Attr.java revision 2758:3c1b5fcf6fad
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import java.util.*;
29
30import javax.lang.model.element.ElementKind;
31import javax.tools.JavaFileObject;
32
33import com.sun.source.tree.IdentifierTree;
34import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
35import com.sun.source.tree.MemberSelectTree;
36import com.sun.source.tree.TreeVisitor;
37import com.sun.source.util.SimpleTreeVisitor;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Lint.LintCategory;
40import com.sun.tools.javac.code.Scope.WriteableScope;
41import com.sun.tools.javac.code.Symbol.*;
42import com.sun.tools.javac.code.Type.*;
43import com.sun.tools.javac.comp.Check.CheckContext;
44import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
45import com.sun.tools.javac.comp.Infer.InferenceContext;
46import com.sun.tools.javac.comp.Infer.FreeTypeListener;
47import com.sun.tools.javac.jvm.*;
48import com.sun.tools.javac.tree.*;
49import com.sun.tools.javac.tree.JCTree.*;
50import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
51import com.sun.tools.javac.util.*;
52import com.sun.tools.javac.util.DefinedBy.Api;
53import com.sun.tools.javac.util.Dependencies.AttributionKind;
54import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
55import com.sun.tools.javac.util.List;
56import static com.sun.tools.javac.code.Flags.*;
57import static com.sun.tools.javac.code.Flags.ANNOTATION;
58import static com.sun.tools.javac.code.Flags.BLOCK;
59import static com.sun.tools.javac.code.Kinds.*;
60import static com.sun.tools.javac.code.Kinds.Kind.*;
61import static com.sun.tools.javac.code.TypeTag.*;
62import static com.sun.tools.javac.code.TypeTag.WILDCARD;
63import static com.sun.tools.javac.tree.JCTree.Tag.*;
64
65/** This is the main context-dependent analysis phase in GJC. It
66 *  encompasses name resolution, type checking and constant folding as
67 *  subtasks. Some subtasks involve auxiliary classes.
68 *  @see Check
69 *  @see Resolve
70 *  @see ConstFold
71 *  @see Infer
72 *
73 *  <p><b>This is NOT part of any supported API.
74 *  If you write code that depends on this, you do so at your own risk.
75 *  This code and its internal interfaces are subject to change or
76 *  deletion without notice.</b>
77 */
78public class Attr extends JCTree.Visitor {
79    protected static final Context.Key<Attr> attrKey = new Context.Key<>();
80
81    final Names names;
82    final Log log;
83    final Symtab syms;
84    final Resolve rs;
85    final Infer infer;
86    final Analyzer analyzer;
87    final DeferredAttr deferredAttr;
88    final Check chk;
89    final Flow flow;
90    final MemberEnter memberEnter;
91    final TypeEnter typeEnter;
92    final TreeMaker make;
93    final ConstFold cfolder;
94    final Enter enter;
95    final Target target;
96    final Types types;
97    final JCDiagnostic.Factory diags;
98    final Annotate annotate;
99    final TypeAnnotations typeAnnotations;
100    final DeferredLintHandler deferredLintHandler;
101    final TypeEnvs typeEnvs;
102    final Dependencies dependencies;
103
104    public static Attr instance(Context context) {
105        Attr instance = context.get(attrKey);
106        if (instance == null)
107            instance = new Attr(context);
108        return instance;
109    }
110
111    protected Attr(Context context) {
112        context.put(attrKey, this);
113
114        names = Names.instance(context);
115        log = Log.instance(context);
116        syms = Symtab.instance(context);
117        rs = Resolve.instance(context);
118        chk = Check.instance(context);
119        flow = Flow.instance(context);
120        memberEnter = MemberEnter.instance(context);
121        typeEnter = TypeEnter.instance(context);
122        make = TreeMaker.instance(context);
123        enter = Enter.instance(context);
124        infer = Infer.instance(context);
125        analyzer = Analyzer.instance(context);
126        deferredAttr = DeferredAttr.instance(context);
127        cfolder = ConstFold.instance(context);
128        target = Target.instance(context);
129        types = Types.instance(context);
130        diags = JCDiagnostic.Factory.instance(context);
131        annotate = Annotate.instance(context);
132        typeAnnotations = TypeAnnotations.instance(context);
133        deferredLintHandler = DeferredLintHandler.instance(context);
134        typeEnvs = TypeEnvs.instance(context);
135        dependencies = Dependencies.instance(context);
136
137        Options options = Options.instance(context);
138
139        Source source = Source.instance(context);
140        allowStringsInSwitch = source.allowStringsInSwitch();
141        allowPoly = source.allowPoly();
142        allowTypeAnnos = source.allowTypeAnnotations();
143        allowLambda = source.allowLambda();
144        allowDefaultMethods = source.allowDefaultMethods();
145        allowStaticInterfaceMethods = source.allowStaticInterfaceMethods();
146        sourceName = source.name;
147        relax = (options.isSet("-retrofit") ||
148                options.isSet("-relax"));
149        useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
150
151        statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
152        varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
153        unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
154        unknownAnyPolyInfo = new ResultInfo(KindSelector.VAL, Infer.anyPoly);
155        unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
156        unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
157        recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
158    }
159
160    /** Switch: relax some constraints for retrofit mode.
161     */
162    boolean relax;
163
164    /** Switch: support target-typing inference
165     */
166    boolean allowPoly;
167
168    /** Switch: support type annotations.
169     */
170    boolean allowTypeAnnos;
171
172    /** Switch: support lambda expressions ?
173     */
174    boolean allowLambda;
175
176    /** Switch: support default methods ?
177     */
178    boolean allowDefaultMethods;
179
180    /** Switch: static interface methods enabled?
181     */
182    boolean allowStaticInterfaceMethods;
183
184    /**
185     * Switch: warn about use of variable before declaration?
186     * RFE: 6425594
187     */
188    boolean useBeforeDeclarationWarning;
189
190    /**
191     * Switch: allow strings in switch?
192     */
193    boolean allowStringsInSwitch;
194
195    /**
196     * Switch: name of source level; used for error reporting.
197     */
198    String sourceName;
199
200    /** Check kind and type of given tree against protokind and prototype.
201     *  If check succeeds, store type in tree and return it.
202     *  If check fails, store errType in tree and return it.
203     *  No checks are performed if the prototype is a method type.
204     *  It is not necessary in this case since we know that kind and type
205     *  are correct.
206     *
207     *  @param tree     The tree whose kind and type is checked
208     *  @param ownkind  The computed kind of the tree
209     *  @param resultInfo  The expected result of the tree
210     */
211    Type check(final JCTree tree,
212               final Type found,
213               final KindSelector ownkind,
214               final ResultInfo resultInfo) {
215        InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
216        Type owntype;
217        if (!found.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
218            if (!ownkind.subset(resultInfo.pkind)) {
219                log.error(tree.pos(), "unexpected.type",
220                        resultInfo.pkind.kindNames(),
221                        ownkind.kindNames());
222                owntype = types.createErrorType(found);
223            } else if (allowPoly && inferenceContext.free(found)) {
224                //delay the check if there are inference variables in the found type
225                //this means we are dealing with a partially inferred poly expression
226                owntype = resultInfo.pt;
227                inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
228                    @Override
229                    public void typesInferred(InferenceContext inferenceContext) {
230                        ResultInfo pendingResult =
231                                resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
232                        check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
233                    }
234                });
235            } else {
236                owntype = resultInfo.check(tree, found);
237            }
238        } else {
239            owntype = found;
240        }
241        tree.type = owntype;
242        return owntype;
243    }
244
245    /** Is given blank final variable assignable, i.e. in a scope where it
246     *  may be assigned to even though it is final?
247     *  @param v      The blank final variable.
248     *  @param env    The current environment.
249     */
250    boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
251        Symbol owner = env.info.scope.owner;
252           // owner refers to the innermost variable, method or
253           // initializer block declaration at this point.
254        return
255            v.owner == owner
256            ||
257            ((owner.name == names.init ||    // i.e. we are in a constructor
258              owner.kind == VAR ||           // i.e. we are in a variable initializer
259              (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
260             &&
261             v.owner == owner.owner
262             &&
263             ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
264    }
265
266    /** Check that variable can be assigned to.
267     *  @param pos    The current source code position.
268     *  @param v      The assigned varaible
269     *  @param base   If the variable is referred to in a Select, the part
270     *                to the left of the `.', null otherwise.
271     *  @param env    The current environment.
272     */
273    void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
274        if ((v.flags() & FINAL) != 0 &&
275            ((v.flags() & HASINIT) != 0
276             ||
277             !((base == null ||
278               (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
279               isAssignableAsBlankFinal(v, env)))) {
280            if (v.isResourceVariable()) { //TWR resource
281                log.error(pos, "try.resource.may.not.be.assigned", v);
282            } else {
283                log.error(pos, "cant.assign.val.to.final.var", v);
284            }
285        }
286    }
287
288    /** Does tree represent a static reference to an identifier?
289     *  It is assumed that tree is either a SELECT or an IDENT.
290     *  We have to weed out selects from non-type names here.
291     *  @param tree    The candidate tree.
292     */
293    boolean isStaticReference(JCTree tree) {
294        if (tree.hasTag(SELECT)) {
295            Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
296            if (lsym == null || lsym.kind != TYP) {
297                return false;
298            }
299        }
300        return true;
301    }
302
303    /** Is this symbol a type?
304     */
305    static boolean isType(Symbol sym) {
306        return sym != null && sym.kind == TYP;
307    }
308
309    /** The current `this' symbol.
310     *  @param env    The current environment.
311     */
312    Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
313        return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
314    }
315
316    /** Attribute a parsed identifier.
317     * @param tree Parsed identifier name
318     * @param topLevel The toplevel to use
319     */
320    public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
321        Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
322        localEnv.enclClass = make.ClassDef(make.Modifiers(0),
323                                           syms.errSymbol.name,
324                                           null, null, null, null);
325        localEnv.enclClass.sym = syms.errSymbol;
326        return tree.accept(identAttributer, localEnv);
327    }
328    // where
329        private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
330        private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
331            @Override @DefinedBy(Api.COMPILER_TREE)
332            public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
333                Symbol site = visit(node.getExpression(), env);
334                if (site.kind == ERR || site.kind == ABSENT_TYP)
335                    return site;
336                Name name = (Name)node.getIdentifier();
337                if (site.kind == PCK) {
338                    env.toplevel.packge = (PackageSymbol)site;
339                    return rs.findIdentInPackage(env, (TypeSymbol)site, name,
340                            KindSelector.TYP_PCK);
341                } else {
342                    env.enclClass.sym = (ClassSymbol)site;
343                    return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
344                }
345            }
346
347            @Override @DefinedBy(Api.COMPILER_TREE)
348            public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
349                return rs.findIdent(env, (Name)node.getName(), KindSelector.TYP_PCK);
350            }
351        }
352
353    public Type coerce(Type etype, Type ttype) {
354        return cfolder.coerce(etype, ttype);
355    }
356
357    public Type attribType(JCTree node, TypeSymbol sym) {
358        Env<AttrContext> env = typeEnvs.get(sym);
359        Env<AttrContext> localEnv = env.dup(node, env.info.dup());
360        return attribTree(node, localEnv, unknownTypeInfo);
361    }
362
363    public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
364        // Attribute qualifying package or class.
365        JCFieldAccess s = (JCFieldAccess)tree.qualid;
366        return attribTree(s.selected, env,
367                          new ResultInfo(tree.staticImport ?
368                                         KindSelector.TYP : KindSelector.TYP_PCK,
369                       Type.noType));
370    }
371
372    public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
373        breakTree = tree;
374        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
375        try {
376            attribExpr(expr, env);
377        } catch (BreakAttr b) {
378            return b.env;
379        } catch (AssertionError ae) {
380            if (ae.getCause() instanceof BreakAttr) {
381                return ((BreakAttr)(ae.getCause())).env;
382            } else {
383                throw ae;
384            }
385        } finally {
386            breakTree = null;
387            log.useSource(prev);
388        }
389        return env;
390    }
391
392    public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
393        breakTree = tree;
394        JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
395        try {
396            attribStat(stmt, env);
397        } catch (BreakAttr b) {
398            return b.env;
399        } catch (AssertionError ae) {
400            if (ae.getCause() instanceof BreakAttr) {
401                return ((BreakAttr)(ae.getCause())).env;
402            } else {
403                throw ae;
404            }
405        } finally {
406            breakTree = null;
407            log.useSource(prev);
408        }
409        return env;
410    }
411
412    private JCTree breakTree = null;
413
414    private static class BreakAttr extends RuntimeException {
415        static final long serialVersionUID = -6924771130405446405L;
416        private Env<AttrContext> env;
417        private BreakAttr(Env<AttrContext> env) {
418            this.env = env;
419        }
420    }
421
422    class ResultInfo {
423        final KindSelector pkind;
424        final Type pt;
425        final CheckContext checkContext;
426
427        ResultInfo(KindSelector pkind, Type pt) {
428            this(pkind, pt, chk.basicHandler);
429        }
430
431        protected ResultInfo(KindSelector pkind,
432                             Type pt, CheckContext checkContext) {
433            this.pkind = pkind;
434            this.pt = pt;
435            this.checkContext = checkContext;
436        }
437
438        protected Type check(final DiagnosticPosition pos, final Type found) {
439            return chk.checkType(pos, found, pt, checkContext);
440        }
441
442        protected ResultInfo dup(Type newPt) {
443            return new ResultInfo(pkind, newPt, checkContext);
444        }
445
446        protected ResultInfo dup(CheckContext newContext) {
447            return new ResultInfo(pkind, pt, newContext);
448        }
449
450        protected ResultInfo dup(Type newPt, CheckContext newContext) {
451            return new ResultInfo(pkind, newPt, newContext);
452        }
453
454        @Override
455        public String toString() {
456            if (pt != null) {
457                return pt.toString();
458            } else {
459                return "";
460            }
461        }
462    }
463
464    class RecoveryInfo extends ResultInfo {
465
466        public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
467            super(KindSelector.VAL, Type.recoveryType,
468                  new Check.NestedCheckContext(chk.basicHandler) {
469                @Override
470                public DeferredAttr.DeferredAttrContext deferredAttrContext() {
471                    return deferredAttrContext;
472                }
473                @Override
474                public boolean compatible(Type found, Type req, Warner warn) {
475                    return true;
476                }
477                @Override
478                public void report(DiagnosticPosition pos, JCDiagnostic details) {
479                    chk.basicHandler.report(pos, details);
480                }
481            });
482        }
483    }
484
485    final ResultInfo statInfo;
486    final ResultInfo varAssignmentInfo;
487    final ResultInfo unknownAnyPolyInfo;
488    final ResultInfo unknownExprInfo;
489    final ResultInfo unknownTypeInfo;
490    final ResultInfo unknownTypeExprInfo;
491    final ResultInfo recoveryInfo;
492
493    Type pt() {
494        return resultInfo.pt;
495    }
496
497    KindSelector pkind() {
498        return resultInfo.pkind;
499    }
500
501/* ************************************************************************
502 * Visitor methods
503 *************************************************************************/
504
505    /** Visitor argument: the current environment.
506     */
507    Env<AttrContext> env;
508
509    /** Visitor argument: the currently expected attribution result.
510     */
511    ResultInfo resultInfo;
512
513    /** Visitor result: the computed type.
514     */
515    Type result;
516
517    /** Visitor method: attribute a tree, catching any completion failure
518     *  exceptions. Return the tree's type.
519     *
520     *  @param tree    The tree to be visited.
521     *  @param env     The environment visitor argument.
522     *  @param resultInfo   The result info visitor argument.
523     */
524    Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
525        Env<AttrContext> prevEnv = this.env;
526        ResultInfo prevResult = this.resultInfo;
527        try {
528            this.env = env;
529            this.resultInfo = resultInfo;
530            tree.accept(this);
531            if (tree == breakTree &&
532                    resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
533                throw new BreakAttr(copyEnv(env));
534            }
535            return result;
536        } catch (CompletionFailure ex) {
537            tree.type = syms.errType;
538            return chk.completionError(tree.pos(), ex);
539        } finally {
540            this.env = prevEnv;
541            this.resultInfo = prevResult;
542        }
543    }
544
545    Env<AttrContext> copyEnv(Env<AttrContext> env) {
546        Env<AttrContext> newEnv =
547                env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
548        if (newEnv.outer != null) {
549            newEnv.outer = copyEnv(newEnv.outer);
550        }
551        return newEnv;
552    }
553
554    WriteableScope copyScope(WriteableScope sc) {
555        WriteableScope newScope = WriteableScope.create(sc.owner);
556        List<Symbol> elemsList = List.nil();
557        for (Symbol sym : sc.getSymbols()) {
558            elemsList = elemsList.prepend(sym);
559        }
560        for (Symbol s : elemsList) {
561            newScope.enter(s);
562        }
563        return newScope;
564    }
565
566    /** Derived visitor method: attribute an expression tree.
567     */
568    public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
569        return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
570    }
571
572    /** Derived visitor method: attribute an expression tree with
573     *  no constraints on the computed type.
574     */
575    public Type attribExpr(JCTree tree, Env<AttrContext> env) {
576        return attribTree(tree, env, unknownExprInfo);
577    }
578
579    /** Derived visitor method: attribute a type tree.
580     */
581    public Type attribType(JCTree tree, Env<AttrContext> env) {
582        Type result = attribType(tree, env, Type.noType);
583        return result;
584    }
585
586    /** Derived visitor method: attribute a type tree.
587     */
588    Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
589        Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
590        return result;
591    }
592
593    /** Derived visitor method: attribute a statement or definition tree.
594     */
595    public Type attribStat(JCTree tree, Env<AttrContext> env) {
596        Env<AttrContext> analyzeEnv =
597                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
598        try {
599            return attribTree(tree, env, statInfo);
600        } finally {
601            analyzer.analyzeIfNeeded(tree, analyzeEnv);
602        }
603    }
604
605    /** Attribute a list of expressions, returning a list of types.
606     */
607    List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
608        ListBuffer<Type> ts = new ListBuffer<>();
609        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
610            ts.append(attribExpr(l.head, env, pt));
611        return ts.toList();
612    }
613
614    /** Attribute a list of statements, returning nothing.
615     */
616    <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
617        for (List<T> l = trees; l.nonEmpty(); l = l.tail)
618            attribStat(l.head, env);
619    }
620
621    /** Attribute the arguments in a method call, returning the method kind.
622     */
623    KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
624        KindSelector kind = initialKind;
625        for (JCExpression arg : trees) {
626            Type argtype;
627            if (allowPoly && deferredAttr.isDeferred(env, arg)) {
628                argtype = deferredAttr.new DeferredType(arg, env);
629                kind = KindSelector.of(KindSelector.POLY, kind);
630            } else {
631                argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
632            }
633            argtypes.append(argtype);
634        }
635        return kind;
636    }
637
638    /** Attribute a type argument list, returning a list of types.
639     *  Caller is responsible for calling checkRefTypes.
640     */
641    List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
642        ListBuffer<Type> argtypes = new ListBuffer<>();
643        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
644            argtypes.append(attribType(l.head, env));
645        return argtypes.toList();
646    }
647
648    /** Attribute a type argument list, returning a list of types.
649     *  Check that all the types are references.
650     */
651    List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
652        List<Type> types = attribAnyTypes(trees, env);
653        return chk.checkRefTypes(trees, types);
654    }
655
656    /**
657     * Attribute type variables (of generic classes or methods).
658     * Compound types are attributed later in attribBounds.
659     * @param typarams the type variables to enter
660     * @param env      the current environment
661     */
662    void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
663        for (JCTypeParameter tvar : typarams) {
664            dependencies.push(AttributionKind.TVAR, tvar);
665            TypeVar a = (TypeVar)tvar.type;
666            a.tsym.flags_field |= UNATTRIBUTED;
667            a.bound = Type.noType;
668            if (!tvar.bounds.isEmpty()) {
669                List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
670                for (JCExpression bound : tvar.bounds.tail)
671                    bounds = bounds.prepend(attribType(bound, env));
672                types.setBounds(a, bounds.reverse());
673            } else {
674                // if no bounds are given, assume a single bound of
675                // java.lang.Object.
676                types.setBounds(a, List.of(syms.objectType));
677            }
678            a.tsym.flags_field &= ~UNATTRIBUTED;
679            dependencies.pop();
680        }
681        for (JCTypeParameter tvar : typarams) {
682            chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
683        }
684    }
685
686    /**
687     * Attribute the type references in a list of annotations.
688     */
689    void attribAnnotationTypes(List<JCAnnotation> annotations,
690                               Env<AttrContext> env) {
691        for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
692            JCAnnotation a = al.head;
693            attribType(a.annotationType, env);
694        }
695    }
696
697    /**
698     * Attribute a "lazy constant value".
699     *  @param env         The env for the const value
700     *  @param initializer The initializer for the const value
701     *  @param type        The expected type, or null
702     *  @see VarSymbol#setLazyConstValue
703     */
704    public Object attribLazyConstantValue(Env<AttrContext> env,
705                                      JCVariableDecl variable,
706                                      Type type) {
707
708        DiagnosticPosition prevLintPos
709                = deferredLintHandler.setPos(variable.pos());
710
711        try {
712            Type itype = attribExpr(variable.init, env, type);
713            if (itype.constValue() != null) {
714                return coerce(itype, type).constValue();
715            } else {
716                return null;
717            }
718        } finally {
719            deferredLintHandler.setPos(prevLintPos);
720        }
721    }
722
723    /** Attribute type reference in an `extends' or `implements' clause.
724     *  Supertypes of anonymous inner classes are usually already attributed.
725     *
726     *  @param tree              The tree making up the type reference.
727     *  @param env               The environment current at the reference.
728     *  @param classExpected     true if only a class is expected here.
729     *  @param interfaceExpected true if only an interface is expected here.
730     */
731    Type attribBase(JCTree tree,
732                    Env<AttrContext> env,
733                    boolean classExpected,
734                    boolean interfaceExpected,
735                    boolean checkExtensible) {
736        Type t = tree.type != null ?
737            tree.type :
738            attribType(tree, env);
739        return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
740    }
741    Type checkBase(Type t,
742                   JCTree tree,
743                   Env<AttrContext> env,
744                   boolean classExpected,
745                   boolean interfaceExpected,
746                   boolean checkExtensible) {
747        if (t.tsym.isAnonymous()) {
748            log.error(tree.pos(), "cant.inherit.from.anon");
749            return types.createErrorType(t);
750        }
751        if (t.isErroneous())
752            return t;
753        if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
754            // check that type variable is already visible
755            if (t.getUpperBound() == null) {
756                log.error(tree.pos(), "illegal.forward.ref");
757                return types.createErrorType(t);
758            }
759        } else {
760            t = chk.checkClassType(tree.pos(), t, checkExtensible);
761        }
762        if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
763            log.error(tree.pos(), "intf.expected.here");
764            // return errType is necessary since otherwise there might
765            // be undetected cycles which cause attribution to loop
766            return types.createErrorType(t);
767        } else if (checkExtensible &&
768                   classExpected &&
769                   (t.tsym.flags() & INTERFACE) != 0) {
770            log.error(tree.pos(), "no.intf.expected.here");
771            return types.createErrorType(t);
772        }
773        if (checkExtensible &&
774            ((t.tsym.flags() & FINAL) != 0)) {
775            log.error(tree.pos(),
776                      "cant.inherit.from.final", t.tsym);
777        }
778        chk.checkNonCyclic(tree.pos(), t);
779        return t;
780    }
781
782    Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
783        Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
784        id.type = env.info.scope.owner.enclClass().type;
785        id.sym = env.info.scope.owner.enclClass();
786        return id.type;
787    }
788
789    public void visitClassDef(JCClassDecl tree) {
790        // Local and anonymous classes have not been entered yet, so we need to
791        // do it now.
792        if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
793            enter.classEnter(tree, env);
794        } else {
795            // If this class declaration is part of a class level annotation,
796            // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
797            // order to simplify later steps and allow for sensible error
798            // messages.
799            if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
800                enter.classEnter(tree, env);
801        }
802
803        ClassSymbol c = tree.sym;
804        if (c == null) {
805            // exit in case something drastic went wrong during enter.
806            result = null;
807        } else {
808            // make sure class has been completed:
809            c.complete();
810
811            // If this class appears as an anonymous class
812            // in a superclass constructor call where
813            // no explicit outer instance is given,
814            // disable implicit outer instance from being passed.
815            // (This would be an illegal access to "this before super").
816            if (env.info.isSelfCall &&
817                env.tree.hasTag(NEWCLASS) &&
818                ((JCNewClass) env.tree).encl == null)
819            {
820                c.flags_field |= NOOUTERTHIS;
821            }
822            attribClass(tree.pos(), c);
823            result = tree.type = c.type;
824        }
825    }
826
827    public void visitMethodDef(JCMethodDecl tree) {
828        MethodSymbol m = tree.sym;
829        boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
830
831        Lint lint = env.info.lint.augment(m);
832        Lint prevLint = chk.setLint(lint);
833        MethodSymbol prevMethod = chk.setMethod(m);
834        try {
835            deferredLintHandler.flush(tree.pos());
836            chk.checkDeprecatedAnnotation(tree.pos(), m);
837
838
839            // Create a new environment with local scope
840            // for attributing the method.
841            Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
842            localEnv.info.lint = lint;
843
844            attribStats(tree.typarams, localEnv);
845
846            // If we override any other methods, check that we do so properly.
847            // JLS ???
848            if (m.isStatic()) {
849                chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
850            } else {
851                chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
852            }
853            chk.checkOverride(tree, m);
854
855            if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
856                log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
857            }
858
859            // Enter all type parameters into the local method scope.
860            for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
861                localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
862
863            ClassSymbol owner = env.enclClass.sym;
864            if ((owner.flags() & ANNOTATION) != 0 &&
865                    tree.params.nonEmpty())
866                log.error(tree.params.head.pos(),
867                        "intf.annotation.members.cant.have.params");
868
869            // Attribute all value parameters.
870            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
871                attribStat(l.head, localEnv);
872            }
873
874            chk.checkVarargsMethodDecl(localEnv, tree);
875
876            // Check that type parameters are well-formed.
877            chk.validate(tree.typarams, localEnv);
878
879            // Check that result type is well-formed.
880            if (tree.restype != null && !tree.restype.type.hasTag(VOID))
881                chk.validate(tree.restype, localEnv);
882
883            // Check that receiver type is well-formed.
884            if (tree.recvparam != null) {
885                // Use a new environment to check the receiver parameter.
886                // Otherwise I get "might not have been initialized" errors.
887                // Is there a better way?
888                Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
889                attribType(tree.recvparam, newEnv);
890                chk.validate(tree.recvparam, newEnv);
891            }
892
893            // annotation method checks
894            if ((owner.flags() & ANNOTATION) != 0) {
895                // annotation method cannot have throws clause
896                if (tree.thrown.nonEmpty()) {
897                    log.error(tree.thrown.head.pos(),
898                            "throws.not.allowed.in.intf.annotation");
899                }
900                // annotation method cannot declare type-parameters
901                if (tree.typarams.nonEmpty()) {
902                    log.error(tree.typarams.head.pos(),
903                            "intf.annotation.members.cant.have.type.params");
904                }
905                // validate annotation method's return type (could be an annotation type)
906                chk.validateAnnotationType(tree.restype);
907                // ensure that annotation method does not clash with members of Object/Annotation
908                chk.validateAnnotationMethod(tree.pos(), m);
909            }
910
911            for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
912                chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
913
914            if (tree.body == null) {
915                // Empty bodies are only allowed for
916                // abstract, native, or interface methods, or for methods
917                // in a retrofit signature class.
918                if (tree.defaultValue != null) {
919                    if ((owner.flags() & ANNOTATION) == 0)
920                        log.error(tree.pos(),
921                                  "default.allowed.in.intf.annotation.member");
922                }
923                if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
924                    !relax)
925                    log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
926            } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
927                if ((owner.flags() & INTERFACE) != 0) {
928                    log.error(tree.body.pos(), "intf.meth.cant.have.body");
929                } else {
930                    log.error(tree.pos(), "abstract.meth.cant.have.body");
931                }
932            } else if ((tree.mods.flags & NATIVE) != 0) {
933                log.error(tree.pos(), "native.meth.cant.have.body");
934            } else {
935                // Add an implicit super() call unless an explicit call to
936                // super(...) or this(...) is given
937                // or we are compiling class java.lang.Object.
938                if (tree.name == names.init && owner.type != syms.objectType) {
939                    JCBlock body = tree.body;
940                    if (body.stats.isEmpty() ||
941                            !TreeInfo.isSelfCall(body.stats.head)) {
942                        body.stats = body.stats.
943                                prepend(typeEnter.SuperCall(make.at(body.pos),
944                                        List.<Type>nil(),
945                                        List.<JCVariableDecl>nil(),
946                                        false));
947                    } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
948                            (tree.mods.flags & GENERATEDCONSTR) == 0 &&
949                            TreeInfo.isSuperCall(body.stats.head)) {
950                        // enum constructors are not allowed to call super
951                        // directly, so make sure there aren't any super calls
952                        // in enum constructors, except in the compiler
953                        // generated one.
954                        log.error(tree.body.stats.head.pos(),
955                                "call.to.super.not.allowed.in.enum.ctor",
956                                env.enclClass.sym);
957                    }
958                }
959
960                // Attribute all type annotations in the body
961                annotate.annotateTypeLater(tree.body, localEnv, m, null);
962                annotate.flush();
963
964                // Attribute method body.
965                attribStat(tree.body, localEnv);
966            }
967
968            localEnv.info.scope.leave();
969            result = tree.type = m.type;
970        } finally {
971            chk.setLint(prevLint);
972            chk.setMethod(prevMethod);
973        }
974    }
975
976    public void visitVarDef(JCVariableDecl tree) {
977        // Local variables have not been entered yet, so we need to do it now:
978        if (env.info.scope.owner.kind == MTH) {
979            if (tree.sym != null) {
980                // parameters have already been entered
981                env.info.scope.enter(tree.sym);
982            } else {
983                try {
984                    annotate.enterStart();
985                    memberEnter.memberEnter(tree, env);
986                } finally {
987                    annotate.enterDone();
988                }
989            }
990        } else {
991            if (tree.init != null) {
992                // Field initializer expression need to be entered.
993                annotate.annotateTypeLater(tree.init, env, tree.sym, tree.pos());
994                annotate.flush();
995            }
996        }
997
998        VarSymbol v = tree.sym;
999        Lint lint = env.info.lint.augment(v);
1000        Lint prevLint = chk.setLint(lint);
1001
1002        // Check that the variable's declared type is well-formed.
1003        boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1004                ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1005                (tree.sym.flags() & PARAMETER) != 0;
1006        chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1007
1008        try {
1009            v.getConstValue(); // ensure compile-time constant initializer is evaluated
1010            deferredLintHandler.flush(tree.pos());
1011            chk.checkDeprecatedAnnotation(tree.pos(), v);
1012
1013            if (tree.init != null) {
1014                if ((v.flags_field & FINAL) == 0 ||
1015                    !memberEnter.needsLazyConstValue(tree.init)) {
1016                    // Not a compile-time constant
1017                    // Attribute initializer in a new environment
1018                    // with the declared variable as owner.
1019                    // Check that initializer conforms to variable's declared type.
1020                    Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1021                    initEnv.info.lint = lint;
1022                    // In order to catch self-references, we set the variable's
1023                    // declaration position to maximal possible value, effectively
1024                    // marking the variable as undefined.
1025                    initEnv.info.enclVar = v;
1026                    attribExpr(tree.init, initEnv, v.type);
1027                }
1028            }
1029            result = tree.type = v.type;
1030        }
1031        finally {
1032            chk.setLint(prevLint);
1033        }
1034    }
1035
1036    public void visitSkip(JCSkip tree) {
1037        result = null;
1038    }
1039
1040    public void visitBlock(JCBlock tree) {
1041        if (env.info.scope.owner.kind == TYP) {
1042            // Block is a static or instance initializer;
1043            // let the owner of the environment be a freshly
1044            // created BLOCK-method.
1045            Symbol fakeOwner =
1046                new MethodSymbol(tree.flags | BLOCK |
1047                    env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1048                    env.info.scope.owner);
1049            final Env<AttrContext> localEnv =
1050                env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1051
1052            if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1053            // Attribute all type annotations in the block
1054            annotate.annotateTypeLater(tree, localEnv, localEnv.info.scope.owner, null);
1055            annotate.flush();
1056            attribStats(tree.stats, localEnv);
1057
1058            {
1059                // Store init and clinit type annotations with the ClassSymbol
1060                // to allow output in Gen.normalizeDefs.
1061                ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1062                List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1063                if ((tree.flags & STATIC) != 0) {
1064                    cs.appendClassInitTypeAttributes(tas);
1065                } else {
1066                    cs.appendInitTypeAttributes(tas);
1067                }
1068            }
1069        } else {
1070            // Create a new local environment with a local scope.
1071            Env<AttrContext> localEnv =
1072                env.dup(tree, env.info.dup(env.info.scope.dup()));
1073            try {
1074                attribStats(tree.stats, localEnv);
1075            } finally {
1076                localEnv.info.scope.leave();
1077            }
1078        }
1079        result = null;
1080    }
1081
1082    public void visitDoLoop(JCDoWhileLoop tree) {
1083        attribStat(tree.body, env.dup(tree));
1084        attribExpr(tree.cond, env, syms.booleanType);
1085        result = null;
1086    }
1087
1088    public void visitWhileLoop(JCWhileLoop tree) {
1089        attribExpr(tree.cond, env, syms.booleanType);
1090        attribStat(tree.body, env.dup(tree));
1091        result = null;
1092    }
1093
1094    public void visitForLoop(JCForLoop tree) {
1095        Env<AttrContext> loopEnv =
1096            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1097        try {
1098            attribStats(tree.init, loopEnv);
1099            if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1100            loopEnv.tree = tree; // before, we were not in loop!
1101            attribStats(tree.step, loopEnv);
1102            attribStat(tree.body, loopEnv);
1103            result = null;
1104        }
1105        finally {
1106            loopEnv.info.scope.leave();
1107        }
1108    }
1109
1110    public void visitForeachLoop(JCEnhancedForLoop tree) {
1111        Env<AttrContext> loopEnv =
1112            env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1113        try {
1114            //the Formal Parameter of a for-each loop is not in the scope when
1115            //attributing the for-each expression; we mimick this by attributing
1116            //the for-each expression first (against original scope).
1117            Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1118            attribStat(tree.var, loopEnv);
1119            chk.checkNonVoid(tree.pos(), exprType);
1120            Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1121            if (elemtype == null) {
1122                // or perhaps expr implements Iterable<T>?
1123                Type base = types.asSuper(exprType, syms.iterableType.tsym);
1124                if (base == null) {
1125                    log.error(tree.expr.pos(),
1126                            "foreach.not.applicable.to.type",
1127                            exprType,
1128                            diags.fragment("type.req.array.or.iterable"));
1129                    elemtype = types.createErrorType(exprType);
1130                } else {
1131                    List<Type> iterableParams = base.allparams();
1132                    elemtype = iterableParams.isEmpty()
1133                        ? syms.objectType
1134                        : types.wildUpperBound(iterableParams.head);
1135                }
1136            }
1137            chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1138            loopEnv.tree = tree; // before, we were not in loop!
1139            attribStat(tree.body, loopEnv);
1140            result = null;
1141        }
1142        finally {
1143            loopEnv.info.scope.leave();
1144        }
1145    }
1146
1147    public void visitLabelled(JCLabeledStatement tree) {
1148        // Check that label is not used in an enclosing statement
1149        Env<AttrContext> env1 = env;
1150        while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1151            if (env1.tree.hasTag(LABELLED) &&
1152                ((JCLabeledStatement) env1.tree).label == tree.label) {
1153                log.error(tree.pos(), "label.already.in.use",
1154                          tree.label);
1155                break;
1156            }
1157            env1 = env1.next;
1158        }
1159
1160        attribStat(tree.body, env.dup(tree));
1161        result = null;
1162    }
1163
1164    public void visitSwitch(JCSwitch tree) {
1165        Type seltype = attribExpr(tree.selector, env);
1166
1167        Env<AttrContext> switchEnv =
1168            env.dup(tree, env.info.dup(env.info.scope.dup()));
1169
1170        try {
1171
1172            boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1173            boolean stringSwitch = false;
1174            if (types.isSameType(seltype, syms.stringType)) {
1175                if (allowStringsInSwitch) {
1176                    stringSwitch = true;
1177                } else {
1178                    log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1179                }
1180            }
1181            if (!enumSwitch && !stringSwitch)
1182                seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1183
1184            // Attribute all cases and
1185            // check that there are no duplicate case labels or default clauses.
1186            Set<Object> labels = new HashSet<>(); // The set of case labels.
1187            boolean hasDefault = false;      // Is there a default label?
1188            for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1189                JCCase c = l.head;
1190                if (c.pat != null) {
1191                    if (enumSwitch) {
1192                        Symbol sym = enumConstant(c.pat, seltype);
1193                        if (sym == null) {
1194                            log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1195                        } else if (!labels.add(sym)) {
1196                            log.error(c.pos(), "duplicate.case.label");
1197                        }
1198                    } else {
1199                        Type pattype = attribExpr(c.pat, switchEnv, seltype);
1200                        if (!pattype.hasTag(ERROR)) {
1201                            if (pattype.constValue() == null) {
1202                                log.error(c.pat.pos(),
1203                                          (stringSwitch ? "string.const.req" : "const.expr.req"));
1204                            } else if (labels.contains(pattype.constValue())) {
1205                                log.error(c.pos(), "duplicate.case.label");
1206                            } else {
1207                                labels.add(pattype.constValue());
1208                            }
1209                        }
1210                    }
1211                } else if (hasDefault) {
1212                    log.error(c.pos(), "duplicate.default.label");
1213                } else {
1214                    hasDefault = true;
1215                }
1216                Env<AttrContext> caseEnv =
1217                    switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1218                try {
1219                    attribStats(c.stats, caseEnv);
1220                } finally {
1221                    caseEnv.info.scope.leave();
1222                    addVars(c.stats, switchEnv.info.scope);
1223                }
1224            }
1225
1226            result = null;
1227        }
1228        finally {
1229            switchEnv.info.scope.leave();
1230        }
1231    }
1232    // where
1233        /** Add any variables defined in stats to the switch scope. */
1234        private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1235            for (;stats.nonEmpty(); stats = stats.tail) {
1236                JCTree stat = stats.head;
1237                if (stat.hasTag(VARDEF))
1238                    switchScope.enter(((JCVariableDecl) stat).sym);
1239            }
1240        }
1241    // where
1242    /** Return the selected enumeration constant symbol, or null. */
1243    private Symbol enumConstant(JCTree tree, Type enumType) {
1244        if (!tree.hasTag(IDENT)) {
1245            log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
1246            return syms.errSymbol;
1247        }
1248        JCIdent ident = (JCIdent)tree;
1249        Name name = ident.name;
1250        for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1251            if (sym.kind == VAR) {
1252                Symbol s = ident.sym = sym;
1253                ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1254                ident.type = s.type;
1255                return ((s.flags_field & Flags.ENUM) == 0)
1256                    ? null : s;
1257            }
1258        }
1259        return null;
1260    }
1261
1262    public void visitSynchronized(JCSynchronized tree) {
1263        chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1264        attribStat(tree.body, env);
1265        result = null;
1266    }
1267
1268    public void visitTry(JCTry tree) {
1269        // Create a new local environment with a local
1270        Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1271        try {
1272            boolean isTryWithResource = tree.resources.nonEmpty();
1273            // Create a nested environment for attributing the try block if needed
1274            Env<AttrContext> tryEnv = isTryWithResource ?
1275                env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1276                localEnv;
1277            try {
1278                // Attribute resource declarations
1279                for (JCTree resource : tree.resources) {
1280                    CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1281                        @Override
1282                        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1283                            chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1284                        }
1285                    };
1286                    ResultInfo twrResult =
1287                        new ResultInfo(KindSelector.VAR,
1288                                       syms.autoCloseableType,
1289                                       twrContext);
1290                    if (resource.hasTag(VARDEF)) {
1291                        attribStat(resource, tryEnv);
1292                        twrResult.check(resource, resource.type);
1293
1294                        //check that resource type cannot throw InterruptedException
1295                        checkAutoCloseable(resource.pos(), localEnv, resource.type);
1296
1297                        VarSymbol var = ((JCVariableDecl) resource).sym;
1298                        var.setData(ElementKind.RESOURCE_VARIABLE);
1299                    } else {
1300                        attribTree(resource, tryEnv, twrResult);
1301                    }
1302                }
1303                // Attribute body
1304                attribStat(tree.body, tryEnv);
1305            } finally {
1306                if (isTryWithResource)
1307                    tryEnv.info.scope.leave();
1308            }
1309
1310            // Attribute catch clauses
1311            for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1312                JCCatch c = l.head;
1313                Env<AttrContext> catchEnv =
1314                    localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1315                try {
1316                    Type ctype = attribStat(c.param, catchEnv);
1317                    if (TreeInfo.isMultiCatch(c)) {
1318                        //multi-catch parameter is implicitly marked as final
1319                        c.param.sym.flags_field |= FINAL | UNION;
1320                    }
1321                    if (c.param.sym.kind == VAR) {
1322                        c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1323                    }
1324                    chk.checkType(c.param.vartype.pos(),
1325                                  chk.checkClassType(c.param.vartype.pos(), ctype),
1326                                  syms.throwableType);
1327                    attribStat(c.body, catchEnv);
1328                } finally {
1329                    catchEnv.info.scope.leave();
1330                }
1331            }
1332
1333            // Attribute finalizer
1334            if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1335            result = null;
1336        }
1337        finally {
1338            localEnv.info.scope.leave();
1339        }
1340    }
1341
1342    void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1343        if (!resource.isErroneous() &&
1344            types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1345            !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1346            Symbol close = syms.noSymbol;
1347            Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1348            try {
1349                close = rs.resolveQualifiedMethod(pos,
1350                        env,
1351                        resource,
1352                        names.close,
1353                        List.<Type>nil(),
1354                        List.<Type>nil());
1355            }
1356            finally {
1357                log.popDiagnosticHandler(discardHandler);
1358            }
1359            if (close.kind == MTH &&
1360                    close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1361                    chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1362                    env.info.lint.isEnabled(LintCategory.TRY)) {
1363                log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1364            }
1365        }
1366    }
1367
1368    public void visitConditional(JCConditional tree) {
1369        Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1370
1371        tree.polyKind = (!allowPoly ||
1372                pt().hasTag(NONE) && pt() != Type.recoveryType ||
1373                isBooleanOrNumeric(env, tree)) ?
1374                PolyKind.STANDALONE : PolyKind.POLY;
1375
1376        if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1377            //cannot get here (i.e. it means we are returning from void method - which is already an error)
1378            resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1379            result = tree.type = types.createErrorType(resultInfo.pt);
1380            return;
1381        }
1382
1383        ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1384                unknownExprInfo :
1385                resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1386                    //this will use enclosing check context to check compatibility of
1387                    //subexpression against target type; if we are in a method check context,
1388                    //depending on whether boxing is allowed, we could have incompatibilities
1389                    @Override
1390                    public void report(DiagnosticPosition pos, JCDiagnostic details) {
1391                        enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1392                    }
1393                });
1394
1395        Type truetype = attribTree(tree.truepart, env, condInfo);
1396        Type falsetype = attribTree(tree.falsepart, env, condInfo);
1397
1398        Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1399        if (condtype.constValue() != null &&
1400                truetype.constValue() != null &&
1401                falsetype.constValue() != null &&
1402                !owntype.hasTag(NONE)) {
1403            //constant folding
1404            owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1405        }
1406        result = check(tree, owntype, KindSelector.VAL, resultInfo);
1407    }
1408    //where
1409        private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1410            switch (tree.getTag()) {
1411                case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1412                              ((JCLiteral)tree).typetag == BOOLEAN ||
1413                              ((JCLiteral)tree).typetag == BOT;
1414                case LAMBDA: case REFERENCE: return false;
1415                case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1416                case CONDEXPR:
1417                    JCConditional condTree = (JCConditional)tree;
1418                    return isBooleanOrNumeric(env, condTree.truepart) &&
1419                            isBooleanOrNumeric(env, condTree.falsepart);
1420                case APPLY:
1421                    JCMethodInvocation speculativeMethodTree =
1422                            (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1423                    Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1424                    Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1425                            env.enclClass.type :
1426                            ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1427                    Type owntype = types.memberType(receiverType, msym).getReturnType();
1428                    return primitiveOrBoxed(owntype);
1429                case NEWCLASS:
1430                    JCExpression className =
1431                            removeClassParams.translate(((JCNewClass)tree).clazz);
1432                    JCExpression speculativeNewClassTree =
1433                            (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1434                    return primitiveOrBoxed(speculativeNewClassTree.type);
1435                default:
1436                    Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1437                    return primitiveOrBoxed(speculativeType);
1438            }
1439        }
1440        //where
1441            boolean primitiveOrBoxed(Type t) {
1442                return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1443            }
1444
1445            TreeTranslator removeClassParams = new TreeTranslator() {
1446                @Override
1447                public void visitTypeApply(JCTypeApply tree) {
1448                    result = translate(tree.clazz);
1449                }
1450            };
1451
1452        /** Compute the type of a conditional expression, after
1453         *  checking that it exists.  See JLS 15.25. Does not take into
1454         *  account the special case where condition and both arms
1455         *  are constants.
1456         *
1457         *  @param pos      The source position to be used for error
1458         *                  diagnostics.
1459         *  @param thentype The type of the expression's then-part.
1460         *  @param elsetype The type of the expression's else-part.
1461         */
1462        private Type condType(DiagnosticPosition pos,
1463                               Type thentype, Type elsetype) {
1464            // If same type, that is the result
1465            if (types.isSameType(thentype, elsetype))
1466                return thentype.baseType();
1467
1468            Type thenUnboxed = (thentype.isPrimitive())
1469                ? thentype : types.unboxedType(thentype);
1470            Type elseUnboxed = (elsetype.isPrimitive())
1471                ? elsetype : types.unboxedType(elsetype);
1472
1473            // Otherwise, if both arms can be converted to a numeric
1474            // type, return the least numeric type that fits both arms
1475            // (i.e. return larger of the two, or return int if one
1476            // arm is short, the other is char).
1477            if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1478                // If one arm has an integer subrange type (i.e., byte,
1479                // short, or char), and the other is an integer constant
1480                // that fits into the subrange, return the subrange type.
1481                if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1482                    elseUnboxed.hasTag(INT) &&
1483                    types.isAssignable(elseUnboxed, thenUnboxed)) {
1484                    return thenUnboxed.baseType();
1485                }
1486                if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1487                    thenUnboxed.hasTag(INT) &&
1488                    types.isAssignable(thenUnboxed, elseUnboxed)) {
1489                    return elseUnboxed.baseType();
1490                }
1491
1492                for (TypeTag tag : primitiveTags) {
1493                    Type candidate = syms.typeOfTag[tag.ordinal()];
1494                    if (types.isSubtype(thenUnboxed, candidate) &&
1495                        types.isSubtype(elseUnboxed, candidate)) {
1496                        return candidate;
1497                    }
1498                }
1499            }
1500
1501            // Those were all the cases that could result in a primitive
1502            if (thentype.isPrimitive())
1503                thentype = types.boxedClass(thentype).type;
1504            if (elsetype.isPrimitive())
1505                elsetype = types.boxedClass(elsetype).type;
1506
1507            if (types.isSubtype(thentype, elsetype))
1508                return elsetype.baseType();
1509            if (types.isSubtype(elsetype, thentype))
1510                return thentype.baseType();
1511
1512            if (thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1513                log.error(pos, "neither.conditional.subtype",
1514                          thentype, elsetype);
1515                return thentype.baseType();
1516            }
1517
1518            // both are known to be reference types.  The result is
1519            // lub(thentype,elsetype). This cannot fail, as it will
1520            // always be possible to infer "Object" if nothing better.
1521            return types.lub(thentype.baseType(), elsetype.baseType());
1522        }
1523
1524    final static TypeTag[] primitiveTags = new TypeTag[]{
1525        BYTE,
1526        CHAR,
1527        SHORT,
1528        INT,
1529        LONG,
1530        FLOAT,
1531        DOUBLE,
1532        BOOLEAN,
1533    };
1534
1535    public void visitIf(JCIf tree) {
1536        attribExpr(tree.cond, env, syms.booleanType);
1537        attribStat(tree.thenpart, env);
1538        if (tree.elsepart != null)
1539            attribStat(tree.elsepart, env);
1540        chk.checkEmptyIf(tree);
1541        result = null;
1542    }
1543
1544    public void visitExec(JCExpressionStatement tree) {
1545        //a fresh environment is required for 292 inference to work properly ---
1546        //see Infer.instantiatePolymorphicSignatureInstance()
1547        Env<AttrContext> localEnv = env.dup(tree);
1548        attribExpr(tree.expr, localEnv);
1549        result = null;
1550    }
1551
1552    public void visitBreak(JCBreak tree) {
1553        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1554        result = null;
1555    }
1556
1557    public void visitContinue(JCContinue tree) {
1558        tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1559        result = null;
1560    }
1561    //where
1562        /** Return the target of a break or continue statement, if it exists,
1563         *  report an error if not.
1564         *  Note: The target of a labelled break or continue is the
1565         *  (non-labelled) statement tree referred to by the label,
1566         *  not the tree representing the labelled statement itself.
1567         *
1568         *  @param pos     The position to be used for error diagnostics
1569         *  @param tag     The tag of the jump statement. This is either
1570         *                 Tree.BREAK or Tree.CONTINUE.
1571         *  @param label   The label of the jump statement, or null if no
1572         *                 label is given.
1573         *  @param env     The environment current at the jump statement.
1574         */
1575        private JCTree findJumpTarget(DiagnosticPosition pos,
1576                                    JCTree.Tag tag,
1577                                    Name label,
1578                                    Env<AttrContext> env) {
1579            // Search environments outwards from the point of jump.
1580            Env<AttrContext> env1 = env;
1581            LOOP:
1582            while (env1 != null) {
1583                switch (env1.tree.getTag()) {
1584                    case LABELLED:
1585                        JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1586                        if (label == labelled.label) {
1587                            // If jump is a continue, check that target is a loop.
1588                            if (tag == CONTINUE) {
1589                                if (!labelled.body.hasTag(DOLOOP) &&
1590                                        !labelled.body.hasTag(WHILELOOP) &&
1591                                        !labelled.body.hasTag(FORLOOP) &&
1592                                        !labelled.body.hasTag(FOREACHLOOP))
1593                                    log.error(pos, "not.loop.label", label);
1594                                // Found labelled statement target, now go inwards
1595                                // to next non-labelled tree.
1596                                return TreeInfo.referencedStatement(labelled);
1597                            } else {
1598                                return labelled;
1599                            }
1600                        }
1601                        break;
1602                    case DOLOOP:
1603                    case WHILELOOP:
1604                    case FORLOOP:
1605                    case FOREACHLOOP:
1606                        if (label == null) return env1.tree;
1607                        break;
1608                    case SWITCH:
1609                        if (label == null && tag == BREAK) return env1.tree;
1610                        break;
1611                    case LAMBDA:
1612                    case METHODDEF:
1613                    case CLASSDEF:
1614                        break LOOP;
1615                    default:
1616                }
1617                env1 = env1.next;
1618            }
1619            if (label != null)
1620                log.error(pos, "undef.label", label);
1621            else if (tag == CONTINUE)
1622                log.error(pos, "cont.outside.loop");
1623            else
1624                log.error(pos, "break.outside.switch.loop");
1625            return null;
1626        }
1627
1628    public void visitReturn(JCReturn tree) {
1629        // Check that there is an enclosing method which is
1630        // nested within than the enclosing class.
1631        if (env.info.returnResult == null) {
1632            log.error(tree.pos(), "ret.outside.meth");
1633        } else {
1634            // Attribute return expression, if it exists, and check that
1635            // it conforms to result type of enclosing method.
1636            if (tree.expr != null) {
1637                if (env.info.returnResult.pt.hasTag(VOID)) {
1638                    env.info.returnResult.checkContext.report(tree.expr.pos(),
1639                              diags.fragment("unexpected.ret.val"));
1640                }
1641                attribTree(tree.expr, env, env.info.returnResult);
1642            } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1643                    !env.info.returnResult.pt.hasTag(NONE)) {
1644                env.info.returnResult.checkContext.report(tree.pos(),
1645                              diags.fragment("missing.ret.val"));
1646            }
1647        }
1648        result = null;
1649    }
1650
1651    public void visitThrow(JCThrow tree) {
1652        Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1653        if (allowPoly) {
1654            chk.checkType(tree, owntype, syms.throwableType);
1655        }
1656        result = null;
1657    }
1658
1659    public void visitAssert(JCAssert tree) {
1660        attribExpr(tree.cond, env, syms.booleanType);
1661        if (tree.detail != null) {
1662            chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1663        }
1664        result = null;
1665    }
1666
1667     /** Visitor method for method invocations.
1668     *  NOTE: The method part of an application will have in its type field
1669     *        the return type of the method, not the method's type itself!
1670     */
1671    public void visitApply(JCMethodInvocation tree) {
1672        // The local environment of a method application is
1673        // a new environment nested in the current one.
1674        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1675
1676        // The types of the actual method arguments.
1677        List<Type> argtypes;
1678
1679        // The types of the actual method type arguments.
1680        List<Type> typeargtypes = null;
1681
1682        Name methName = TreeInfo.name(tree.meth);
1683
1684        boolean isConstructorCall =
1685            methName == names._this || methName == names._super;
1686
1687        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1688        if (isConstructorCall) {
1689            // We are seeing a ...this(...) or ...super(...) call.
1690            // Check that this is the first statement in a constructor.
1691            if (checkFirstConstructorStat(tree, env)) {
1692
1693                // Record the fact
1694                // that this is a constructor call (using isSelfCall).
1695                localEnv.info.isSelfCall = true;
1696
1697                // Attribute arguments, yielding list of argument types.
1698                KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
1699                argtypes = argtypesBuf.toList();
1700                typeargtypes = attribTypes(tree.typeargs, localEnv);
1701
1702                // Variable `site' points to the class in which the called
1703                // constructor is defined.
1704                Type site = env.enclClass.sym.type;
1705                if (methName == names._super) {
1706                    if (site == syms.objectType) {
1707                        log.error(tree.meth.pos(), "no.superclass", site);
1708                        site = types.createErrorType(syms.objectType);
1709                    } else {
1710                        site = types.supertype(site);
1711                    }
1712                }
1713
1714                if (site.hasTag(CLASS)) {
1715                    Type encl = site.getEnclosingType();
1716                    while (encl != null && encl.hasTag(TYPEVAR))
1717                        encl = encl.getUpperBound();
1718                    if (encl.hasTag(CLASS)) {
1719                        // we are calling a nested class
1720
1721                        if (tree.meth.hasTag(SELECT)) {
1722                            JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1723
1724                            // We are seeing a prefixed call, of the form
1725                            //     <expr>.super(...).
1726                            // Check that the prefix expression conforms
1727                            // to the outer instance type of the class.
1728                            chk.checkRefType(qualifier.pos(),
1729                                             attribExpr(qualifier, localEnv,
1730                                                        encl));
1731                        } else if (methName == names._super) {
1732                            // qualifier omitted; check for existence
1733                            // of an appropriate implicit qualifier.
1734                            rs.resolveImplicitThis(tree.meth.pos(),
1735                                                   localEnv, site, true);
1736                        }
1737                    } else if (tree.meth.hasTag(SELECT)) {
1738                        log.error(tree.meth.pos(), "illegal.qual.not.icls",
1739                                  site.tsym);
1740                    }
1741
1742                    // if we're calling a java.lang.Enum constructor,
1743                    // prefix the implicit String and int parameters
1744                    if (site.tsym == syms.enumSym)
1745                        argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1746
1747                    // Resolve the called constructor under the assumption
1748                    // that we are referring to a superclass instance of the
1749                    // current instance (JLS ???).
1750                    boolean selectSuperPrev = localEnv.info.selectSuper;
1751                    localEnv.info.selectSuper = true;
1752                    localEnv.info.pendingResolutionPhase = null;
1753                    Symbol sym = rs.resolveConstructor(
1754                        tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1755                    localEnv.info.selectSuper = selectSuperPrev;
1756
1757                    // Set method symbol to resolved constructor...
1758                    TreeInfo.setSymbol(tree.meth, sym);
1759
1760                    // ...and check that it is legal in the current context.
1761                    // (this will also set the tree's type)
1762                    Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1763                    checkId(tree.meth, site, sym, localEnv,
1764                            new ResultInfo(kind, mpt));
1765                }
1766                // Otherwise, `site' is an error type and we do nothing
1767            }
1768            result = tree.type = syms.voidType;
1769        } else {
1770            // Otherwise, we are seeing a regular method call.
1771            // Attribute the arguments, yielding list of argument types, ...
1772            KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1773            argtypes = argtypesBuf.toList();
1774            typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1775
1776            // ... and attribute the method using as a prototype a methodtype
1777            // whose formal argument types is exactly the list of actual
1778            // arguments (this will also set the method symbol).
1779            Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1780            localEnv.info.pendingResolutionPhase = null;
1781            Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1782
1783            // Compute the result type.
1784            Type restype = mtype.getReturnType();
1785            if (restype.hasTag(WILDCARD))
1786                throw new AssertionError(mtype);
1787
1788            Type qualifier = (tree.meth.hasTag(SELECT))
1789                    ? ((JCFieldAccess) tree.meth).selected.type
1790                    : env.enclClass.sym.type;
1791            restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1792
1793            chk.checkRefTypes(tree.typeargs, typeargtypes);
1794
1795            // Check that value of resulting type is admissible in the
1796            // current context.  Also, capture the return type
1797            result = check(tree, capture(restype), KindSelector.VAL, resultInfo);
1798        }
1799        chk.validate(tree.typeargs, localEnv);
1800    }
1801    //where
1802        Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1803            if (methodName == names.clone && types.isArray(qualifierType)) {
1804                // as a special case, array.clone() has a result that is
1805                // the same as static type of the array being cloned
1806                return qualifierType;
1807            } else if (methodName == names.getClass && argtypes.isEmpty()) {
1808                // as a special case, x.getClass() has type Class<? extends |X|>
1809                return new ClassType(restype.getEnclosingType(),
1810                              List.<Type>of(new WildcardType(types.erasure(qualifierType),
1811                                                               BoundKind.EXTENDS,
1812                                                             syms.boundClass)),
1813                                     restype.tsym,
1814                                     restype.getMetadata());
1815            } else {
1816                return restype;
1817            }
1818        }
1819
1820        /** Check that given application node appears as first statement
1821         *  in a constructor call.
1822         *  @param tree   The application node
1823         *  @param env    The environment current at the application.
1824         */
1825        boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1826            JCMethodDecl enclMethod = env.enclMethod;
1827            if (enclMethod != null && enclMethod.name == names.init) {
1828                JCBlock body = enclMethod.body;
1829                if (body.stats.head.hasTag(EXEC) &&
1830                    ((JCExpressionStatement) body.stats.head).expr == tree)
1831                    return true;
1832            }
1833            log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1834                      TreeInfo.name(tree.meth));
1835            return false;
1836        }
1837
1838        /** Obtain a method type with given argument types.
1839         */
1840        Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1841            MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1842            return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1843        }
1844
1845    public void visitNewClass(final JCNewClass tree) {
1846        Type owntype = types.createErrorType(tree.type);
1847
1848        // The local environment of a class creation is
1849        // a new environment nested in the current one.
1850        Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1851
1852        // The anonymous inner class definition of the new expression,
1853        // if one is defined by it.
1854        JCClassDecl cdef = tree.def;
1855
1856        // If enclosing class is given, attribute it, and
1857        // complete class name to be fully qualified
1858        JCExpression clazz = tree.clazz; // Class field following new
1859        JCExpression clazzid;            // Identifier in class field
1860        JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1861        annoclazzid = null;
1862
1863        if (clazz.hasTag(TYPEAPPLY)) {
1864            clazzid = ((JCTypeApply) clazz).clazz;
1865            if (clazzid.hasTag(ANNOTATED_TYPE)) {
1866                annoclazzid = (JCAnnotatedType) clazzid;
1867                clazzid = annoclazzid.underlyingType;
1868            }
1869        } else {
1870            if (clazz.hasTag(ANNOTATED_TYPE)) {
1871                annoclazzid = (JCAnnotatedType) clazz;
1872                clazzid = annoclazzid.underlyingType;
1873            } else {
1874                clazzid = clazz;
1875            }
1876        }
1877
1878        JCExpression clazzid1 = clazzid; // The same in fully qualified form
1879
1880        if (tree.encl != null) {
1881            // We are seeing a qualified new, of the form
1882            //    <expr>.new C <...> (...) ...
1883            // In this case, we let clazz stand for the name of the
1884            // allocated class C prefixed with the type of the qualifier
1885            // expression, so that we can
1886            // resolve it with standard techniques later. I.e., if
1887            // <expr> has type T, then <expr>.new C <...> (...)
1888            // yields a clazz T.C.
1889            Type encltype = chk.checkRefType(tree.encl.pos(),
1890                                             attribExpr(tree.encl, env));
1891            // TODO 308: in <expr>.new C, do we also want to add the type annotations
1892            // from expr to the combined type, or not? Yes, do this.
1893            clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1894                                                 ((JCIdent) clazzid).name);
1895
1896            EndPosTable endPosTable = this.env.toplevel.endPositions;
1897            endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
1898            if (clazz.hasTag(ANNOTATED_TYPE)) {
1899                JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1900                List<JCAnnotation> annos = annoType.annotations;
1901
1902                if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1903                    clazzid1 = make.at(tree.pos).
1904                        TypeApply(clazzid1,
1905                                  ((JCTypeApply) clazz).arguments);
1906                }
1907
1908                clazzid1 = make.at(tree.pos).
1909                    AnnotatedType(annos, clazzid1);
1910            } else if (clazz.hasTag(TYPEAPPLY)) {
1911                clazzid1 = make.at(tree.pos).
1912                    TypeApply(clazzid1,
1913                              ((JCTypeApply) clazz).arguments);
1914            }
1915
1916            clazz = clazzid1;
1917        }
1918
1919        // Attribute clazz expression and store
1920        // symbol + type back into the attributed tree.
1921        Type clazztype = TreeInfo.isEnumInit(env.tree) ?
1922            attribIdentAsEnumType(env, (JCIdent)clazz) :
1923            attribType(clazz, env);
1924
1925        clazztype = chk.checkDiamond(tree, clazztype);
1926        chk.validate(clazz, localEnv);
1927        if (tree.encl != null) {
1928            // We have to work in this case to store
1929            // symbol + type back into the attributed tree.
1930            tree.clazz.type = clazztype;
1931            TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1932            clazzid.type = ((JCIdent) clazzid).sym.type;
1933            if (annoclazzid != null) {
1934                annoclazzid.type = clazzid.type;
1935            }
1936            if (!clazztype.isErroneous()) {
1937                if (cdef != null && clazztype.tsym.isInterface()) {
1938                    log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1939                } else if (clazztype.tsym.isStatic()) {
1940                    log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1941                }
1942            }
1943        } else if (!clazztype.tsym.isInterface() &&
1944                   clazztype.getEnclosingType().hasTag(CLASS)) {
1945            // Check for the existence of an apropos outer instance
1946            rs.resolveImplicitThis(tree.pos(), env, clazztype);
1947        }
1948
1949        // Attribute constructor arguments.
1950        ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1951        final KindSelector pkind =
1952            attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
1953        List<Type> argtypes = argtypesBuf.toList();
1954        List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1955
1956        // If we have made no mistakes in the class type...
1957        if (clazztype.hasTag(CLASS)) {
1958            // Enums may not be instantiated except implicitly
1959            if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
1960                (!env.tree.hasTag(VARDEF) ||
1961                 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
1962                 ((JCVariableDecl) env.tree).init != tree))
1963                log.error(tree.pos(), "enum.cant.be.instantiated");
1964            // Check that class is not abstract
1965            if (cdef == null &&
1966                (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
1967                log.error(tree.pos(), "abstract.cant.be.instantiated",
1968                          clazztype.tsym);
1969            } else if (cdef != null && clazztype.tsym.isInterface()) {
1970                // Check that no constructor arguments are given to
1971                // anonymous classes implementing an interface
1972                if (!argtypes.isEmpty())
1973                    log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
1974
1975                if (!typeargtypes.isEmpty())
1976                    log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
1977
1978                // Error recovery: pretend no arguments were supplied.
1979                argtypes = List.nil();
1980                typeargtypes = List.nil();
1981            } else if (TreeInfo.isDiamond(tree)) {
1982                ClassType site = new ClassType(clazztype.getEnclosingType(),
1983                            clazztype.tsym.type.getTypeArguments(),
1984                                               clazztype.tsym,
1985                                               clazztype.getMetadata());
1986
1987                Env<AttrContext> diamondEnv = localEnv.dup(tree);
1988                diamondEnv.info.selectSuper = cdef != null;
1989                diamondEnv.info.pendingResolutionPhase = null;
1990
1991                //if the type of the instance creation expression is a class type
1992                //apply method resolution inference (JLS 15.12.2.7). The return type
1993                //of the resolved constructor will be a partially instantiated type
1994                Symbol constructor = rs.resolveDiamond(tree.pos(),
1995                            diamondEnv,
1996                            site,
1997                            argtypes,
1998                            typeargtypes);
1999                tree.constructor = constructor.baseSymbol();
2000
2001                final TypeSymbol csym = clazztype.tsym;
2002                ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2003                    @Override
2004                    public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2005                        enclosingContext.report(tree.clazz,
2006                                diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2007                    }
2008                });
2009                Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2010                constructorType = checkId(tree, site,
2011                        constructor,
2012                        diamondEnv,
2013                        diamondResult);
2014
2015                tree.clazz.type = types.createErrorType(clazztype);
2016                if (!constructorType.isErroneous()) {
2017                    tree.clazz.type = clazztype = constructorType.getReturnType();
2018                    tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2019                }
2020                clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2021            }
2022
2023            // Resolve the called constructor under the assumption
2024            // that we are referring to a superclass instance of the
2025            // current instance (JLS ???).
2026            else {
2027                //the following code alters some of the fields in the current
2028                //AttrContext - hence, the current context must be dup'ed in
2029                //order to avoid downstream failures
2030                Env<AttrContext> rsEnv = localEnv.dup(tree);
2031                rsEnv.info.selectSuper = cdef != null;
2032                rsEnv.info.pendingResolutionPhase = null;
2033                tree.constructor = rs.resolveConstructor(
2034                    tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2035                if (cdef == null) { //do not check twice!
2036                    tree.constructorType = checkId(tree,
2037                            clazztype,
2038                            tree.constructor,
2039                            rsEnv,
2040                            new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2041                    if (rsEnv.info.lastResolveVarargs())
2042                        Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2043                }
2044            }
2045
2046            if (cdef != null) {
2047                // We are seeing an anonymous class instance creation.
2048                // In this case, the class instance creation
2049                // expression
2050                //
2051                //    E.new <typeargs1>C<typargs2>(args) { ... }
2052                //
2053                // is represented internally as
2054                //
2055                //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2056                //
2057                // This expression is then *transformed* as follows:
2058                //
2059                // (1) add an extends or implements clause
2060                // (2) add a constructor.
2061                //
2062                // For instance, if C is a class, and ET is the type of E,
2063                // the expression
2064                //
2065                //    E.new <typeargs1>C<typargs2>(args) { ... }
2066                //
2067                // is translated to (where X is a fresh name and typarams is the
2068                // parameter list of the super constructor):
2069                //
2070                //   new <typeargs1>X(<*nullchk*>E, args) where
2071                //     X extends C<typargs2> {
2072                //       <typarams> X(ET e, args) {
2073                //         e.<typeargs1>super(args)
2074                //       }
2075                //       ...
2076                //     }
2077
2078                if (clazztype.tsym.isInterface()) {
2079                    cdef.implementing = List.of(clazz);
2080                } else {
2081                    cdef.extending = clazz;
2082                }
2083
2084                if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2085                    isSerializable(clazztype)) {
2086                    localEnv.info.isSerializable = true;
2087                }
2088
2089                attribStat(cdef, localEnv);
2090
2091                // If an outer instance is given,
2092                // prefix it to the constructor arguments
2093                // and delete it from the new expression
2094                if (tree.encl != null && !clazztype.tsym.isInterface()) {
2095                    tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2096                    argtypes = argtypes.prepend(tree.encl.type);
2097                    tree.encl = null;
2098                }
2099
2100                // Reassign clazztype and recompute constructor.
2101                clazztype = cdef.sym.type;
2102                Symbol sym = tree.constructor = rs.resolveConstructor(
2103                    tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
2104                Assert.check(!sym.kind.isOverloadError());
2105                tree.constructor = sym;
2106                tree.constructorType = checkId(tree,
2107                    clazztype,
2108                    tree.constructor,
2109                    localEnv,
2110                    new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2111            }
2112
2113            if (tree.constructor != null && tree.constructor.kind == MTH)
2114                owntype = clazztype;
2115        }
2116        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2117        chk.validate(tree.typeargs, localEnv);
2118    }
2119
2120    /** Make an attributed null check tree.
2121     */
2122    public JCExpression makeNullCheck(JCExpression arg) {
2123        // optimization: X.this is never null; skip null check
2124        Name name = TreeInfo.name(arg);
2125        if (name == names._this || name == names._super) return arg;
2126
2127        JCTree.Tag optag = NULLCHK;
2128        JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2129        tree.operator = syms.nullcheck;
2130        tree.type = arg.type;
2131        return tree;
2132    }
2133
2134    public void visitNewArray(JCNewArray tree) {
2135        Type owntype = types.createErrorType(tree.type);
2136        Env<AttrContext> localEnv = env.dup(tree);
2137        Type elemtype;
2138        if (tree.elemtype != null) {
2139            elemtype = attribType(tree.elemtype, localEnv);
2140            chk.validate(tree.elemtype, localEnv);
2141            owntype = elemtype;
2142            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2143                attribExpr(l.head, localEnv, syms.intType);
2144                owntype = new ArrayType(owntype, syms.arrayClass);
2145            }
2146        } else {
2147            // we are seeing an untyped aggregate { ... }
2148            // this is allowed only if the prototype is an array
2149            if (pt().hasTag(ARRAY)) {
2150                elemtype = types.elemtype(pt());
2151            } else {
2152                if (!pt().hasTag(ERROR)) {
2153                    log.error(tree.pos(), "illegal.initializer.for.type",
2154                              pt());
2155                }
2156                elemtype = types.createErrorType(pt());
2157            }
2158        }
2159        if (tree.elems != null) {
2160            attribExprs(tree.elems, localEnv, elemtype);
2161            owntype = new ArrayType(elemtype, syms.arrayClass);
2162        }
2163        if (!types.isReifiable(elemtype))
2164            log.error(tree.pos(), "generic.array.creation");
2165        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2166    }
2167
2168    /*
2169     * A lambda expression can only be attributed when a target-type is available.
2170     * In addition, if the target-type is that of a functional interface whose
2171     * descriptor contains inference variables in argument position the lambda expression
2172     * is 'stuck' (see DeferredAttr).
2173     */
2174    @Override
2175    public void visitLambda(final JCLambda that) {
2176        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2177            if (pt().hasTag(NONE)) {
2178                //lambda only allowed in assignment or method invocation/cast context
2179                log.error(that.pos(), "unexpected.lambda");
2180            }
2181            result = that.type = types.createErrorType(pt());
2182            return;
2183        }
2184        //create an environment for attribution of the lambda expression
2185        final Env<AttrContext> localEnv = lambdaEnv(that, env);
2186        boolean needsRecovery =
2187                resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2188        try {
2189            Type currentTarget = pt();
2190            if (needsRecovery && isSerializable(currentTarget)) {
2191                localEnv.info.isSerializable = true;
2192            }
2193            List<Type> explicitParamTypes = null;
2194            if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2195                //attribute lambda parameters
2196                attribStats(that.params, localEnv);
2197                explicitParamTypes = TreeInfo.types(that.params);
2198            }
2199
2200            Type lambdaType;
2201            if (pt() != Type.recoveryType) {
2202                /* We need to adjust the target. If the target is an
2203                 * intersection type, for example: SAM & I1 & I2 ...
2204                 * the target will be updated to SAM
2205                 */
2206                currentTarget = targetChecker.visit(currentTarget, that);
2207                if (explicitParamTypes != null) {
2208                    currentTarget = infer.instantiateFunctionalInterface(that,
2209                            currentTarget, explicitParamTypes, resultInfo.checkContext);
2210                }
2211                currentTarget = types.removeWildcards(currentTarget);
2212                lambdaType = types.findDescriptorType(currentTarget);
2213            } else {
2214                currentTarget = Type.recoveryType;
2215                lambdaType = fallbackDescriptorType(that);
2216            }
2217
2218            setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2219
2220            if (lambdaType.hasTag(FORALL)) {
2221                //lambda expression target desc cannot be a generic method
2222                resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2223                        lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2224                result = that.type = types.createErrorType(pt());
2225                return;
2226            }
2227
2228            if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2229                //add param type info in the AST
2230                List<Type> actuals = lambdaType.getParameterTypes();
2231                List<JCVariableDecl> params = that.params;
2232
2233                boolean arityMismatch = false;
2234
2235                while (params.nonEmpty()) {
2236                    if (actuals.isEmpty()) {
2237                        //not enough actuals to perform lambda parameter inference
2238                        arityMismatch = true;
2239                    }
2240                    //reset previously set info
2241                    Type argType = arityMismatch ?
2242                            syms.errType :
2243                            actuals.head;
2244                    params.head.vartype = make.at(params.head).Type(argType);
2245                    params.head.sym = null;
2246                    actuals = actuals.isEmpty() ?
2247                            actuals :
2248                            actuals.tail;
2249                    params = params.tail;
2250                }
2251
2252                //attribute lambda parameters
2253                attribStats(that.params, localEnv);
2254
2255                if (arityMismatch) {
2256                    resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2257                        result = that.type = types.createErrorType(currentTarget);
2258                        return;
2259                }
2260            }
2261
2262            //from this point on, no recovery is needed; if we are in assignment context
2263            //we will be able to attribute the whole lambda body, regardless of errors;
2264            //if we are in a 'check' method context, and the lambda is not compatible
2265            //with the target-type, it will be recovered anyway in Attr.checkId
2266            needsRecovery = false;
2267
2268            FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2269                    new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2270                    new FunctionalReturnContext(resultInfo.checkContext);
2271
2272            ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2273                recoveryInfo :
2274                new ResultInfo(KindSelector.VAL,
2275                               lambdaType.getReturnType(), funcContext);
2276            localEnv.info.returnResult = bodyResultInfo;
2277
2278            if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2279                attribTree(that.getBody(), localEnv, bodyResultInfo);
2280            } else {
2281                JCBlock body = (JCBlock)that.body;
2282                attribStats(body.stats, localEnv);
2283            }
2284
2285            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2286
2287            boolean isSpeculativeRound =
2288                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2289
2290            preFlow(that);
2291            flow.analyzeLambda(env, that, make, isSpeculativeRound);
2292
2293            checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2294
2295            if (!isSpeculativeRound) {
2296                //add thrown types as bounds to the thrown types free variables if needed:
2297                if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2298                    List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2299                    List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asUndetVars(lambdaType.getThrownTypes());
2300
2301                    chk.unhandled(inferredThrownTypes, thrownTypes);
2302                }
2303
2304                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2305            }
2306            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2307        } catch (Types.FunctionDescriptorLookupError ex) {
2308            JCDiagnostic cause = ex.getDiagnostic();
2309            resultInfo.checkContext.report(that, cause);
2310            result = that.type = types.createErrorType(pt());
2311            return;
2312        } finally {
2313            localEnv.info.scope.leave();
2314            if (needsRecovery) {
2315                attribTree(that, env, recoveryInfo);
2316            }
2317        }
2318    }
2319    //where
2320        void preFlow(JCLambda tree) {
2321            new PostAttrAnalyzer() {
2322                @Override
2323                public void scan(JCTree tree) {
2324                    if (tree == null ||
2325                            (tree.type != null &&
2326                            tree.type == Type.stuckType)) {
2327                        //don't touch stuck expressions!
2328                        return;
2329                    }
2330                    super.scan(tree);
2331                }
2332            }.scan(tree);
2333        }
2334
2335        Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2336
2337            @Override
2338            public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2339                return t.isCompound() ?
2340                        visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2341            }
2342
2343            public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2344                Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2345                Type target = null;
2346                for (Type bound : ict.getExplicitComponents()) {
2347                    TypeSymbol boundSym = bound.tsym;
2348                    if (types.isFunctionalInterface(boundSym) &&
2349                            types.findDescriptorSymbol(boundSym) == desc) {
2350                        target = bound;
2351                    } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2352                        //bound must be an interface
2353                        reportIntersectionError(pos, "not.an.intf.component", boundSym);
2354                    }
2355                }
2356                return target != null ?
2357                        target :
2358                        ict.getExplicitComponents().head; //error recovery
2359            }
2360
2361            private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2362                ListBuffer<Type> targs = new ListBuffer<>();
2363                ListBuffer<Type> supertypes = new ListBuffer<>();
2364                for (Type i : ict.interfaces_field) {
2365                    if (i.isParameterized()) {
2366                        targs.appendList(i.tsym.type.allparams());
2367                    }
2368                    supertypes.append(i.tsym.type);
2369                }
2370                IntersectionClassType notionalIntf =
2371                        (IntersectionClassType)types.makeCompoundType(supertypes.toList());
2372                notionalIntf.allparams_field = targs.toList();
2373                notionalIntf.tsym.flags_field |= INTERFACE;
2374                return notionalIntf.tsym;
2375            }
2376
2377            private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2378                resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2379                        diags.fragment(key, args)));
2380            }
2381        };
2382
2383        private Type fallbackDescriptorType(JCExpression tree) {
2384            switch (tree.getTag()) {
2385                case LAMBDA:
2386                    JCLambda lambda = (JCLambda)tree;
2387                    List<Type> argtypes = List.nil();
2388                    for (JCVariableDecl param : lambda.params) {
2389                        argtypes = param.vartype != null ?
2390                                argtypes.append(param.vartype.type) :
2391                                argtypes.append(syms.errType);
2392                    }
2393                    return new MethodType(argtypes, Type.recoveryType,
2394                            List.of(syms.throwableType), syms.methodClass);
2395                case REFERENCE:
2396                    return new MethodType(List.<Type>nil(), Type.recoveryType,
2397                            List.of(syms.throwableType), syms.methodClass);
2398                default:
2399                    Assert.error("Cannot get here!");
2400            }
2401            return null;
2402        }
2403
2404        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2405                final InferenceContext inferenceContext, final Type... ts) {
2406            checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2407        }
2408
2409        private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2410                final InferenceContext inferenceContext, final List<Type> ts) {
2411            if (inferenceContext.free(ts)) {
2412                inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2413                    @Override
2414                    public void typesInferred(InferenceContext inferenceContext) {
2415                        checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2416                    }
2417                });
2418            } else {
2419                for (Type t : ts) {
2420                    rs.checkAccessibleType(env, t);
2421                }
2422            }
2423        }
2424
2425        /**
2426         * Lambda/method reference have a special check context that ensures
2427         * that i.e. a lambda return type is compatible with the expected
2428         * type according to both the inherited context and the assignment
2429         * context.
2430         */
2431        class FunctionalReturnContext extends Check.NestedCheckContext {
2432
2433            FunctionalReturnContext(CheckContext enclosingContext) {
2434                super(enclosingContext);
2435            }
2436
2437            @Override
2438            public boolean compatible(Type found, Type req, Warner warn) {
2439                //return type must be compatible in both current context and assignment context
2440                return chk.basicHandler.compatible(found, inferenceContext().asUndetVar(req), warn);
2441            }
2442
2443            @Override
2444            public void report(DiagnosticPosition pos, JCDiagnostic details) {
2445                enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2446            }
2447        }
2448
2449        class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2450
2451            JCExpression expr;
2452
2453            ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2454                super(enclosingContext);
2455                this.expr = expr;
2456            }
2457
2458            @Override
2459            public boolean compatible(Type found, Type req, Warner warn) {
2460                //a void return is compatible with an expression statement lambda
2461                return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2462                        super.compatible(found, req, warn);
2463            }
2464        }
2465
2466        /**
2467        * Lambda compatibility. Check that given return types, thrown types, parameter types
2468        * are compatible with the expected functional interface descriptor. This means that:
2469        * (i) parameter types must be identical to those of the target descriptor; (ii) return
2470        * types must be compatible with the return type of the expected descriptor.
2471        */
2472        private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2473            Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2474
2475            //return values have already been checked - but if lambda has no return
2476            //values, we must ensure that void/value compatibility is correct;
2477            //this amounts at checking that, if a lambda body can complete normally,
2478            //the descriptor's return type must be void
2479            if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2480                    !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2481                checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2482                        diags.fragment("missing.ret.val", returnType)));
2483            }
2484
2485            List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
2486            if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2487                checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2488            }
2489        }
2490
2491        /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2492         * static field and that lambda has type annotations, these annotations will
2493         * also be stored at these fake clinit methods.
2494         *
2495         * LambdaToMethod also use fake clinit methods so they can be reused.
2496         * Also as LTM is a phase subsequent to attribution, the methods from
2497         * clinits can be safely removed by LTM to save memory.
2498         */
2499        private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2500
2501        public MethodSymbol removeClinit(ClassSymbol sym) {
2502            return clinits.remove(sym);
2503        }
2504
2505        /* This method returns an environment to be used to attribute a lambda
2506         * expression.
2507         *
2508         * The owner of this environment is a method symbol. If the current owner
2509         * is not a method, for example if the lambda is used to initialize
2510         * a field, then if the field is:
2511         *
2512         * - an instance field, we use the first constructor.
2513         * - a static field, we create a fake clinit method.
2514         */
2515        public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2516            Env<AttrContext> lambdaEnv;
2517            Symbol owner = env.info.scope.owner;
2518            if (owner.kind == VAR && owner.owner.kind == TYP) {
2519                //field initializer
2520                ClassSymbol enclClass = owner.enclClass();
2521                Symbol newScopeOwner = env.info.scope.owner;
2522                /* if the field isn't static, then we can get the first constructor
2523                 * and use it as the owner of the environment. This is what
2524                 * LTM code is doing to look for type annotations so we are fine.
2525                 */
2526                if ((owner.flags() & STATIC) == 0) {
2527                    for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
2528                        newScopeOwner = s;
2529                        break;
2530                    }
2531                } else {
2532                    /* if the field is static then we need to create a fake clinit
2533                     * method, this method can later be reused by LTM.
2534                     */
2535                    MethodSymbol clinit = clinits.get(enclClass);
2536                    if (clinit == null) {
2537                        Type clinitType = new MethodType(List.<Type>nil(),
2538                                syms.voidType, List.<Type>nil(), syms.methodClass);
2539                        clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2540                                names.clinit, clinitType, enclClass);
2541                        clinit.params = List.<VarSymbol>nil();
2542                        clinits.put(enclClass, clinit);
2543                    }
2544                    newScopeOwner = clinit;
2545                }
2546                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
2547            } else {
2548                lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2549            }
2550            return lambdaEnv;
2551        }
2552
2553    @Override
2554    public void visitReference(final JCMemberReference that) {
2555        if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2556            if (pt().hasTag(NONE)) {
2557                //method reference only allowed in assignment or method invocation/cast context
2558                log.error(that.pos(), "unexpected.mref");
2559            }
2560            result = that.type = types.createErrorType(pt());
2561            return;
2562        }
2563        final Env<AttrContext> localEnv = env.dup(that);
2564        try {
2565            //attribute member reference qualifier - if this is a constructor
2566            //reference, the expected kind must be a type
2567            Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2568
2569            if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2570                exprType = chk.checkConstructorRefType(that.expr, exprType);
2571                if (!exprType.isErroneous() &&
2572                    exprType.isRaw() &&
2573                    that.typeargs != null) {
2574                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2575                        diags.fragment("mref.infer.and.explicit.params"));
2576                    exprType = types.createErrorType(exprType);
2577                }
2578            }
2579
2580            if (exprType.isErroneous()) {
2581                //if the qualifier expression contains problems,
2582                //give up attribution of method reference
2583                result = that.type = exprType;
2584                return;
2585            }
2586
2587            if (TreeInfo.isStaticSelector(that.expr, names)) {
2588                //if the qualifier is a type, validate it; raw warning check is
2589                //omitted as we don't know at this stage as to whether this is a
2590                //raw selector (because of inference)
2591                chk.validate(that.expr, env, false);
2592            }
2593
2594            //attrib type-arguments
2595            List<Type> typeargtypes = List.nil();
2596            if (that.typeargs != null) {
2597                typeargtypes = attribTypes(that.typeargs, localEnv);
2598            }
2599
2600            Type desc;
2601            Type currentTarget = pt();
2602            boolean isTargetSerializable =
2603                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2604                    isSerializable(currentTarget);
2605            if (currentTarget != Type.recoveryType) {
2606                currentTarget = types.removeWildcards(targetChecker.visit(currentTarget, that));
2607                desc = types.findDescriptorType(currentTarget);
2608            } else {
2609                currentTarget = Type.recoveryType;
2610                desc = fallbackDescriptorType(that);
2611            }
2612
2613            setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
2614            List<Type> argtypes = desc.getParameterTypes();
2615            Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2616
2617            if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2618                referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2619            }
2620
2621            Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2622            List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2623            try {
2624                refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2625                        that.name, argtypes, typeargtypes, referenceCheck,
2626                        resultInfo.checkContext.inferenceContext(),
2627                        resultInfo.checkContext.deferredAttrContext().mode);
2628            } finally {
2629                resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2630            }
2631
2632            Symbol refSym = refResult.fst;
2633            Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2634
2635            if (refSym.kind != MTH) {
2636                boolean targetError;
2637                switch (refSym.kind) {
2638                    case ABSENT_MTH:
2639                        targetError = false;
2640                        break;
2641                    case WRONG_MTH:
2642                    case WRONG_MTHS:
2643                    case AMBIGUOUS:
2644                    case HIDDEN:
2645                    case STATICERR:
2646                    case MISSING_ENCL:
2647                    case WRONG_STATICNESS:
2648                        targetError = true;
2649                        break;
2650                    default:
2651                        Assert.error("unexpected result kind " + refSym.kind);
2652                        targetError = false;
2653                }
2654
2655                JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2656                                that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2657
2658                JCDiagnostic.DiagnosticType diagKind = targetError ?
2659                        JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2660
2661                JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2662                        "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2663
2664                if (targetError && currentTarget == Type.recoveryType) {
2665                    //a target error doesn't make sense during recovery stage
2666                    //as we don't know what actual parameter types are
2667                    result = that.type = currentTarget;
2668                    return;
2669                } else {
2670                    if (targetError) {
2671                        resultInfo.checkContext.report(that, diag);
2672                    } else {
2673                        log.report(diag);
2674                    }
2675                    result = that.type = types.createErrorType(currentTarget);
2676                    return;
2677                }
2678            }
2679
2680            that.sym = refSym.baseSymbol();
2681            that.kind = lookupHelper.referenceKind(that.sym);
2682            that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2683
2684            if (desc.getReturnType() == Type.recoveryType) {
2685                // stop here
2686                result = that.type = currentTarget;
2687                return;
2688            }
2689
2690            if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2691
2692                if (that.getMode() == ReferenceMode.INVOKE &&
2693                        TreeInfo.isStaticSelector(that.expr, names) &&
2694                        that.kind.isUnbound() &&
2695                        !desc.getParameterTypes().head.isParameterized()) {
2696                    chk.checkRaw(that.expr, localEnv);
2697                }
2698
2699                if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2700                        exprType.getTypeArguments().nonEmpty()) {
2701                    //static ref with class type-args
2702                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2703                            diags.fragment("static.mref.with.targs"));
2704                    result = that.type = types.createErrorType(currentTarget);
2705                    return;
2706                }
2707
2708                if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
2709                        !that.kind.isUnbound()) {
2710                    //no static bound mrefs
2711                    log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2712                            diags.fragment("static.bound.mref"));
2713                    result = that.type = types.createErrorType(currentTarget);
2714                    return;
2715                }
2716
2717                if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2718                    // Check that super-qualified symbols are not abstract (JLS)
2719                    rs.checkNonAbstract(that.pos(), that.sym);
2720                }
2721
2722                if (isTargetSerializable) {
2723                    chk.checkElemAccessFromSerializableLambda(that);
2724                }
2725            }
2726
2727            ResultInfo checkInfo =
2728                    resultInfo.dup(newMethodTemplate(
2729                        desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2730                        that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
2731                        new FunctionalReturnContext(resultInfo.checkContext));
2732
2733            Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2734
2735            if (that.kind.isUnbound() &&
2736                    resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2737                //re-generate inference constraints for unbound receiver
2738                if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
2739                    //cannot happen as this has already been checked - we just need
2740                    //to regenerate the inference constraints, as that has been lost
2741                    //as a result of the call to inferenceContext.save()
2742                    Assert.error("Can't get here");
2743                }
2744            }
2745
2746            if (!refType.isErroneous()) {
2747                refType = types.createMethodTypeWithReturn(refType,
2748                        adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2749            }
2750
2751            //go ahead with standard method reference compatibility check - note that param check
2752            //is a no-op (as this has been taken care during method applicability)
2753            boolean isSpeculativeRound =
2754                    resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2755            checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2756            if (!isSpeculativeRound) {
2757                checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
2758            }
2759            result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2760        } catch (Types.FunctionDescriptorLookupError ex) {
2761            JCDiagnostic cause = ex.getDiagnostic();
2762            resultInfo.checkContext.report(that, cause);
2763            result = that.type = types.createErrorType(pt());
2764            return;
2765        }
2766    }
2767    //where
2768        ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2769            //if this is a constructor reference, the expected kind must be a type
2770            return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
2771                                  KindSelector.VAL_TYP : KindSelector.TYP,
2772                                  Type.noType);
2773        }
2774
2775
2776    @SuppressWarnings("fallthrough")
2777    void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2778        Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
2779
2780        Type resType;
2781        switch (tree.getMode()) {
2782            case NEW:
2783                if (!tree.expr.type.isRaw()) {
2784                    resType = tree.expr.type;
2785                    break;
2786                }
2787            default:
2788                resType = refType.getReturnType();
2789        }
2790
2791        Type incompatibleReturnType = resType;
2792
2793        if (returnType.hasTag(VOID)) {
2794            incompatibleReturnType = null;
2795        }
2796
2797        if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2798            if (resType.isErroneous() ||
2799                    new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2800                incompatibleReturnType = null;
2801            }
2802        }
2803
2804        if (incompatibleReturnType != null) {
2805            checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2806                    diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2807        }
2808
2809        if (!speculativeAttr) {
2810            List<Type> thrownTypes = checkContext.inferenceContext().asUndetVars(descriptor.getThrownTypes());
2811            if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2812                log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2813            }
2814        }
2815    }
2816
2817    /**
2818     * Set functional type info on the underlying AST. Note: as the target descriptor
2819     * might contain inference variables, we might need to register an hook in the
2820     * current inference context.
2821     */
2822    private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
2823            final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
2824        if (checkContext.inferenceContext().free(descriptorType)) {
2825            checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2826                public void typesInferred(InferenceContext inferenceContext) {
2827                    setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
2828                            inferenceContext.asInstType(primaryTarget), checkContext);
2829                }
2830            });
2831        } else {
2832            ListBuffer<Type> targets = new ListBuffer<>();
2833            if (pt.hasTag(CLASS)) {
2834                if (pt.isCompound()) {
2835                    targets.append(types.removeWildcards(primaryTarget)); //this goes first
2836                    for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2837                        if (t != primaryTarget) {
2838                            targets.append(types.removeWildcards(t));
2839                        }
2840                    }
2841                } else {
2842                    targets.append(types.removeWildcards(primaryTarget));
2843                }
2844            }
2845            fExpr.targets = targets.toList();
2846            if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2847                    pt != Type.recoveryType) {
2848                //check that functional interface class is well-formed
2849                try {
2850                    /* Types.makeFunctionalInterfaceClass() may throw an exception
2851                     * when it's executed post-inference. See the listener code
2852                     * above.
2853                     */
2854                    ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
2855                            names.empty, List.of(fExpr.targets.head), ABSTRACT);
2856                    if (csym != null) {
2857                        chk.checkImplementations(env.tree, csym, csym);
2858                    }
2859                } catch (Types.FunctionDescriptorLookupError ex) {
2860                    JCDiagnostic cause = ex.getDiagnostic();
2861                    resultInfo.checkContext.report(env.tree, cause);
2862                }
2863            }
2864        }
2865    }
2866
2867    public void visitParens(JCParens tree) {
2868        Type owntype = attribTree(tree.expr, env, resultInfo);
2869        result = check(tree, owntype, pkind(), resultInfo);
2870        Symbol sym = TreeInfo.symbol(tree);
2871        if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
2872            log.error(tree.pos(), "illegal.start.of.type");
2873    }
2874
2875    public void visitAssign(JCAssign tree) {
2876        Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
2877        Type capturedType = capture(owntype);
2878        attribExpr(tree.rhs, env, owntype);
2879        result = check(tree, capturedType, KindSelector.VAL, resultInfo);
2880    }
2881
2882    public void visitAssignop(JCAssignOp tree) {
2883        // Attribute arguments.
2884        Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
2885        Type operand = attribExpr(tree.rhs, env);
2886        // Find operator.
2887        Symbol operator = tree.operator = rs.resolveBinaryOperator(
2888            tree.pos(), tree.getTag().noAssignOp(), env,
2889            owntype, operand);
2890
2891        if (operator.kind == MTH &&
2892                !owntype.isErroneous() &&
2893                !operand.isErroneous()) {
2894            chk.checkOperator(tree.pos(),
2895                              (OperatorSymbol)operator,
2896                              tree.getTag().noAssignOp(),
2897                              owntype,
2898                              operand);
2899            chk.checkDivZero(tree.rhs.pos(), operator, operand);
2900            chk.checkCastable(tree.rhs.pos(),
2901                              operator.type.getReturnType(),
2902                              owntype);
2903        }
2904        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2905    }
2906
2907    public void visitUnary(JCUnary tree) {
2908        // Attribute arguments.
2909        Type argtype = (tree.getTag().isIncOrDecUnaryOp())
2910            ? attribTree(tree.arg, env, varAssignmentInfo)
2911            : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
2912
2913        // Find operator.
2914        Symbol operator = tree.operator =
2915            rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
2916
2917        Type owntype = types.createErrorType(tree.type);
2918        if (operator.kind == MTH &&
2919                !argtype.isErroneous()) {
2920            owntype = (tree.getTag().isIncOrDecUnaryOp())
2921                ? tree.arg.type
2922                : operator.type.getReturnType();
2923            int opc = ((OperatorSymbol)operator).opcode;
2924
2925            // If the argument is constant, fold it.
2926            if (argtype.constValue() != null) {
2927                Type ctype = cfolder.fold1(opc, argtype);
2928                if (ctype != null) {
2929                    owntype = cfolder.coerce(ctype, owntype);
2930                }
2931            }
2932        }
2933        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2934    }
2935
2936    public void visitBinary(JCBinary tree) {
2937        // Attribute arguments.
2938        Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
2939        Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
2940        // Find operator.
2941        Symbol operator = tree.operator =
2942            rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
2943
2944        Type owntype = types.createErrorType(tree.type);
2945        if (operator.kind == MTH &&
2946                !left.isErroneous() &&
2947                !right.isErroneous()) {
2948            owntype = operator.type.getReturnType();
2949            // This will figure out when unboxing can happen and
2950            // choose the right comparison operator.
2951            int opc = chk.checkOperator(tree.lhs.pos(),
2952                                        (OperatorSymbol)operator,
2953                                        tree.getTag(),
2954                                        left,
2955                                        right);
2956
2957            // If both arguments are constants, fold them.
2958            if (left.constValue() != null && right.constValue() != null) {
2959                Type ctype = cfolder.fold2(opc, left, right);
2960                if (ctype != null) {
2961                    owntype = cfolder.coerce(ctype, owntype);
2962                }
2963            }
2964
2965            // Check that argument types of a reference ==, != are
2966            // castable to each other, (JLS 15.21).  Note: unboxing
2967            // comparisons will not have an acmp* opc at this point.
2968            if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
2969                if (!types.isEqualityComparable(left, right,
2970                                                new Warner(tree.pos()))) {
2971                    log.error(tree.pos(), "incomparable.types", left, right);
2972                }
2973            }
2974
2975            chk.checkDivZero(tree.rhs.pos(), operator, right);
2976        }
2977        result = check(tree, owntype, KindSelector.VAL, resultInfo);
2978    }
2979
2980    public void visitTypeCast(final JCTypeCast tree) {
2981        Type clazztype = attribType(tree.clazz, env);
2982        chk.validate(tree.clazz, env, false);
2983        //a fresh environment is required for 292 inference to work properly ---
2984        //see Infer.instantiatePolymorphicSignatureInstance()
2985        Env<AttrContext> localEnv = env.dup(tree);
2986        //should we propagate the target type?
2987        final ResultInfo castInfo;
2988        JCExpression expr = TreeInfo.skipParens(tree.expr);
2989        boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
2990        if (isPoly) {
2991            //expression is a poly - we need to propagate target type info
2992            castInfo = new ResultInfo(KindSelector.VAL, clazztype,
2993                                      new Check.NestedCheckContext(resultInfo.checkContext) {
2994                @Override
2995                public boolean compatible(Type found, Type req, Warner warn) {
2996                    return types.isCastable(found, req, warn);
2997                }
2998            });
2999        } else {
3000            //standalone cast - target-type info is not propagated
3001            castInfo = unknownExprInfo;
3002        }
3003        Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3004        Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3005        if (exprtype.constValue() != null)
3006            owntype = cfolder.coerce(exprtype, owntype);
3007        result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3008        if (!isPoly)
3009            chk.checkRedundantCast(localEnv, tree);
3010    }
3011
3012    public void visitTypeTest(JCInstanceOf tree) {
3013        Type exprtype = chk.checkNullOrRefType(
3014                tree.expr.pos(), attribExpr(tree.expr, env));
3015        Type clazztype = attribType(tree.clazz, env);
3016        if (!clazztype.hasTag(TYPEVAR)) {
3017            clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3018        }
3019        if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3020            log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3021            clazztype = types.createErrorType(clazztype);
3022        }
3023        chk.validate(tree.clazz, env, false);
3024        chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3025        result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3026    }
3027
3028    public void visitIndexed(JCArrayAccess tree) {
3029        Type owntype = types.createErrorType(tree.type);
3030        Type atype = attribExpr(tree.indexed, env);
3031        attribExpr(tree.index, env, syms.intType);
3032        if (types.isArray(atype))
3033            owntype = types.elemtype(atype);
3034        else if (!atype.hasTag(ERROR))
3035            log.error(tree.pos(), "array.req.but.found", atype);
3036        if (!pkind().contains(KindSelector.VAL))
3037            owntype = capture(owntype);
3038        result = check(tree, owntype, KindSelector.VAR, resultInfo);
3039    }
3040
3041    public void visitIdent(JCIdent tree) {
3042        Symbol sym;
3043
3044        // Find symbol
3045        if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3046            // If we are looking for a method, the prototype `pt' will be a
3047            // method type with the type of the call's arguments as parameters.
3048            env.info.pendingResolutionPhase = null;
3049            sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3050        } else if (tree.sym != null && tree.sym.kind != VAR) {
3051            sym = tree.sym;
3052        } else {
3053            sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3054        }
3055        tree.sym = sym;
3056
3057        // (1) Also find the environment current for the class where
3058        //     sym is defined (`symEnv').
3059        // Only for pre-tiger versions (1.4 and earlier):
3060        // (2) Also determine whether we access symbol out of an anonymous
3061        //     class in a this or super call.  This is illegal for instance
3062        //     members since such classes don't carry a this$n link.
3063        //     (`noOuterThisPath').
3064        Env<AttrContext> symEnv = env;
3065        boolean noOuterThisPath = false;
3066        if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3067            sym.kind.matches(KindSelector.VAL_MTH) &&
3068            sym.owner.kind == TYP &&
3069            tree.name != names._this && tree.name != names._super) {
3070
3071            // Find environment in which identifier is defined.
3072            while (symEnv.outer != null &&
3073                   !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3074                if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3075                    noOuterThisPath = false;
3076                symEnv = symEnv.outer;
3077            }
3078        }
3079
3080        // If symbol is a variable, ...
3081        if (sym.kind == VAR) {
3082            VarSymbol v = (VarSymbol)sym;
3083
3084            // ..., evaluate its initializer, if it has one, and check for
3085            // illegal forward reference.
3086            checkInit(tree, env, v, false);
3087
3088            // If we are expecting a variable (as opposed to a value), check
3089            // that the variable is assignable in the current environment.
3090            if (KindSelector.ASG.subset(pkind()))
3091                checkAssignable(tree.pos(), v, null, env);
3092        }
3093
3094        // In a constructor body,
3095        // if symbol is a field or instance method, check that it is
3096        // not accessed before the supertype constructor is called.
3097        if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3098            sym.kind.matches(KindSelector.VAL_MTH) &&
3099            sym.owner.kind == TYP &&
3100            (sym.flags() & STATIC) == 0) {
3101            chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3102                                          sym : thisSym(tree.pos(), env));
3103        }
3104        Env<AttrContext> env1 = env;
3105        if (sym.kind != ERR && sym.kind != TYP &&
3106            sym.owner != null && sym.owner != env1.enclClass.sym) {
3107            // If the found symbol is inaccessible, then it is
3108            // accessed through an enclosing instance.  Locate this
3109            // enclosing instance:
3110            while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3111                env1 = env1.outer;
3112        }
3113
3114        if (env.info.isSerializable) {
3115            chk.checkElemAccessFromSerializableLambda(tree);
3116        }
3117
3118        result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3119    }
3120
3121    public void visitSelect(JCFieldAccess tree) {
3122        // Determine the expected kind of the qualifier expression.
3123        KindSelector skind = KindSelector.NIL;
3124        if (tree.name == names._this || tree.name == names._super ||
3125                tree.name == names._class)
3126        {
3127            skind = KindSelector.TYP;
3128        } else {
3129            if (pkind().contains(KindSelector.PCK))
3130                skind = KindSelector.of(skind, KindSelector.PCK);
3131            if (pkind().contains(KindSelector.TYP))
3132                skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
3133            if (pkind().contains(KindSelector.VAL_MTH))
3134                skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
3135        }
3136
3137        // Attribute the qualifier expression, and determine its symbol (if any).
3138        Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3139        if (!pkind().contains(KindSelector.TYP_PCK))
3140            site = capture(site); // Capture field access
3141
3142        // don't allow T.class T[].class, etc
3143        if (skind == KindSelector.TYP) {
3144            Type elt = site;
3145            while (elt.hasTag(ARRAY))
3146                elt = ((ArrayType)elt).elemtype;
3147            if (elt.hasTag(TYPEVAR)) {
3148                log.error(tree.pos(), "type.var.cant.be.deref");
3149                result = tree.type = types.createErrorType(tree.name, site.tsym, site);
3150                tree.sym = tree.type.tsym;
3151                return ;
3152            }
3153        }
3154
3155        // If qualifier symbol is a type or `super', assert `selectSuper'
3156        // for the selection. This is relevant for determining whether
3157        // protected symbols are accessible.
3158        Symbol sitesym = TreeInfo.symbol(tree.selected);
3159        boolean selectSuperPrev = env.info.selectSuper;
3160        env.info.selectSuper =
3161            sitesym != null &&
3162            sitesym.name == names._super;
3163
3164        // Determine the symbol represented by the selection.
3165        env.info.pendingResolutionPhase = null;
3166        Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3167        if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
3168            log.error(tree.selected.pos(), "not.encl.class", site.tsym);
3169            sym = syms.errSymbol;
3170        }
3171        if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
3172            site = capture(site);
3173            sym = selectSym(tree, sitesym, site, env, resultInfo);
3174        }
3175        boolean varArgs = env.info.lastResolveVarargs();
3176        tree.sym = sym;
3177
3178        if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3179            while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
3180            site = capture(site);
3181        }
3182
3183        // If that symbol is a variable, ...
3184        if (sym.kind == VAR) {
3185            VarSymbol v = (VarSymbol)sym;
3186
3187            // ..., evaluate its initializer, if it has one, and check for
3188            // illegal forward reference.
3189            checkInit(tree, env, v, true);
3190
3191            // If we are expecting a variable (as opposed to a value), check
3192            // that the variable is assignable in the current environment.
3193            if (KindSelector.ASG.subset(pkind()))
3194                checkAssignable(tree.pos(), v, tree.selected, env);
3195        }
3196
3197        if (sitesym != null &&
3198                sitesym.kind == VAR &&
3199                ((VarSymbol)sitesym).isResourceVariable() &&
3200                sym.kind == MTH &&
3201                sym.name.equals(names.close) &&
3202                sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3203                env.info.lint.isEnabled(LintCategory.TRY)) {
3204            log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3205        }
3206
3207        // Disallow selecting a type from an expression
3208        if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
3209            tree.type = check(tree.selected, pt(),
3210                              sitesym == null ?
3211                                      KindSelector.VAL : sitesym.kind.toSelector(),
3212                              new ResultInfo(KindSelector.TYP_PCK, pt()));
3213        }
3214
3215        if (isType(sitesym)) {
3216            if (sym.name == names._this) {
3217                // If `C' is the currently compiled class, check that
3218                // C.this' does not appear in a call to a super(...)
3219                if (env.info.isSelfCall &&
3220                    site.tsym == env.enclClass.sym) {
3221                    chk.earlyRefError(tree.pos(), sym);
3222                }
3223            } else {
3224                // Check if type-qualified fields or methods are static (JLS)
3225                if ((sym.flags() & STATIC) == 0 &&
3226                    !env.next.tree.hasTag(REFERENCE) &&
3227                    sym.name != names._super &&
3228                    (sym.kind == VAR || sym.kind == MTH)) {
3229                    rs.accessBase(rs.new StaticError(sym),
3230                              tree.pos(), site, sym.name, true);
3231                }
3232            }
3233            if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
3234                    sym.isStatic() && sym.kind == MTH) {
3235                log.error(tree.pos(), "static.intf.method.invoke.not.supported.in.source", sourceName);
3236            }
3237        } else if (sym.kind != ERR &&
3238                   (sym.flags() & STATIC) != 0 &&
3239                   sym.name != names._class) {
3240            // If the qualified item is not a type and the selected item is static, report
3241            // a warning. Make allowance for the class of an array type e.g. Object[].class)
3242            chk.warnStatic(tree, "static.not.qualified.by.type",
3243                           sym.kind.kindName(), sym.owner);
3244        }
3245
3246        // If we are selecting an instance member via a `super', ...
3247        if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3248
3249            // Check that super-qualified symbols are not abstract (JLS)
3250            rs.checkNonAbstract(tree.pos(), sym);
3251
3252            if (site.isRaw()) {
3253                // Determine argument types for site.
3254                Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3255                if (site1 != null) site = site1;
3256            }
3257        }
3258
3259        if (env.info.isSerializable) {
3260            chk.checkElemAccessFromSerializableLambda(tree);
3261        }
3262
3263        env.info.selectSuper = selectSuperPrev;
3264        result = checkId(tree, site, sym, env, resultInfo);
3265    }
3266    //where
3267        /** Determine symbol referenced by a Select expression,
3268         *
3269         *  @param tree   The select tree.
3270         *  @param site   The type of the selected expression,
3271         *  @param env    The current environment.
3272         *  @param resultInfo The current result.
3273         */
3274        private Symbol selectSym(JCFieldAccess tree,
3275                                 Symbol location,
3276                                 Type site,
3277                                 Env<AttrContext> env,
3278                                 ResultInfo resultInfo) {
3279            DiagnosticPosition pos = tree.pos();
3280            Name name = tree.name;
3281            switch (site.getTag()) {
3282            case PACKAGE:
3283                return rs.accessBase(
3284                    rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3285                    pos, location, site, name, true);
3286            case ARRAY:
3287            case CLASS:
3288                if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3289                    return rs.resolveQualifiedMethod(
3290                        pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3291                } else if (name == names._this || name == names._super) {
3292                    return rs.resolveSelf(pos, env, site.tsym, name);
3293                } else if (name == names._class) {
3294                    // In this case, we have already made sure in
3295                    // visitSelect that qualifier expression is a type.
3296                    Type t = syms.classType;
3297                    List<Type> typeargs = List.of(types.erasure(site));
3298                    t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3299                    return new VarSymbol(
3300                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3301                } else {
3302                    // We are seeing a plain identifier as selector.
3303                    Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3304                        sym = rs.accessBase(sym, pos, location, site, name, true);
3305                    return sym;
3306                }
3307            case WILDCARD:
3308                throw new AssertionError(tree);
3309            case TYPEVAR:
3310                // Normally, site.getUpperBound() shouldn't be null.
3311                // It should only happen during memberEnter/attribBase
3312                // when determining the super type which *must* beac
3313                // done before attributing the type variables.  In
3314                // other words, we are seeing this illegal program:
3315                // class B<T> extends A<T.foo> {}
3316                Symbol sym = (site.getUpperBound() != null)
3317                    ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3318                    : null;
3319                if (sym == null) {
3320                    log.error(pos, "type.var.cant.be.deref");
3321                    return syms.errSymbol;
3322                } else {
3323                    Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3324                        rs.new AccessError(env, site, sym) :
3325                                sym;
3326                    rs.accessBase(sym2, pos, location, site, name, true);
3327                    return sym;
3328                }
3329            case ERROR:
3330                // preserve identifier names through errors
3331                return types.createErrorType(name, site.tsym, site).tsym;
3332            default:
3333                // The qualifier expression is of a primitive type -- only
3334                // .class is allowed for these.
3335                if (name == names._class) {
3336                    // In this case, we have already made sure in Select that
3337                    // qualifier expression is a type.
3338                    Type t = syms.classType;
3339                    Type arg = types.boxedClass(site).type;
3340                    t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3341                    return new VarSymbol(
3342                        STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3343                } else {
3344                    log.error(pos, "cant.deref", site);
3345                    return syms.errSymbol;
3346                }
3347            }
3348        }
3349
3350        /** Determine type of identifier or select expression and check that
3351         *  (1) the referenced symbol is not deprecated
3352         *  (2) the symbol's type is safe (@see checkSafe)
3353         *  (3) if symbol is a variable, check that its type and kind are
3354         *      compatible with the prototype and protokind.
3355         *  (4) if symbol is an instance field of a raw type,
3356         *      which is being assigned to, issue an unchecked warning if its
3357         *      type changes under erasure.
3358         *  (5) if symbol is an instance method of a raw type, issue an
3359         *      unchecked warning if its argument types change under erasure.
3360         *  If checks succeed:
3361         *    If symbol is a constant, return its constant type
3362         *    else if symbol is a method, return its result type
3363         *    otherwise return its type.
3364         *  Otherwise return errType.
3365         *
3366         *  @param tree       The syntax tree representing the identifier
3367         *  @param site       If this is a select, the type of the selected
3368         *                    expression, otherwise the type of the current class.
3369         *  @param sym        The symbol representing the identifier.
3370         *  @param env        The current environment.
3371         *  @param resultInfo    The expected result
3372         */
3373        Type checkId(JCTree tree,
3374                     Type site,
3375                     Symbol sym,
3376                     Env<AttrContext> env,
3377                     ResultInfo resultInfo) {
3378            return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3379                    checkMethodId(tree, site, sym, env, resultInfo) :
3380                    checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3381        }
3382
3383        Type checkMethodId(JCTree tree,
3384                     Type site,
3385                     Symbol sym,
3386                     Env<AttrContext> env,
3387                     ResultInfo resultInfo) {
3388            boolean isPolymorhicSignature =
3389                (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3390            return isPolymorhicSignature ?
3391                    checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3392                    checkMethodIdInternal(tree, site, sym, env, resultInfo);
3393        }
3394
3395        Type checkSigPolyMethodId(JCTree tree,
3396                     Type site,
3397                     Symbol sym,
3398                     Env<AttrContext> env,
3399                     ResultInfo resultInfo) {
3400            //recover original symbol for signature polymorphic methods
3401            checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3402            env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3403            return sym.type;
3404        }
3405
3406        Type checkMethodIdInternal(JCTree tree,
3407                     Type site,
3408                     Symbol sym,
3409                     Env<AttrContext> env,
3410                     ResultInfo resultInfo) {
3411            if (resultInfo.pkind.contains(KindSelector.POLY)) {
3412                Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3413                Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3414                resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3415                return owntype;
3416            } else {
3417                return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3418            }
3419        }
3420
3421        Type checkIdInternal(JCTree tree,
3422                     Type site,
3423                     Symbol sym,
3424                     Type pt,
3425                     Env<AttrContext> env,
3426                     ResultInfo resultInfo) {
3427            if (pt.isErroneous()) {
3428                return types.createErrorType(site);
3429            }
3430            Type owntype; // The computed type of this identifier occurrence.
3431            switch (sym.kind) {
3432            case TYP:
3433                // For types, the computed type equals the symbol's type,
3434                // except for two situations:
3435                owntype = sym.type;
3436                if (owntype.hasTag(CLASS)) {
3437                    chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3438                    Type ownOuter = owntype.getEnclosingType();
3439
3440                    // (a) If the symbol's type is parameterized, erase it
3441                    // because no type parameters were given.
3442                    // We recover generic outer type later in visitTypeApply.
3443                    if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3444                        owntype = types.erasure(owntype);
3445                    }
3446
3447                    // (b) If the symbol's type is an inner class, then
3448                    // we have to interpret its outer type as a superclass
3449                    // of the site type. Example:
3450                    //
3451                    // class Tree<A> { class Visitor { ... } }
3452                    // class PointTree extends Tree<Point> { ... }
3453                    // ...PointTree.Visitor...
3454                    //
3455                    // Then the type of the last expression above is
3456                    // Tree<Point>.Visitor.
3457                    else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3458                        Type normOuter = site;
3459                        if (normOuter.hasTag(CLASS)) {
3460                            normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3461                        }
3462                        if (normOuter == null) // perhaps from an import
3463                            normOuter = types.erasure(ownOuter);
3464                        if (normOuter != ownOuter)
3465                            owntype = new ClassType(
3466                                normOuter, List.<Type>nil(), owntype.tsym,
3467                                owntype.getMetadata());
3468                    }
3469                }
3470                break;
3471            case VAR:
3472                VarSymbol v = (VarSymbol)sym;
3473                // Test (4): if symbol is an instance field of a raw type,
3474                // which is being assigned to, issue an unchecked warning if
3475                // its type changes under erasure.
3476                if (KindSelector.ASG.subset(pkind()) &&
3477                    v.owner.kind == TYP &&
3478                    (v.flags() & STATIC) == 0 &&
3479                    (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3480                    Type s = types.asOuterSuper(site, v.owner);
3481                    if (s != null &&
3482                        s.isRaw() &&
3483                        !types.isSameType(v.type, v.erasure(types))) {
3484                        chk.warnUnchecked(tree.pos(),
3485                                          "unchecked.assign.to.var",
3486                                          v, s);
3487                    }
3488                }
3489                // The computed type of a variable is the type of the
3490                // variable symbol, taken as a member of the site type.
3491                owntype = (sym.owner.kind == TYP &&
3492                           sym.name != names._this && sym.name != names._super)
3493                    ? types.memberType(site, sym)
3494                    : sym.type;
3495
3496                // If the variable is a constant, record constant value in
3497                // computed type.
3498                if (v.getConstValue() != null && isStaticReference(tree))
3499                    owntype = owntype.constType(v.getConstValue());
3500
3501                if (resultInfo.pkind == KindSelector.VAL) {
3502                    owntype = capture(owntype); // capture "names as expressions"
3503                }
3504                break;
3505            case MTH: {
3506                owntype = checkMethod(site, sym,
3507                        new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3508                        env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3509                        resultInfo.pt.getTypeArguments());
3510                break;
3511            }
3512            case PCK: case ERR:
3513                owntype = sym.type;
3514                break;
3515            default:
3516                throw new AssertionError("unexpected kind: " + sym.kind +
3517                                         " in tree " + tree);
3518            }
3519
3520            // Test (1): emit a `deprecation' warning if symbol is deprecated.
3521            // (for constructors, the error was given when the constructor was
3522            // resolved)
3523
3524            if (sym.name != names.init) {
3525                chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3526                chk.checkSunAPI(tree.pos(), sym);
3527                chk.checkProfile(tree.pos(), sym);
3528            }
3529
3530            // Test (3): if symbol is a variable, check that its type and
3531            // kind are compatible with the prototype and protokind.
3532            return check(tree, owntype, sym.kind.toSelector(), resultInfo);
3533        }
3534
3535        /** Check that variable is initialized and evaluate the variable's
3536         *  initializer, if not yet done. Also check that variable is not
3537         *  referenced before it is defined.
3538         *  @param tree    The tree making up the variable reference.
3539         *  @param env     The current environment.
3540         *  @param v       The variable's symbol.
3541         */
3542        private void checkInit(JCTree tree,
3543                               Env<AttrContext> env,
3544                               VarSymbol v,
3545                               boolean onlyWarning) {
3546//          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3547//                             tree.pos + " " + v.pos + " " +
3548//                             Resolve.isStatic(env));//DEBUG
3549
3550            // A forward reference is diagnosed if the declaration position
3551            // of the variable is greater than the current tree position
3552            // and the tree and variable definition occur in the same class
3553            // definition.  Note that writes don't count as references.
3554            // This check applies only to class and instance
3555            // variables.  Local variables follow different scope rules,
3556            // and are subject to definite assignment checking.
3557            if ((env.info.enclVar == v || v.pos > tree.pos) &&
3558                v.owner.kind == TYP &&
3559                enclosingInitEnv(env) != null &&
3560                v.owner == env.info.scope.owner.enclClass() &&
3561                ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3562                (!env.tree.hasTag(ASSIGN) ||
3563                 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3564                String suffix = (env.info.enclVar == v) ?
3565                                "self.ref" : "forward.ref";
3566                if (!onlyWarning || isStaticEnumField(v)) {
3567                    log.error(tree.pos(), "illegal." + suffix);
3568                } else if (useBeforeDeclarationWarning) {
3569                    log.warning(tree.pos(), suffix, v);
3570                }
3571            }
3572
3573            v.getConstValue(); // ensure initializer is evaluated
3574
3575            checkEnumInitializer(tree, env, v);
3576        }
3577
3578        /**
3579         * Returns the enclosing init environment associated with this env (if any). An init env
3580         * can be either a field declaration env or a static/instance initializer env.
3581         */
3582        Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
3583            while (true) {
3584                switch (env.tree.getTag()) {
3585                    case VARDEF:
3586                        JCVariableDecl vdecl = (JCVariableDecl)env.tree;
3587                        if (vdecl.sym.owner.kind == TYP) {
3588                            //field
3589                            return env;
3590                        }
3591                        break;
3592                    case BLOCK:
3593                        if (env.next.tree.hasTag(CLASSDEF)) {
3594                            //instance/static initializer
3595                            return env;
3596                        }
3597                        break;
3598                    case METHODDEF:
3599                    case CLASSDEF:
3600                    case TOPLEVEL:
3601                        return null;
3602                }
3603                Assert.checkNonNull(env.next);
3604                env = env.next;
3605            }
3606        }
3607
3608        /**
3609         * Check for illegal references to static members of enum.  In
3610         * an enum type, constructors and initializers may not
3611         * reference its static members unless they are constant.
3612         *
3613         * @param tree    The tree making up the variable reference.
3614         * @param env     The current environment.
3615         * @param v       The variable's symbol.
3616         * @jls  section 8.9 Enums
3617         */
3618        private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3619            // JLS:
3620            //
3621            // "It is a compile-time error to reference a static field
3622            // of an enum type that is not a compile-time constant
3623            // (15.28) from constructors, instance initializer blocks,
3624            // or instance variable initializer expressions of that
3625            // type. It is a compile-time error for the constructors,
3626            // instance initializer blocks, or instance variable
3627            // initializer expressions of an enum constant e to refer
3628            // to itself or to an enum constant of the same type that
3629            // is declared to the right of e."
3630            if (isStaticEnumField(v)) {
3631                ClassSymbol enclClass = env.info.scope.owner.enclClass();
3632
3633                if (enclClass == null || enclClass.owner == null)
3634                    return;
3635
3636                // See if the enclosing class is the enum (or a
3637                // subclass thereof) declaring v.  If not, this
3638                // reference is OK.
3639                if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3640                    return;
3641
3642                // If the reference isn't from an initializer, then
3643                // the reference is OK.
3644                if (!Resolve.isInitializer(env))
3645                    return;
3646
3647                log.error(tree.pos(), "illegal.enum.static.ref");
3648            }
3649        }
3650
3651        /** Is the given symbol a static, non-constant field of an Enum?
3652         *  Note: enum literals should not be regarded as such
3653         */
3654        private boolean isStaticEnumField(VarSymbol v) {
3655            return Flags.isEnum(v.owner) &&
3656                   Flags.isStatic(v) &&
3657                   !Flags.isConstant(v) &&
3658                   v.name != names._class;
3659        }
3660
3661    Warner noteWarner = new Warner();
3662
3663    /**
3664     * Check that method arguments conform to its instantiation.
3665     **/
3666    public Type checkMethod(Type site,
3667                            final Symbol sym,
3668                            ResultInfo resultInfo,
3669                            Env<AttrContext> env,
3670                            final List<JCExpression> argtrees,
3671                            List<Type> argtypes,
3672                            List<Type> typeargtypes) {
3673        // Test (5): if symbol is an instance method of a raw type, issue
3674        // an unchecked warning if its argument types change under erasure.
3675        if ((sym.flags() & STATIC) == 0 &&
3676            (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3677            Type s = types.asOuterSuper(site, sym.owner);
3678            if (s != null && s.isRaw() &&
3679                !types.isSameTypes(sym.type.getParameterTypes(),
3680                                   sym.erasure(types).getParameterTypes())) {
3681                chk.warnUnchecked(env.tree.pos(),
3682                                  "unchecked.call.mbr.of.raw.type",
3683                                  sym, s);
3684            }
3685        }
3686
3687        if (env.info.defaultSuperCallSite != null) {
3688            for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3689                if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3690                        types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3691                List<MethodSymbol> icand_sup =
3692                        types.interfaceCandidates(sup, (MethodSymbol)sym);
3693                if (icand_sup.nonEmpty() &&
3694                        icand_sup.head != sym &&
3695                        icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3696                    log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3697                        diags.fragment("overridden.default", sym, sup));
3698                    break;
3699                }
3700            }
3701            env.info.defaultSuperCallSite = null;
3702        }
3703
3704        if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3705            JCMethodInvocation app = (JCMethodInvocation)env.tree;
3706            if (app.meth.hasTag(SELECT) &&
3707                    !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3708                log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3709            }
3710        }
3711
3712        // Compute the identifier's instantiated type.
3713        // For methods, we need to compute the instance type by
3714        // Resolve.instantiate from the symbol's type as well as
3715        // any type arguments and value arguments.
3716        noteWarner.clear();
3717        try {
3718            Type owntype = rs.checkMethod(
3719                    env,
3720                    site,
3721                    sym,
3722                    resultInfo,
3723                    argtypes,
3724                    typeargtypes,
3725                    noteWarner);
3726
3727            DeferredAttr.DeferredTypeMap checkDeferredMap =
3728                deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3729
3730            argtypes = Type.map(argtypes, checkDeferredMap);
3731
3732            if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3733                chk.warnUnchecked(env.tree.pos(),
3734                        "unchecked.meth.invocation.applied",
3735                        kindName(sym),
3736                        sym.name,
3737                        rs.methodArguments(sym.type.getParameterTypes()),
3738                        rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
3739                        kindName(sym.location()),
3740                        sym.location());
3741               owntype = new MethodType(owntype.getParameterTypes(),
3742                       types.erasure(owntype.getReturnType()),
3743                       types.erasure(owntype.getThrownTypes()),
3744                       syms.methodClass);
3745            }
3746
3747            return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3748                    resultInfo.checkContext.inferenceContext());
3749        } catch (Infer.InferenceException ex) {
3750            //invalid target type - propagate exception outwards or report error
3751            //depending on the current check context
3752            resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3753            return types.createErrorType(site);
3754        } catch (Resolve.InapplicableMethodException ex) {
3755            final JCDiagnostic diag = ex.getDiagnostic();
3756            Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3757                @Override
3758                protected Pair<Symbol, JCDiagnostic> errCandidate() {
3759                    return new Pair<>(sym, diag);
3760                }
3761            };
3762            List<Type> argtypes2 = Type.map(argtypes,
3763                    rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3764            JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3765                    env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3766            log.report(errDiag);
3767            return types.createErrorType(site);
3768        }
3769    }
3770
3771    public void visitLiteral(JCLiteral tree) {
3772        result = check(tree, litType(tree.typetag).constType(tree.value),
3773                KindSelector.VAL, resultInfo);
3774    }
3775    //where
3776    /** Return the type of a literal with given type tag.
3777     */
3778    Type litType(TypeTag tag) {
3779        return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3780    }
3781
3782    public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3783        result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
3784    }
3785
3786    public void visitTypeArray(JCArrayTypeTree tree) {
3787        Type etype = attribType(tree.elemtype, env);
3788        Type type = new ArrayType(etype, syms.arrayClass);
3789        result = check(tree, type, KindSelector.TYP, resultInfo);
3790    }
3791
3792    /** Visitor method for parameterized types.
3793     *  Bound checking is left until later, since types are attributed
3794     *  before supertype structure is completely known
3795     */
3796    public void visitTypeApply(JCTypeApply tree) {
3797        Type owntype = types.createErrorType(tree.type);
3798
3799        // Attribute functor part of application and make sure it's a class.
3800        Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3801
3802        // Attribute type parameters
3803        List<Type> actuals = attribTypes(tree.arguments, env);
3804
3805        if (clazztype.hasTag(CLASS)) {
3806            List<Type> formals = clazztype.tsym.type.getTypeArguments();
3807            if (actuals.isEmpty()) //diamond
3808                actuals = formals;
3809
3810            if (actuals.length() == formals.length()) {
3811                List<Type> a = actuals;
3812                List<Type> f = formals;
3813                while (a.nonEmpty()) {
3814                    a.head = a.head.withTypeVar(f.head);
3815                    a = a.tail;
3816                    f = f.tail;
3817                }
3818                // Compute the proper generic outer
3819                Type clazzOuter = clazztype.getEnclosingType();
3820                if (clazzOuter.hasTag(CLASS)) {
3821                    Type site;
3822                    JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3823                    if (clazz.hasTag(IDENT)) {
3824                        site = env.enclClass.sym.type;
3825                    } else if (clazz.hasTag(SELECT)) {
3826                        site = ((JCFieldAccess) clazz).selected.type;
3827                    } else throw new AssertionError(""+tree);
3828                    if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3829                        if (site.hasTag(CLASS))
3830                            site = types.asOuterSuper(site, clazzOuter.tsym);
3831                        if (site == null)
3832                            site = types.erasure(clazzOuter);
3833                        clazzOuter = site;
3834                    }
3835                }
3836                owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
3837                                        clazztype.getMetadata());
3838            } else {
3839                if (formals.length() != 0) {
3840                    log.error(tree.pos(), "wrong.number.type.args",
3841                              Integer.toString(formals.length()));
3842                } else {
3843                    log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3844                }
3845                owntype = types.createErrorType(tree.type);
3846            }
3847        }
3848        result = check(tree, owntype, KindSelector.TYP, resultInfo);
3849    }
3850
3851    public void visitTypeUnion(JCTypeUnion tree) {
3852        ListBuffer<Type> multicatchTypes = new ListBuffer<>();
3853        ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3854        for (JCExpression typeTree : tree.alternatives) {
3855            Type ctype = attribType(typeTree, env);
3856            ctype = chk.checkType(typeTree.pos(),
3857                          chk.checkClassType(typeTree.pos(), ctype),
3858                          syms.throwableType);
3859            if (!ctype.isErroneous()) {
3860                //check that alternatives of a union type are pairwise
3861                //unrelated w.r.t. subtyping
3862                if (chk.intersects(ctype,  multicatchTypes.toList())) {
3863                    for (Type t : multicatchTypes) {
3864                        boolean sub = types.isSubtype(ctype, t);
3865                        boolean sup = types.isSubtype(t, ctype);
3866                        if (sub || sup) {
3867                            //assume 'a' <: 'b'
3868                            Type a = sub ? ctype : t;
3869                            Type b = sub ? t : ctype;
3870                            log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3871                        }
3872                    }
3873                }
3874                multicatchTypes.append(ctype);
3875                if (all_multicatchTypes != null)
3876                    all_multicatchTypes.append(ctype);
3877            } else {
3878                if (all_multicatchTypes == null) {
3879                    all_multicatchTypes = new ListBuffer<>();
3880                    all_multicatchTypes.appendList(multicatchTypes);
3881                }
3882                all_multicatchTypes.append(ctype);
3883            }
3884        }
3885        Type t = check(tree, types.lub(multicatchTypes.toList()),
3886                KindSelector.TYP, resultInfo);
3887        if (t.hasTag(CLASS)) {
3888            List<Type> alternatives =
3889                ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3890            t = new UnionClassType((ClassType) t, alternatives);
3891        }
3892        tree.type = result = t;
3893    }
3894
3895    public void visitTypeIntersection(JCTypeIntersection tree) {
3896        attribTypes(tree.bounds, env);
3897        tree.type = result = checkIntersection(tree, tree.bounds);
3898    }
3899
3900    public void visitTypeParameter(JCTypeParameter tree) {
3901        TypeVar typeVar = (TypeVar) tree.type;
3902
3903        if (tree.annotations != null && tree.annotations.nonEmpty()) {
3904            annotateType(tree, tree.annotations);
3905        }
3906
3907        if (!typeVar.bound.isErroneous()) {
3908            //fixup type-parameter bound computed in 'attribTypeVariables'
3909            typeVar.bound = checkIntersection(tree, tree.bounds);
3910        }
3911    }
3912
3913    Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
3914        Set<Type> boundSet = new HashSet<>();
3915        if (bounds.nonEmpty()) {
3916            // accept class or interface or typevar as first bound.
3917            bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
3918            boundSet.add(types.erasure(bounds.head.type));
3919            if (bounds.head.type.isErroneous()) {
3920                return bounds.head.type;
3921            }
3922            else if (bounds.head.type.hasTag(TYPEVAR)) {
3923                // if first bound was a typevar, do not accept further bounds.
3924                if (bounds.tail.nonEmpty()) {
3925                    log.error(bounds.tail.head.pos(),
3926                              "type.var.may.not.be.followed.by.other.bounds");
3927                    return bounds.head.type;
3928                }
3929            } else {
3930                // if first bound was a class or interface, accept only interfaces
3931                // as further bounds.
3932                for (JCExpression bound : bounds.tail) {
3933                    bound.type = checkBase(bound.type, bound, env, false, true, false);
3934                    if (bound.type.isErroneous()) {
3935                        bounds = List.of(bound);
3936                    }
3937                    else if (bound.type.hasTag(CLASS)) {
3938                        chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
3939                    }
3940                }
3941            }
3942        }
3943
3944        if (bounds.length() == 0) {
3945            return syms.objectType;
3946        } else if (bounds.length() == 1) {
3947            return bounds.head.type;
3948        } else {
3949            Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
3950            // ... the variable's bound is a class type flagged COMPOUND
3951            // (see comment for TypeVar.bound).
3952            // In this case, generate a class tree that represents the
3953            // bound class, ...
3954            JCExpression extending;
3955            List<JCExpression> implementing;
3956            if (!bounds.head.type.isInterface()) {
3957                extending = bounds.head;
3958                implementing = bounds.tail;
3959            } else {
3960                extending = null;
3961                implementing = bounds;
3962            }
3963            JCClassDecl cd = make.at(tree).ClassDef(
3964                make.Modifiers(PUBLIC | ABSTRACT),
3965                names.empty, List.<JCTypeParameter>nil(),
3966                extending, implementing, List.<JCTree>nil());
3967
3968            ClassSymbol c = (ClassSymbol)owntype.tsym;
3969            Assert.check((c.flags() & COMPOUND) != 0);
3970            cd.sym = c;
3971            c.sourcefile = env.toplevel.sourcefile;
3972
3973            // ... and attribute the bound class
3974            c.flags_field |= UNATTRIBUTED;
3975            Env<AttrContext> cenv = enter.classEnv(cd, env);
3976            typeEnvs.put(c, cenv);
3977            attribClass(c);
3978            return owntype;
3979        }
3980    }
3981
3982    public void visitWildcard(JCWildcard tree) {
3983        //- System.err.println("visitWildcard("+tree+");");//DEBUG
3984        Type type = (tree.kind.kind == BoundKind.UNBOUND)
3985            ? syms.objectType
3986            : attribType(tree.inner, env);
3987        result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
3988                                              tree.kind.kind,
3989                                              syms.boundClass),
3990                KindSelector.TYP, resultInfo);
3991    }
3992
3993    public void visitAnnotation(JCAnnotation tree) {
3994        Assert.error("should be handled in Annotate");
3995    }
3996
3997    public void visitAnnotatedType(JCAnnotatedType tree) {
3998        Type underlyingType = attribType(tree.getUnderlyingType(), env);
3999        this.attribAnnotationTypes(tree.annotations, env);
4000        annotateType(tree, tree.annotations);
4001        result = tree.type = underlyingType;
4002    }
4003
4004    /**
4005     * Apply the annotations to the particular type.
4006     */
4007    public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
4008        annotate.typeAnnotation(new Annotate.Worker() {
4009            @Override
4010            public String toString() {
4011                return "annotate " + annotations + " onto " + tree;
4012            }
4013            @Override
4014            public void run() {
4015                List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
4016                Assert.check(annotations.size() == compounds.size());
4017                tree.type = tree.type.annotatedType(compounds);
4018                }
4019        });
4020    }
4021
4022    private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
4023        if (annotations.isEmpty()) {
4024            return List.nil();
4025        }
4026
4027        ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
4028        for (JCAnnotation anno : annotations) {
4029            Assert.checkNonNull(anno.attribute);
4030            buf.append((Attribute.TypeCompound) anno.attribute);
4031        }
4032        return buf.toList();
4033    }
4034
4035    public void visitErroneous(JCErroneous tree) {
4036        if (tree.errs != null)
4037            for (JCTree err : tree.errs)
4038                attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4039        result = tree.type = syms.errType;
4040    }
4041
4042    /** Default visitor method for all other trees.
4043     */
4044    public void visitTree(JCTree tree) {
4045        throw new AssertionError();
4046    }
4047
4048    /**
4049     * Attribute an env for either a top level tree or class declaration.
4050     */
4051    public void attrib(Env<AttrContext> env) {
4052        if (env.tree.hasTag(TOPLEVEL))
4053            attribTopLevel(env);
4054        else
4055            attribClass(env.tree.pos(), env.enclClass.sym);
4056    }
4057
4058    /**
4059     * Attribute a top level tree. These trees are encountered when the
4060     * package declaration has annotations.
4061     */
4062    public void attribTopLevel(Env<AttrContext> env) {
4063        JCCompilationUnit toplevel = env.toplevel;
4064        try {
4065            annotate.flush();
4066        } catch (CompletionFailure ex) {
4067            chk.completionError(toplevel.pos(), ex);
4068        }
4069    }
4070
4071    /** Main method: attribute class definition associated with given class symbol.
4072     *  reporting completion failures at the given position.
4073     *  @param pos The source position at which completion errors are to be
4074     *             reported.
4075     *  @param c   The class symbol whose definition will be attributed.
4076     */
4077    public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4078        try {
4079            annotate.flush();
4080            attribClass(c);
4081        } catch (CompletionFailure ex) {
4082            chk.completionError(pos, ex);
4083        }
4084    }
4085
4086    /** Attribute class definition associated with given class symbol.
4087     *  @param c   The class symbol whose definition will be attributed.
4088     */
4089    void attribClass(ClassSymbol c) throws CompletionFailure {
4090        if (c.type.hasTag(ERROR)) return;
4091
4092        // Check for cycles in the inheritance graph, which can arise from
4093        // ill-formed class files.
4094        chk.checkNonCyclic(null, c.type);
4095
4096        Type st = types.supertype(c.type);
4097        if ((c.flags_field & Flags.COMPOUND) == 0) {
4098            // First, attribute superclass.
4099            if (st.hasTag(CLASS))
4100                attribClass((ClassSymbol)st.tsym);
4101
4102            // Next attribute owner, if it is a class.
4103            if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4104                attribClass((ClassSymbol)c.owner);
4105        }
4106
4107        // The previous operations might have attributed the current class
4108        // if there was a cycle. So we test first whether the class is still
4109        // UNATTRIBUTED.
4110        if ((c.flags_field & UNATTRIBUTED) != 0) {
4111            c.flags_field &= ~UNATTRIBUTED;
4112
4113            // Get environment current at the point of class definition.
4114            Env<AttrContext> env = typeEnvs.get(c);
4115
4116            // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
4117            // because the annotations were not available at the time the env was created. Therefore,
4118            // we look up the environment chain for the first enclosing environment for which the
4119            // lint value is set. Typically, this is the parent env, but might be further if there
4120            // are any envs created as a result of TypeParameter nodes.
4121            Env<AttrContext> lintEnv = env;
4122            while (lintEnv.info.lint == null)
4123                lintEnv = lintEnv.next;
4124
4125            // Having found the enclosing lint value, we can initialize the lint value for this class
4126            env.info.lint = lintEnv.info.lint.augment(c);
4127
4128            Lint prevLint = chk.setLint(env.info.lint);
4129            JavaFileObject prev = log.useSource(c.sourcefile);
4130            ResultInfo prevReturnRes = env.info.returnResult;
4131
4132            try {
4133                deferredLintHandler.flush(env.tree);
4134                env.info.returnResult = null;
4135                // java.lang.Enum may not be subclassed by a non-enum
4136                if (st.tsym == syms.enumSym &&
4137                    ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4138                    log.error(env.tree.pos(), "enum.no.subclassing");
4139
4140                // Enums may not be extended by source-level classes
4141                if (st.tsym != null &&
4142                    ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4143                    ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4144                    log.error(env.tree.pos(), "enum.types.not.extensible");
4145                }
4146
4147                if (isSerializable(c.type)) {
4148                    env.info.isSerializable = true;
4149                }
4150
4151                attribClassBody(env, c);
4152
4153                chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4154                chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4155                chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4156            } finally {
4157                env.info.returnResult = prevReturnRes;
4158                log.useSource(prev);
4159                chk.setLint(prevLint);
4160            }
4161
4162        }
4163    }
4164
4165    public void visitImport(JCImport tree) {
4166        // nothing to do
4167    }
4168
4169    /** Finish the attribution of a class. */
4170    private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4171        JCClassDecl tree = (JCClassDecl)env.tree;
4172        Assert.check(c == tree.sym);
4173
4174        // Validate type parameters, supertype and interfaces.
4175        attribStats(tree.typarams, env);
4176        if (!c.isAnonymous()) {
4177            //already checked if anonymous
4178            chk.validate(tree.typarams, env);
4179            chk.validate(tree.extending, env);
4180            chk.validate(tree.implementing, env);
4181        }
4182
4183        // If this is a non-abstract class, check that it has no abstract
4184        // methods or unimplemented methods of an implemented interface.
4185        if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4186            if (!relax)
4187                chk.checkAllDefined(tree.pos(), c);
4188        }
4189
4190        if ((c.flags() & ANNOTATION) != 0) {
4191            if (tree.implementing.nonEmpty())
4192                log.error(tree.implementing.head.pos(),
4193                          "cant.extend.intf.annotation");
4194            if (tree.typarams.nonEmpty())
4195                log.error(tree.typarams.head.pos(),
4196                          "intf.annotation.cant.have.type.params");
4197
4198            // If this annotation has a @Repeatable, validate
4199            Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
4200            if (repeatable != null) {
4201                // get diagnostic position for error reporting
4202                DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4203                Assert.checkNonNull(cbPos);
4204
4205                chk.validateRepeatable(c, repeatable, cbPos);
4206            }
4207        } else {
4208            // Check that all extended classes and interfaces
4209            // are compatible (i.e. no two define methods with same arguments
4210            // yet different return types).  (JLS 8.4.6.3)
4211            chk.checkCompatibleSupertypes(tree.pos(), c.type);
4212            if (allowDefaultMethods) {
4213                chk.checkDefaultMethodClashes(tree.pos(), c.type);
4214            }
4215        }
4216
4217        // Check that class does not import the same parameterized interface
4218        // with two different argument lists.
4219        chk.checkClassBounds(tree.pos(), c.type);
4220
4221        tree.type = c.type;
4222
4223        for (List<JCTypeParameter> l = tree.typarams;
4224             l.nonEmpty(); l = l.tail) {
4225             Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
4226        }
4227
4228        // Check that a generic class doesn't extend Throwable
4229        if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4230            log.error(tree.extending.pos(), "generic.throwable");
4231
4232        // Check that all methods which implement some
4233        // method conform to the method they implement.
4234        chk.checkImplementations(tree);
4235
4236        //check that a resource implementing AutoCloseable cannot throw InterruptedException
4237        checkAutoCloseable(tree.pos(), env, c.type);
4238
4239        for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4240            // Attribute declaration
4241            attribStat(l.head, env);
4242            // Check that declarations in inner classes are not static (JLS 8.1.2)
4243            // Make an exception for static constants.
4244            if (c.owner.kind != PCK &&
4245                ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4246                (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4247                Symbol sym = null;
4248                if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4249                if (sym == null ||
4250                    sym.kind != VAR ||
4251                    ((VarSymbol) sym).getConstValue() == null)
4252                    log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4253            }
4254        }
4255
4256        // Check for cycles among non-initial constructors.
4257        chk.checkCyclicConstructors(tree);
4258
4259        // Check for cycles among annotation elements.
4260        chk.checkNonCyclicElements(tree);
4261
4262        // Check for proper use of serialVersionUID
4263        if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4264            isSerializable(c.type) &&
4265            (c.flags() & Flags.ENUM) == 0 &&
4266            checkForSerial(c)) {
4267            checkSerialVersionUID(tree, c);
4268        }
4269        if (allowTypeAnnos) {
4270            // Correctly organize the postions of the type annotations
4271            typeAnnotations.organizeTypeAnnotationsBodies(tree);
4272
4273            // Check type annotations applicability rules
4274            validateTypeAnnotations(tree, false);
4275        }
4276    }
4277        // where
4278        boolean checkForSerial(ClassSymbol c) {
4279            if ((c.flags() & ABSTRACT) == 0) {
4280                return true;
4281            } else {
4282                return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4283            }
4284        }
4285
4286        public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4287            @Override
4288            public boolean accepts(Symbol s) {
4289                return s.kind == MTH &&
4290                       (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4291            }
4292        };
4293
4294        /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4295        private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4296            for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4297                if (types.isSameType(al.head.annotationType.type, t))
4298                    return al.head.pos();
4299            }
4300
4301            return null;
4302        }
4303
4304        /** check if a type is a subtype of Serializable, if that is available. */
4305        boolean isSerializable(Type t) {
4306            try {
4307                syms.serializableType.complete();
4308            }
4309            catch (CompletionFailure e) {
4310                return false;
4311            }
4312            return types.isSubtype(t, syms.serializableType);
4313        }
4314
4315        /** Check that an appropriate serialVersionUID member is defined. */
4316        private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4317
4318            // check for presence of serialVersionUID
4319            VarSymbol svuid = null;
4320            for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4321                if (sym.kind == VAR) {
4322                    svuid = (VarSymbol)sym;
4323                    break;
4324                }
4325            }
4326
4327            if (svuid == null) {
4328                log.warning(LintCategory.SERIAL,
4329                        tree.pos(), "missing.SVUID", c);
4330                return;
4331            }
4332
4333            // check that it is static final
4334            if ((svuid.flags() & (STATIC | FINAL)) !=
4335                (STATIC | FINAL))
4336                log.warning(LintCategory.SERIAL,
4337                        TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4338
4339            // check that it is long
4340            else if (!svuid.type.hasTag(LONG))
4341                log.warning(LintCategory.SERIAL,
4342                        TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4343
4344            // check constant
4345            else if (svuid.getConstValue() == null)
4346                log.warning(LintCategory.SERIAL,
4347                        TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4348        }
4349
4350    private Type capture(Type type) {
4351        return types.capture(type);
4352    }
4353
4354    public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4355        tree.accept(new TypeAnnotationsValidator(sigOnly));
4356    }
4357    //where
4358    private final class TypeAnnotationsValidator extends TreeScanner {
4359
4360        private final boolean sigOnly;
4361        public TypeAnnotationsValidator(boolean sigOnly) {
4362            this.sigOnly = sigOnly;
4363        }
4364
4365        public void visitAnnotation(JCAnnotation tree) {
4366            chk.validateTypeAnnotation(tree, false);
4367            super.visitAnnotation(tree);
4368        }
4369        public void visitAnnotatedType(JCAnnotatedType tree) {
4370            if (!tree.underlyingType.type.isErroneous()) {
4371                super.visitAnnotatedType(tree);
4372            }
4373        }
4374        public void visitTypeParameter(JCTypeParameter tree) {
4375            chk.validateTypeAnnotations(tree.annotations, true);
4376            scan(tree.bounds);
4377            // Don't call super.
4378            // This is needed because above we call validateTypeAnnotation with
4379            // false, which would forbid annotations on type parameters.
4380            // super.visitTypeParameter(tree);
4381        }
4382        public void visitMethodDef(JCMethodDecl tree) {
4383            if (tree.recvparam != null &&
4384                    !tree.recvparam.vartype.type.isErroneous()) {
4385                checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4386                        tree.recvparam.vartype.type.tsym);
4387            }
4388            if (tree.restype != null && tree.restype.type != null) {
4389                validateAnnotatedType(tree.restype, tree.restype.type);
4390            }
4391            if (sigOnly) {
4392                scan(tree.mods);
4393                scan(tree.restype);
4394                scan(tree.typarams);
4395                scan(tree.recvparam);
4396                scan(tree.params);
4397                scan(tree.thrown);
4398            } else {
4399                scan(tree.defaultValue);
4400                scan(tree.body);
4401            }
4402        }
4403        public void visitVarDef(final JCVariableDecl tree) {
4404            //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
4405            if (tree.sym != null && tree.sym.type != null)
4406                validateAnnotatedType(tree.vartype, tree.sym.type);
4407            scan(tree.mods);
4408            scan(tree.vartype);
4409            if (!sigOnly) {
4410                scan(tree.init);
4411            }
4412        }
4413        public void visitTypeCast(JCTypeCast tree) {
4414            if (tree.clazz != null && tree.clazz.type != null)
4415                validateAnnotatedType(tree.clazz, tree.clazz.type);
4416            super.visitTypeCast(tree);
4417        }
4418        public void visitTypeTest(JCInstanceOf tree) {
4419            if (tree.clazz != null && tree.clazz.type != null)
4420                validateAnnotatedType(tree.clazz, tree.clazz.type);
4421            super.visitTypeTest(tree);
4422        }
4423        public void visitNewClass(JCNewClass tree) {
4424            if (tree.clazz != null && tree.clazz.type != null) {
4425                if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4426                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4427                            tree.clazz.type.tsym);
4428                }
4429                if (tree.def != null) {
4430                    checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4431                }
4432
4433                validateAnnotatedType(tree.clazz, tree.clazz.type);
4434            }
4435            super.visitNewClass(tree);
4436        }
4437        public void visitNewArray(JCNewArray tree) {
4438            if (tree.elemtype != null && tree.elemtype.type != null) {
4439                if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4440                    checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4441                            tree.elemtype.type.tsym);
4442                }
4443                validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4444            }
4445            super.visitNewArray(tree);
4446        }
4447        public void visitClassDef(JCClassDecl tree) {
4448            //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
4449            if (sigOnly) {
4450                scan(tree.mods);
4451                scan(tree.typarams);
4452                scan(tree.extending);
4453                scan(tree.implementing);
4454            }
4455            for (JCTree member : tree.defs) {
4456                if (member.hasTag(Tag.CLASSDEF)) {
4457                    continue;
4458                }
4459                scan(member);
4460            }
4461        }
4462        public void visitBlock(JCBlock tree) {
4463            if (!sigOnly) {
4464                scan(tree.stats);
4465            }
4466        }
4467
4468        /* I would want to model this after
4469         * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4470         * and override visitSelect and visitTypeApply.
4471         * However, we only set the annotated type in the top-level type
4472         * of the symbol.
4473         * Therefore, we need to override each individual location where a type
4474         * can occur.
4475         */
4476        private void validateAnnotatedType(final JCTree errtree, final Type type) {
4477            //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4478
4479            if (type.isPrimitiveOrVoid()) {
4480                return;
4481            }
4482
4483            JCTree enclTr = errtree;
4484            Type enclTy = type;
4485
4486            boolean repeat = true;
4487            while (repeat) {
4488                if (enclTr.hasTag(TYPEAPPLY)) {
4489                    List<Type> tyargs = enclTy.getTypeArguments();
4490                    List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4491                    if (trargs.length() > 0) {
4492                        // Nothing to do for diamonds
4493                        if (tyargs.length() == trargs.length()) {
4494                            for (int i = 0; i < tyargs.length(); ++i) {
4495                                validateAnnotatedType(trargs.get(i), tyargs.get(i));
4496                            }
4497                        }
4498                        // If the lengths don't match, it's either a diamond
4499                        // or some nested type that redundantly provides
4500                        // type arguments in the tree.
4501                    }
4502
4503                    // Look at the clazz part of a generic type
4504                    enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4505                }
4506
4507                if (enclTr.hasTag(SELECT)) {
4508                    enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4509                    if (enclTy != null &&
4510                            !enclTy.hasTag(NONE)) {
4511                        enclTy = enclTy.getEnclosingType();
4512                    }
4513                } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4514                    JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4515                    if (enclTy == null || enclTy.hasTag(NONE)) {
4516                        if (at.getAnnotations().size() == 1) {
4517                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4518                        } else {
4519                            ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
4520                            for (JCAnnotation an : at.getAnnotations()) {
4521                                comps.add(an.attribute);
4522                            }
4523                            log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4524                        }
4525                        repeat = false;
4526                    }
4527                    enclTr = at.underlyingType;
4528                    // enclTy doesn't need to be changed
4529                } else if (enclTr.hasTag(IDENT)) {
4530                    repeat = false;
4531                } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4532                    JCWildcard wc = (JCWildcard) enclTr;
4533                    if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4534                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getExtendsBound());
4535                    } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4536                        validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy).getSuperBound());
4537                    } else {
4538                        // Nothing to do for UNBOUND
4539                    }
4540                    repeat = false;
4541                } else if (enclTr.hasTag(TYPEARRAY)) {
4542                    JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4543                    validateAnnotatedType(art.getType(), ((ArrayType)enclTy).getComponentType());
4544                    repeat = false;
4545                } else if (enclTr.hasTag(TYPEUNION)) {
4546                    JCTypeUnion ut = (JCTypeUnion) enclTr;
4547                    for (JCTree t : ut.getTypeAlternatives()) {
4548                        validateAnnotatedType(t, t.type);
4549                    }
4550                    repeat = false;
4551                } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4552                    JCTypeIntersection it = (JCTypeIntersection) enclTr;
4553                    for (JCTree t : it.getBounds()) {
4554                        validateAnnotatedType(t, t.type);
4555                    }
4556                    repeat = false;
4557                } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4558                           enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4559                    repeat = false;
4560                } else {
4561                    Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4562                            " within: "+ errtree + " with kind: " + errtree.getKind());
4563                }
4564            }
4565        }
4566
4567        private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4568                Symbol sym) {
4569            // Ensure that no declaration annotations are present.
4570            // Note that a tree type might be an AnnotatedType with
4571            // empty annotations, if only declaration annotations were given.
4572            // This method will raise an error for such a type.
4573            for (JCAnnotation ai : annotations) {
4574                if (!ai.type.isErroneous() &&
4575                        typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4576                    log.error(ai.pos(), "annotation.type.not.applicable");
4577                }
4578            }
4579        }
4580    }
4581
4582    // <editor-fold desc="post-attribution visitor">
4583
4584    /**
4585     * Handle missing types/symbols in an AST. This routine is useful when
4586     * the compiler has encountered some errors (which might have ended up
4587     * terminating attribution abruptly); if the compiler is used in fail-over
4588     * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4589     * prevents NPE to be progagated during subsequent compilation steps.
4590     */
4591    public void postAttr(JCTree tree) {
4592        new PostAttrAnalyzer().scan(tree);
4593    }
4594
4595    class PostAttrAnalyzer extends TreeScanner {
4596
4597        private void initTypeIfNeeded(JCTree that) {
4598            if (that.type == null) {
4599                if (that.hasTag(METHODDEF)) {
4600                    that.type = dummyMethodType((JCMethodDecl)that);
4601                } else {
4602                    that.type = syms.unknownType;
4603                }
4604            }
4605        }
4606
4607        /* Construct a dummy method type. If we have a method declaration,
4608         * and the declared return type is void, then use that return type
4609         * instead of UNKNOWN to avoid spurious error messages in lambda
4610         * bodies (see:JDK-8041704).
4611         */
4612        private Type dummyMethodType(JCMethodDecl md) {
4613            Type restype = syms.unknownType;
4614            if (md != null && md.restype.hasTag(TYPEIDENT)) {
4615                JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
4616                if (prim.typetag == VOID)
4617                    restype = syms.voidType;
4618            }
4619            return new MethodType(List.<Type>nil(), restype,
4620                                  List.<Type>nil(), syms.methodClass);
4621        }
4622        private Type dummyMethodType() {
4623            return dummyMethodType(null);
4624        }
4625
4626        @Override
4627        public void scan(JCTree tree) {
4628            if (tree == null) return;
4629            if (tree instanceof JCExpression) {
4630                initTypeIfNeeded(tree);
4631            }
4632            super.scan(tree);
4633        }
4634
4635        @Override
4636        public void visitIdent(JCIdent that) {
4637            if (that.sym == null) {
4638                that.sym = syms.unknownSymbol;
4639            }
4640        }
4641
4642        @Override
4643        public void visitSelect(JCFieldAccess that) {
4644            if (that.sym == null) {
4645                that.sym = syms.unknownSymbol;
4646            }
4647            super.visitSelect(that);
4648        }
4649
4650        @Override
4651        public void visitClassDef(JCClassDecl that) {
4652            initTypeIfNeeded(that);
4653            if (that.sym == null) {
4654                that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4655            }
4656            super.visitClassDef(that);
4657        }
4658
4659        @Override
4660        public void visitMethodDef(JCMethodDecl that) {
4661            initTypeIfNeeded(that);
4662            if (that.sym == null) {
4663                that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4664            }
4665            super.visitMethodDef(that);
4666        }
4667
4668        @Override
4669        public void visitVarDef(JCVariableDecl that) {
4670            initTypeIfNeeded(that);
4671            if (that.sym == null) {
4672                that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4673                that.sym.adr = 0;
4674            }
4675            super.visitVarDef(that);
4676        }
4677
4678        @Override
4679        public void visitNewClass(JCNewClass that) {
4680            if (that.constructor == null) {
4681                that.constructor = new MethodSymbol(0, names.init,
4682                        dummyMethodType(), syms.noSymbol);
4683            }
4684            if (that.constructorType == null) {
4685                that.constructorType = syms.unknownType;
4686            }
4687            super.visitNewClass(that);
4688        }
4689
4690        @Override
4691        public void visitAssignop(JCAssignOp that) {
4692            if (that.operator == null) {
4693                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4694                        -1, syms.noSymbol);
4695            }
4696            super.visitAssignop(that);
4697        }
4698
4699        @Override
4700        public void visitBinary(JCBinary that) {
4701            if (that.operator == null) {
4702                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4703                        -1, syms.noSymbol);
4704            }
4705            super.visitBinary(that);
4706        }
4707
4708        @Override
4709        public void visitUnary(JCUnary that) {
4710            if (that.operator == null) {
4711                that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4712                        -1, syms.noSymbol);
4713            }
4714            super.visitUnary(that);
4715        }
4716
4717        @Override
4718        public void visitLambda(JCLambda that) {
4719            super.visitLambda(that);
4720            if (that.targets == null) {
4721                that.targets = List.nil();
4722            }
4723        }
4724
4725        @Override
4726        public void visitReference(JCMemberReference that) {
4727            super.visitReference(that);
4728            if (that.sym == null) {
4729                that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4730                        syms.noSymbol);
4731            }
4732            if (that.targets == null) {
4733                that.targets = List.nil();
4734            }
4735        }
4736    }
4737    // </editor-fold>
4738}
4739