1/*
2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24/*
25 * @test
26 * @library /test/lib
27 * @build jdk.test.lib.RandomFactory
28 * @run main CubeRootTests
29 * @bug 4347132 4939441 8078672
30 * @summary Tests for {Math, StrictMath}.cbrt (use -Dseed=X to set PRNG seed)
31 * @author Joseph D. Darcy
32 * @key randomness
33 */
34
35import jdk.test.lib.RandomFactory;
36
37public class CubeRootTests {
38    private CubeRootTests(){}
39
40    static final double infinityD = Double.POSITIVE_INFINITY;
41    static final double NaNd = Double.NaN;
42
43    // Initialize shared random number generator
44    static java.util.Random rand = RandomFactory.getRandom();
45
46    static int testCubeRootCase(double input, double expected) {
47        int failures=0;
48
49        double minus_input = -input;
50        double minus_expected = -expected;
51
52        failures+=Tests.test("Math.cbrt(double)", input,
53                             Math.cbrt(input), expected);
54        failures+=Tests.test("Math.cbrt(double)", minus_input,
55                             Math.cbrt(minus_input), minus_expected);
56        failures+=Tests.test("StrictMath.cbrt(double)", input,
57                             StrictMath.cbrt(input), expected);
58        failures+=Tests.test("StrictMath.cbrt(double)", minus_input,
59                             StrictMath.cbrt(minus_input), minus_expected);
60
61        return failures;
62    }
63
64    static int testCubeRoot() {
65        int failures = 0;
66        double [][] testCases = {
67            {NaNd,                      NaNd},
68            {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
69            {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
70            {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
71            {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
72            {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
73            {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
74            {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
75            {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
76            {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
77            {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
78            {Double.POSITIVE_INFINITY,  Double.POSITIVE_INFINITY},
79            {Double.NEGATIVE_INFINITY,  Double.NEGATIVE_INFINITY},
80            {+0.0,                      +0.0},
81            {-0.0,                      -0.0},
82            {+1.0,                      +1.0},
83            {-1.0,                      -1.0},
84            {+8.0,                      +2.0},
85            {-8.0,                      -2.0}
86        };
87
88        for(int i = 0; i < testCases.length; i++) {
89            failures += testCubeRootCase(testCases[i][0],
90                                         testCases[i][1]);
91        }
92
93        // Test integer perfect cubes less than 2^53.
94        for(int i = 0; i <= 208063; i++) {
95            double d = i;
96            failures += testCubeRootCase(d*d*d, (double)i);
97        }
98
99        // Test cbrt(2^(3n)) = 2^n.
100        for(int i = 18; i <= Double.MAX_EXPONENT/3; i++) {
101            failures += testCubeRootCase(Math.scalb(1.0, 3*i),
102                                         Math.scalb(1.0, i) );
103        }
104
105        // Test cbrt(2^(-3n)) = 2^-n.
106        for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
107            failures += testCubeRootCase(Math.scalb(1.0, 3*i),
108                                         Math.scalb(1.0, i) );
109        }
110
111        // Test random perfect cubes.  Create double values with
112        // modest exponents but only have at most the 17 most
113        // significant bits in the significand set; 17*3 = 51, which
114        // is less than the number of bits in a double's significand.
115        long exponentBits1 =
116            Double.doubleToLongBits(Math.scalb(1.0, 55)) &
117            DoubleConsts.EXP_BIT_MASK;
118        long exponentBits2=
119            Double.doubleToLongBits(Math.scalb(1.0, -55)) &
120            DoubleConsts.EXP_BIT_MASK;
121        for(int i = 0; i < 100; i++) {
122            // Take 16 bits since the 17th bit is implicit in the
123            // exponent
124           double input1 =
125               Double.longBitsToDouble(exponentBits1 |
126                                       // Significand bits
127                                       ((long) (rand.nextInt() & 0xFFFF))<<
128                                       (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
129           failures += testCubeRootCase(input1*input1*input1, input1);
130
131           double input2 =
132               Double.longBitsToDouble(exponentBits2 |
133                                       // Significand bits
134                                       ((long) (rand.nextInt() & 0xFFFF))<<
135                                       (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
136           failures += testCubeRootCase(input2*input2*input2, input2);
137        }
138
139        // Directly test quality of implementation properties of cbrt
140        // for values that aren't perfect cubes.  Verify returned
141        // result meets the 1 ulp test.  That is, we want to verify
142        // that for positive x > 1,
143        // y = cbrt(x),
144        //
145        // if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
146        // if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
147        //
148        // where y_mm and y_pp are the next smaller and next larger
149        // floating-point value to y.  In other words, if y^3 is too
150        // big, making y larger does not improve the result; likewise,
151        // if y^3 is too small, making y smaller does not improve the
152        // result.
153        //
154        // ...-----|--?--|--?--|-----... Where is the true result?
155        //         y_mm  y     y_pp
156        //
157        // The returned value y should be one of the floating-point
158        // values braketing the true result.  However, given y, a
159        // priori we don't know if the true result falls in [y_mm, y]
160        // or [y, y_pp].  The above test looks at the error in x-y^3
161        // to determine which region the true result is in; e.g. if
162        // y^3 is smaller than x, the true result should be in [y,
163        // y_pp].  Therefore, it would be an error for y_mm to be a
164        // closer approximation to x^(1/3).  In this case, it is
165        // permissible, although not ideal, for y_pp^3 to be a closer
166        // approximation to x^(1/3) than y^3.
167        //
168        // We will use pow(y,3) to compute y^3.  Although pow is not
169        // correctly rounded, StrictMath.pow should have at most 1 ulp
170        // error.  For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ
171        // from pow(y,3) by more than one ulp so the comparision of
172        // errors should still be valid.
173
174        for(int i = 0; i < 1000; i++) {
175            double d = 1.0 + rand.nextDouble();
176            double err, err_adjacent;
177
178            double y1 = Math.cbrt(d);
179            double y2 = StrictMath.cbrt(d);
180
181            err = d - StrictMath.pow(y1, 3);
182            if (err != 0.0) {
183                if(Double.isNaN(err)) {
184                    failures++;
185                    System.err.println("Encountered unexpected NaN value: d = " + d +
186                                       "\tcbrt(d) = " + y1);
187                } else {
188                    if (err < 0.0) {
189                        err_adjacent = StrictMath.pow(Math.nextUp(y1), 3) - d;
190                    }
191                    else  { // (err > 0.0)
192                        err_adjacent = StrictMath.pow(Math.nextAfter(y1,0.0), 3) - d;
193                    }
194
195                    if (Math.abs(err) > Math.abs(err_adjacent)) {
196                        failures++;
197                        System.err.println("For Math.cbrt(" + d + "), returned result " +
198                                           y1 + "is not as good as adjacent value.");
199                    }
200                }
201            }
202
203
204            err = d - StrictMath.pow(y2, 3);
205            if (err != 0.0) {
206                if(Double.isNaN(err)) {
207                    failures++;
208                    System.err.println("Encountered unexpected NaN value: d = " + d +
209                                       "\tcbrt(d) = " + y2);
210                } else {
211                    if (err < 0.0) {
212                        err_adjacent = StrictMath.pow(Math.nextUp(y2), 3) - d;
213                    }
214                    else  { // (err > 0.0)
215                        err_adjacent = StrictMath.pow(Math.nextAfter(y2,0.0), 3) - d;
216                    }
217
218                    if (Math.abs(err) > Math.abs(err_adjacent)) {
219                        failures++;
220                        System.err.println("For StrictMath.cbrt(" + d + "), returned result " +
221                                           y2 + "is not as good as adjacent value.");
222                    }
223                }
224            }
225
226
227        }
228
229        // Test monotonicity properites near perfect cubes; test two
230        // numbers before and two numbers after; i.e. for
231        //
232        // pcNeighbors[] =
233        // {nextDown(nextDown(pc)),
234        // nextDown(pc),
235        // pc,
236        // nextUp(pc),
237        // nextUp(nextUp(pc))}
238        //
239        // test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
240        {
241
242            double pcNeighbors[] = new double[5];
243            double pcNeighborsCbrt[] = new double[5];
244            double pcNeighborsStrictCbrt[] = new double[5];
245
246            // Test near cbrt(2^(3n)) = 2^n.
247            for(int i = 18; i <= Double.MAX_EXPONENT/3; i++) {
248                double pc = Math.scalb(1.0, 3*i);
249
250                pcNeighbors[2] = pc;
251                pcNeighbors[1] = Math.nextDown(pc);
252                pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
253                pcNeighbors[3] = Math.nextUp(pc);
254                pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
255
256                for(int j = 0; j < pcNeighbors.length; j++) {
257                    pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
258                    pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
259                }
260
261                for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
262                    if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
263                        failures++;
264                        System.err.println("Monotonicity failure for Math.cbrt on " +
265                                          pcNeighbors[j] + " and "  +
266                                          pcNeighbors[j+1] + "\n\treturned " +
267                                          pcNeighborsCbrt[j] + " and " +
268                                          pcNeighborsCbrt[j+1] );
269                    }
270
271                    if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
272                        failures++;
273                        System.err.println("Monotonicity failure for StrictMath.cbrt on " +
274                                          pcNeighbors[j] + " and "  +
275                                          pcNeighbors[j+1] + "\n\treturned " +
276                                          pcNeighborsStrictCbrt[j] + " and " +
277                                          pcNeighborsStrictCbrt[j+1] );
278                    }
279
280
281                }
282
283            }
284
285            // Test near cbrt(2^(-3n)) = 2^-n.
286            for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
287                double pc = Math.scalb(1.0, 3*i);
288
289                pcNeighbors[2] = pc;
290                pcNeighbors[1] = Math.nextDown(pc);
291                pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
292                pcNeighbors[3] = Math.nextUp(pc);
293                pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
294
295                for(int j = 0; j < pcNeighbors.length; j++) {
296                    pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
297                    pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
298                }
299
300                for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
301                    if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
302                        failures++;
303                        System.err.println("Monotonicity failure for Math.cbrt on " +
304                                          pcNeighbors[j] + " and "  +
305                                          pcNeighbors[j+1] + "\n\treturned " +
306                                          pcNeighborsCbrt[j] + " and " +
307                                          pcNeighborsCbrt[j+1] );
308                    }
309
310                    if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
311                        failures++;
312                        System.err.println("Monotonicity failure for StrictMath.cbrt on " +
313                                          pcNeighbors[j] + " and "  +
314                                          pcNeighbors[j+1] + "\n\treturned " +
315                                          pcNeighborsStrictCbrt[j] + " and " +
316                                          pcNeighborsStrictCbrt[j+1] );
317                    }
318
319
320                }
321            }
322        }
323
324        return failures;
325    }
326
327    public static void main(String argv[]) {
328        int failures = 0;
329
330        failures += testCubeRoot();
331
332        if (failures > 0) {
333            System.err.println("Testing cbrt incurred "
334                               + failures + " failures.");
335            throw new RuntimeException();
336        }
337    }
338
339}
340