable");
4249
4250        // Check that all methods which implement some
4251        // method conform to the method they implement.
4252        chk.checkImplementations(tree);
4253
4254        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4255        checkAutoCloseable(tree.pos(), env, c.type);
4256
4257        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4258            // Attribute declaration
4259            attribStat(l.head, env);
4260            // Check that declarations in inner classes are not static (JLS 8.1.2)
4261            // Make an exception for static constants.
4262            if (c.owner.kind != PCK &&
4263                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4264                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4265                Symbol sym = null;
4266                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4267                if (sym == null ||
4268                    sym.kind != VAR ||
4269                    ((VarSymbol) sym).getConstValue() == null)
4270                    log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4271            }
4272        }
4273
4274        // Check for cycles among non-initial constructors.
4275        chk.checkCyclicConstructors(tree);
4276
4277        // Check for cycles among annotation elements.
4278        chk.checkNonCyclicElements(tree);
4279
4280        // Check for proper use of serialVersionUID
4281        if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4282            isSerializable(c.type) &&
4283            (c.flags() & Flags.ENUM) == 0 &&
4284            checkForSerial(c)) {
4285            checkSerialVersionUID(tree, c);
4286        }
4287        if (allowTypeAnnos) {
4288            // Correctly organize the postions of the type annotations
4289            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4290
4291            // Check type annotations applicability rules
4292            validateTypeAnnotations(tree, false);
4293        }
4294    }
4295        // where
4296        boolean checkForSerial(ClassSymbol c) {
4297            if ((c.flags() & ABSTRACT) == 0) {
4298                return true;
4299            } else {
4300                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4301            }
4302        }
4303
4304        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4305            @Override
4306            public boolean accepts(Symbol s) {
4307                return s.kind == MTH &&
4308                       (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4309            }
4310        };
4311
4312        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4313        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4314            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4315                if (types.isSameType(al.head.annotationType.type, t))
4316                    return al.head.pos();
4317            }
4318
4319            return null;
4320        }
4321
4322        /** check if a type is a subtype of Serializable, if that is available. */
4323        boolean isSerializable(Type t) {
4324            try {
4325                syms.serializableType.complete();
4326            }
4327            catch (CompletionFailure e) {
4328                return false;
4329            }
4330            return types.isSubtype(t, syms.serializableType);
4331        }
4332
4333        /** Check that an appropriate serialVersionUID member is defined. */
4334        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4335
4336            // check for presence of serialVersionUID
4337            VarSymbol svuid = null;
4338            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4339                if (sym.kind == VAR) {
4340                    svuid = (VarSymbol)sym;
4341                    break;
4342                }
4343            }
4344
4345            if (svuid == null) {
4346                log.warning(LintCategory.SERIAL,
4347                        tree.pos(), "missing.SVUID", c);
4348                return;
4349            }
4350
4351            // check that it is static final
4352            if ((svuid.flags() & (STATIC | FINAL)) !=
4353                (STATIC | FINAL))
4354                log.warning(LintCategory.SERIAL,
4355                        TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4356
4357            // check that it is long
4358            else if (!svuid.type.hasTag(LONG))
4359                log.warning(LintCategory.SERIAL,
4360                        TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4361
4362            // check constant
4363            else if (svuid.getConstValue() == null)
4364                log.warning(LintCategory.SERIAL,
4365                        TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4366        }
4367
4368    private Type capture(Type type) {
4369        return types.capture(type);
4370    }
4371
4372    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4373        tree.accept(new TypeAnnotationsValidator(sigOnly));
4374    }
4375    //where
4376    private final class TypeAnnotationsValidator extends TreeScanner {
4377
4378        private final boolean sigOnly;
4379        public TypeAnnotationsValidator(boolean sigOnly) {
4380            this.sigOnly = sigOnly;
4381        }
4382
4383        public void visitAnnotation(JCAnnotation tree) {
4384            chk.validateTypeAnnotation(tree, false);
4385            super.visitAnnotation(tree);
4386        }
4387        public void visitAnnotatedType(JCAnnotatedType tree) {
4388            if (!tree.underlyingType.type.isErroneous()) {
4389                super.visitAnnotatedType(tree);
4390            }
4391        }
4392        public void visitTypeParameter(JCTypeParameter tree) {
4393            chk.validateTypeAnnotations(tree.annotations, true);
4394            scan(tree.bounds);
4395            // Don't call super.
4396            // This is needed because above we call validateTypeAnnotation with
4397            // false, which would forbid annotations on type parameters.
4398            // super.visitTypeParameter(tree);
4399        }
4400        public void visitMethodDef(JCMethodDecl tree) {
4401            if (tree.recvparam != null &&
4402                    !tree.recvparam.vartype.type.isErroneous()) {
4403                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4404                        tree.recvparam.vartype.type.tsym);
4405            }
4406            if (tree.restype != null && tree.restype.type != null) {
4407                validateAnnotatedType(tree.restype, tree.restype.type);
4408            }
4409            if (sigOnly) {
4410                scan(tree.mods);
4411                scan(tree.restype);
4412                scan(tree.typarams);
4413                scan(tree.recvparam);
4414                scan(tree.params);
4415                scan(tree.thrown);
4416            } else {
4417                scan(tree.defaultValue);
4418                scan(tree.body);
4419            }
4420        }
4421        public void visitVarDef(final JCVariableDecl tree) {
4422            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4423            if (tree.sym != null && tree.sym.type != null)
4424                validateAnnotatedType(tree.vartype, tree.sym.type);
4425            scan(tree.mods);
4426            scan(tree.vartype);
4427            if (!sigOnly) {
4428                scan(tree.init);
4429            }
4430        }
4431        public void visitTypeCast(JCTypeCast tree) {
4432            if (tree.clazz != null && tree.clazz.type != null)
4433                validateAnnotatedType(tree.clazz, tree.clazz.type);
4434            super.visitTypeCast(tree);
4435        }
4436        public void visitTypeTest(JCInstanceOf tree) {
4437            if (tree.clazz != null && tree.clazz.type != null)
4438                validateAnnotatedType(tree.clazz, tree.clazz.type);
4439            super.visitTypeTest(tree);
4440        }
4441        public void visitNewClass(JCNewClass tree) {
4442            if (tree.clazz != null && tree.clazz.type != null) {
4443                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4444                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4445                            tree.clazz.type.tsym);
4446                }
4447                if (tree.def != null) {
4448                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4449                }
4450
4451                validateAnnotatedType(tree.clazz, tree.clazz.type);
4452            }
4453            super.visitNewClass(tree);
4454        }
4455        public void visitNewArray(JCNewArray tree) {
4456            if (tree.elemtype != null && tree.elemtype.type != null) {
4457                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4458                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4459                            tree.elemtype.type.tsym);
4460                }
4461                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4462            }
4463            super.visitNewArray(tree);
4464        }
4465        public void visitClassDef(JCClassDecl tree) {
4466            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4467            if (sigOnly) {
4468                scan(tree.mods);
4469                scan(tree.typarams);
4470                scan(tree.extending);
4471                scan(tree.implementing);
4472            }
4473            for (JCTree member : tree.defs) {
4474                if (member.hasTag(Tag.CLASSDEF)) {
4475                    continue;
4476                }
4477                scan(member);
4478            }
4479        }
4480        public void visitBlock(JCBlock tree) {
4481            if (!sigOnly) {
4482                scan(tree.stats);
4483            }
4484        }
4485
4486        /* I would want to model this after
4487         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4488         * and override visitSelect and visitTypeApply.
4489         * However, we only set the annotated type in the top-level type
4490         * of the symbol.
4491         * Therefore, we need to override each individual location where a type
4492         * can occur.
4493         */
4494        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4495            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4496
4497            if (type.isPrimitiveOrVoid()) {
4498                return;
4499            }
4500
4501            JCTree enclTr = errtree;
4502            Type enclTy = type;
4503
4504            boolean repeat = true;
4505            while (repeat) {
4506                if (enclTr.hasTag(TYPEAPPLY)) {
4507                    List<Type> tyargs = enclTy.getTypeArguments();
4508                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4509                    if (trargs.length() > 0) {
4510                        // Nothing to do for diamonds
4511                        if (tyargs.length() == trargs.length()) {
4512                            for (int i = 0; i < tyargs.length(); ++i) {
4513                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4514                            }
4515                        }
4516                        // If the lengths don't match, it's either a diamond
4517                        // or some nested type that redundantly provides
4518                        // type arguments in the tree.
4519                    }
4520
4521                    // Look at the clazz part of a generic type
4522                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4523                }
4524
4525                if (enclTr.hasTag(SELECT)) {
4526                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4527                    if (enclTy != null &&
4528                            !enclTy.hasTag(NONE)) {
4529                        enclTy = enclTy.getEnclosingType();
4530                    }
4531                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4532                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4533                    if (enclTy == null || enclTy.hasTag(NONE)) {
4534                        if (at.getAnnotations().size() == 1) {
4535                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4536                        } else {
4537                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4538                            for (JCAnnotation an : at.getAnnotations()) {
4539                                comps.add(an.attribute);
4540                            }
4541                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4542                        }
4543                        repeat = false;
4544                    }
4545                    enclTr = at.underlyingType;
4546                    // enclTy doesn't need to be changed
4547                } else if (enclTr.hasTag(IDENT)) {
4548                    repeat = false;
4549                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4550                    JCWildcard wc = (JCWildcard) enclTr;
4551                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4552                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4553                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4554                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4555                    } else {
4556                        // Nothing to do for UNBOUND
4557                    }
4558                    repeat = false;
4559                } else if (enclTr.hasTag(TYPEARRAY)) {
4560                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4561                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4562                    repeat = false;
4563                } else if (enclTr.hasTag(TYPEUNION)) {
4564                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4565                    for (JCTree t : ut.getTypeAlternatives()) {
4566                        validateAnnotatedType(t, t.type);
4567                    }
4568                    repeat = false;
4569                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4570                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4571                    for (JCTree t : it.getBounds()) {
4572                        validateAnnotatedType(t, t.type);
4573                    }
4574                    repeat = false;
4575                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4576                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4577                    repeat = false;
4578                } else {
4579                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4580                            " within: "+ errtree + " with kind: " + errtree.getKind());
4581                }
4582            }
4583        }
4584
4585        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4586                Symbol sym) {
4587            // Ensure that no declaration annotations are present.
4588            // Note that a tree type might be an AnnotatedType with
4589            // empty annotations, if only declaration annotations were given.
4590            // This method will raise an error for such a type.
4591            for (JCAnnotation ai : annotations) {
4592                if (!ai.type.isErroneous() &&
4593                        typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4594                    log.error(ai.pos(), "annotation.type.not.applicable");
4595                }
4596            }
4597        }
4598    }
4599
4600    // <editor-fold desc="post-attribution visitor">
4601
4602    /**
4603     * Handle missing types/symbols in an AST. This routine is useful when
4604     * the compiler has encountered some errors (which might have ended up
4605     * terminating attribution abruptly); if the compiler is used in fail-over
4606     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4607     * prevents NPE to be progagated during subsequent compilation steps.
4608     */
4609    public void postAttr(JCTree tree) {
4610        new PostAttrAnalyzer().scan(tree);
4611    }
4612
4613    class PostAttrAnalyzer extends TreeScanner {
4614
4615        private void initTypeIfNeeded(JCTree that) {
4616            if (that.type == null) {
4617                if (that.hasTag(METHODDEF)) {
4618                    that.type = dummyMethodType((JCMethodDecl)that);
4619                } else {
4620                    that.type = syms.unknownType;
4621                }
4622            }
4623        }
4624
4625        /* Construct a dummy method type. If we have a method declaration,
4626         * and the declared return type is void, then use that return type
4627         * instead of UNKNOWN to avoid spurious error messages in lambda
4628         * bodies (see:JDK-8041704).
4629         */
4630        private Type dummyMethodType(JCMethodDecl md) {
4631            Type restype = syms.unknownType;
4632            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4633                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4634                if (prim.typetag == VOID)
4635                    restype = syms.voidType;
4636            }
4637            return new MethodType(List.<Type>nil(), restype,
4638                                  List.<Type>nil(), syms.methodClass);
4639        }
4640        private Type dummyMethodType() {
4641            return dummyMethodType(null);
4642        }
4643
4644        @Override
4645        public void scan(JCTree tree) {
4646            if (tree == null) return;
4647            if (tree instanceof JCExpression) {
4648                initTypeIfNeeded(tree);
4649            }
4650            super.scan(tree);
4651        }
4652
4653        @Override
4654        public void visitIdent(JCIdent that) {
4655            if (that.sym == null) {
4656                that.sym = syms.unknownSymbol;
4657            }
4658        }
4659
4660        @Override
4661        public void visitSelect(JCFieldAccess that) {
4662            if (that.sym == null) {
4663                that.sym = syms.unknownSymbol;
4664            }
4665            super.visitSelect(that);
4666        }
4667
4668        @Override
4669        public void visitClassDef(JCClassDecl that) {
4670            initTypeIfNeeded(that);
4671            if (that.sym == null) {
4672                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4673            }
4674            super.visitClassDef(that);
4675        }
4676
4677        @Override
4678        public void visitMethodDef(JCMethodDecl that) {
4679            initTypeIfNeeded(that);
4680            if (that.sym == null) {
4681                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4682            }
4683            super.visitMethodDef(that);
4684        }
4685
4686        @Override
4687        public void visitVarDef(JCVariableDecl that) {
4688            initTypeIfNeeded(that);
4689            if (that.sym == null) {
4690                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4691                that.sym.adr = 0;
4692            }
4693            super.visitVarDef(that);
4694        }
4695
4696        @Override
4697        public void visitNewClass(JCNewClass that) {
4698            if (that.constructor == null) {
4699                that.constructor = new MethodSymbol(0, names.init,
4700                        dummyMethodType(), syms.noSymbol);
4701            }
4702            if (that.constructorType == null) {
4703                that.constructorType = syms.unknownType;
4704            }
4705            super.visitNewClass(that);
4706        }
4707
4708        @Override
4709        public void visitAssignop(JCAssignOp that) {
4710            if (that.operator == null) {
4711                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4712                        -1, syms.noSymbol);
4713            }
4714            super.visitAssignop(that);
4715        }
4716
4717        @Override
4718        public void visitBinary(JCBinary that) {
4719            if (that.operator == null) {
4720                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4721                        -1, syms.noSymbol);
4722            }
4723            super.visitBinary(that);
4724        }
4725
4726        @Override
4727        public void visitUnary(JCUnary that) {
4728            if (that.operator == null) {
4729                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4730                        -1, syms.noSymbol);
4731            }
4732            super.visitUnary(that);
4733        }
4734
4735        @Override
4736        public void visitLambda(JCLambda that) {
4737            super.visitLambda(that);
4738            if (that.targets == null) {
4739                that.targets = List.nil();
4740            }
4741        }
4742
4743        @Override
4744        public void visitReference(JCMemberReference that) {
4745            super.visitReference(that);
4746            if (that.sym == null) {
4747                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4748                        syms.noSymbol);
4749            }
4750            if (that.targets == null) {
4751                that.targets = List.nil();
4752            }
4753        }
4754    }
4755    // </editor-fold>
4756}
4757