1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26// -*- C++ -*-
27// Program for unpacking specially compressed Java packages.
28// John R. Rose
29
30/*
31 * When compiling for a 64bit LP64 system (longs and pointers being 64bits),
32 *    the printf format %ld is correct and use of %lld will cause warning
33 *    errors from some compilers (gcc/g++).
34 * _LP64 can be explicitly set (used on Linux).
35 * Should be checking for the Visual C++ since the _LP64 is set on the 64-bit
36 * systems but the correct format prefix for 64-bit integers is ll.
37 * Solaris compilers will define __sparcv9 or __x86_64 on 64bit compilations.
38 */
39#if !defined (_MSC_VER) && \
40    (defined(_LP64) || defined(__sparcv9) || defined(__x86_64))
41  #define LONG_LONG_FORMAT "%ld"
42  #define LONG_LONG_HEX_FORMAT "%lx"
43#else
44  #define LONG_LONG_FORMAT "%lld"
45  #define LONG_LONG_HEX_FORMAT "%016llx"
46#endif
47
48#include <sys/types.h>
49
50#include <stdio.h>
51#include <string.h>
52#include <stdlib.h>
53#include <stdarg.h>
54
55#include <limits.h>
56#include <time.h>
57
58
59
60
61#include "defines.h"
62#include "bytes.h"
63#include "utils.h"
64#include "coding.h"
65#include "bands.h"
66
67#include "constants.h"
68
69#include "zip.h"
70
71#include "unpack.h"
72
73
74// tags, in canonical order:
75static const byte TAGS_IN_ORDER[] = {
76  CONSTANT_Utf8,
77  CONSTANT_Integer,
78  CONSTANT_Float,
79  CONSTANT_Long,
80  CONSTANT_Double,
81  CONSTANT_String,
82  CONSTANT_Class,
83  CONSTANT_Signature,
84  CONSTANT_NameandType,
85  CONSTANT_Fieldref,
86  CONSTANT_Methodref,
87  CONSTANT_InterfaceMethodref,
88  // constants defined as of JDK 7
89  CONSTANT_MethodHandle,
90  CONSTANT_MethodType,
91  CONSTANT_BootstrapMethod,
92  CONSTANT_InvokeDynamic
93};
94#define N_TAGS_IN_ORDER (sizeof TAGS_IN_ORDER)
95
96#ifndef PRODUCT
97static const char* TAG_NAME[] = {
98  "*None",
99  "Utf8",
100  "*Unicode",
101  "Integer",
102  "Float",
103  "Long",
104  "Double",
105  "Class",
106  "String",
107  "Fieldref",
108  "Methodref",
109  "InterfaceMethodref",
110  "NameandType",
111  "*Signature",
112  "unused14",
113  "MethodHandle",
114  "MethodType",
115  "*BootstrapMethod",
116  "InvokeDynamic",
117  0
118};
119
120static const char* ATTR_CONTEXT_NAME[] = {  // match ATTR_CONTEXT_NAME, etc.
121  "class", "field", "method", "code"
122};
123
124#else
125
126#define ATTR_CONTEXT_NAME ((const char**)null)
127
128#endif
129
130// Note that REQUESTED_LDC comes first, then the normal REQUESTED,
131// in the regular constant pool.
132enum { REQUESTED_NONE = -1,
133       // The codes below REQUESTED_NONE are in constant pool output order,
134       // for the sake of outputEntry_cmp:
135       REQUESTED_LDC = -99, REQUESTED
136};
137
138#define NO_INORD ((uint)-1)
139
140struct entry {
141  byte tag;
142
143  #if 0
144  byte bits;
145  enum {
146    //EB_EXTRA = 1,
147    EB_SUPER = 2
148  };
149  #endif
150  unsigned short nrefs;  // pack w/ tag
151
152  int  outputIndex;
153  uint inord;   // &cp.entries[cp.tag_base[this->tag]+this->inord] == this
154
155  entry* *refs;
156
157  // put last to pack best
158  union {
159    bytes b;
160    int i;
161    jlong l;
162  } value;
163
164  void requestOutputIndex(cpool& cp, int req = REQUESTED);
165  int getOutputIndex() {
166    assert(outputIndex > REQUESTED_NONE);
167    return outputIndex;
168  }
169
170  entry* ref(int refnum) {
171    assert((uint)refnum < nrefs);
172    return refs[refnum];
173  }
174
175  const char* utf8String() {
176    assert(tagMatches(CONSTANT_Utf8));
177    if (value.b.len != strlen((const char*)value.b.ptr)) {
178      unpack_abort("bad utf8 encoding");
179      // and fall through
180    }
181    return (const char*)value.b.ptr;
182  }
183
184  entry* className() {
185    assert(tagMatches(CONSTANT_Class));
186    return ref(0);
187  }
188
189  entry* memberClass() {
190    assert(tagMatches(CONSTANT_AnyMember));
191    return ref(0);
192  }
193
194  entry* memberDescr() {
195    assert(tagMatches(CONSTANT_AnyMember));
196    return ref(1);
197  }
198
199  entry* descrName() {
200    assert(tagMatches(CONSTANT_NameandType));
201    return ref(0);
202  }
203
204  entry* descrType() {
205    assert(tagMatches(CONSTANT_NameandType));
206    return ref(1);
207  }
208
209  int typeSize();
210
211  bytes& asUtf8();
212  int    asInteger() { assert(tag == CONSTANT_Integer); return value.i; }
213
214  bool isUtf8(bytes& b) { return tagMatches(CONSTANT_Utf8) && value.b.equals(b); }
215
216  bool isDoubleWord() { return tag == CONSTANT_Double || tag == CONSTANT_Long; }
217
218  bool tagMatches(byte tag2) {
219    return (tag2 == tag)
220      || (tag2 == CONSTANT_Utf8 && tag == CONSTANT_Signature)
221      #ifndef PRODUCT
222      || (tag2 == CONSTANT_FieldSpecific
223          && tag >= CONSTANT_Integer && tag <= CONSTANT_String && tag != CONSTANT_Class)
224      || (tag2 == CONSTANT_AnyMember
225          && tag >= CONSTANT_Fieldref && tag <= CONSTANT_InterfaceMethodref)
226      #endif
227      ;
228  }
229
230#ifdef PRODUCT
231  const char* string() { return NULL; }
232#else
233  const char* string();  // see far below
234#endif
235};
236
237entry* cpindex::get(uint i) {
238  if (i >= len)
239    return null;
240  else if (base1 != null)
241    // primary index
242    return &base1[i];
243  else
244    // secondary index
245    return base2[i];
246}
247
248inline bytes& entry::asUtf8() {
249  assert(tagMatches(CONSTANT_Utf8));
250  return value.b;
251}
252
253int entry::typeSize() {
254  assert(tagMatches(CONSTANT_Utf8));
255  const char* sigp = (char*) value.b.ptr;
256  switch (*sigp) {
257  case '(': sigp++; break;  // skip opening '('
258  case 'D':
259  case 'J': return 2; // double field
260  default:  return 1; // field
261  }
262  int siglen = 0;
263  for (;;) {
264    int ch = *sigp++;
265    switch (ch) {
266    case 'D': case 'J':
267      siglen += 1;
268      break;
269    case '[':
270      // Skip rest of array info.
271      while (ch == '[') { ch = *sigp++; }
272      if (ch != 'L')  break;
273      // else fall through
274    case 'L':
275      sigp = strchr(sigp, ';');
276      if (sigp == null) {
277          unpack_abort("bad data");
278          return 0;
279      }
280      sigp += 1;
281      break;
282    case ')':  // closing ')'
283      return siglen;
284    }
285    siglen += 1;
286  }
287}
288
289inline cpindex* cpool::getFieldIndex(entry* classRef) {
290  if (classRef == NULL) { abort("missing class reference"); return NULL; }
291  assert(classRef->tagMatches(CONSTANT_Class));
292  assert((uint)classRef->inord < (uint)tag_count[CONSTANT_Class]);
293  return &member_indexes[classRef->inord*2+0];
294}
295inline cpindex* cpool::getMethodIndex(entry* classRef) {
296  if (classRef == NULL) { abort("missing class reference"); return NULL; }
297  assert(classRef->tagMatches(CONSTANT_Class));
298  assert((uint)classRef->inord < (uint)tag_count[CONSTANT_Class]);
299  return &member_indexes[classRef->inord*2+1];
300}
301
302struct inner_class {
303  entry* inner;
304  entry* outer;
305  entry* name;
306  int    flags;
307  inner_class* next_sibling;
308  bool   requested;
309};
310
311// Here is where everything gets deallocated:
312void unpacker::free() {
313  int i;
314  assert(jniobj == null); // caller resp.
315  assert(infileptr == null);  // caller resp.
316  if (jarout != null)  jarout->reset();
317  if (gzin != null)    { gzin->free(); gzin = null; }
318  if (free_input)  input.free();
319  // free everybody ever allocated with U_NEW or (recently) with T_NEW
320  assert(smallbuf.base()  == null || mallocs.contains(smallbuf.base()));
321  assert(tsmallbuf.base() == null || tmallocs.contains(tsmallbuf.base()));
322  mallocs.freeAll();
323  tmallocs.freeAll();
324  smallbuf.init();
325  tsmallbuf.init();
326  bcimap.free();
327  class_fixup_type.free();
328  class_fixup_offset.free();
329  class_fixup_ref.free();
330  code_fixup_type.free();
331  code_fixup_offset.free();
332  code_fixup_source.free();
333  requested_ics.free();
334  cp.requested_bsms.free();
335  cur_classfile_head.free();
336  cur_classfile_tail.free();
337  for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
338    attr_defs[i].free();
339
340  // free CP state
341  cp.outputEntries.free();
342  for (i = 0; i < CONSTANT_Limit; i++)
343    cp.tag_extras[i].free();
344}
345
346// input handling
347// Attempts to advance rplimit so that (rplimit-rp) is at least 'more'.
348// Will eagerly read ahead by larger chunks, if possible.
349// Returns false if (rplimit-rp) is not at least 'more',
350// unless rplimit hits input.limit().
351bool unpacker::ensure_input(jlong more) {
352  julong want = more - input_remaining();
353  if ((jlong)want <= 0)          return true;  // it's already in the buffer
354  if (rplimit == input.limit())  return true;  // not expecting any more
355
356  if (read_input_fn == null) {
357    // assume it is already all there
358    bytes_read += input.limit() - rplimit;
359    rplimit = input.limit();
360    return true;
361  }
362  CHECK_0;
363
364  julong remaining = (input.limit() - rplimit);  // how much left to read?
365  byte* rpgoal = (want >= remaining)? input.limit(): rplimit + (size_t)want;
366  enum { CHUNK_SIZE = (1<<14) };
367  julong fetch = want;
368  if (fetch < CHUNK_SIZE)
369    fetch = CHUNK_SIZE;
370  if (fetch > remaining*3/4)
371    fetch = remaining;
372  // Try to fetch at least "more" bytes.
373  while ((jlong)fetch > 0) {
374    jlong nr = (*read_input_fn)(this, rplimit, fetch, remaining);
375    if (nr <= 0) {
376      return (rplimit >= rpgoal);
377    }
378    remaining -= nr;
379    rplimit += nr;
380    fetch -= nr;
381    bytes_read += nr;
382    assert(remaining == (julong)(input.limit() - rplimit));
383  }
384  return true;
385}
386
387// output handling
388
389fillbytes* unpacker::close_output(fillbytes* which) {
390  assert(wp != null);
391  if (which == null) {
392    if (wpbase == cur_classfile_head.base()) {
393      which = &cur_classfile_head;
394    } else {
395      which = &cur_classfile_tail;
396    }
397  }
398  assert(wpbase  == which->base());
399  assert(wplimit == which->end());
400  which->setLimit(wp);
401  wp      = null;
402  wplimit = null;
403  //wpbase = null;
404  return which;
405}
406
407//maybe_inline
408void unpacker::ensure_put_space(size_t size) {
409  if (wp + size <= wplimit)  return;
410  // Determine which segment needs expanding.
411  fillbytes* which = close_output();
412  byte* wp0 = which->grow(size);
413  wpbase  = which->base();
414  wplimit = which->end();
415  wp = wp0;
416}
417
418maybe_inline
419byte* unpacker::put_space(size_t size) {
420  byte* wp0 = wp;
421  byte* wp1 = wp0 + size;
422  if (wp1 > wplimit) {
423    ensure_put_space(size);
424    wp0 = wp;
425    wp1 = wp0 + size;
426  }
427  wp = wp1;
428  return wp0;
429}
430
431maybe_inline
432void unpacker::putu2_at(byte* wp, int n) {
433  if (n != (unsigned short)n) {
434    unpack_abort(ERROR_OVERFLOW);
435    return;
436  }
437  wp[0] = (n) >> 8;
438  wp[1] = (n) >> 0;
439}
440
441maybe_inline
442void unpacker::putu4_at(byte* wp, int n) {
443  wp[0] = (n) >> 24;
444  wp[1] = (n) >> 16;
445  wp[2] = (n) >> 8;
446  wp[3] = (n) >> 0;
447}
448
449maybe_inline
450void unpacker::putu8_at(byte* wp, jlong n) {
451  putu4_at(wp+0, (int)((julong)n >> 32));
452  putu4_at(wp+4, (int)((julong)n >> 0));
453}
454
455maybe_inline
456void unpacker::putu2(int n) {
457  putu2_at(put_space(2), n);
458}
459
460maybe_inline
461void unpacker::putu4(int n) {
462  putu4_at(put_space(4), n);
463}
464
465maybe_inline
466void unpacker::putu8(jlong n) {
467  putu8_at(put_space(8), n);
468}
469
470maybe_inline
471int unpacker::putref_index(entry* e, int size) {
472  if (e == null)
473    return 0;
474  else if (e->outputIndex > REQUESTED_NONE)
475    return e->outputIndex;
476  else if (e->tag == CONSTANT_Signature)
477    return putref_index(e->ref(0), size);
478  else {
479    e->requestOutputIndex(cp, (size == 1 ? REQUESTED_LDC : REQUESTED));
480    // Later on we'll fix the bits.
481    class_fixup_type.addByte(size);
482    class_fixup_offset.add((int)wpoffset());
483    class_fixup_ref.add(e);
484#ifdef PRODUCT
485    return 0;
486#else
487    return 0x20+size;  // 0x22 is easy to eyeball
488#endif
489  }
490}
491
492maybe_inline
493void unpacker::putref(entry* e) {
494  int oidx = putref_index(e, 2);
495  putu2_at(put_space(2), oidx);
496}
497
498maybe_inline
499void unpacker::putu1ref(entry* e) {
500  int oidx = putref_index(e, 1);
501  putu1_at(put_space(1), oidx);
502}
503
504
505static int total_cp_size[] = {0, 0};
506static int largest_cp_ref[] = {0, 0};
507static int hash_probes[] = {0, 0};
508
509// Allocation of small and large blocks.
510
511enum { CHUNK = (1 << 14), SMALL = (1 << 9) };
512
513// Call malloc.  Try to combine small blocks and free much later.
514void* unpacker::alloc_heap(size_t size, bool smallOK, bool temp) {
515  if (!smallOK || size > SMALL) {
516    void* res = must_malloc((int)size);
517    (temp ? &tmallocs : &mallocs)->add(res);
518    return res;
519  }
520  fillbytes& xsmallbuf = *(temp ? &tsmallbuf : &smallbuf);
521  if (!xsmallbuf.canAppend(size+1)) {
522    xsmallbuf.init(CHUNK);
523    (temp ? &tmallocs : &mallocs)->add(xsmallbuf.base());
524  }
525  int growBy = (int)size;
526  growBy += -growBy & 7;  // round up mod 8
527  return xsmallbuf.grow(growBy);
528}
529
530maybe_inline
531void unpacker::saveTo(bytes& b, byte* ptr, size_t len) {
532  b.ptr = U_NEW(byte, add_size(len,1));
533  if (aborting()) {
534    b.len = 0;
535    return;
536  }
537  b.len = len;
538  b.copyFrom(ptr, len);
539}
540
541bool testBit(int archive_options, int bitMask) {
542    return (archive_options & bitMask) != 0;
543}
544
545// Read up through band_headers.
546// Do the archive_size dance to set the size of the input mega-buffer.
547void unpacker::read_file_header() {
548  // Read file header to determine file type and total size.
549  enum {
550    MAGIC_BYTES = 4,
551    AH_LENGTH_0 = 3,  // archive_header_0 = {minver, majver, options}
552    AH_LENGTH_MIN = 15, // observed in spec {header_0[3], cp_counts[8], class_counts[4]}
553    AH_LENGTH_0_MAX = AH_LENGTH_0 + 1,  // options might have 2 bytes
554    AH_LENGTH   = 30, //maximum archive header length (w/ all fields)
555    // Length contributions from optional header fields:
556    AH_LENGTH_S = 2, // archive_header_S = optional {size_hi, size_lo}
557    AH_ARCHIVE_SIZE_HI = 0, // offset in archive_header_S
558    AH_ARCHIVE_SIZE_LO = 1, // offset in archive_header_S
559    AH_FILE_HEADER_LEN = 5, // file_counts = {{size_hi, size_lo), next, modtile, files}
560    AH_SPECIAL_FORMAT_LEN = 2, // special_count = {layouts, band_headers}
561    AH_CP_NUMBER_LEN = 4,      // cp_number_counts = {int, float, long, double}
562    AH_CP_EXTRA_LEN = 4,        // cp_attr_counts = {MH, MT, InDy, BSM}
563    ARCHIVE_SIZE_MIN = AH_LENGTH_MIN - AH_LENGTH_0 - AH_LENGTH_S,
564    FIRST_READ  = MAGIC_BYTES + AH_LENGTH_MIN
565  };
566
567  assert(AH_LENGTH_MIN    == 15); // # of UNSIGNED5 fields required after archive_magic
568  // An absolute minimum null archive is magic[4], {minver,majver,options}[3],
569  // archive_size[0], cp_counts[8], class_counts[4], for a total of 19 bytes.
570  // (Note that archive_size is optional; it may be 0..10 bytes in length.)
571  // The first read must capture everything up through the options field.
572  // This happens to work even if {minver,majver,options} is a pathological
573  // 15 bytes long.  Legal pack files limit those three fields to 1+1+2 bytes.
574  assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0 * B_MAX);
575
576  // Up through archive_size, the largest possible archive header is
577  // magic[4], {minver,majver,options}[4], archive_size[10].
578  // (Note only the low 12 bits of options are allowed to be non-zero.)
579  // In order to parse archive_size, we need at least this many bytes
580  // in the first read.  Of course, if archive_size_hi is more than
581  // a byte, we probably will fail to allocate the buffer, since it
582  // will be many gigabytes long.  This is a practical, not an
583  // architectural limit to Pack200 archive sizes.
584  assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0_MAX + 2*B_MAX);
585
586  bool foreign_buf = (read_input_fn == null);
587  byte initbuf[(int)FIRST_READ + (int)C_SLOP + 200];  // 200 is for JAR I/O
588  if (foreign_buf) {
589    // inbytes is all there is
590    input.set(inbytes);
591    rp      = input.base();
592    rplimit = input.limit();
593  } else {
594    // inbytes, if not empty, contains some read-ahead we must use first
595    // ensure_input will take care of copying it into initbuf,
596    // then querying read_input_fn for any additional data needed.
597    // However, the caller must assume that we use up all of inbytes.
598    // There is no way to tell the caller that we used only part of them.
599    // Therefore, the caller must use only a bare minimum of read-ahead.
600    if (inbytes.len > FIRST_READ) {
601      abort("too much read-ahead");
602      return;
603    }
604    input.set(initbuf, sizeof(initbuf));
605    input.b.clear();
606    input.b.copyFrom(inbytes);
607    rplimit = rp = input.base();
608    rplimit += inbytes.len;
609    bytes_read += inbytes.len;
610  }
611  // Read only 19 bytes, which is certain to contain #archive_options fields,
612  // but is certain not to overflow past the archive_header.
613  input.b.len = FIRST_READ;
614  if (!ensure_input(FIRST_READ))
615    abort("EOF reading archive magic number");
616
617  if (rp[0] == 'P' && rp[1] == 'K') {
618#ifdef UNPACK_JNI
619    // Java driver must handle this case before we get this far.
620    abort("encountered a JAR header in unpacker");
621#else
622    // In the Unix-style program, we simply simulate a copy command.
623    // Copy until EOF; assume the JAR file is the last segment.
624    fprintf(errstrm, "Copy-mode.\n");
625    for (;;) {
626      jarout->write_data(rp, (int)input_remaining());
627      if (foreign_buf)
628        break;  // one-time use of a passed in buffer
629      if (input.size() < CHUNK) {
630        // Get some breathing room.
631        input.set(U_NEW(byte, (size_t) CHUNK + C_SLOP), (size_t) CHUNK);
632        CHECK;
633      }
634      rp = rplimit = input.base();
635      if (!ensure_input(1))
636        break;
637    }
638    jarout->closeJarFile(false);
639#endif
640    return;
641  }
642
643  // Read the magic number.
644  magic = 0;
645  for (int i1 = 0; i1 < (int)sizeof(magic); i1++) {
646    magic <<= 8;
647    magic += (*rp++ & 0xFF);
648  }
649
650  // Read the first 3 values from the header.
651  value_stream hdr;
652  int          hdrVals = 0;
653  int          hdrValsSkipped = 0;  // for assert
654  hdr.init(rp, rplimit, UNSIGNED5_spec);
655  minver = hdr.getInt();
656  majver = hdr.getInt();
657  hdrVals += 2;
658
659  int majmin[4][2] = {
660      {JAVA5_PACKAGE_MAJOR_VERSION, JAVA5_PACKAGE_MINOR_VERSION},
661      {JAVA6_PACKAGE_MAJOR_VERSION, JAVA6_PACKAGE_MINOR_VERSION},
662      {JAVA7_PACKAGE_MAJOR_VERSION, JAVA7_PACKAGE_MINOR_VERSION},
663      {JAVA8_PACKAGE_MAJOR_VERSION, JAVA8_PACKAGE_MINOR_VERSION}
664  };
665  int majminfound = false;
666  for (int i = 0 ; i < 4 ; i++) {
667      if (majver == majmin[i][0] && minver == majmin[i][1]) {
668          majminfound = true;
669          break;
670      }
671  }
672  if (majminfound == null) {
673    char message[200];
674    sprintf(message, "@" ERROR_FORMAT ": magic/ver = "
675            "%08X/%d.%d should be %08X/%d.%d OR %08X/%d.%d OR %08X/%d.%d OR %08X/%d.%d\n",
676            magic, majver, minver,
677            JAVA_PACKAGE_MAGIC, JAVA5_PACKAGE_MAJOR_VERSION, JAVA5_PACKAGE_MINOR_VERSION,
678            JAVA_PACKAGE_MAGIC, JAVA6_PACKAGE_MAJOR_VERSION, JAVA6_PACKAGE_MINOR_VERSION,
679            JAVA_PACKAGE_MAGIC, JAVA7_PACKAGE_MAJOR_VERSION, JAVA7_PACKAGE_MINOR_VERSION,
680            JAVA_PACKAGE_MAGIC, JAVA8_PACKAGE_MAJOR_VERSION, JAVA8_PACKAGE_MINOR_VERSION);
681    abort(message);
682  }
683  CHECK;
684
685  archive_options = hdr.getInt();
686  hdrVals += 1;
687  assert(hdrVals == AH_LENGTH_0);  // first three fields only
688  bool haveSizeHi = testBit(archive_options, AO_HAVE_FILE_SIZE_HI);
689  bool haveModTime = testBit(archive_options, AO_HAVE_FILE_MODTIME);
690  bool haveFileOpt = testBit(archive_options, AO_HAVE_FILE_OPTIONS);
691
692  bool haveSpecial = testBit(archive_options, AO_HAVE_SPECIAL_FORMATS);
693  bool haveFiles = testBit(archive_options, AO_HAVE_FILE_HEADERS);
694  bool haveNumbers = testBit(archive_options, AO_HAVE_CP_NUMBERS);
695  bool haveCPExtra = testBit(archive_options, AO_HAVE_CP_EXTRAS);
696
697  if (majver < JAVA7_PACKAGE_MAJOR_VERSION) {
698    if (haveCPExtra) {
699        abort("Format bits for Java 7 must be zero in previous releases");
700        return;
701    }
702  }
703  if (testBit(archive_options, AO_UNUSED_MBZ)) {
704    abort("High archive option bits are reserved and must be zero");
705    return;
706  }
707  if (haveFiles) {
708    uint hi = hdr.getInt();
709    uint lo = hdr.getInt();
710    julong x = band::makeLong(hi, lo);
711    archive_size = (size_t) x;
712    if (archive_size != x) {
713      // Silly size specified; force overflow.
714      archive_size = PSIZE_MAX+1;
715    }
716    hdrVals += 2;
717  } else {
718    hdrValsSkipped += 2;
719  }
720
721  // Now we can size the whole archive.
722  // Read everything else into a mega-buffer.
723  rp = hdr.rp;
724  size_t header_size_0 = (rp - input.base()); // used-up header (4byte + 3int)
725  size_t header_size_1 = (rplimit - rp);      // buffered unused initial fragment
726  size_t header_size   = header_size_0 + header_size_1;
727  unsized_bytes_read = header_size_0;
728  CHECK;
729  if (foreign_buf) {
730    if (archive_size > header_size_1) {
731      abort("EOF reading fixed input buffer");
732      return;
733    }
734  } else if (archive_size != 0) {
735    if (archive_size < ARCHIVE_SIZE_MIN) {
736      abort("impossible archive size");  // bad input data
737      return;
738    }
739    if (archive_size < header_size_1) {
740      abort("too much read-ahead");  // somehow we pre-fetched too much?
741      return;
742    }
743    input.set(U_NEW(byte, add_size(header_size_0, archive_size, C_SLOP)),
744              header_size_0 + archive_size);
745    CHECK;
746    assert(input.limit()[0] == 0);
747    // Move all the bytes we read initially into the real buffer.
748    input.b.copyFrom(initbuf, header_size);
749    rp      = input.b.ptr + header_size_0;
750    rplimit = input.b.ptr + header_size;
751  } else {
752    // It's more complicated and painful.
753    // A zero archive_size means that we must read until EOF.
754    input.init(CHUNK*2);
755    CHECK;
756    input.b.len = input.allocated;
757    rp = rplimit = input.base();
758    // Set up input buffer as if we already read the header:
759    input.b.copyFrom(initbuf, header_size);
760    CHECK;
761    rplimit += header_size;
762    while (ensure_input(input.limit() - rp)) {
763      size_t dataSoFar = input_remaining();
764      size_t nextSize = add_size(dataSoFar, CHUNK);
765      input.ensureSize(nextSize);
766      CHECK;
767      input.b.len = input.allocated;
768      rp = rplimit = input.base();
769      rplimit += dataSoFar;
770    }
771    size_t dataSize = (rplimit - input.base());
772    input.b.len = dataSize;
773    input.grow(C_SLOP);
774    CHECK;
775    free_input = true;  // free it later
776    input.b.len = dataSize;
777    assert(input.limit()[0] == 0);
778    rp = rplimit = input.base();
779    rplimit += dataSize;
780    rp += header_size_0;  // already scanned these bytes...
781  }
782  live_input = true;    // mark as "do not reuse"
783  if (aborting()) {
784    abort("cannot allocate large input buffer for package file");
785    return;
786  }
787
788  // read the rest of the header fields  int assertSkipped = AH_LENGTH_MIN - AH_LENGTH_0 - AH_LENGTH_S;
789  int remainingHeaders = AH_LENGTH_MIN - AH_LENGTH_0 - AH_LENGTH_S;
790  if (haveSpecial)
791    remainingHeaders += AH_SPECIAL_FORMAT_LEN;
792  if (haveFiles)
793     remainingHeaders += AH_FILE_HEADER_LEN;
794  if (haveNumbers)
795    remainingHeaders += AH_CP_NUMBER_LEN;
796  if (haveCPExtra)
797    remainingHeaders += AH_CP_EXTRA_LEN;
798
799  ensure_input(remainingHeaders * B_MAX);
800  CHECK;
801  hdr.rp      = rp;
802  hdr.rplimit = rplimit;
803
804  if (haveFiles) {
805    archive_next_count = hdr.getInt();
806    CHECK_COUNT(archive_next_count);
807    archive_modtime = hdr.getInt();
808    file_count = hdr.getInt();
809    CHECK_COUNT(file_count);
810    hdrVals += 3;
811  } else {
812    hdrValsSkipped += 3;
813  }
814
815  if (haveSpecial) {
816    band_headers_size = hdr.getInt();
817    CHECK_COUNT(band_headers_size);
818    attr_definition_count = hdr.getInt();
819    CHECK_COUNT(attr_definition_count);
820    hdrVals += 2;
821  } else {
822    hdrValsSkipped += 2;
823  }
824
825  int cp_counts[N_TAGS_IN_ORDER];
826  for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
827    if (!haveNumbers) {
828      switch (TAGS_IN_ORDER[k]) {
829      case CONSTANT_Integer:
830      case CONSTANT_Float:
831      case CONSTANT_Long:
832      case CONSTANT_Double:
833        cp_counts[k] = 0;
834        hdrValsSkipped += 1;
835        continue;
836      }
837    }
838    if (!haveCPExtra) {
839        switch(TAGS_IN_ORDER[k]) {
840        case CONSTANT_MethodHandle:
841        case CONSTANT_MethodType:
842        case CONSTANT_InvokeDynamic:
843        case CONSTANT_BootstrapMethod:
844          cp_counts[k] = 0;
845          hdrValsSkipped += 1;
846          continue;
847        }
848    }
849    cp_counts[k] = hdr.getInt();
850    CHECK_COUNT(cp_counts[k]);
851    hdrVals += 1;
852  }
853
854  ic_count = hdr.getInt();
855  CHECK_COUNT(ic_count);
856  default_class_minver = hdr.getInt();
857  default_class_majver = hdr.getInt();
858  class_count = hdr.getInt();
859  CHECK_COUNT(class_count);
860  hdrVals += 4;
861
862  // done with archive_header, time to reconcile to ensure
863  // we have read everything correctly
864  hdrVals += hdrValsSkipped;
865  assert(hdrVals == AH_LENGTH);
866  rp = hdr.rp;
867  if (rp > rplimit)
868    abort("EOF reading archive header");
869
870  // Now size the CP.
871#ifndef PRODUCT
872  // bool x = (N_TAGS_IN_ORDER == CONSTANT_Limit);
873  // assert(x);
874#endif //PRODUCT
875  cp.init(this, cp_counts);
876  CHECK;
877
878  default_file_modtime = archive_modtime;
879  if (default_file_modtime == 0 && haveModTime)
880    default_file_modtime = DEFAULT_ARCHIVE_MODTIME;  // taken from driver
881  if (testBit(archive_options, AO_DEFLATE_HINT))
882    default_file_options |= FO_DEFLATE_HINT;
883
884  // meta-bytes, if any, immediately follow archive header
885  //band_headers.readData(band_headers_size);
886  ensure_input(band_headers_size);
887  if (input_remaining() < (size_t)band_headers_size) {
888    abort("EOF reading band headers");
889    return;
890  }
891  bytes band_headers;
892  // The "1+" allows an initial byte to be pushed on the front.
893  band_headers.set(1+U_NEW(byte, 1+band_headers_size+C_SLOP),
894                   band_headers_size);
895  CHECK;
896  // Start scanning band headers here:
897  band_headers.copyFrom(rp, band_headers.len);
898  rp += band_headers.len;
899  assert(rp <= rplimit);
900  meta_rp = band_headers.ptr;
901  // Put evil meta-codes at the end of the band headers,
902  // so we are sure to throw an error if we run off the end.
903  bytes::of(band_headers.limit(), C_SLOP).clear(_meta_error);
904}
905
906void unpacker::finish() {
907  if (verbose >= 1) {
908    fprintf(errstrm,
909            "A total of "
910            LONG_LONG_FORMAT " bytes were read in %d segment(s).\n",
911            (bytes_read_before_reset+bytes_read),
912            segments_read_before_reset+1);
913    fprintf(errstrm,
914            "A total of "
915            LONG_LONG_FORMAT " file content bytes were written.\n",
916            (bytes_written_before_reset+bytes_written));
917    fprintf(errstrm,
918            "A total of %d files (of which %d are classes) were written to output.\n",
919            files_written_before_reset+files_written,
920            classes_written_before_reset+classes_written);
921  }
922  if (jarout != null)
923    jarout->closeJarFile(true);
924  if (errstrm != null) {
925    if (errstrm == stdout || errstrm == stderr) {
926      fflush(errstrm);
927    } else {
928      fclose(errstrm);
929    }
930    errstrm = null;
931    errstrm_name = null;
932  }
933}
934
935
936// Cf. PackageReader.readConstantPoolCounts
937void cpool::init(unpacker* u_, int counts[CONSTANT_Limit]) {
938  this->u = u_;
939
940  // Fill-pointer for CP.
941  int next_entry = 0;
942
943  // Size the constant pool:
944  for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
945    byte tag = TAGS_IN_ORDER[k];
946    int  len = counts[k];
947    tag_count[tag] = len;
948    tag_base[tag] = next_entry;
949    next_entry += len;
950    // Detect and defend against constant pool size overflow.
951    // (Pack200 forbids the sum of CP counts to exceed 2^29-1.)
952    enum {
953      CP_SIZE_LIMIT = (1<<29),
954      IMPLICIT_ENTRY_COUNT = 1  // empty Utf8 string
955    };
956    if (len >= (1<<29) || len < 0
957        || next_entry >= CP_SIZE_LIMIT+IMPLICIT_ENTRY_COUNT) {
958      abort("archive too large:  constant pool limit exceeded");
959      return;
960    }
961  }
962
963  // Close off the end of the CP:
964  nentries = next_entry;
965
966  // place a limit on future CP growth:
967  size_t generous = 0;
968  generous = add_size(generous, u->ic_count); // implicit name
969  generous = add_size(generous, u->ic_count); // outer
970  generous = add_size(generous, u->ic_count); // outer.utf8
971  generous = add_size(generous, 40); // WKUs, misc
972  generous = add_size(generous, u->class_count); // implicit SourceFile strings
973  maxentries = (uint)add_size(nentries, generous);
974
975  // Note that this CP does not include "empty" entries
976  // for longs and doubles.  Those are introduced when
977  // the entries are renumbered for classfile output.
978
979  entries = U_NEW(entry, maxentries);
980  CHECK;
981
982  first_extra_entry = &entries[nentries];
983
984  // Initialize the standard indexes.
985  for (int tag = 0; tag < CONSTANT_Limit; tag++) {
986    entry* cpMap = &entries[tag_base[tag]];
987    tag_index[tag].init(tag_count[tag], cpMap, tag);
988  }
989
990  // Initialize *all* our entries once
991  for (uint i = 0 ; i < maxentries ; i++) {
992    entries[i].outputIndex = REQUESTED_NONE;
993  }
994
995  initGroupIndexes();
996  // Initialize hashTab to a generous power-of-two size.
997  uint pow2 = 1;
998  uint target = maxentries + maxentries/2;  // 60% full
999  while (pow2 < target)  pow2 <<= 1;
1000  hashTab = U_NEW(entry*, hashTabLength = pow2);
1001}
1002
1003static byte* store_Utf8_char(byte* cp, unsigned short ch) {
1004  if (ch >= 0x001 && ch <= 0x007F) {
1005    *cp++ = (byte) ch;
1006  } else if (ch <= 0x07FF) {
1007    *cp++ = (byte) (0xC0 | ((ch >>  6) & 0x1F));
1008    *cp++ = (byte) (0x80 | ((ch >>  0) & 0x3F));
1009  } else {
1010    *cp++ = (byte) (0xE0 | ((ch >> 12) & 0x0F));
1011    *cp++ = (byte) (0x80 | ((ch >>  6) & 0x3F));
1012    *cp++ = (byte) (0x80 | ((ch >>  0) & 0x3F));
1013  }
1014  return cp;
1015}
1016
1017static byte* skip_Utf8_chars(byte* cp, int len) {
1018  for (;; cp++) {
1019    int ch = *cp & 0xFF;
1020    if ((ch & 0xC0) != 0x80) {
1021      if (len-- == 0)
1022        return cp;
1023      if (ch < 0x80 && len == 0)
1024        return cp+1;
1025    }
1026  }
1027}
1028
1029static int compare_Utf8_chars(bytes& b1, bytes& b2) {
1030  int l1 = (int)b1.len;
1031  int l2 = (int)b2.len;
1032  int l0 = (l1 < l2) ? l1 : l2;
1033  byte* p1 = b1.ptr;
1034  byte* p2 = b2.ptr;
1035  int c0 = 0;
1036  for (int i = 0; i < l0; i++) {
1037    int c1 = p1[i] & 0xFF;
1038    int c2 = p2[i] & 0xFF;
1039    if (c1 != c2) {
1040      // Before returning the obvious answer,
1041      // check to see if c1 or c2 is part of a 0x0000,
1042      // which encodes as {0xC0,0x80}.  The 0x0000 is the
1043      // lowest-sorting Java char value, and yet it encodes
1044      // as if it were the first char after 0x7F, which causes
1045      // strings containing nulls to sort too high.  All other
1046      // comparisons are consistent between Utf8 and Java chars.
1047      if (c1 == 0xC0 && (p1[i+1] & 0xFF) == 0x80)  c1 = 0;
1048      if (c2 == 0xC0 && (p2[i+1] & 0xFF) == 0x80)  c2 = 0;
1049      if (c0 == 0xC0) {
1050        assert(((c1|c2) & 0xC0) == 0x80);  // c1 & c2 are extension chars
1051        if (c1 == 0x80)  c1 = 0;  // will sort below c2
1052        if (c2 == 0x80)  c2 = 0;  // will sort below c1
1053      }
1054      return c1 - c2;
1055    }
1056    c0 = c1;  // save away previous char
1057  }
1058  // common prefix is identical; return length difference if any
1059  return l1 - l2;
1060}
1061
1062// Cf. PackageReader.readUtf8Bands
1063local_inline
1064void unpacker::read_Utf8_values(entry* cpMap, int len) {
1065  // Implicit first Utf8 string is the empty string.
1066  enum {
1067    // certain bands begin with implicit zeroes
1068    PREFIX_SKIP_2 = 2,
1069    SUFFIX_SKIP_1 = 1
1070  };
1071
1072  int i;
1073
1074  // First band:  Read lengths of shared prefixes.
1075  if (len > PREFIX_SKIP_2)
1076    cp_Utf8_prefix.readData(len - PREFIX_SKIP_2);
1077    NOT_PRODUCT(else cp_Utf8_prefix.readData(0));  // for asserts
1078
1079  // Second band:  Read lengths of unshared suffixes:
1080  if (len > SUFFIX_SKIP_1)
1081    cp_Utf8_suffix.readData(len - SUFFIX_SKIP_1);
1082    NOT_PRODUCT(else cp_Utf8_suffix.readData(0));  // for asserts
1083
1084  bytes* allsuffixes = T_NEW(bytes, len);
1085  CHECK;
1086
1087  int nbigsuf = 0;
1088  fillbytes charbuf;    // buffer to allocate small strings
1089  charbuf.init();
1090
1091  // Third band:  Read the char values in the unshared suffixes:
1092  cp_Utf8_chars.readData(cp_Utf8_suffix.getIntTotal());
1093  for (i = 0; i < len; i++) {
1094    int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
1095    if (suffix < 0) {
1096      abort("bad utf8 suffix");
1097      return;
1098    }
1099    if (suffix == 0 && i >= SUFFIX_SKIP_1) {
1100      // chars are packed in cp_Utf8_big_chars
1101      nbigsuf += 1;
1102      continue;
1103    }
1104    bytes& chars  = allsuffixes[i];
1105    uint size3    = suffix * 3;     // max Utf8 length
1106    bool isMalloc = (suffix > SMALL);
1107    if (isMalloc) {
1108      chars.malloc(size3);
1109    } else {
1110      if (!charbuf.canAppend(size3+1)) {
1111        assert(charbuf.allocated == 0 || tmallocs.contains(charbuf.base()));
1112        charbuf.init(CHUNK);  // Reset to new buffer.
1113        tmallocs.add(charbuf.base());
1114      }
1115      chars.set(charbuf.grow(size3+1), size3);
1116    }
1117    CHECK;
1118    byte* chp = chars.ptr;
1119    for (int j = 0; j < suffix; j++) {
1120      unsigned short ch = cp_Utf8_chars.getInt();
1121      chp = store_Utf8_char(chp, ch);
1122    }
1123    // shrink to fit:
1124    if (isMalloc) {
1125      chars.realloc(chp - chars.ptr);
1126      CHECK;
1127      tmallocs.add(chars.ptr); // free it later
1128    } else {
1129      int shrink = (int)(chars.limit() - chp);
1130      chars.len -= shrink;
1131      charbuf.b.len -= shrink;  // ungrow to reclaim buffer space
1132      // Note that we did not reclaim the final '\0'.
1133      assert(chars.limit() == charbuf.limit()-1);
1134      assert(strlen((char*)chars.ptr) == chars.len);
1135    }
1136  }
1137  //cp_Utf8_chars.done();
1138#ifndef PRODUCT
1139  charbuf.b.set(null, 0); // tidy
1140#endif
1141
1142  // Fourth band:  Go back and size the specially packed strings.
1143  int maxlen = 0;
1144  cp_Utf8_big_suffix.readData(nbigsuf);
1145  cp_Utf8_suffix.rewind();
1146  for (i = 0; i < len; i++) {
1147    int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
1148    int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
1149    if (prefix < 0 || prefix+suffix < 0) {
1150       abort("bad utf8 prefix");
1151       return;
1152    }
1153    bytes& chars = allsuffixes[i];
1154    if (suffix == 0 && i >= SUFFIX_SKIP_1) {
1155      suffix = cp_Utf8_big_suffix.getInt();
1156      assert(chars.ptr == null);
1157      chars.len = suffix;  // just a momentary hack
1158    } else {
1159      assert(chars.ptr != null);
1160    }
1161    if (maxlen < prefix + suffix) {
1162      maxlen = prefix + suffix;
1163    }
1164  }
1165  //cp_Utf8_suffix.done();      // will use allsuffixes[i].len (ptr!=null)
1166  //cp_Utf8_big_suffix.done();  // will use allsuffixes[i].len
1167
1168  // Fifth band(s):  Get the specially packed characters.
1169  cp_Utf8_big_suffix.rewind();
1170  for (i = 0; i < len; i++) {
1171    bytes& chars = allsuffixes[i];
1172    if (chars.ptr != null)  continue;  // already input
1173    int suffix = (int)chars.len;  // pick up the hack
1174    uint size3 = suffix * 3;
1175    if (suffix == 0)  continue;  // done with empty string
1176    chars.malloc(size3);
1177    CHECK;
1178    byte* chp = chars.ptr;
1179    band saved_band = cp_Utf8_big_chars;
1180    cp_Utf8_big_chars.readData(suffix);
1181    CHECK;
1182    for (int j = 0; j < suffix; j++) {
1183      unsigned short ch = cp_Utf8_big_chars.getInt();
1184      CHECK;
1185      chp = store_Utf8_char(chp, ch);
1186    }
1187    chars.realloc(chp - chars.ptr);
1188    CHECK;
1189    tmallocs.add(chars.ptr);  // free it later
1190    //cp_Utf8_big_chars.done();
1191    cp_Utf8_big_chars = saved_band;  // reset the band for the next string
1192  }
1193  cp_Utf8_big_chars.readData(0);  // zero chars
1194  //cp_Utf8_big_chars.done();
1195
1196  // Finally, sew together all the prefixes and suffixes.
1197  bytes bigbuf;
1198  bigbuf.malloc(maxlen * 3 + 1);  // max Utf8 length, plus slop for null
1199  CHECK;
1200  int prevlen = 0;  // previous string length (in chars)
1201  tmallocs.add(bigbuf.ptr);  // free after this block
1202  CHECK;
1203  cp_Utf8_prefix.rewind();
1204  for (i = 0; i < len; i++) {
1205    bytes& chars = allsuffixes[i];
1206    int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
1207    CHECK;
1208    int suffix = (int)chars.len;
1209    byte* fillp;
1210    // by induction, the buffer is already filled with the prefix
1211    // make sure the prefix value is not corrupted, though:
1212    if (prefix > prevlen) {
1213       abort("utf8 prefix overflow");
1214       return;
1215    }
1216    fillp = skip_Utf8_chars(bigbuf.ptr, prefix);
1217    // copy the suffix into the same buffer:
1218    fillp = chars.writeTo(fillp);
1219    assert(bigbuf.inBounds(fillp));
1220    *fillp = 0;  // bigbuf must contain a well-formed Utf8 string
1221    int length = (int)(fillp - bigbuf.ptr);
1222    bytes& value = cpMap[i].value.b;
1223    value.set(U_NEW(byte, add_size(length,1)), length);
1224    value.copyFrom(bigbuf.ptr, length);
1225    CHECK;
1226    // Index all Utf8 strings
1227    entry* &htref = cp.hashTabRef(CONSTANT_Utf8, value);
1228    if (htref == null) {
1229      // Note that if two identical strings are transmitted,
1230      // the first is taken to be the canonical one.
1231      htref = &cpMap[i];
1232    }
1233    prevlen = prefix + suffix;
1234  }
1235  //cp_Utf8_prefix.done();
1236
1237  // Free intermediate buffers.
1238  free_temps();
1239}
1240
1241local_inline
1242void unpacker::read_single_words(band& cp_band, entry* cpMap, int len) {
1243  cp_band.readData(len);
1244  for (int i = 0; i < len; i++) {
1245    cpMap[i].value.i = cp_band.getInt();  // coding handles signs OK
1246  }
1247}
1248
1249maybe_inline
1250void unpacker::read_double_words(band& cp_bands, entry* cpMap, int len) {
1251  band& cp_band_hi = cp_bands;
1252  band& cp_band_lo = cp_bands.nextBand();
1253  cp_band_hi.readData(len);
1254  cp_band_lo.readData(len);
1255  for (int i = 0; i < len; i++) {
1256    cpMap[i].value.l = cp_band_hi.getLong(cp_band_lo, true);
1257  }
1258  //cp_band_hi.done();
1259  //cp_band_lo.done();
1260}
1261
1262maybe_inline
1263void unpacker::read_single_refs(band& cp_band, byte refTag, entry* cpMap, int len) {
1264  assert(refTag == CONSTANT_Utf8);
1265  cp_band.setIndexByTag(refTag);
1266  cp_band.readData(len);
1267  CHECK;
1268  int indexTag = (cp_band.bn == e_cp_Class) ? CONSTANT_Class : 0;
1269  for (int i = 0; i < len; i++) {
1270    entry& e = cpMap[i];
1271    e.refs = U_NEW(entry*, e.nrefs = 1);
1272    entry* utf = cp_band.getRef();
1273    CHECK;
1274    e.refs[0] = utf;
1275    e.value.b = utf->value.b;  // copy value of Utf8 string to self
1276    if (indexTag != 0) {
1277      // Maintain cross-reference:
1278      entry* &htref = cp.hashTabRef(indexTag, e.value.b);
1279      if (htref == null) {
1280        // Note that if two identical classes are transmitted,
1281        // the first is taken to be the canonical one.
1282        htref = &e;
1283      }
1284    }
1285  }
1286  //cp_band.done();
1287}
1288
1289maybe_inline
1290void unpacker::read_double_refs(band& cp_band, byte ref1Tag, byte ref2Tag,
1291                                entry* cpMap, int len) {
1292  band& cp_band1 = cp_band;
1293  band& cp_band2 = cp_band.nextBand();
1294  cp_band1.setIndexByTag(ref1Tag);
1295  cp_band2.setIndexByTag(ref2Tag);
1296  cp_band1.readData(len);
1297  cp_band2.readData(len);
1298  CHECK;
1299  for (int i = 0; i < len; i++) {
1300    entry& e = cpMap[i];
1301    e.refs = U_NEW(entry*, e.nrefs = 2);
1302    e.refs[0] = cp_band1.getRef();
1303    CHECK;
1304    e.refs[1] = cp_band2.getRef();
1305    CHECK;
1306  }
1307  //cp_band1.done();
1308  //cp_band2.done();
1309}
1310
1311// Cf. PackageReader.readSignatureBands
1312maybe_inline
1313void unpacker::read_signature_values(entry* cpMap, int len) {
1314  cp_Signature_form.setIndexByTag(CONSTANT_Utf8);
1315  cp_Signature_form.readData(len);
1316  CHECK;
1317  int ncTotal = 0;
1318  int i;
1319  for (i = 0; i < len; i++) {
1320    entry& e = cpMap[i];
1321    entry& form = *cp_Signature_form.getRef();
1322    CHECK;
1323    int nc = 0;
1324
1325    for (int j = 0; j < (int)form.value.b.len; j++) {
1326      int c = form.value.b.ptr[j];
1327      if (c == 'L') nc++;
1328    }
1329    ncTotal += nc;
1330    e.refs = U_NEW(entry*, cpMap[i].nrefs = 1 + nc);
1331    CHECK;
1332    e.refs[0] = &form;
1333  }
1334  //cp_Signature_form.done();
1335  cp_Signature_classes.setIndexByTag(CONSTANT_Class);
1336  cp_Signature_classes.readData(ncTotal);
1337  for (i = 0; i < len; i++) {
1338    entry& e = cpMap[i];
1339    for (int j = 1; j < e.nrefs; j++) {
1340      e.refs[j] = cp_Signature_classes.getRef();
1341      CHECK;
1342    }
1343  }
1344  //cp_Signature_classes.done();
1345}
1346
1347maybe_inline
1348void unpacker::checkLegacy(const char* name) {
1349  if (u->majver < JAVA7_PACKAGE_MAJOR_VERSION) {
1350      char message[100];
1351      snprintf(message, 99, "unexpected band %s\n", name);
1352      abort(message);
1353  }
1354}
1355
1356maybe_inline
1357void unpacker::read_method_handle(entry* cpMap, int len) {
1358  if (len > 0) {
1359    checkLegacy(cp_MethodHandle_refkind.name);
1360  }
1361  cp_MethodHandle_refkind.readData(len);
1362  cp_MethodHandle_member.setIndexByTag(CONSTANT_AnyMember);
1363  cp_MethodHandle_member.readData(len);
1364  for (int i = 0 ; i < len ; i++) {
1365    entry& e = cpMap[i];
1366    e.value.i = cp_MethodHandle_refkind.getInt();
1367    e.refs = U_NEW(entry*, e.nrefs = 1);
1368    e.refs[0] = cp_MethodHandle_member.getRef();
1369    CHECK;
1370  }
1371}
1372
1373maybe_inline
1374void unpacker::read_method_type(entry* cpMap, int len) {
1375  if (len > 0) {
1376    checkLegacy(cp_MethodType.name);
1377  }
1378  cp_MethodType.setIndexByTag(CONSTANT_Signature);
1379  cp_MethodType.readData(len);
1380  for (int i = 0 ; i < len ; i++) {
1381      entry& e = cpMap[i];
1382      e.refs = U_NEW(entry*, e.nrefs = 1);
1383      e.refs[0] = cp_MethodType.getRef();
1384      CHECK;
1385  }
1386}
1387
1388maybe_inline
1389void unpacker::read_bootstrap_methods(entry* cpMap, int len) {
1390  if (len > 0) {
1391    checkLegacy(cp_BootstrapMethod_ref.name);
1392  }
1393  cp_BootstrapMethod_ref.setIndexByTag(CONSTANT_MethodHandle);
1394  cp_BootstrapMethod_ref.readData(len);
1395
1396  cp_BootstrapMethod_arg_count.readData(len);
1397  int totalArgCount = cp_BootstrapMethod_arg_count.getIntTotal();
1398  cp_BootstrapMethod_arg.setIndexByTag(CONSTANT_LoadableValue);
1399  cp_BootstrapMethod_arg.readData(totalArgCount);
1400  for (int i = 0; i < len; i++) {
1401    entry& e = cpMap[i];
1402    int argc = cp_BootstrapMethod_arg_count.getInt();
1403    e.value.i = argc;
1404    e.refs = U_NEW(entry*, e.nrefs = argc + 1);
1405    e.refs[0] = cp_BootstrapMethod_ref.getRef();
1406    for (int j = 1 ; j < e.nrefs ; j++) {
1407      e.refs[j] = cp_BootstrapMethod_arg.getRef();
1408      CHECK;
1409    }
1410  }
1411}
1412// Cf. PackageReader.readConstantPool
1413void unpacker::read_cp() {
1414  byte* rp0 = rp;
1415
1416  int i;
1417
1418  for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
1419    byte tag = TAGS_IN_ORDER[k];
1420    int  len = cp.tag_count[tag];
1421    int base = cp.tag_base[tag];
1422
1423    PRINTCR((1,"Reading %d %s entries...", len, NOT_PRODUCT(TAG_NAME[tag])+0));
1424    entry* cpMap = &cp.entries[base];
1425    for (i = 0; i < len; i++) {
1426      cpMap[i].tag = tag;
1427      cpMap[i].inord = i;
1428    }
1429    // Initialize the tag's CP index right away, since it might be needed
1430    // in the next pass to initialize the CP for another tag.
1431#ifndef PRODUCT
1432    cpindex* ix = &cp.tag_index[tag];
1433    assert(ix->ixTag == tag);
1434    assert((int)ix->len   == len);
1435    assert(ix->base1 == cpMap);
1436#endif
1437
1438    switch (tag) {
1439    case CONSTANT_Utf8:
1440      read_Utf8_values(cpMap, len);
1441      break;
1442    case CONSTANT_Integer:
1443      read_single_words(cp_Int, cpMap, len);
1444      break;
1445    case CONSTANT_Float:
1446      read_single_words(cp_Float, cpMap, len);
1447      break;
1448    case CONSTANT_Long:
1449      read_double_words(cp_Long_hi /*& cp_Long_lo*/, cpMap, len);
1450      break;
1451    case CONSTANT_Double:
1452      read_double_words(cp_Double_hi /*& cp_Double_lo*/, cpMap, len);
1453      break;
1454    case CONSTANT_String:
1455      read_single_refs(cp_String, CONSTANT_Utf8, cpMap, len);
1456      break;
1457    case CONSTANT_Class:
1458      read_single_refs(cp_Class, CONSTANT_Utf8, cpMap, len);
1459      break;
1460    case CONSTANT_Signature:
1461      read_signature_values(cpMap, len);
1462      break;
1463    case CONSTANT_NameandType:
1464      read_double_refs(cp_Descr_name /*& cp_Descr_type*/,
1465                       CONSTANT_Utf8, CONSTANT_Signature,
1466                       cpMap, len);
1467      break;
1468    case CONSTANT_Fieldref:
1469      read_double_refs(cp_Field_class /*& cp_Field_desc*/,
1470                       CONSTANT_Class, CONSTANT_NameandType,
1471                       cpMap, len);
1472      break;
1473    case CONSTANT_Methodref:
1474      read_double_refs(cp_Method_class /*& cp_Method_desc*/,
1475                       CONSTANT_Class, CONSTANT_NameandType,
1476                       cpMap, len);
1477      break;
1478    case CONSTANT_InterfaceMethodref:
1479      read_double_refs(cp_Imethod_class /*& cp_Imethod_desc*/,
1480                       CONSTANT_Class, CONSTANT_NameandType,
1481                       cpMap, len);
1482      break;
1483    case CONSTANT_MethodHandle:
1484      // consumes cp_MethodHandle_refkind and cp_MethodHandle_member
1485      read_method_handle(cpMap, len);
1486      break;
1487    case CONSTANT_MethodType:
1488      // consumes cp_MethodType
1489      read_method_type(cpMap, len);
1490      break;
1491    case CONSTANT_InvokeDynamic:
1492      read_double_refs(cp_InvokeDynamic_spec, CONSTANT_BootstrapMethod,
1493                       CONSTANT_NameandType,
1494                       cpMap, len);
1495      break;
1496    case CONSTANT_BootstrapMethod:
1497      // consumes cp_BootstrapMethod_ref, cp_BootstrapMethod_arg_count and cp_BootstrapMethod_arg
1498      read_bootstrap_methods(cpMap, len);
1499      break;
1500    default:
1501      assert(false);
1502      break;
1503    }
1504    CHECK;
1505  }
1506
1507  cp.expandSignatures();
1508  CHECK;
1509  cp.initMemberIndexes();
1510  CHECK;
1511
1512  PRINTCR((1,"parsed %d constant pool entries in %d bytes", cp.nentries, (rp - rp0)));
1513
1514  #define SNAME(n,s) #s "\0"
1515  const char* symNames = (
1516    ALL_ATTR_DO(SNAME)
1517    "<init>"
1518  );
1519  #undef SNAME
1520
1521  for (int sn = 0; sn < cpool::s_LIMIT; sn++) {
1522    assert(symNames[0] >= '0' && symNames[0] <= 'Z');  // sanity
1523    bytes name; name.set(symNames);
1524    if (name.len > 0 && name.ptr[0] != '0') {
1525      cp.sym[sn] = cp.ensureUtf8(name);
1526      PRINTCR((4, "well-known sym %d=%s", sn, cp.sym[sn]->string()));
1527    }
1528    symNames += name.len + 1;  // skip trailing null to next name
1529  }
1530
1531  band::initIndexes(this);
1532}
1533
1534static band* no_bands[] = { null };  // shared empty body
1535
1536inline
1537band& unpacker::attr_definitions::fixed_band(int e_class_xxx) {
1538  return u->all_bands[xxx_flags_hi_bn + (e_class_xxx-e_class_flags_hi)];
1539}
1540inline band& unpacker::attr_definitions::xxx_flags_hi()
1541  { return fixed_band(e_class_flags_hi); }
1542inline band& unpacker::attr_definitions::xxx_flags_lo()
1543  { return fixed_band(e_class_flags_lo); }
1544inline band& unpacker::attr_definitions::xxx_attr_count()
1545  { return fixed_band(e_class_attr_count); }
1546inline band& unpacker::attr_definitions::xxx_attr_indexes()
1547  { return fixed_band(e_class_attr_indexes); }
1548inline band& unpacker::attr_definitions::xxx_attr_calls()
1549  { return fixed_band(e_class_attr_calls); }
1550
1551
1552inline
1553unpacker::layout_definition*
1554unpacker::attr_definitions::defineLayout(int idx,
1555                                         entry* nameEntry,
1556                                         const char* layout) {
1557  const char* name = nameEntry->value.b.strval();
1558  layout_definition* lo = defineLayout(idx, name, layout);
1559  CHECK_0;
1560  lo->nameEntry = nameEntry;
1561  return lo;
1562}
1563
1564unpacker::layout_definition*
1565unpacker::attr_definitions::defineLayout(int idx,
1566                                         const char* name,
1567                                         const char* layout) {
1568  assert(flag_limit != 0);  // must be set up already
1569  if (idx >= 0) {
1570    // Fixed attr.
1571    if (idx >= (int)flag_limit)
1572      abort("attribute index too large");
1573    if (isRedefined(idx))
1574      abort("redefined attribute index");
1575    redef |= ((julong)1<<idx);
1576  } else {
1577    idx = flag_limit + overflow_count.length();
1578    overflow_count.add(0);  // make a new counter
1579  }
1580  layout_definition* lo = U_NEW(layout_definition, 1);
1581  CHECK_0;
1582  lo->idx = idx;
1583  lo->name = name;
1584  lo->layout = layout;
1585  for (int adds = (idx+1) - layouts.length(); adds > 0; adds--) {
1586    layouts.add(null);
1587  }
1588  CHECK_0;
1589  layouts.get(idx) = lo;
1590  return lo;
1591}
1592
1593band**
1594unpacker::attr_definitions::buildBands(unpacker::layout_definition* lo) {
1595  int i;
1596  if (lo->elems != null)
1597    return lo->bands();
1598  if (lo->layout[0] == '\0') {
1599    lo->elems = no_bands;
1600  } else {
1601    // Create bands for this attribute by parsing the layout.
1602    bool hasCallables = lo->hasCallables();
1603    bands_made = 0x10000;  // base number for bands made
1604    const char* lp = lo->layout;
1605    lp = parseLayout(lp, lo->elems, -1);
1606    CHECK_0;
1607    if (lp[0] != '\0' || band_stack.length() > 0) {
1608      abort("garbage at end of layout");
1609    }
1610    band_stack.popTo(0);
1611    CHECK_0;
1612
1613    // Fix up callables to point at their callees.
1614    band** bands = lo->elems;
1615    assert(bands == lo->bands());
1616    int num_callables = 0;
1617    if (hasCallables) {
1618      while (bands[num_callables] != null) {
1619        if (bands[num_callables]->le_kind != EK_CBLE) {
1620          abort("garbage mixed with callables");
1621          break;
1622        }
1623        num_callables += 1;
1624      }
1625    }
1626    for (i = 0; i < calls_to_link.length(); i++) {
1627      band& call = *(band*) calls_to_link.get(i);
1628      assert(call.le_kind == EK_CALL);
1629      // Determine the callee.
1630      int call_num = call.le_len;
1631      if (call_num < 0 || call_num >= num_callables) {
1632        abort("bad call in layout");
1633        break;
1634      }
1635      band& cble = *bands[call_num];
1636      // Link the call to it.
1637      call.le_body[0] = &cble;
1638      // Distinguish backward calls and callables:
1639      assert(cble.le_kind == EK_CBLE);
1640      assert(cble.le_len == call_num);
1641      cble.le_back |= call.le_back;
1642    }
1643    calls_to_link.popTo(0);
1644  }
1645  return lo->elems;
1646}
1647
1648/* attribute layout language parser
1649
1650  attribute_layout:
1651        ( layout_element )* | ( callable )+
1652  layout_element:
1653        ( integral | replication | union | call | reference )
1654
1655  callable:
1656        '[' body ']'
1657  body:
1658        ( layout_element )+
1659
1660  integral:
1661        ( unsigned_int | signed_int | bc_index | bc_offset | flag )
1662  unsigned_int:
1663        uint_type
1664  signed_int:
1665        'S' uint_type
1666  any_int:
1667        ( unsigned_int | signed_int )
1668  bc_index:
1669        ( 'P' uint_type | 'PO' uint_type )
1670  bc_offset:
1671        'O' any_int
1672  flag:
1673        'F' uint_type
1674  uint_type:
1675        ( 'B' | 'H' | 'I' | 'V' )
1676
1677  replication:
1678        'N' uint_type '[' body ']'
1679
1680  union:
1681        'T' any_int (union_case)* '(' ')' '[' (body)? ']'
1682  union_case:
1683        '(' union_case_tag (',' union_case_tag)* ')' '[' (body)? ']'
1684  union_case_tag:
1685        ( numeral | numeral '-' numeral )
1686  call:
1687        '(' numeral ')'
1688
1689  reference:
1690        reference_type ( 'N' )? uint_type
1691  reference_type:
1692        ( constant_ref | schema_ref | utf8_ref | untyped_ref )
1693  constant_ref:
1694        ( 'KI' | 'KJ' | 'KF' | 'KD' | 'KS' | 'KQ' )
1695  schema_ref:
1696        ( 'RC' | 'RS' | 'RD' | 'RF' | 'RM' | 'RI' )
1697  utf8_ref:
1698        'RU'
1699  untyped_ref:
1700        'RQ'
1701
1702  numeral:
1703        '(' ('-')? (digit)+ ')'
1704  digit:
1705        ( '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' )
1706
1707*/
1708
1709const char*
1710unpacker::attr_definitions::parseIntLayout(const char* lp, band* &res,
1711                                           byte le_kind, bool can_be_signed) {
1712  const char* lp0 = lp;
1713  band* b = U_NEW(band, 1);
1714  CHECK_(lp);
1715  char le = *lp++;
1716  int spec = UNSIGNED5_spec;
1717  if (le == 'S' && can_be_signed) {
1718    // Note:  This is the last use of sign.  There is no 'EF_SIGN'.
1719    spec = SIGNED5_spec;
1720    le = *lp++;
1721  } else if (le == 'B') {
1722    spec = BYTE1_spec;  // unsigned byte
1723  }
1724  b->init(u, bands_made++, spec);
1725  b->le_kind = le_kind;
1726  int le_len = 0;
1727  switch (le) {
1728  case 'B': le_len = 1; break;
1729  case 'H': le_len = 2; break;
1730  case 'I': le_len = 4; break;
1731  case 'V': le_len = 0; break;
1732  default:  abort("bad layout element");
1733  }
1734  b->le_len = le_len;
1735  band_stack.add(b);
1736  res = b;
1737  return lp;
1738}
1739
1740const char*
1741unpacker::attr_definitions::parseNumeral(const char* lp, int &res) {
1742  const char* lp0 = lp;
1743  bool sgn = false;
1744  if (*lp == '0') { res = 0; return lp+1; }  // special case '0'
1745  if (*lp == '-') { sgn = true; lp++; }
1746  const char* dp = lp;
1747  int con = 0;
1748  while (*dp >= '0' && *dp <= '9') {
1749    int con0 = con;
1750    con *= 10;
1751    con += (*dp++) - '0';
1752    if (con <= con0) { con = -1; break; }  //  numeral overflow
1753  }
1754  if (lp == dp) {
1755    abort("missing numeral in layout");
1756    return "";
1757  }
1758  lp = dp;
1759  if (con < 0 && !(sgn && con == -con)) {
1760    // (Portability note:  Misses the error if int is not 32 bits.)
1761    abort("numeral overflow");
1762    return "" ;
1763  }
1764  if (sgn)  con = -con;
1765  res = con;
1766  return lp;
1767}
1768
1769band**
1770unpacker::attr_definitions::popBody(int bs_base) {
1771  // Return everything that was pushed, as a null-terminated pointer array.
1772  int bs_limit = band_stack.length();
1773  if (bs_base == bs_limit) {
1774    return no_bands;
1775  } else {
1776    int nb = bs_limit - bs_base;
1777    band** res = U_NEW(band*, add_size(nb, 1));
1778    CHECK_(no_bands);
1779    for (int i = 0; i < nb; i++) {
1780      band* b = (band*) band_stack.get(bs_base + i);
1781      res[i] = b;
1782    }
1783    band_stack.popTo(bs_base);
1784    return res;
1785  }
1786}
1787
1788const char*
1789unpacker::attr_definitions::parseLayout(const char* lp, band** &res,
1790                                        int curCble) {
1791  const char* lp0 = lp;
1792  int bs_base = band_stack.length();
1793  bool top_level = (bs_base == 0);
1794  band* b;
1795  enum { can_be_signed = true };  // optional arg to parseIntLayout
1796
1797  for (bool done = false; !done; ) {
1798    switch (*lp++) {
1799    case 'B': case 'H': case 'I': case 'V': // unsigned_int
1800    case 'S': // signed_int
1801      --lp; // reparse
1802    case 'F':
1803      lp = parseIntLayout(lp, b, EK_INT);
1804      break;
1805    case 'P':
1806      {
1807        int le_bci = EK_BCI;
1808        if (*lp == 'O') {
1809          ++lp;
1810          le_bci = EK_BCID;
1811        }
1812        assert(*lp != 'S');  // no PSH, etc.
1813        lp = parseIntLayout(lp, b, EK_INT);
1814        b->le_bci = le_bci;
1815        if (le_bci == EK_BCI)
1816          b->defc = coding::findBySpec(BCI5_spec);
1817        else
1818          b->defc = coding::findBySpec(BRANCH5_spec);
1819      }
1820      break;
1821    case 'O':
1822      lp = parseIntLayout(lp, b, EK_INT, can_be_signed);
1823      b->le_bci = EK_BCO;
1824      b->defc = coding::findBySpec(BRANCH5_spec);
1825      break;
1826    case 'N': // replication: 'N' uint '[' elem ... ']'
1827      lp = parseIntLayout(lp, b, EK_REPL);
1828      assert(*lp == '[');
1829      ++lp;
1830      lp = parseLayout(lp, b->le_body, curCble);
1831      CHECK_(lp);
1832      break;
1833    case 'T': // union: 'T' any_int union_case* '(' ')' '[' body ']'
1834      lp = parseIntLayout(lp, b, EK_UN, can_be_signed);
1835      {
1836        int union_base = band_stack.length();
1837        for (;;) {   // for each case
1838          band& k_case = *U_NEW(band, 1);
1839          CHECK_(lp);
1840          band_stack.add(&k_case);
1841          k_case.le_kind = EK_CASE;
1842          k_case.bn = bands_made++;
1843          if (*lp++ != '(') {
1844            abort("bad union case");
1845            return "";
1846          }
1847          if (*lp++ != ')') {
1848            --lp;  // reparse
1849            // Read some case values.  (Use band_stack for temp. storage.)
1850            int case_base = band_stack.length();
1851            for (;;) {
1852              int caseval = 0;
1853              lp = parseNumeral(lp, caseval);
1854              band_stack.add((void*)(size_t)caseval);
1855              if (*lp == '-') {
1856                // new in version 160, allow (1-5) for (1,2,3,4,5)
1857                if (u->majver < JAVA6_PACKAGE_MAJOR_VERSION) {
1858                  abort("bad range in union case label (old archive format)");
1859                  return "";
1860                }
1861                int caselimit = caseval;
1862                lp++;
1863                lp = parseNumeral(lp, caselimit);
1864                if (caseval >= caselimit
1865                    || (uint)(caselimit - caseval) > 0x10000) {
1866                  // Note:  0x10000 is arbitrary implementation restriction.
1867                  // We can remove it later if it's important to.
1868                  abort("bad range in union case label");
1869                  return "";
1870                }
1871                for (;;) {
1872                  ++caseval;
1873                  band_stack.add((void*)(size_t)caseval);
1874                  if (caseval == caselimit)  break;
1875                }
1876              }
1877              if (*lp != ',')  break;
1878              lp++;
1879            }
1880            if (*lp++ != ')') {
1881              abort("bad case label");
1882              return "";
1883            }
1884            // save away the case labels
1885            int ntags = band_stack.length() - case_base;
1886            int* tags = U_NEW(int, add_size(ntags, 1));
1887            CHECK_(lp);
1888            k_case.le_casetags = tags;
1889            *tags++ = ntags;
1890            for (int i = 0; i < ntags; i++) {
1891              *tags++ = ptrlowbits(band_stack.get(case_base+i));
1892            }
1893            band_stack.popTo(case_base);
1894            CHECK_(lp);
1895          }
1896          // Got le_casetags.  Now grab the body.
1897          assert(*lp == '[');
1898          ++lp;
1899          lp = parseLayout(lp, k_case.le_body, curCble);
1900          CHECK_(lp);
1901          if (k_case.le_casetags == null)  break;  // done
1902        }
1903        b->le_body = popBody(union_base);
1904      }
1905      break;
1906    case '(': // call: '(' -?NN* ')'
1907      {
1908        band& call = *U_NEW(band, 1);
1909        CHECK_(lp);
1910        band_stack.add(&call);
1911        call.le_kind = EK_CALL;
1912        call.bn = bands_made++;
1913        call.le_body = U_NEW(band*, 2); // fill in later
1914        int call_num = 0;
1915        lp = parseNumeral(lp, call_num);
1916        call.le_back = (call_num <= 0);
1917        call_num += curCble;  // numeral is self-relative offset
1918        call.le_len = call_num;  //use le_len as scratch
1919        calls_to_link.add(&call);
1920        CHECK_(lp);
1921        if (*lp++ != ')') {
1922          abort("bad call label");
1923          return "";
1924        }
1925      }
1926      break;
1927    case 'K': // reference_type: constant_ref
1928    case 'R': // reference_type: schema_ref
1929      {
1930        int ixTag = CONSTANT_None;
1931        if (lp[-1] == 'K') {
1932          switch (*lp++) {
1933          case 'I': ixTag = CONSTANT_Integer; break;
1934          case 'J': ixTag = CONSTANT_Long; break;
1935          case 'F': ixTag = CONSTANT_Float; break;
1936          case 'D': ixTag = CONSTANT_Double; break;
1937          case 'S': ixTag = CONSTANT_String; break;
1938          case 'Q': ixTag = CONSTANT_FieldSpecific; break;
1939
1940          // new in 1.7
1941          case 'M': ixTag = CONSTANT_MethodHandle; break;
1942          case 'T': ixTag = CONSTANT_MethodType; break;
1943          case 'L': ixTag = CONSTANT_LoadableValue; break;
1944          }
1945        } else {
1946          switch (*lp++) {
1947          case 'C': ixTag = CONSTANT_Class; break;
1948          case 'S': ixTag = CONSTANT_Signature; break;
1949          case 'D': ixTag = CONSTANT_NameandType; break;
1950          case 'F': ixTag = CONSTANT_Fieldref; break;
1951          case 'M': ixTag = CONSTANT_Methodref; break;
1952          case 'I': ixTag = CONSTANT_InterfaceMethodref; break;
1953          case 'U': ixTag = CONSTANT_Utf8; break; //utf8_ref
1954          case 'Q': ixTag = CONSTANT_All; break; //untyped_ref
1955
1956          // new in 1.7
1957          case 'Y': ixTag = CONSTANT_InvokeDynamic; break;
1958          case 'B': ixTag = CONSTANT_BootstrapMethod; break;
1959          case 'N': ixTag = CONSTANT_AnyMember; break;
1960          }
1961        }
1962        if (ixTag == CONSTANT_None) {
1963          abort("bad reference layout");
1964          break;
1965        }
1966        bool nullOK = false;
1967        if (*lp == 'N') {
1968          nullOK = true;
1969          lp++;
1970        }
1971        lp = parseIntLayout(lp, b, EK_REF);
1972        b->defc = coding::findBySpec(UNSIGNED5_spec);
1973        b->initRef(ixTag, nullOK);
1974      }
1975      break;
1976    case '[':
1977      {
1978        // [callable1][callable2]...
1979        if (!top_level) {
1980          abort("bad nested callable");
1981          break;
1982        }
1983        curCble += 1;
1984        NOT_PRODUCT(int call_num = band_stack.length() - bs_base);
1985        band& cble = *U_NEW(band, 1);
1986        CHECK_(lp);
1987        band_stack.add(&cble);
1988        cble.le_kind = EK_CBLE;
1989        NOT_PRODUCT(cble.le_len = call_num);
1990        cble.bn = bands_made++;
1991        lp = parseLayout(lp, cble.le_body, curCble);
1992      }
1993      break;
1994    case ']':
1995      // Hit a closing brace.  This ends whatever body we were in.
1996      done = true;
1997      break;
1998    case '\0':
1999      // Hit a null.  Also ends the (top-level) body.
2000      --lp;  // back up, so caller can see the null also
2001      done = true;
2002      break;
2003    default:
2004      abort("bad layout");
2005      break;
2006    }
2007    CHECK_(lp);
2008  }
2009
2010  // Return the accumulated bands:
2011  res = popBody(bs_base);
2012  return lp;
2013}
2014
2015void unpacker::read_attr_defs() {
2016  int i;
2017
2018  // Tell each AD which attrc it is and where its fixed flags are:
2019  attr_defs[ATTR_CONTEXT_CLASS].attrc            = ATTR_CONTEXT_CLASS;
2020  attr_defs[ATTR_CONTEXT_CLASS].xxx_flags_hi_bn  = e_class_flags_hi;
2021  attr_defs[ATTR_CONTEXT_FIELD].attrc            = ATTR_CONTEXT_FIELD;
2022  attr_defs[ATTR_CONTEXT_FIELD].xxx_flags_hi_bn  = e_field_flags_hi;
2023  attr_defs[ATTR_CONTEXT_METHOD].attrc           = ATTR_CONTEXT_METHOD;
2024  attr_defs[ATTR_CONTEXT_METHOD].xxx_flags_hi_bn = e_method_flags_hi;
2025  attr_defs[ATTR_CONTEXT_CODE].attrc             = ATTR_CONTEXT_CODE;
2026  attr_defs[ATTR_CONTEXT_CODE].xxx_flags_hi_bn   = e_code_flags_hi;
2027
2028  // Decide whether bands for the optional high flag words are present.
2029  attr_defs[ATTR_CONTEXT_CLASS]
2030    .setHaveLongFlags(testBit(archive_options, AO_HAVE_CLASS_FLAGS_HI));
2031  attr_defs[ATTR_CONTEXT_FIELD]
2032    .setHaveLongFlags(testBit(archive_options, AO_HAVE_FIELD_FLAGS_HI));
2033  attr_defs[ATTR_CONTEXT_METHOD]
2034    .setHaveLongFlags(testBit(archive_options, AO_HAVE_METHOD_FLAGS_HI));
2035  attr_defs[ATTR_CONTEXT_CODE]
2036    .setHaveLongFlags(testBit(archive_options, AO_HAVE_CODE_FLAGS_HI));
2037
2038  // Set up built-in attrs.
2039  // (The simple ones are hard-coded.  The metadata layouts are not.)
2040  const char* md_layout = (
2041    // parameter annotations:
2042#define MDL0 \
2043    "[NB[(1)]]"
2044    MDL0
2045    // annotations:
2046#define MDL1 \
2047    "[NH[(1)]]"
2048    MDL1
2049#define MDL2 \
2050    "[RSHNH[RUH(1)]]"
2051    MDL2
2052    // element_value:
2053#define MDL3 \
2054    "[TB"                        \
2055      "(66,67,73,83,90)[KIH]"    \
2056      "(68)[KDH]"                \
2057      "(70)[KFH]"                \
2058      "(74)[KJH]"                \
2059      "(99)[RSH]"                \
2060      "(101)[RSHRUH]"            \
2061      "(115)[RUH]"               \
2062      "(91)[NH[(0)]]"            \
2063      "(64)["                    \
2064        /* nested annotation: */ \
2065        "RSH"                    \
2066        "NH[RUH(0)]"             \
2067        "]"                      \
2068      "()[]"                     \
2069    "]"
2070    MDL3
2071    );
2072
2073  const char* md_layout_P = md_layout;
2074  const char* md_layout_A = md_layout+strlen(MDL0);
2075  const char* md_layout_V = md_layout+strlen(MDL0 MDL1 MDL2);
2076  assert(0 == strncmp(&md_layout_A[-3], ")]][", 4));
2077  assert(0 == strncmp(&md_layout_V[-3], ")]][", 4));
2078
2079const char* type_md_layout(
2080    "[NH[(1)(2)(3)]]"
2081    // target-type + target_info
2082    "[TB"
2083       "(0,1)[B]"
2084       "(16)[FH]"
2085       "(17,18)[BB]"
2086       "(19,20,21)[]"
2087       "(22)[B]"
2088       "(23)[H]"
2089       "(64,65)[NH[PHOHH]]"
2090       "(66)[H]"
2091       "(67,68,69,70)[PH]"
2092       "(71,72,73,74,75)[PHB]"
2093       "()[]]"
2094    // target-path
2095    "[NB[BB]]"
2096    // annotation + element_value
2097    MDL2
2098    MDL3
2099);
2100
2101  for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
2102    attr_definitions& ad = attr_defs[i];
2103    if (i != ATTR_CONTEXT_CODE) {
2104      ad.defineLayout(X_ATTR_RuntimeVisibleAnnotations,
2105                      "RuntimeVisibleAnnotations", md_layout_A);
2106      ad.defineLayout(X_ATTR_RuntimeInvisibleAnnotations,
2107                      "RuntimeInvisibleAnnotations", md_layout_A);
2108      if (i == ATTR_CONTEXT_METHOD) {
2109        ad.defineLayout(METHOD_ATTR_RuntimeVisibleParameterAnnotations,
2110                        "RuntimeVisibleParameterAnnotations", md_layout_P);
2111        ad.defineLayout(METHOD_ATTR_RuntimeInvisibleParameterAnnotations,
2112                        "RuntimeInvisibleParameterAnnotations", md_layout_P);
2113        ad.defineLayout(METHOD_ATTR_AnnotationDefault,
2114                        "AnnotationDefault", md_layout_V);
2115      }
2116    }
2117    ad.defineLayout(X_ATTR_RuntimeVisibleTypeAnnotations,
2118                    "RuntimeVisibleTypeAnnotations", type_md_layout);
2119    ad.defineLayout(X_ATTR_RuntimeInvisibleTypeAnnotations,
2120                    "RuntimeInvisibleTypeAnnotations", type_md_layout);
2121  }
2122
2123  attr_definition_headers.readData(attr_definition_count);
2124  attr_definition_name.readData(attr_definition_count);
2125  attr_definition_layout.readData(attr_definition_count);
2126
2127  CHECK;
2128
2129  // Initialize correct predef bits, to distinguish predefs from new defs.
2130#define ORBIT(n,s) |((julong)1<<n)
2131  attr_defs[ATTR_CONTEXT_CLASS].predef
2132    = (0 X_ATTR_DO(ORBIT) CLASS_ATTR_DO(ORBIT));
2133  attr_defs[ATTR_CONTEXT_FIELD].predef
2134    = (0 X_ATTR_DO(ORBIT) FIELD_ATTR_DO(ORBIT));
2135  attr_defs[ATTR_CONTEXT_METHOD].predef
2136    = (0 X_ATTR_DO(ORBIT) METHOD_ATTR_DO(ORBIT));
2137  attr_defs[ATTR_CONTEXT_CODE].predef
2138    = (0 O_ATTR_DO(ORBIT) CODE_ATTR_DO(ORBIT));
2139#undef ORBIT
2140  // Clear out the redef bits, folding them back into predef.
2141  for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
2142    attr_defs[i].predef |= attr_defs[i].redef;
2143    attr_defs[i].redef = 0;
2144  }
2145
2146  // Now read the transmitted locally defined attrs.
2147  // This will set redef bits again.
2148  for (i = 0; i < attr_definition_count; i++) {
2149    int    header  = attr_definition_headers.getByte();
2150    int    attrc   = ADH_BYTE_CONTEXT(header);
2151    int    idx     = ADH_BYTE_INDEX(header);
2152    entry* name    = attr_definition_name.getRef();
2153    CHECK;
2154    entry* layout  = attr_definition_layout.getRef();
2155    CHECK;
2156    attr_defs[attrc].defineLayout(idx, name, layout->value.b.strval());
2157  }
2158}
2159
2160#define NO_ENTRY_YET ((entry*)-1)
2161
2162static bool isDigitString(bytes& x, int beg, int end) {
2163  if (beg == end)  return false;  // null string
2164  byte* xptr = x.ptr;
2165  for (int i = beg; i < end; i++) {
2166    char ch = xptr[i];
2167    if (!(ch >= '0' && ch <= '9'))  return false;
2168  }
2169  return true;
2170}
2171
2172enum {  // constants for parsing class names
2173  SLASH_MIN = '.',
2174  SLASH_MAX = '/',
2175  DOLLAR_MIN = 0,
2176  DOLLAR_MAX = '-'
2177};
2178
2179static int lastIndexOf(int chmin, int chmax, bytes& x, int pos) {
2180  byte* ptr = x.ptr;
2181  for (byte* cp = ptr + pos; --cp >= ptr; ) {
2182    assert(x.inBounds(cp));
2183    if (*cp >= chmin && *cp <= chmax)
2184      return (int)(cp - ptr);
2185  }
2186  return -1;
2187}
2188
2189maybe_inline
2190inner_class* cpool::getIC(entry* inner) {
2191  if (inner == null)  return null;
2192  assert(inner->tag == CONSTANT_Class);
2193  if (inner->inord == NO_INORD)  return null;
2194  inner_class* ic = ic_index[inner->inord];
2195  assert(ic == null || ic->inner == inner);
2196  return ic;
2197}
2198
2199maybe_inline
2200inner_class* cpool::getFirstChildIC(entry* outer) {
2201  if (outer == null)  return null;
2202  assert(outer->tag == CONSTANT_Class);
2203  if (outer->inord == NO_INORD)  return null;
2204  inner_class* ic = ic_child_index[outer->inord];
2205  assert(ic == null || ic->outer == outer);
2206  return ic;
2207}
2208
2209maybe_inline
2210inner_class* cpool::getNextChildIC(inner_class* child) {
2211  inner_class* ic = child->next_sibling;
2212  assert(ic == null || ic->outer == child->outer);
2213  return ic;
2214}
2215
2216void unpacker::read_ics() {
2217  int i;
2218  int index_size = cp.tag_count[CONSTANT_Class];
2219  inner_class** ic_index       = U_NEW(inner_class*, index_size);
2220  inner_class** ic_child_index = U_NEW(inner_class*, index_size);
2221  cp.ic_index = ic_index;
2222  cp.ic_child_index = ic_child_index;
2223  ics = U_NEW(inner_class, ic_count);
2224  ic_this_class.readData(ic_count);
2225  ic_flags.readData(ic_count);
2226  CHECK;
2227  // Scan flags to get count of long-form bands.
2228  int long_forms = 0;
2229  for (i = 0; i < ic_count; i++) {
2230    int flags = ic_flags.getInt();  // may be long form!
2231    if ((flags & ACC_IC_LONG_FORM) != 0) {
2232      long_forms += 1;
2233      ics[i].name = NO_ENTRY_YET;
2234    }
2235    flags &= ~ACC_IC_LONG_FORM;
2236    entry* inner = ic_this_class.getRef();
2237    CHECK;
2238    uint inord = inner->inord;
2239    assert(inord < (uint)cp.tag_count[CONSTANT_Class]);
2240    if (ic_index[inord] != null) {
2241      abort("identical inner class");
2242      break;
2243    }
2244    ic_index[inord] = &ics[i];
2245    ics[i].inner = inner;
2246    ics[i].flags = flags;
2247    assert(cp.getIC(inner) == &ics[i]);
2248  }
2249  CHECK;
2250  //ic_this_class.done();
2251  //ic_flags.done();
2252  ic_outer_class.readData(long_forms);
2253  ic_name.readData(long_forms);
2254  for (i = 0; i < ic_count; i++) {
2255    if (ics[i].name == NO_ENTRY_YET) {
2256      // Long form.
2257      ics[i].outer = ic_outer_class.getRefN();
2258      CHECK;
2259      ics[i].name  = ic_name.getRefN();
2260      CHECK;
2261    } else {
2262      // Fill in outer and name based on inner.
2263      bytes& n = ics[i].inner->value.b;
2264      bytes pkgOuter;
2265      bytes number;
2266      bytes name;
2267      // Parse n into pkgOuter and name (and number).
2268      PRINTCR((5, "parse short IC name %s", n.ptr));
2269      int dollar1, dollar2;  // pointers to $ in the pattern
2270      // parse n = (<pkg>/)*<outer>($<number>)?($<name>)?
2271      int nlen = (int)n.len;
2272      int pkglen = lastIndexOf(SLASH_MIN,  SLASH_MAX,  n, nlen) + 1;
2273      dollar2    = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, nlen);
2274      if (dollar2 < 0) {
2275         abort();
2276         return;
2277      }
2278      assert(dollar2 >= pkglen);
2279      if (isDigitString(n, dollar2+1, nlen)) {
2280        // n = (<pkg>/)*<outer>$<number>
2281        number = n.slice(dollar2+1, nlen);
2282        name.set(null,0);
2283        dollar1 = dollar2;
2284      } else if (pkglen < (dollar1
2285                           = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, dollar2-1))
2286                 && isDigitString(n, dollar1+1, dollar2)) {
2287        // n = (<pkg>/)*<outer>$<number>$<name>
2288        number = n.slice(dollar1+1, dollar2);
2289        name = n.slice(dollar2+1, nlen);
2290      } else {
2291        // n = (<pkg>/)*<outer>$<name>
2292        dollar1 = dollar2;
2293        number.set(null,0);
2294        name = n.slice(dollar2+1, nlen);
2295      }
2296      if (number.ptr == null) {
2297        if (dollar1 < 0) {
2298          abort();
2299          return;
2300        }
2301        pkgOuter = n.slice(0, dollar1);
2302      } else {
2303        pkgOuter.set(null,0);
2304      }
2305      PRINTCR((5,"=> %s$ 0%s $%s",
2306              pkgOuter.string(), number.string(), name.string()));
2307
2308      if (pkgOuter.ptr != null)
2309        ics[i].outer = cp.ensureClass(pkgOuter);
2310
2311      if (name.ptr != null)
2312        ics[i].name = cp.ensureUtf8(name);
2313    }
2314
2315    // update child/sibling list
2316    if (ics[i].outer != null) {
2317      uint outord = ics[i].outer->inord;
2318      if (outord != NO_INORD) {
2319        assert(outord < (uint)cp.tag_count[CONSTANT_Class]);
2320        ics[i].next_sibling = ic_child_index[outord];
2321        ic_child_index[outord] = &ics[i];
2322      }
2323    }
2324  }
2325  //ic_outer_class.done();
2326  //ic_name.done();
2327}
2328
2329void unpacker::read_classes() {
2330  PRINTCR((1,"  ...scanning %d classes...", class_count));
2331  class_this.readData(class_count);
2332  class_super.readData(class_count);
2333  class_interface_count.readData(class_count);
2334  class_interface.readData(class_interface_count.getIntTotal());
2335
2336  CHECK;
2337
2338  #if 0
2339  int i;
2340  // Make a little mark on super-classes.
2341  for (i = 0; i < class_count; i++) {
2342    entry* e = class_super.getRefN();
2343    if (e != null)  e->bits |= entry::EB_SUPER;
2344  }
2345  class_super.rewind();
2346  #endif
2347
2348  // Members.
2349  class_field_count.readData(class_count);
2350  class_method_count.readData(class_count);
2351
2352  CHECK;
2353
2354  int field_count = class_field_count.getIntTotal();
2355  int method_count = class_method_count.getIntTotal();
2356
2357  field_descr.readData(field_count);
2358  read_attrs(ATTR_CONTEXT_FIELD, field_count);
2359  CHECK;
2360
2361  method_descr.readData(method_count);
2362  read_attrs(ATTR_CONTEXT_METHOD, method_count);
2363
2364  CHECK;
2365
2366  read_attrs(ATTR_CONTEXT_CLASS, class_count);
2367  CHECK;
2368
2369  read_code_headers();
2370
2371  PRINTCR((1,"scanned %d classes, %d fields, %d methods, %d code headers",
2372          class_count, field_count, method_count, code_count));
2373}
2374
2375maybe_inline
2376int unpacker::attr_definitions::predefCount(uint idx) {
2377  return isPredefined(idx) ? flag_count[idx] : 0;
2378}
2379
2380void unpacker::read_attrs(int attrc, int obj_count) {
2381  attr_definitions& ad = attr_defs[attrc];
2382  assert(ad.attrc == attrc);
2383
2384  int i, idx, count;
2385
2386  CHECK;
2387
2388  bool haveLongFlags = ad.haveLongFlags();
2389
2390  band& xxx_flags_hi = ad.xxx_flags_hi();
2391  assert(endsWith(xxx_flags_hi.name, "_flags_hi"));
2392  if (haveLongFlags)
2393    xxx_flags_hi.readData(obj_count);
2394  CHECK;
2395
2396  band& xxx_flags_lo = ad.xxx_flags_lo();
2397  assert(endsWith(xxx_flags_lo.name, "_flags_lo"));
2398  xxx_flags_lo.readData(obj_count);
2399  CHECK;
2400
2401  // pre-scan flags, counting occurrences of each index bit
2402  julong indexMask = ad.flagIndexMask();  // which flag bits are index bits?
2403  for (i = 0; i < obj_count; i++) {
2404    julong indexBits = xxx_flags_hi.getLong(xxx_flags_lo, haveLongFlags);
2405    if ((indexBits & ~indexMask) > (ushort)-1) {
2406      abort("undefined attribute flag bit");
2407      return;
2408    }
2409    indexBits &= indexMask;  // ignore classfile flag bits
2410    for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
2411      ad.flag_count[idx] += (int)(indexBits & 1);
2412    }
2413  }
2414  // we'll scan these again later for output:
2415  xxx_flags_lo.rewind();
2416  xxx_flags_hi.rewind();
2417
2418  band& xxx_attr_count = ad.xxx_attr_count();
2419  assert(endsWith(xxx_attr_count.name, "_attr_count"));
2420  // There is one count element for each 1<<16 bit set in flags:
2421  xxx_attr_count.readData(ad.predefCount(X_ATTR_OVERFLOW));
2422  CHECK;
2423
2424  band& xxx_attr_indexes = ad.xxx_attr_indexes();
2425  assert(endsWith(xxx_attr_indexes.name, "_attr_indexes"));
2426  int overflowIndexCount = xxx_attr_count.getIntTotal();
2427  xxx_attr_indexes.readData(overflowIndexCount);
2428  CHECK;
2429  // pre-scan attr indexes, counting occurrences of each value
2430  for (i = 0; i < overflowIndexCount; i++) {
2431    idx = xxx_attr_indexes.getInt();
2432    if (!ad.isIndex(idx)) {
2433      abort("attribute index out of bounds");
2434      return;
2435    }
2436    ad.getCount(idx) += 1;
2437  }
2438  xxx_attr_indexes.rewind();  // we'll scan it again later for output
2439
2440  // We will need a backward call count for each used backward callable.
2441  int backwardCounts = 0;
2442  for (idx = 0; idx < ad.layouts.length(); idx++) {
2443    layout_definition* lo = ad.getLayout(idx);
2444    if (lo != null && ad.getCount(idx) != 0) {
2445      // Build the bands lazily, only when they are used.
2446      band** bands = ad.buildBands(lo);
2447      CHECK;
2448      if (lo->hasCallables()) {
2449        for (i = 0; bands[i] != null; i++) {
2450          if (bands[i]->le_back) {
2451            assert(bands[i]->le_kind == EK_CBLE);
2452            backwardCounts += 1;
2453          }
2454        }
2455      }
2456    }
2457  }
2458  ad.xxx_attr_calls().readData(backwardCounts);
2459  CHECK;
2460
2461  // Read built-in bands.
2462  // Mostly, these are hand-coded equivalents to readBandData().
2463  switch (attrc) {
2464  case ATTR_CONTEXT_CLASS:
2465
2466    count = ad.predefCount(CLASS_ATTR_SourceFile);
2467    class_SourceFile_RUN.readData(count);
2468    CHECK;
2469
2470    count = ad.predefCount(CLASS_ATTR_EnclosingMethod);
2471    class_EnclosingMethod_RC.readData(count);
2472    class_EnclosingMethod_RDN.readData(count);
2473    CHECK;
2474
2475    count = ad.predefCount(X_ATTR_Signature);
2476    class_Signature_RS.readData(count);
2477    CHECK;
2478
2479    ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
2480    ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
2481    CHECK;
2482
2483    count = ad.predefCount(CLASS_ATTR_InnerClasses);
2484    class_InnerClasses_N.readData(count);
2485    CHECK;
2486
2487    count = class_InnerClasses_N.getIntTotal();
2488    class_InnerClasses_RC.readData(count);
2489    class_InnerClasses_F.readData(count);
2490    CHECK;
2491    // Drop remaining columns wherever flags are zero:
2492    count -= class_InnerClasses_F.getIntCount(0);
2493    class_InnerClasses_outer_RCN.readData(count);
2494    class_InnerClasses_name_RUN.readData(count);
2495    CHECK;
2496
2497    count = ad.predefCount(CLASS_ATTR_ClassFile_version);
2498    class_ClassFile_version_minor_H.readData(count);
2499    class_ClassFile_version_major_H.readData(count);
2500    CHECK;
2501
2502    ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
2503    ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
2504    CHECK;
2505    break;
2506
2507  case ATTR_CONTEXT_FIELD:
2508
2509    count = ad.predefCount(FIELD_ATTR_ConstantValue);
2510    field_ConstantValue_KQ.readData(count);
2511    CHECK;
2512
2513    count = ad.predefCount(X_ATTR_Signature);
2514    field_Signature_RS.readData(count);
2515    CHECK;
2516
2517    ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
2518    ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
2519    CHECK;
2520
2521    ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
2522    ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
2523    CHECK;
2524    break;
2525
2526  case ATTR_CONTEXT_METHOD:
2527
2528    code_count = ad.predefCount(METHOD_ATTR_Code);
2529    // Code attrs are handled very specially below...
2530
2531    count = ad.predefCount(METHOD_ATTR_Exceptions);
2532    method_Exceptions_N.readData(count);
2533    count = method_Exceptions_N.getIntTotal();
2534    method_Exceptions_RC.readData(count);
2535    CHECK;
2536
2537    count = ad.predefCount(X_ATTR_Signature);
2538    method_Signature_RS.readData(count);
2539    CHECK;
2540
2541    ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
2542    ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
2543    ad.readBandData(METHOD_ATTR_RuntimeVisibleParameterAnnotations);
2544    ad.readBandData(METHOD_ATTR_RuntimeInvisibleParameterAnnotations);
2545    ad.readBandData(METHOD_ATTR_AnnotationDefault);
2546    CHECK;
2547
2548    count = ad.predefCount(METHOD_ATTR_MethodParameters);
2549    method_MethodParameters_NB.readData(count);
2550    count = method_MethodParameters_NB.getIntTotal();
2551    method_MethodParameters_name_RUN.readData(count);
2552    method_MethodParameters_flag_FH.readData(count);
2553    CHECK;
2554
2555    ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
2556    ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
2557    CHECK;
2558
2559    break;
2560
2561  case ATTR_CONTEXT_CODE:
2562    // (keep this code aligned with its brother in unpacker::write_attrs)
2563    count = ad.predefCount(CODE_ATTR_StackMapTable);
2564    // disable this feature in old archives!
2565    if (count != 0 && majver < JAVA6_PACKAGE_MAJOR_VERSION) {
2566      abort("undefined StackMapTable attribute (old archive format)");
2567      return;
2568    }
2569    code_StackMapTable_N.readData(count);
2570    CHECK;
2571    count = code_StackMapTable_N.getIntTotal();
2572    code_StackMapTable_frame_T.readData(count);
2573    CHECK;
2574    // the rest of it depends in a complicated way on frame tags
2575    {
2576      int fat_frame_count = 0;
2577      int offset_count = 0;
2578      int type_count = 0;
2579      for (int k = 0; k < count; k++) {
2580        int tag = code_StackMapTable_frame_T.getByte();
2581        if (tag <= 127) {
2582          // (64-127)  [(2)]
2583          if (tag >= 64)  type_count++;
2584        } else if (tag <= 251) {
2585          // (247)     [(1)(2)]
2586          // (248-251) [(1)]
2587          if (tag >= 247)  offset_count++;
2588          if (tag == 247)  type_count++;
2589        } else if (tag <= 254) {
2590          // (252)     [(1)(2)]
2591          // (253)     [(1)(2)(2)]
2592          // (254)     [(1)(2)(2)(2)]
2593          offset_count++;
2594          type_count += (tag - 251);
2595        } else {
2596          // (255)     [(1)NH[(2)]NH[(2)]]
2597          fat_frame_count++;
2598        }
2599      }
2600
2601      // done pre-scanning frame tags:
2602      code_StackMapTable_frame_T.rewind();
2603
2604      // deal completely with fat frames:
2605      offset_count += fat_frame_count;
2606      code_StackMapTable_local_N.readData(fat_frame_count);
2607      CHECK;
2608      type_count += code_StackMapTable_local_N.getIntTotal();
2609      code_StackMapTable_stack_N.readData(fat_frame_count);
2610      type_count += code_StackMapTable_stack_N.getIntTotal();
2611      CHECK;
2612      // read the rest:
2613      code_StackMapTable_offset.readData(offset_count);
2614      code_StackMapTable_T.readData(type_count);
2615      CHECK;
2616      // (7) [RCH]
2617      count = code_StackMapTable_T.getIntCount(7);
2618      code_StackMapTable_RC.readData(count);
2619      CHECK;
2620      // (8) [PH]
2621      count = code_StackMapTable_T.getIntCount(8);
2622      code_StackMapTable_P.readData(count);
2623      CHECK;
2624    }
2625
2626    count = ad.predefCount(CODE_ATTR_LineNumberTable);
2627    code_LineNumberTable_N.readData(count);
2628    CHECK;
2629    count = code_LineNumberTable_N.getIntTotal();
2630    code_LineNumberTable_bci_P.readData(count);
2631    code_LineNumberTable_line.readData(count);
2632    CHECK;
2633
2634    count = ad.predefCount(CODE_ATTR_LocalVariableTable);
2635    code_LocalVariableTable_N.readData(count);
2636    CHECK;
2637    count = code_LocalVariableTable_N.getIntTotal();
2638    code_LocalVariableTable_bci_P.readData(count);
2639    code_LocalVariableTable_span_O.readData(count);
2640    code_LocalVariableTable_name_RU.readData(count);
2641    code_LocalVariableTable_type_RS.readData(count);
2642    code_LocalVariableTable_slot.readData(count);
2643    CHECK;
2644
2645    count = ad.predefCount(CODE_ATTR_LocalVariableTypeTable);
2646    code_LocalVariableTypeTable_N.readData(count);
2647    count = code_LocalVariableTypeTable_N.getIntTotal();
2648    code_LocalVariableTypeTable_bci_P.readData(count);
2649    code_LocalVariableTypeTable_span_O.readData(count);
2650    code_LocalVariableTypeTable_name_RU.readData(count);
2651    code_LocalVariableTypeTable_type_RS.readData(count);
2652    code_LocalVariableTypeTable_slot.readData(count);
2653    CHECK;
2654
2655    ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
2656    ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
2657    CHECK;
2658
2659    break;
2660  }
2661
2662  // Read compressor-defined bands.
2663  for (idx = 0; idx < ad.layouts.length(); idx++) {
2664    if (ad.getLayout(idx) == null)
2665      continue;  // none at this fixed index <32
2666    if (idx < (int)ad.flag_limit && ad.isPredefined(idx))
2667      continue;  // already handled
2668    if (ad.getCount(idx) == 0)
2669      continue;  // no attributes of this type (then why transmit layouts?)
2670    ad.readBandData(idx);
2671  }
2672}
2673
2674void unpacker::attr_definitions::readBandData(int idx) {
2675  int j;
2676  uint count = getCount(idx);
2677  if (count == 0)  return;
2678  layout_definition* lo = getLayout(idx);
2679  if (lo != null) {
2680    PRINTCR((1, "counted %d [redefined = %d predefined = %d] attributes of type %s.%s",
2681            count, isRedefined(idx), isPredefined(idx),
2682            ATTR_CONTEXT_NAME[attrc], lo->name));
2683  }
2684  bool hasCallables = lo->hasCallables();
2685  band** bands = lo->bands();
2686  if (!hasCallables) {
2687    // Read through the rest of the bands in a regular way.
2688    readBandData(bands, count);
2689  } else {
2690    // Deal with the callables.
2691    // First set up the forward entry count for each callable.
2692    // This is stored on band::length of the callable.
2693    bands[0]->expectMoreLength(count);
2694    for (j = 0; bands[j] != null; j++) {
2695      band& j_cble = *bands[j];
2696      assert(j_cble.le_kind == EK_CBLE);
2697      if (j_cble.le_back) {
2698        // Add in the predicted effects of backward calls, too.
2699        int back_calls = xxx_attr_calls().getInt();
2700        j_cble.expectMoreLength(back_calls);
2701        // In a moment, more forward calls may increment j_cble.length.
2702      }
2703    }
2704    // Now consult whichever callables have non-zero entry counts.
2705    readBandData(bands, (uint)-1);
2706  }
2707}
2708
2709// Recursive helper to the previous function:
2710void unpacker::attr_definitions::readBandData(band** body, uint count) {
2711  int j, k;
2712  for (j = 0; body[j] != null; j++) {
2713    band& b = *body[j];
2714    if (b.defc != null) {
2715      // It has data, so read it.
2716      b.readData(count);
2717    }
2718    switch (b.le_kind) {
2719    case EK_REPL:
2720      {
2721        int reps = b.getIntTotal();
2722        readBandData(b.le_body, reps);
2723      }
2724      break;
2725    case EK_UN:
2726      {
2727        int remaining = count;
2728        for (k = 0; b.le_body[k] != null; k++) {
2729          band& k_case = *b.le_body[k];
2730          int   k_count = 0;
2731          if (k_case.le_casetags == null) {
2732            k_count = remaining;  // last (empty) case
2733          } else {
2734            int* tags = k_case.le_casetags;
2735            int ntags = *tags++;  // 1st element is length (why not?)
2736            while (ntags-- > 0) {
2737              int tag = *tags++;
2738              k_count += b.getIntCount(tag);
2739            }
2740          }
2741          readBandData(k_case.le_body, k_count);
2742          remaining -= k_count;
2743        }
2744        assert(remaining == 0);
2745      }
2746      break;
2747    case EK_CALL:
2748      // Push the count forward, if it is not a backward call.
2749      if (!b.le_back) {
2750        band& cble = *b.le_body[0];
2751        assert(cble.le_kind == EK_CBLE);
2752        cble.expectMoreLength(count);
2753      }
2754      break;
2755    case EK_CBLE:
2756      assert((int)count == -1);  // incoming count is meaningless
2757      k = b.length;
2758      assert(k >= 0);
2759      // This is intended and required for non production mode.
2760      assert((b.length = -1)); // make it unable to accept more calls now.
2761      readBandData(b.le_body, k);
2762      break;
2763    }
2764  }
2765}
2766
2767static inline
2768band** findMatchingCase(int matchTag, band** cases) {
2769  for (int k = 0; cases[k] != null; k++) {
2770    band& k_case = *cases[k];
2771    if (k_case.le_casetags != null) {
2772      // If it has tags, it must match a tag.
2773      int* tags = k_case.le_casetags;
2774      int ntags = *tags++;  // 1st element is length
2775      for (; ntags > 0; ntags--) {
2776        int tag = *tags++;
2777        if (tag == matchTag)
2778          break;
2779      }
2780      if (ntags == 0)
2781        continue;   // does not match
2782    }
2783    return k_case.le_body;
2784  }
2785  return null;
2786}
2787
2788// write attribute band data:
2789void unpacker::putlayout(band** body) {
2790  int i;
2791  int prevBII = -1;
2792  int prevBCI = -1;
2793  if (body == NULL) {
2794    abort("putlayout: unexpected NULL for body");
2795    return;
2796  }
2797  for (i = 0; body[i] != null; i++) {
2798    band& b = *body[i];
2799    byte le_kind = b.le_kind;
2800
2801    // Handle scalar part, if any.
2802    int    x = 0;
2803    entry* e = null;
2804    if (b.defc != null) {
2805      // It has data, so unparse an element.
2806      if (b.ixTag != CONSTANT_None) {
2807        assert(le_kind == EK_REF);
2808        if (b.ixTag == CONSTANT_FieldSpecific)
2809          e = b.getRefUsing(cp.getKQIndex());
2810        else
2811          e = b.getRefN();
2812        CHECK;
2813        switch (b.le_len) {
2814        case 0: break;
2815        case 1: putu1ref(e); break;
2816        case 2: putref(e); break;
2817        case 4: putu2(0); putref(e); break;
2818        default: assert(false);
2819        }
2820      } else {
2821        assert(le_kind == EK_INT || le_kind == EK_REPL || le_kind == EK_UN);
2822        x = b.getInt();
2823
2824        assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));
2825        switch (b.le_bci) {
2826        case EK_BCI:   // PH:  transmit R(bci), store bci
2827          x = to_bci(prevBII = x);
2828          prevBCI = x;
2829          break;
2830        case EK_BCID:  // POH: transmit D(R(bci)), store bci
2831          x = to_bci(prevBII += x);
2832          prevBCI = x;
2833          break;
2834        case EK_BCO:   // OH:  transmit D(R(bci)), store D(bci)
2835          x = to_bci(prevBII += x) - prevBCI;
2836          prevBCI += x;
2837          break;
2838        }
2839        assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));
2840
2841        CHECK;
2842        switch (b.le_len) {
2843        case 0: break;
2844        case 1: putu1(x); break;
2845        case 2: putu2(x); break;
2846        case 4: putu4(x); break;
2847        default: assert(false);
2848        }
2849      }
2850    }
2851
2852    // Handle subparts, if any.
2853    switch (le_kind) {
2854    case EK_REPL:
2855      // x is the repeat count
2856      while (x-- > 0) {
2857        putlayout(b.le_body);
2858      }
2859      break;
2860    case EK_UN:
2861      // x is the tag
2862      putlayout(findMatchingCase(x, b.le_body));
2863      break;
2864    case EK_CALL:
2865      {
2866        band& cble = *b.le_body[0];
2867        assert(cble.le_kind == EK_CBLE);
2868        assert(cble.le_len == b.le_len);
2869        putlayout(cble.le_body);
2870      }
2871      break;
2872
2873    #ifndef PRODUCT
2874    case EK_CBLE:
2875    case EK_CASE:
2876      assert(false);  // should not reach here
2877    #endif
2878    }
2879  }
2880}
2881
2882void unpacker::read_files() {
2883  file_name.readData(file_count);
2884  if (testBit(archive_options, AO_HAVE_FILE_SIZE_HI))
2885    file_size_hi.readData(file_count);
2886  file_size_lo.readData(file_count);
2887  if (testBit(archive_options, AO_HAVE_FILE_MODTIME))
2888    file_modtime.readData(file_count);
2889  int allFiles = file_count + class_count;
2890  if (testBit(archive_options, AO_HAVE_FILE_OPTIONS)) {
2891    file_options.readData(file_count);
2892    // FO_IS_CLASS_STUB might be set, causing overlap between classes and files
2893    for (int i = 0; i < file_count; i++) {
2894      if ((file_options.getInt() & FO_IS_CLASS_STUB) != 0) {
2895        allFiles -= 1;  // this one counts as both class and file
2896      }
2897    }
2898    file_options.rewind();
2899  }
2900  assert((default_file_options & FO_IS_CLASS_STUB) == 0);
2901  files_remaining = allFiles;
2902}
2903
2904maybe_inline
2905void unpacker::get_code_header(int& max_stack,
2906                               int& max_na_locals,
2907                               int& handler_count,
2908                               int& cflags) {
2909  int sc = code_headers.getByte();
2910  if (sc == 0) {
2911    max_stack = max_na_locals = handler_count = cflags = -1;
2912    return;
2913  }
2914  // Short code header is the usual case:
2915  int nh;
2916  int mod;
2917  if (sc < 1 + 12*12) {
2918    sc -= 1;
2919    nh = 0;
2920    mod = 12;
2921  } else if (sc < 1 + 12*12 + 8*8) {
2922    sc -= 1 + 12*12;
2923    nh = 1;
2924    mod = 8;
2925  } else {
2926    assert(sc < 1 + 12*12 + 8*8 + 7*7);
2927    sc -= 1 + 12*12 + 8*8;
2928    nh = 2;
2929    mod = 7;
2930  }
2931  max_stack     = sc % mod;
2932  max_na_locals = sc / mod;  // caller must add static, siglen
2933  handler_count = nh;
2934  if (testBit(archive_options, AO_HAVE_ALL_CODE_FLAGS))
2935    cflags      = -1;
2936  else
2937    cflags      = 0;  // this one has no attributes
2938}
2939
2940// Cf. PackageReader.readCodeHeaders
2941void unpacker::read_code_headers() {
2942  code_headers.readData(code_count);
2943  CHECK;
2944  int totalHandlerCount = 0;
2945  int totalFlagsCount   = 0;
2946  for (int i = 0; i < code_count; i++) {
2947    int max_stack, max_locals, handler_count, cflags;
2948    get_code_header(max_stack, max_locals, handler_count, cflags);
2949    if (max_stack < 0)      code_max_stack.expectMoreLength(1);
2950    if (max_locals < 0)     code_max_na_locals.expectMoreLength(1);
2951    if (handler_count < 0)  code_handler_count.expectMoreLength(1);
2952    else                    totalHandlerCount += handler_count;
2953    if (cflags < 0)         totalFlagsCount += 1;
2954  }
2955  code_headers.rewind();  // replay later during writing
2956
2957  code_max_stack.readData();
2958  code_max_na_locals.readData();
2959  code_handler_count.readData();
2960  totalHandlerCount += code_handler_count.getIntTotal();
2961  CHECK;
2962
2963  // Read handler specifications.
2964  // Cf. PackageReader.readCodeHandlers.
2965  code_handler_start_P.readData(totalHandlerCount);
2966  code_handler_end_PO.readData(totalHandlerCount);
2967  code_handler_catch_PO.readData(totalHandlerCount);
2968  code_handler_class_RCN.readData(totalHandlerCount);
2969  CHECK;
2970
2971  read_attrs(ATTR_CONTEXT_CODE, totalFlagsCount);
2972  CHECK;
2973}
2974
2975static inline bool is_in_range(uint n, uint min, uint max) {
2976  return n - min <= max - min;  // unsigned arithmetic!
2977}
2978static inline bool is_field_op(int bc) {
2979  return is_in_range(bc, bc_getstatic, bc_putfield);
2980}
2981static inline bool is_invoke_init_op(int bc) {
2982  return is_in_range(bc, _invokeinit_op, _invokeinit_limit-1);
2983}
2984static inline bool is_self_linker_op(int bc) {
2985  return is_in_range(bc, _self_linker_op, _self_linker_limit-1);
2986}
2987static bool is_branch_op(int bc) {
2988  return is_in_range(bc, bc_ifeq,   bc_jsr)
2989      || is_in_range(bc, bc_ifnull, bc_jsr_w);
2990}
2991static bool is_local_slot_op(int bc) {
2992  return is_in_range(bc, bc_iload,  bc_aload)
2993      || is_in_range(bc, bc_istore, bc_astore)
2994      || bc == bc_iinc || bc == bc_ret;
2995}
2996band* unpacker::ref_band_for_op(int bc) {
2997  switch (bc) {
2998  case bc_ildc:
2999  case bc_ildc_w:
3000    return &bc_intref;
3001  case bc_fldc:
3002  case bc_fldc_w:
3003    return &bc_floatref;
3004  case bc_lldc2_w:
3005    return &bc_longref;
3006  case bc_dldc2_w:
3007    return &bc_doubleref;
3008  case bc_sldc:
3009  case bc_sldc_w:
3010    return &bc_stringref;
3011  case bc_cldc:
3012  case bc_cldc_w:
3013    return &bc_classref;
3014  case bc_qldc: case bc_qldc_w:
3015    return &bc_loadablevalueref;
3016
3017  case bc_getstatic:
3018  case bc_putstatic:
3019  case bc_getfield:
3020  case bc_putfield:
3021    return &bc_fieldref;
3022
3023  case _invokespecial_int:
3024  case _invokestatic_int:
3025    return &bc_imethodref;
3026  case bc_invokevirtual:
3027  case bc_invokespecial:
3028  case bc_invokestatic:
3029    return &bc_methodref;
3030  case bc_invokeinterface:
3031    return &bc_imethodref;
3032  case bc_invokedynamic:
3033    return &bc_indyref;
3034
3035  case bc_new:
3036  case bc_anewarray:
3037  case bc_checkcast:
3038  case bc_instanceof:
3039  case bc_multianewarray:
3040    return &bc_classref;
3041  }
3042  return null;
3043}
3044
3045maybe_inline
3046band* unpacker::ref_band_for_self_op(int bc, bool& isAloadVar, int& origBCVar) {
3047  if (!is_self_linker_op(bc))  return null;
3048  int idx = (bc - _self_linker_op);
3049  bool isSuper = (idx >= _self_linker_super_flag);
3050  if (isSuper)  idx -= _self_linker_super_flag;
3051  bool isAload = (idx >= _self_linker_aload_flag);
3052  if (isAload)  idx -= _self_linker_aload_flag;
3053  int origBC = _first_linker_op + idx;
3054  bool isField = is_field_op(origBC);
3055  isAloadVar = isAload;
3056  origBCVar  = _first_linker_op + idx;
3057  if (!isSuper)
3058    return isField? &bc_thisfield: &bc_thismethod;
3059  else
3060    return isField? &bc_superfield: &bc_supermethod;
3061}
3062
3063// Cf. PackageReader.readByteCodes
3064inline  // called exactly once => inline
3065void unpacker::read_bcs() {
3066  PRINTCR((3, "reading compressed bytecodes and operands for %d codes...",
3067          code_count));
3068
3069  // read from bc_codes and bc_case_count
3070  fillbytes all_switch_ops;
3071  all_switch_ops.init();
3072  CHECK;
3073
3074  // Read directly from rp/rplimit.
3075  //Do this later:  bc_codes.readData(...)
3076  byte* rp0 = rp;
3077
3078  band* bc_which;
3079  byte* opptr = rp;
3080  byte* oplimit = rplimit;
3081
3082  bool  isAload;  // passed by ref and then ignored
3083  int   junkBC;   // passed by ref and then ignored
3084  for (int k = 0; k < code_count; k++) {
3085    // Scan one method:
3086    for (;;) {
3087      if (opptr+2 > oplimit) {
3088        rp = opptr;
3089        ensure_input(2);
3090        oplimit = rplimit;
3091        rp = rp0;  // back up
3092      }
3093      if (opptr == oplimit) { abort(); break; }
3094      int bc = *opptr++ & 0xFF;
3095      bool isWide = false;
3096      if (bc == bc_wide) {
3097        if (opptr == oplimit) { abort(); break; }
3098        bc = *opptr++ & 0xFF;
3099        isWide = true;
3100      }
3101      // Adjust expectations of various band sizes.
3102      switch (bc) {
3103      case bc_tableswitch:
3104      case bc_lookupswitch:
3105        all_switch_ops.addByte(bc);
3106        break;
3107      case bc_iinc:
3108        bc_local.expectMoreLength(1);
3109        bc_which = isWide ? &bc_short : &bc_byte;
3110        bc_which->expectMoreLength(1);
3111        break;
3112      case bc_sipush:
3113        bc_short.expectMoreLength(1);
3114        break;
3115      case bc_bipush:
3116        bc_byte.expectMoreLength(1);
3117        break;
3118      case bc_newarray:
3119        bc_byte.expectMoreLength(1);
3120        break;
3121      case bc_multianewarray:
3122        assert(ref_band_for_op(bc) == &bc_classref);
3123        bc_classref.expectMoreLength(1);
3124        bc_byte.expectMoreLength(1);
3125        break;
3126      case bc_ref_escape:
3127        bc_escrefsize.expectMoreLength(1);
3128        bc_escref.expectMoreLength(1);
3129        break;
3130      case bc_byte_escape:
3131        bc_escsize.expectMoreLength(1);
3132        // bc_escbyte will have to be counted too
3133        break;
3134      default:
3135        if (is_invoke_init_op(bc)) {
3136          bc_initref.expectMoreLength(1);
3137          break;
3138        }
3139        bc_which = ref_band_for_self_op(bc, isAload, junkBC);
3140        if (bc_which != null) {
3141          bc_which->expectMoreLength(1);
3142          break;
3143        }
3144        if (is_branch_op(bc)) {
3145          bc_label.expectMoreLength(1);
3146          break;
3147        }
3148        bc_which = ref_band_for_op(bc);
3149        if (bc_which != null) {
3150          bc_which->expectMoreLength(1);
3151          assert(bc != bc_multianewarray);  // handled elsewhere
3152          break;
3153        }
3154        if (is_local_slot_op(bc)) {
3155          bc_local.expectMoreLength(1);
3156          break;
3157        }
3158        break;
3159      case bc_end_marker:
3160        // Increment k and test against code_count.
3161        goto doneScanningMethod;
3162      }
3163    }
3164  doneScanningMethod:{}
3165    if (aborting())  break;
3166  }
3167
3168  // Go through the formality, so we can use it in a regular fashion later:
3169  assert(rp == rp0);
3170  bc_codes.readData((int)(opptr - rp));
3171
3172  int i = 0;
3173
3174  // To size instruction bands correctly, we need info on switches:
3175  bc_case_count.readData((int)all_switch_ops.size());
3176  for (i = 0; i < (int)all_switch_ops.size(); i++) {
3177    int caseCount = bc_case_count.getInt();
3178    int bc        = all_switch_ops.getByte(i);
3179    bc_label.expectMoreLength(1+caseCount); // default label + cases
3180    bc_case_value.expectMoreLength(bc == bc_tableswitch ? 1 : caseCount);
3181    PRINTCR((2, "switch bc=%d caseCount=%d", bc, caseCount));
3182  }
3183  bc_case_count.rewind();  // uses again for output
3184
3185  all_switch_ops.free();
3186
3187  for (i = e_bc_case_value; i <= e_bc_escsize; i++) {
3188    all_bands[i].readData();
3189  }
3190
3191  // The bc_escbyte band is counted by the immediately previous band.
3192  bc_escbyte.readData(bc_escsize.getIntTotal());
3193
3194  PRINTCR((3, "scanned %d opcode and %d operand bytes for %d codes...",
3195          (int)(bc_codes.size()),
3196          (int)(bc_escsize.maxRP() - bc_case_value.minRP()),
3197          code_count));
3198}
3199
3200void unpacker::read_bands() {
3201  byte* rp0 = rp;
3202  CHECK;
3203  read_file_header();
3204  CHECK;
3205
3206  if (cp.nentries == 0) {
3207    // read_file_header failed to read a CP, because it copied a JAR.
3208    return;
3209  }
3210
3211  // Do this after the file header has been read:
3212  check_options();
3213
3214  read_cp();
3215  CHECK;
3216  read_attr_defs();
3217  CHECK;
3218  read_ics();
3219  CHECK;
3220  read_classes();
3221  CHECK;
3222  read_bcs();
3223  CHECK;
3224  read_files();
3225}
3226
3227/// CP routines
3228
3229entry*& cpool::hashTabRef(byte tag, bytes& b) {
3230  PRINTCR((5, "hashTabRef tag=%d %s[%d]", tag, b.string(), b.len));
3231  uint hash = tag + (int)b.len;
3232  for (int i = 0; i < (int)b.len; i++) {
3233    hash = hash * 31 + (0xFF & b.ptr[i]);
3234  }
3235  entry**  ht = hashTab;
3236  int    hlen = hashTabLength;
3237  assert((hlen & (hlen-1)) == 0);  // must be power of 2
3238  uint hash1 = hash & (hlen-1);    // == hash % hlen
3239  uint hash2 = 0;                  // lazily computed (requires mod op.)
3240  int probes = 0;
3241  while (ht[hash1] != null) {
3242    entry& e = *ht[hash1];
3243    if (e.value.b.equals(b) && e.tag == tag)
3244      break;
3245    if (hash2 == 0)
3246      // Note:  hash2 must be relatively prime to hlen, hence the "|1".
3247      hash2 = (((hash % 499) & (hlen-1)) | 1);
3248    hash1 += hash2;
3249    if (hash1 >= (uint)hlen)  hash1 -= hlen;
3250    assert(hash1 < (uint)hlen);
3251    assert(++probes < hlen);
3252  }
3253  #ifndef PRODUCT
3254  hash_probes[0] += 1;
3255  hash_probes[1] += probes;
3256  #endif
3257  PRINTCR((5, " => @%d %p", hash1, ht[hash1]));
3258  return ht[hash1];
3259}
3260
3261maybe_inline
3262static void insert_extra(entry* e, ptrlist& extras) {
3263  // This ordering helps implement the Pack200 requirement
3264  // of a predictable CP order in the class files produced.
3265  e->inord = NO_INORD;  // mark as an "extra"
3266  extras.add(e);
3267  // Note:  We will sort the list (by string-name) later.
3268}
3269
3270entry* cpool::ensureUtf8(bytes& b) {
3271  entry*& ix = hashTabRef(CONSTANT_Utf8, b);
3272  if (ix != null)  return ix;
3273  // Make one.
3274  if (nentries == maxentries) {
3275    abort("cp utf8 overflow");
3276    return &entries[tag_base[CONSTANT_Utf8]];  // return something
3277  }
3278  entry& e = entries[nentries++];
3279  e.tag = CONSTANT_Utf8;
3280  u->saveTo(e.value.b, b);
3281  assert(&e >= first_extra_entry);
3282  insert_extra(&e, tag_extras[CONSTANT_Utf8]);
3283  PRINTCR((4,"ensureUtf8 miss %s", e.string()));
3284  return ix = &e;
3285}
3286
3287entry* cpool::ensureClass(bytes& b) {
3288  entry*& ix = hashTabRef(CONSTANT_Class, b);
3289  if (ix != null)  return ix;
3290  // Make one.
3291  if (nentries == maxentries) {
3292    abort("cp class overflow");
3293    return &entries[tag_base[CONSTANT_Class]];  // return something
3294  }
3295  entry& e = entries[nentries++];
3296  e.tag = CONSTANT_Class;
3297  e.nrefs = 1;
3298  e.refs = U_NEW(entry*, 1);
3299  ix = &e;  // hold my spot in the index
3300  entry* utf = ensureUtf8(b);
3301  e.refs[0] = utf;
3302  e.value.b = utf->value.b;
3303  assert(&e >= first_extra_entry);
3304  insert_extra(&e, tag_extras[CONSTANT_Class]);
3305  PRINTCR((4,"ensureClass miss %s", e.string()));
3306  return &e;
3307}
3308
3309void cpool::expandSignatures() {
3310  int i;
3311  int nsigs = 0;
3312  int nreused = 0;
3313  int first_sig = tag_base[CONSTANT_Signature];
3314  int sig_limit = tag_count[CONSTANT_Signature] + first_sig;
3315  fillbytes buf;
3316  buf.init(1<<10);
3317  CHECK;
3318  for (i = first_sig; i < sig_limit; i++) {
3319    entry& e = entries[i];
3320    assert(e.tag == CONSTANT_Signature);
3321    int refnum = 0;
3322    bytes form = e.refs[refnum++]->asUtf8();
3323    buf.empty();
3324    for (int j = 0; j < (int)form.len; j++) {
3325      int c = form.ptr[j];
3326      buf.addByte(c);
3327      if (c == 'L') {
3328        entry* cls = e.refs[refnum++];
3329        buf.append(cls->className()->asUtf8());
3330      }
3331    }
3332    assert(refnum == e.nrefs);
3333    bytes& sig = buf.b;
3334    PRINTCR((5,"signature %d %s -> %s", i, form.ptr, sig.ptr));
3335
3336    // try to find a pre-existing Utf8:
3337    entry* &e2 = hashTabRef(CONSTANT_Utf8, sig);
3338    if (e2 != null) {
3339      assert(e2->isUtf8(sig));
3340      e.value.b = e2->value.b;
3341      e.refs[0] = e2;
3342      e.nrefs = 1;
3343      PRINTCR((5,"signature replaced %d => %s", i, e.string()));
3344      nreused++;
3345    } else {
3346      // there is no other replacement; reuse this CP entry as a Utf8
3347      u->saveTo(e.value.b, sig);
3348      e.tag = CONSTANT_Utf8;
3349      e.nrefs = 0;
3350      e2 = &e;
3351      PRINTCR((5,"signature changed %d => %s", e.inord, e.string()));
3352    }
3353    nsigs++;
3354  }
3355  PRINTCR((1,"expanded %d signatures (reused %d utfs)", nsigs, nreused));
3356  buf.free();
3357
3358  // go expunge all references to remaining signatures:
3359  for (i = 0; i < (int)nentries; i++) {
3360    entry& e = entries[i];
3361    for (int j = 0; j < e.nrefs; j++) {
3362      entry*& e2 = e.refs[j];
3363      if (e2 != null && e2->tag == CONSTANT_Signature)
3364        e2 = e2->refs[0];
3365    }
3366  }
3367}
3368
3369bool isLoadableValue(int tag) {
3370  switch(tag) {
3371    case CONSTANT_Integer:
3372    case CONSTANT_Float:
3373    case CONSTANT_Long:
3374    case CONSTANT_Double:
3375    case CONSTANT_String:
3376    case CONSTANT_Class:
3377    case CONSTANT_MethodHandle:
3378    case CONSTANT_MethodType:
3379      return true;
3380    default:
3381      return false;
3382  }
3383}
3384/*
3385 * this method can be used to size an array using null as the parameter,
3386 * thereafter can be reused to initialize the array using a valid pointer
3387 * as a parameter.
3388 */
3389int cpool::initLoadableValues(entry** loadable_entries) {
3390  int loadable_count = 0;
3391  for (int i = 0; i < (int)N_TAGS_IN_ORDER; i++) {
3392    int tag = TAGS_IN_ORDER[i];
3393    if (!isLoadableValue(tag))
3394      continue;
3395    if (loadable_entries != NULL) {
3396      for (int n = 0 ; n < tag_count[tag] ; n++) {
3397        loadable_entries[loadable_count + n] = &entries[tag_base[tag] + n];
3398      }
3399    }
3400    loadable_count += tag_count[tag];
3401  }
3402  return loadable_count;
3403}
3404
3405// Initialize various views into the constant pool.
3406void cpool::initGroupIndexes() {
3407  // Initialize All
3408  int all_count = 0;
3409  for (int tag = CONSTANT_None ; tag < CONSTANT_Limit ; tag++) {
3410    all_count += tag_count[tag];
3411  }
3412  entry* all_entries = &entries[tag_base[CONSTANT_None]];
3413  tag_group_count[CONSTANT_All - CONSTANT_All] = all_count;
3414  tag_group_index[CONSTANT_All - CONSTANT_All].init(all_count, all_entries, CONSTANT_All);
3415
3416  // Initialize LoadableValues
3417  int loadable_count = initLoadableValues(NULL);
3418  entry** loadable_entries = U_NEW(entry*, loadable_count);
3419  initLoadableValues(loadable_entries);
3420  tag_group_count[CONSTANT_LoadableValue - CONSTANT_All] = loadable_count;
3421  tag_group_index[CONSTANT_LoadableValue - CONSTANT_All].init(loadable_count,
3422                  loadable_entries, CONSTANT_LoadableValue);
3423
3424// Initialize AnyMembers
3425  int any_count = tag_count[CONSTANT_Fieldref] +
3426                  tag_count[CONSTANT_Methodref] +
3427                  tag_count[CONSTANT_InterfaceMethodref];
3428  entry *any_entries = &entries[tag_base[CONSTANT_Fieldref]];
3429  tag_group_count[CONSTANT_AnyMember - CONSTANT_All] = any_count;
3430  tag_group_index[CONSTANT_AnyMember - CONSTANT_All].init(any_count,
3431                                               any_entries, CONSTANT_AnyMember);
3432}
3433
3434void cpool::initMemberIndexes() {
3435  // This function does NOT refer to any class schema.
3436  // It is totally internal to the cpool.
3437  int i, j;
3438
3439  // Get the pre-existing indexes:
3440  int   nclasses = tag_count[CONSTANT_Class];
3441  entry* classes = tag_base[CONSTANT_Class] + entries;
3442  int   nfields  = tag_count[CONSTANT_Fieldref];
3443  entry* fields  = tag_base[CONSTANT_Fieldref] + entries;
3444  int   nmethods = tag_count[CONSTANT_Methodref];
3445  entry* methods = tag_base[CONSTANT_Methodref] + entries;
3446
3447  int*     field_counts  = T_NEW(int, nclasses);
3448  int*     method_counts = T_NEW(int, nclasses);
3449  cpindex* all_indexes   = U_NEW(cpindex, nclasses*2);
3450  entry**  field_ix      = U_NEW(entry*, add_size(nfields, nclasses));
3451  entry**  method_ix     = U_NEW(entry*, add_size(nmethods, nclasses));
3452
3453  for (j = 0; j < nfields; j++) {
3454    entry& f = fields[j];
3455    i = f.memberClass()->inord;
3456    assert(i < nclasses);
3457    field_counts[i]++;
3458  }
3459  for (j = 0; j < nmethods; j++) {
3460    entry& m = methods[j];
3461    i = m.memberClass()->inord;
3462    assert(i < nclasses);
3463    method_counts[i]++;
3464  }
3465
3466  int fbase = 0, mbase = 0;
3467  for (i = 0; i < nclasses; i++) {
3468    int fc = field_counts[i];
3469    int mc = method_counts[i];
3470    all_indexes[i*2+0].init(fc, field_ix+fbase,
3471                            CONSTANT_Fieldref  + SUBINDEX_BIT);
3472    all_indexes[i*2+1].init(mc, method_ix+mbase,
3473                            CONSTANT_Methodref + SUBINDEX_BIT);
3474    // reuse field_counts and member_counts as fill pointers:
3475    field_counts[i] = fbase;
3476    method_counts[i] = mbase;
3477    PRINTCR((3, "class %d fields @%d[%d] methods @%d[%d]",
3478            i, fbase, fc, mbase, mc));
3479    fbase += fc+1;
3480    mbase += mc+1;
3481    // (the +1 leaves a space between every subarray)
3482  }
3483  assert(fbase == nfields+nclasses);
3484  assert(mbase == nmethods+nclasses);
3485
3486  for (j = 0; j < nfields; j++) {
3487    entry& f = fields[j];
3488    i = f.memberClass()->inord;
3489    field_ix[field_counts[i]++] = &f;
3490  }
3491  for (j = 0; j < nmethods; j++) {
3492    entry& m = methods[j];
3493    i = m.memberClass()->inord;
3494    method_ix[method_counts[i]++] = &m;
3495  }
3496
3497  member_indexes = all_indexes;
3498
3499#ifndef PRODUCT
3500  // Test the result immediately on every class and field.
3501  int fvisited = 0, mvisited = 0;
3502  int prevord, len;
3503  for (i = 0; i < nclasses; i++) {
3504    entry*   cls = &classes[i];
3505    cpindex* fix = getFieldIndex(cls);
3506    cpindex* mix = getMethodIndex(cls);
3507    PRINTCR((2, "field and method index for %s [%d] [%d]",
3508            cls->string(), mix->len, fix->len));
3509    prevord = -1;
3510    for (j = 0, len = fix->len; j < len; j++) {
3511      entry* f = fix->get(j);
3512      assert(f != null);
3513      PRINTCR((3, "- field %s", f->string()));
3514      assert(f->memberClass() == cls);
3515      assert(prevord < (int)f->inord);
3516      prevord = f->inord;
3517      fvisited++;
3518    }
3519    assert(fix->base2[j] == null);
3520    prevord = -1;
3521    for (j = 0, len = mix->len; j < len; j++) {
3522      entry* m = mix->get(j);
3523      assert(m != null);
3524      PRINTCR((3, "- method %s", m->string()));
3525      assert(m->memberClass() == cls);
3526      assert(prevord < (int)m->inord);
3527      prevord = m->inord;
3528      mvisited++;
3529    }
3530    assert(mix->base2[j] == null);
3531  }
3532  assert(fvisited == nfields);
3533  assert(mvisited == nmethods);
3534#endif
3535
3536  // Free intermediate buffers.
3537  u->free_temps();
3538}
3539
3540void entry::requestOutputIndex(cpool& cp, int req) {
3541  assert(outputIndex <= REQUESTED_NONE);  // must not have assigned indexes yet
3542  if (tag == CONSTANT_Signature) {
3543    ref(0)->requestOutputIndex(cp, req);
3544    return;
3545  }
3546  assert(req == REQUESTED || req == REQUESTED_LDC);
3547  if (outputIndex != REQUESTED_NONE) {
3548    if (req == REQUESTED_LDC)
3549      outputIndex = req;  // this kind has precedence
3550    return;
3551  }
3552  outputIndex = req;
3553  //assert(!cp.outputEntries.contains(this));
3554  assert(tag != CONSTANT_Signature);
3555  // The BSMs are jetisoned to a side table, however all references
3556  // that the BSMs refer to,  need to be considered.
3557  if (tag == CONSTANT_BootstrapMethod) {
3558    // this is a a pseudo-op entry; an attribute will be generated later on
3559    cp.requested_bsms.add(this);
3560  } else {
3561    // all other tag types go into real output file CP:
3562    cp.outputEntries.add(this);
3563  }
3564  for (int j = 0; j < nrefs; j++) {
3565    ref(j)->requestOutputIndex(cp);
3566  }
3567}
3568
3569void cpool::resetOutputIndexes() {
3570    /*
3571     * reset those few entries that are being used in the current class
3572     * (Caution since this method is called after every class written, a loop
3573     * over every global constant pool entry would be a quadratic cost.)
3574     */
3575
3576  int noes    = outputEntries.length();
3577  entry** oes = (entry**) outputEntries.base();
3578  for (int i = 0 ; i < noes ; i++) {
3579    entry& e = *oes[i];
3580    e.outputIndex = REQUESTED_NONE;
3581  }
3582
3583  // do the same for bsms and reset them if required
3584  int nbsms = requested_bsms.length();
3585  entry** boes = (entry**) requested_bsms.base();
3586  for (int i = 0 ; i < nbsms ; i++) {
3587    entry& e = *boes[i];
3588    e.outputIndex = REQUESTED_NONE;
3589  }
3590  outputIndexLimit = 0;
3591  outputEntries.empty();
3592#ifndef PRODUCT
3593  // ensure things are cleared out
3594  for (int i = 0; i < (int)maxentries; i++)
3595    assert(entries[i].outputIndex == REQUESTED_NONE);
3596#endif
3597}
3598
3599static const byte TAG_ORDER[CONSTANT_Limit] = {
3600  0, 1, 0, 2, 3, 4, 5, 7, 6, 10, 11, 12, 9, 8, 0, 13, 14, 15, 16
3601};
3602
3603extern "C"
3604int outputEntry_cmp(const void* e1p, const void* e2p) {
3605  // Sort entries according to the Pack200 rules for deterministic
3606  // constant pool ordering.
3607  //
3608  // The four sort keys as follows, in order of decreasing importance:
3609  //   1. ldc first, then non-ldc guys
3610  //   2. normal cp_All entries by input order (i.e., address order)
3611  //   3. after that, extra entries by lexical order (as in tag_extras[*])
3612  entry& e1 = *(entry*) *(void**) e1p;
3613  entry& e2 = *(entry*) *(void**) e2p;
3614  int   oi1 = e1.outputIndex;
3615  int   oi2 = e2.outputIndex;
3616  assert(oi1 == REQUESTED || oi1 == REQUESTED_LDC);
3617  assert(oi2 == REQUESTED || oi2 == REQUESTED_LDC);
3618  if (oi1 != oi2) {
3619    if (oi1 == REQUESTED_LDC)  return 0-1;
3620    if (oi2 == REQUESTED_LDC)  return 1-0;
3621    // Else fall through; neither is an ldc request.
3622  }
3623  if (e1.inord != NO_INORD || e2.inord != NO_INORD) {
3624    // One or both is normal.  Use input order.
3625    if (&e1 > &e2)  return 1-0;
3626    if (&e1 < &e2)  return 0-1;
3627    return 0;  // equal pointers
3628  }
3629  // Both are extras.  Sort by tag and then by value.
3630  if (e1.tag != e2.tag) {
3631    return TAG_ORDER[e1.tag] - TAG_ORDER[e2.tag];
3632  }
3633  // If the tags are the same, use string comparison.
3634  return compare_Utf8_chars(e1.value.b, e2.value.b);
3635}
3636
3637void cpool::computeOutputIndexes() {
3638  int i;
3639
3640#ifndef PRODUCT
3641  // outputEntries must be a complete list of those requested:
3642  static uint checkStart = 0;
3643  int checkStep = 1;
3644  if (nentries > 100)  checkStep = nentries / 100;
3645  for (i = (int)(checkStart++ % checkStep); i < (int)nentries; i += checkStep) {
3646    entry& e = entries[i];
3647    if (e.tag == CONSTANT_BootstrapMethod) {
3648      if (e.outputIndex != REQUESTED_NONE) {
3649        assert(requested_bsms.contains(&e));
3650      } else {
3651        assert(!requested_bsms.contains(&e));
3652      }
3653    } else {
3654      if (e.outputIndex != REQUESTED_NONE) {
3655        assert(outputEntries.contains(&e));
3656      } else {
3657        assert(!outputEntries.contains(&e));
3658      }
3659    }
3660  }
3661
3662  // check hand-initialization of TAG_ORDER
3663  for (i = 0; i < (int)N_TAGS_IN_ORDER; i++) {
3664    byte tag = TAGS_IN_ORDER[i];
3665    assert(TAG_ORDER[tag] == i+1);
3666  }
3667#endif
3668
3669  int    noes =           outputEntries.length();
3670  entry** oes = (entry**) outputEntries.base();
3671
3672  // Sort the output constant pool into the order required by Pack200.
3673  PTRLIST_QSORT(outputEntries, outputEntry_cmp);
3674
3675  // Allocate a new index for each entry that needs one.
3676  // We do this in two passes, one for LDC entries and one for the rest.
3677  int nextIndex = 1;  // always skip index #0 in output cpool
3678  for (i = 0; i < noes; i++) {
3679    entry& e = *oes[i];
3680    assert(e.outputIndex >= REQUESTED_LDC);
3681    e.outputIndex = nextIndex++;
3682    if (e.isDoubleWord())  nextIndex++;  // do not use the next index
3683  }
3684  outputIndexLimit = nextIndex;
3685  PRINTCR((3,"renumbering CP to %d entries", outputIndexLimit));
3686}
3687
3688#ifndef PRODUCT
3689// debugging goo
3690
3691unpacker* debug_u;
3692
3693static bytes& getbuf(size_t len) {  // for debugging only!
3694  static int bn = 0;
3695  static bytes bufs[8];
3696  bytes& buf = bufs[bn++ & 7];
3697  while (buf.len < len + 10) {
3698    buf.realloc(buf.len ? buf.len * 2 : 1000);
3699  }
3700  buf.ptr[0] = 0;  // for the sake of strcat
3701  return buf;
3702}
3703
3704const char* entry::string() {
3705  bytes buf;
3706  switch (tag) {
3707  case CONSTANT_None:
3708    return "<empty>";
3709  case CONSTANT_Signature:
3710    if (value.b.ptr == null)
3711      return ref(0)->string();
3712    // else fall through:
3713  case CONSTANT_Utf8:
3714    buf = value.b;
3715    break;
3716  case CONSTANT_Integer:
3717  case CONSTANT_Float:
3718    buf = getbuf(12);
3719    sprintf((char*)buf.ptr, "0x%08x", value.i);
3720    break;
3721  case CONSTANT_Long:
3722  case CONSTANT_Double:
3723    buf = getbuf(24);
3724    sprintf((char*)buf.ptr, "0x" LONG_LONG_HEX_FORMAT, value.l);
3725    break;
3726  default:
3727    if (nrefs == 0) {
3728      return TAG_NAME[tag];
3729    } else if (nrefs == 1) {
3730      return refs[0]->string();
3731    } else {
3732      const char* s1 = refs[0]->string();
3733      const char* s2 = refs[1]->string();
3734      buf = getbuf(strlen(s1) + 1 + strlen(s2) + 4 + 1);
3735      buf.strcat(s1).strcat(" ").strcat(s2);
3736      if (nrefs > 2)  buf.strcat(" ...");
3737    }
3738  }
3739  return (const char*)buf.ptr;
3740}
3741
3742void print_cp_entry(int i) {
3743  entry& e = debug_u->cp.entries[i];
3744
3745  if ((uint)e.tag < CONSTANT_Limit) {
3746    printf(" %d\t%s %s\n", i, TAG_NAME[e.tag], e.string());
3747  } else {
3748    printf(" %d\t%d %s\n", i, e.tag, e.string());
3749  }
3750}
3751
3752void print_cp_entries(int beg, int end) {
3753  for (int i = beg; i < end; i++)
3754    print_cp_entry(i);
3755}
3756
3757void print_cp() {
3758  print_cp_entries(0, debug_u->cp.nentries);
3759}
3760
3761#endif
3762
3763// Unpacker Start
3764
3765const char str_tf[] = "true\0false";
3766#undef STR_TRUE
3767#undef STR_FALSE
3768#define STR_TRUE   (&str_tf[0])
3769#define STR_FALSE  (&str_tf[5])
3770
3771const char* unpacker::get_option(const char* prop) {
3772  if (prop == null )  return null;
3773  if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
3774    return deflate_hint_or_zero == 0? null : STR_TF(deflate_hint_or_zero > 0);
3775#ifdef HAVE_STRIP
3776  } else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
3777    return STR_TF(strip_compile);
3778  } else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
3779    return STR_TF(strip_debug);
3780  } else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
3781    return STR_TF(strip_jcov);
3782#endif /*HAVE_STRIP*/
3783  } else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
3784    return STR_TF(remove_packfile);
3785  } else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
3786    return saveIntStr(verbose);
3787  } else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
3788    return (modification_time_or_zero == 0)? null:
3789      saveIntStr(modification_time_or_zero);
3790  } else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
3791    return log_file;
3792  } else {
3793    return NULL; // unknown option ignore
3794  }
3795}
3796
3797bool unpacker::set_option(const char* prop, const char* value) {
3798  if (prop == NULL)  return false;
3799  if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
3800    deflate_hint_or_zero = ( (value == null || strcmp(value, "keep") == 0)
3801                                ? 0: BOOL_TF(value) ? +1: -1);
3802#ifdef HAVE_STRIP
3803  } else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
3804    strip_compile = STR_TF(value);
3805  } else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
3806    strip_debug = STR_TF(value);
3807  } else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
3808    strip_jcov = STR_TF(value);
3809#endif /*HAVE_STRIP*/
3810  } else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
3811    remove_packfile = STR_TF(value);
3812  } else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
3813    verbose = (value == null)? 0: atoi(value);
3814  } else if (strcmp(prop, DEBUG_VERBOSE ".bands") == 0) {
3815#ifndef PRODUCT
3816    verbose_bands = (value == null)? 0: atoi(value);
3817#endif
3818  } else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
3819    if (value == null || (strcmp(value, "keep") == 0)) {
3820      modification_time_or_zero = 0;
3821    } else if (strcmp(value, "now") == 0) {
3822      time_t now;
3823      time(&now);
3824      modification_time_or_zero = (int) now;
3825    } else {
3826      modification_time_or_zero = atoi(value);
3827      if (modification_time_or_zero == 0)
3828        modification_time_or_zero = 1;  // make non-zero
3829    }
3830  } else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
3831    log_file = (value == null)? value: saveStr(value);
3832  } else {
3833    return false; // unknown option ignore
3834  }
3835  return true;
3836}
3837
3838// Deallocate all internal storage and reset to a clean state.
3839// Do not disturb any input or output connections, including
3840// infileptr, infileno, inbytes, read_input_fn, jarout, or errstrm.
3841// Do not reset any unpack options.
3842void unpacker::reset() {
3843  bytes_read_before_reset      += bytes_read;
3844  bytes_written_before_reset   += bytes_written;
3845  files_written_before_reset   += files_written;
3846  classes_written_before_reset += classes_written;
3847  segments_read_before_reset   += 1;
3848  if (verbose >= 2) {
3849    fprintf(errstrm,
3850            "After segment %d, "
3851            LONG_LONG_FORMAT " bytes read and "
3852            LONG_LONG_FORMAT " bytes written.\n",
3853            segments_read_before_reset-1,
3854            bytes_read_before_reset, bytes_written_before_reset);
3855    fprintf(errstrm,
3856            "After segment %d, %d files (of which %d are classes) written to output.\n",
3857            segments_read_before_reset-1,
3858            files_written_before_reset, classes_written_before_reset);
3859    if (archive_next_count != 0) {
3860      fprintf(errstrm,
3861              "After segment %d, %d segment%s remaining (estimated).\n",
3862              segments_read_before_reset-1,
3863              archive_next_count, archive_next_count==1?"":"s");
3864    }
3865  }
3866
3867  unpacker save_u = (*this);  // save bytewise image
3868  infileptr = null;  // make asserts happy
3869  jniobj = null;  // make asserts happy
3870  jarout = null;  // do not close the output jar
3871  gzin = null;  // do not close the input gzip stream
3872  bytes esn;
3873  if (errstrm_name != null) {
3874    esn.saveFrom(errstrm_name);
3875  } else {
3876    esn.set(null, 0);
3877  }
3878  this->free();
3879  mtrace('s', 0, 0);  // note the boundary between segments
3880  this->init(read_input_fn);
3881
3882  // restore selected interface state:
3883#define SAVE(x) this->x = save_u.x
3884  SAVE(jniobj);
3885  SAVE(jnienv);
3886  SAVE(infileptr);  // buffered
3887  SAVE(infileno);   // unbuffered
3888  SAVE(inbytes);    // direct
3889  SAVE(jarout);
3890  SAVE(gzin);
3891  //SAVE(read_input_fn);
3892  SAVE(errstrm);
3893  SAVE(verbose);  // verbose level, 0 means no output
3894  SAVE(strip_compile);
3895  SAVE(strip_debug);
3896  SAVE(strip_jcov);
3897  SAVE(remove_packfile);
3898  SAVE(deflate_hint_or_zero);  // ==0 means not set, otherwise -1 or 1
3899  SAVE(modification_time_or_zero);
3900  SAVE(bytes_read_before_reset);
3901  SAVE(bytes_written_before_reset);
3902  SAVE(files_written_before_reset);
3903  SAVE(classes_written_before_reset);
3904  SAVE(segments_read_before_reset);
3905#undef SAVE
3906  if (esn.len > 0) {
3907    errstrm_name = saveStr(esn.strval());
3908    esn.free();
3909  }
3910  log_file = errstrm_name;
3911  // Note:  If we use strip_names, watch out:  They get nuked here.
3912}
3913
3914void unpacker::init(read_input_fn_t input_fn) {
3915  int i;
3916  NOT_PRODUCT(debug_u = this);
3917  BYTES_OF(*this).clear();
3918#ifndef PRODUCT
3919  free();  // just to make sure freeing is idempotent
3920#endif
3921  this->u = this;    // self-reference for U_NEW macro
3922  errstrm = stdout;  // default error-output
3923  log_file = LOGFILE_STDOUT;
3924  read_input_fn = input_fn;
3925  all_bands = band::makeBands(this);
3926  // Make a default jar buffer; caller may safely overwrite it.
3927  jarout = U_NEW(jar, 1);
3928  jarout->init(this);
3929  for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
3930    attr_defs[i].u = u;  // set up outer ptr
3931}
3932
3933const char* unpacker::get_abort_message() {
3934   return abort_message;
3935}
3936
3937void unpacker::dump_options() {
3938  static const char* opts[] = {
3939    UNPACK_LOG_FILE,
3940    UNPACK_DEFLATE_HINT,
3941#ifdef HAVE_STRIP
3942    UNPACK_STRIP_COMPILE,
3943    UNPACK_STRIP_DEBUG,
3944    UNPACK_STRIP_JCOV,
3945#endif /*HAVE_STRIP*/
3946    UNPACK_REMOVE_PACKFILE,
3947    DEBUG_VERBOSE,
3948    UNPACK_MODIFICATION_TIME,
3949    null
3950  };
3951  for (int i = 0; opts[i] != null; i++) {
3952    const char* str = get_option(opts[i]);
3953    if (str == null) {
3954      if (verbose == 0)  continue;
3955      str = "(not set)";
3956    }
3957    fprintf(errstrm, "%s=%s\n", opts[i], str);
3958  }
3959}
3960
3961
3962// Usage: unpack a byte buffer
3963// packptr is a reference to byte buffer containing a
3964// packed file and len is the length of the buffer.
3965// If null, the callback is used to fill an internal buffer.
3966void unpacker::start(void* packptr, size_t len) {
3967  CHECK;
3968  NOT_PRODUCT(debug_u = this);
3969  if (packptr != null && len != 0) {
3970    inbytes.set((byte*) packptr, len);
3971  }
3972  CHECK;
3973  read_bands();
3974}
3975
3976void unpacker::check_options() {
3977  const char* strue  = "true";
3978  const char* sfalse = "false";
3979  if (deflate_hint_or_zero != 0) {
3980    bool force_deflate_hint = (deflate_hint_or_zero > 0);
3981    if (force_deflate_hint)
3982      default_file_options |= FO_DEFLATE_HINT;
3983    else
3984      default_file_options &= ~FO_DEFLATE_HINT;
3985    // Turn off per-file deflate hint by force.
3986    suppress_file_options |= FO_DEFLATE_HINT;
3987  }
3988  if (modification_time_or_zero != 0) {
3989    default_file_modtime = modification_time_or_zero;
3990    // Turn off per-file modtime by force.
3991    archive_options &= ~AO_HAVE_FILE_MODTIME;
3992  }
3993  // %%% strip_compile, etc...
3994}
3995
3996// classfile writing
3997
3998void unpacker::reset_cur_classfile() {
3999  // set defaults
4000  cur_class_minver = default_class_minver;
4001  cur_class_majver = default_class_majver;
4002
4003  // reset constant pool state
4004  cp.resetOutputIndexes();
4005
4006  // reset fixups
4007  class_fixup_type.empty();
4008  class_fixup_offset.empty();
4009  class_fixup_ref.empty();
4010  requested_ics.empty();
4011  cp.requested_bsms.empty();
4012}
4013
4014cpindex* cpool::getKQIndex() {
4015  char ch = '?';
4016  if (u->cur_descr != null) {
4017    entry* type = u->cur_descr->descrType();
4018    ch = type->value.b.ptr[0];
4019  }
4020  byte tag = CONSTANT_Integer;
4021  switch (ch) {
4022  case 'L': tag = CONSTANT_String;   break;
4023  case 'I': tag = CONSTANT_Integer;  break;
4024  case 'J': tag = CONSTANT_Long;     break;
4025  case 'F': tag = CONSTANT_Float;    break;
4026  case 'D': tag = CONSTANT_Double;   break;
4027  case 'B': case 'S': case 'C':
4028  case 'Z': tag = CONSTANT_Integer;  break;
4029  default:  abort("bad KQ reference"); break;
4030  }
4031  return getIndex(tag);
4032}
4033
4034uint unpacker::to_bci(uint bii) {
4035  uint  len =         bcimap.length();
4036  uint* map = (uint*) bcimap.base();
4037  assert(len > 0);  // must be initialized before using to_bci
4038  if (len == 0) {
4039    abort("bad bcimap");
4040    return 0;
4041  }
4042  if (bii < len)
4043    return map[bii];
4044  // Else it's a fractional or out-of-range BCI.
4045  uint key = bii-len;
4046  for (int i = len; ; i--) {
4047    if (map[i-1]-(i-1) <= key)
4048      break;
4049    else
4050      --bii;
4051  }
4052  return bii;
4053}
4054
4055void unpacker::put_stackmap_type() {
4056  int tag = code_StackMapTable_T.getByte();
4057  putu1(tag);
4058  switch (tag) {
4059  case 7: // (7) [RCH]
4060    putref(code_StackMapTable_RC.getRef());
4061    break;
4062  case 8: // (8) [PH]
4063    putu2(to_bci(code_StackMapTable_P.getInt()));
4064    CHECK;
4065    break;
4066  }
4067}
4068
4069// Functions for writing code.
4070
4071maybe_inline
4072void unpacker::put_label(int curIP, int size) {
4073  code_fixup_type.addByte(size);
4074  code_fixup_offset.add((int)put_empty(size));
4075  code_fixup_source.add(curIP);
4076}
4077
4078inline  // called exactly once => inline
4079void unpacker::write_bc_ops() {
4080  bcimap.empty();
4081  code_fixup_type.empty();
4082  code_fixup_offset.empty();
4083  code_fixup_source.empty();
4084
4085  band* bc_which;
4086
4087  byte*  opptr = bc_codes.curRP();
4088  // No need for oplimit, since the codes are pre-counted.
4089
4090  size_t codeBase = wpoffset();
4091
4092  bool   isAload;  // copy-out result
4093  int    origBC;
4094
4095  entry* thisClass  = cur_class;
4096  entry* superClass = cur_super;
4097  entry* newClass   = null;  // class of last _new opcode
4098
4099  // overwrite any prior index on these bands; it changes w/ current class:
4100  bc_thisfield.setIndex(    cp.getFieldIndex( thisClass));
4101  bc_thismethod.setIndex(   cp.getMethodIndex(thisClass));
4102  if (superClass != null) {
4103    bc_superfield.setIndex( cp.getFieldIndex( superClass));
4104    bc_supermethod.setIndex(cp.getMethodIndex(superClass));
4105  } else {
4106    NOT_PRODUCT(bc_superfield.setIndex(null));
4107    NOT_PRODUCT(bc_supermethod.setIndex(null));
4108  }
4109  CHECK;
4110
4111  for (int curIP = 0; ; curIP++) {
4112    CHECK;
4113    int curPC = (int)(wpoffset() - codeBase);
4114    bcimap.add(curPC);
4115    ensure_put_space(10);  // covers most instrs w/o further bounds check
4116    int bc = *opptr++ & 0xFF;
4117
4118    putu1_fast(bc);
4119    // Note:  See '--wp' below for pseudo-bytecodes like bc_end_marker.
4120
4121    bool isWide = false;
4122    if (bc == bc_wide) {
4123      bc = *opptr++ & 0xFF;
4124      putu1_fast(bc);
4125      isWide = true;
4126    }
4127    switch (bc) {
4128    case bc_end_marker:
4129      --wp;  // not really part of the code
4130      assert(opptr <= bc_codes.maxRP());
4131      bc_codes.curRP() = opptr;  // advance over this in bc_codes
4132      goto doneScanningMethod;
4133    case bc_tableswitch: // apc:  (df, lo, hi, (hi-lo+1)*(label))
4134    case bc_lookupswitch: // apc:  (df, nc, nc*(case, label))
4135      {
4136        int caseCount = bc_case_count.getInt();
4137        while (((wpoffset() - codeBase) % 4) != 0)  putu1_fast(0);
4138        ensure_put_space(30 + caseCount*8);
4139        put_label(curIP, 4);  //int df = bc_label.getInt();
4140        if (bc == bc_tableswitch) {
4141          int lo = bc_case_value.getInt();
4142          int hi = lo + caseCount-1;
4143          putu4(lo);
4144          putu4(hi);
4145          for (int j = 0; j < caseCount; j++) {
4146            put_label(curIP, 4); //int lVal = bc_label.getInt();
4147            //int cVal = lo + j;
4148          }
4149        } else {
4150          putu4(caseCount);
4151          for (int j = 0; j < caseCount; j++) {
4152            int cVal = bc_case_value.getInt();
4153            putu4(cVal);
4154            put_label(curIP, 4); //int lVal = bc_label.getInt();
4155          }
4156        }
4157        assert((int)to_bci(curIP) == curPC);
4158        continue;
4159      }
4160    case bc_iinc:
4161      {
4162        int local = bc_local.getInt();
4163        int delta = (isWide ? bc_short : bc_byte).getInt();
4164        if (isWide) {
4165          putu2(local);
4166          putu2(delta);
4167        } else {
4168          putu1_fast(local);
4169          putu1_fast(delta);
4170        }
4171        continue;
4172      }
4173    case bc_sipush:
4174      {
4175        int val = bc_short.getInt();
4176        putu2(val);
4177        continue;
4178      }
4179    case bc_bipush:
4180    case bc_newarray:
4181      {
4182        int val = bc_byte.getByte();
4183        putu1_fast(val);
4184        continue;
4185      }
4186    case bc_ref_escape:
4187      {
4188        // Note that insnMap has one entry for this.
4189        --wp;  // not really part of the code
4190        int size = bc_escrefsize.getInt();
4191        entry* ref = bc_escref.getRefN();
4192        CHECK;
4193        switch (size) {
4194        case 1: putu1ref(ref); break;
4195        case 2: putref(ref);   break;
4196        default: assert(false);
4197        }
4198        continue;
4199      }
4200    case bc_byte_escape:
4201      {
4202        // Note that insnMap has one entry for all these bytes.
4203        --wp;  // not really part of the code
4204        int size = bc_escsize.getInt();
4205        if (size < 0) { assert(false); continue; }
4206        ensure_put_space(size);
4207        for (int j = 0; j < size; j++)
4208          putu1_fast(bc_escbyte.getByte());
4209        continue;
4210      }
4211    default:
4212      if (is_invoke_init_op(bc)) {
4213        origBC = bc_invokespecial;
4214        entry* classRef;
4215        switch (bc - _invokeinit_op) {
4216        case _invokeinit_self_option:   classRef = thisClass;  break;
4217        case _invokeinit_super_option:  classRef = superClass; break;
4218        default: assert(bc == _invokeinit_op+_invokeinit_new_option);
4219        case _invokeinit_new_option:    classRef = newClass;   break;
4220        }
4221        wp[-1] = origBC;  // overwrite with origBC
4222        int coding = bc_initref.getInt();
4223        // Find the nth overloading of <init> in classRef.
4224        entry*   ref = null;
4225        cpindex* ix = cp.getMethodIndex(classRef);
4226        CHECK;
4227        for (int j = 0, which_init = 0; ; j++) {
4228          ref = (ix == null)? null: ix->get(j);
4229          if (ref == null)  break;  // oops, bad input
4230          assert(ref->tag == CONSTANT_Methodref);
4231          if (ref->memberDescr()->descrName() == cp.sym[cpool::s_lt_init_gt]) {
4232            if (which_init++ == coding)  break;
4233          }
4234        }
4235        putref(ref);
4236        continue;
4237      }
4238      bc_which = ref_band_for_self_op(bc, isAload, origBC);
4239      if (bc_which != null) {
4240        if (!isAload) {
4241          wp[-1] = origBC;  // overwrite with origBC
4242        } else {
4243          wp[-1] = bc_aload_0;  // overwrite with _aload_0
4244          // Note: insnMap keeps the _aload_0 separate.
4245          bcimap.add(++curPC);
4246          ++curIP;
4247          putu1_fast(origBC);
4248        }
4249        entry* ref = bc_which->getRef();
4250        CHECK;
4251        putref(ref);
4252        continue;
4253      }
4254      if (is_branch_op(bc)) {
4255        //int lVal = bc_label.getInt();
4256        if (bc < bc_goto_w) {
4257          put_label(curIP, 2);  //putu2(lVal & 0xFFFF);
4258        } else {
4259          assert(bc <= bc_jsr_w);
4260          put_label(curIP, 4);  //putu4(lVal);
4261        }
4262        assert((int)to_bci(curIP) == curPC);
4263        continue;
4264      }
4265      bc_which = ref_band_for_op(bc);
4266      if (bc_which != null) {
4267        entry* ref = bc_which->getRefCommon(bc_which->ix, bc_which->nullOK);
4268        CHECK;
4269        if (ref == null && bc_which == &bc_classref) {
4270          // Shorthand for class self-references.
4271          ref = thisClass;
4272        }
4273        origBC = bc;
4274        switch (bc) {
4275        case _invokestatic_int:
4276          origBC = bc_invokestatic;
4277          break;
4278        case _invokespecial_int:
4279          origBC = bc_invokespecial;
4280          break;
4281        case bc_ildc:
4282        case bc_cldc:
4283        case bc_fldc:
4284        case bc_sldc:
4285        case bc_qldc:
4286          origBC = bc_ldc;
4287          break;
4288        case bc_ildc_w:
4289        case bc_cldc_w:
4290        case bc_fldc_w:
4291        case bc_sldc_w:
4292        case bc_qldc_w:
4293          origBC = bc_ldc_w;
4294          break;
4295        case bc_lldc2_w:
4296        case bc_dldc2_w:
4297          origBC = bc_ldc2_w;
4298          break;
4299        case bc_new:
4300          newClass = ref;
4301          break;
4302        }
4303        wp[-1] = origBC;  // overwrite with origBC
4304        if (origBC == bc_ldc) {
4305          putu1ref(ref);
4306        } else {
4307          putref(ref);
4308        }
4309        if (origBC == bc_multianewarray) {
4310          // Copy the trailing byte also.
4311          int val = bc_byte.getByte();
4312          putu1_fast(val);
4313        } else if (origBC == bc_invokeinterface) {
4314          int argSize = ref->memberDescr()->descrType()->typeSize();
4315          putu1_fast(1 + argSize);
4316          putu1_fast(0);
4317        } else if (origBC == bc_invokedynamic) {
4318          // pad the next two byte
4319          putu1_fast(0);
4320          putu1_fast(0);
4321        }
4322        continue;
4323      }
4324      if (is_local_slot_op(bc)) {
4325        int local = bc_local.getInt();
4326        if (isWide) {
4327          putu2(local);
4328          if (bc == bc_iinc) {
4329            int iVal = bc_short.getInt();
4330            putu2(iVal);
4331          }
4332        } else {
4333          putu1_fast(local);
4334          if (bc == bc_iinc) {
4335            int iVal = bc_byte.getByte();
4336            putu1_fast(iVal);
4337          }
4338        }
4339        continue;
4340      }
4341      // Random bytecode.  Just copy it.
4342      assert(bc < bc_bytecode_limit);
4343    }
4344  }
4345 doneScanningMethod:{}
4346  //bcimap.add(curPC);  // PC limit is already also in map, from bc_end_marker
4347
4348  // Armed with a bcimap, we can now fix up all the labels.
4349  for (int i = 0; i < (int)code_fixup_type.size(); i++) {
4350    int   type   = code_fixup_type.getByte(i);
4351    byte* bp     = wp_at(code_fixup_offset.get(i));
4352    int   curIP  = code_fixup_source.get(i);
4353    int   destIP = curIP + bc_label.getInt();
4354    int   span   = to_bci(destIP) - to_bci(curIP);
4355    CHECK;
4356    switch (type) {
4357    case 2: putu2_at(bp, (ushort)span); break;
4358    case 4: putu4_at(bp,         span); break;
4359    default: assert(false);
4360    }
4361  }
4362}
4363
4364inline  // called exactly once => inline
4365void unpacker::write_code() {
4366  int j;
4367
4368  int max_stack, max_locals, handler_count, cflags;
4369  get_code_header(max_stack, max_locals, handler_count, cflags);
4370
4371  if (max_stack < 0)      max_stack = code_max_stack.getInt();
4372  if (max_locals < 0)     max_locals = code_max_na_locals.getInt();
4373  if (handler_count < 0)  handler_count = code_handler_count.getInt();
4374
4375  int siglen = cur_descr->descrType()->typeSize();
4376  CHECK;
4377  if ((cur_descr_flags & ACC_STATIC) == 0)  siglen++;
4378  max_locals += siglen;
4379
4380  putu2(max_stack);
4381  putu2(max_locals);
4382  size_t bcbase = put_empty(4);
4383
4384  // Write the bytecodes themselves.
4385  write_bc_ops();
4386  CHECK;
4387
4388  byte* bcbasewp = wp_at(bcbase);
4389  putu4_at(bcbasewp, (int)(wp - (bcbasewp+4)));  // size of code attr
4390
4391  putu2(handler_count);
4392  for (j = 0; j < handler_count; j++) {
4393    int bii = code_handler_start_P.getInt();
4394    putu2(to_bci(bii));
4395    bii    += code_handler_end_PO.getInt();
4396    putu2(to_bci(bii));
4397    bii    += code_handler_catch_PO.getInt();
4398    putu2(to_bci(bii));
4399    putref(code_handler_class_RCN.getRefN());
4400    CHECK;
4401  }
4402
4403  julong indexBits = cflags;
4404  if (cflags < 0) {
4405    bool haveLongFlags = attr_defs[ATTR_CONTEXT_CODE].haveLongFlags();
4406    indexBits = code_flags_hi.getLong(code_flags_lo, haveLongFlags);
4407  }
4408  write_attrs(ATTR_CONTEXT_CODE, indexBits);
4409}
4410
4411int unpacker::write_attrs(int attrc, julong indexBits) {
4412  CHECK_0;
4413  if (indexBits == 0) {
4414    // Quick short-circuit.
4415    putu2(0);
4416    return 0;
4417  }
4418
4419  attr_definitions& ad = attr_defs[attrc];
4420
4421  int i, j, j2, idx, count;
4422
4423  int oiCount = 0;
4424  if (ad.isPredefined(X_ATTR_OVERFLOW)
4425      && (indexBits & ((julong)1<<X_ATTR_OVERFLOW)) != 0) {
4426    indexBits -= ((julong)1<<X_ATTR_OVERFLOW);
4427    oiCount = ad.xxx_attr_count().getInt();
4428  }
4429
4430  int bitIndexes[X_ATTR_LIMIT_FLAGS_HI];
4431  int biCount = 0;
4432
4433  // Fill bitIndexes with index bits, in order.
4434  for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
4435    if ((indexBits & 1) != 0)
4436      bitIndexes[biCount++] = idx;
4437  }
4438  assert(biCount <= (int)lengthof(bitIndexes));
4439
4440  // Write a provisional attribute count, perhaps to be corrected later.
4441  int naOffset = (int)wpoffset();
4442  int na0 = biCount + oiCount;
4443  putu2(na0);
4444
4445  int na = 0;
4446  for (i = 0; i < na0; i++) {
4447    if (i < biCount)
4448      idx = bitIndexes[i];
4449    else
4450      idx = ad.xxx_attr_indexes().getInt();
4451    assert(ad.isIndex(idx));
4452    entry* aname = null;
4453    entry* ref;  // scratch
4454    size_t abase = put_empty(2+4);
4455    CHECK_0;
4456    if (idx < (int)ad.flag_limit && ad.isPredefined(idx)) {
4457      // Switch on the attrc and idx simultaneously.
4458      switch (ADH_BYTE(attrc, idx)) {
4459
4460      case ADH_BYTE(ATTR_CONTEXT_CLASS,  X_ATTR_OVERFLOW):
4461      case ADH_BYTE(ATTR_CONTEXT_FIELD,  X_ATTR_OVERFLOW):
4462      case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_OVERFLOW):
4463      case ADH_BYTE(ATTR_CONTEXT_CODE,   X_ATTR_OVERFLOW):
4464        // no attribute at all, so back up on this one
4465        wp = wp_at(abase);
4466        continue;
4467
4468      case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_ClassFile_version):
4469        cur_class_minver = class_ClassFile_version_minor_H.getInt();
4470        cur_class_majver = class_ClassFile_version_major_H.getInt();
4471        // back up; not a real attribute
4472        wp = wp_at(abase);
4473        continue;
4474
4475      case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_InnerClasses):
4476        // note the existence of this attr, but save for later
4477        if (cur_class_has_local_ics)
4478          abort("too many InnerClasses attrs");
4479        cur_class_has_local_ics = true;
4480        wp = wp_at(abase);
4481        continue;
4482
4483      case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_SourceFile):
4484        aname = cp.sym[cpool::s_SourceFile];
4485        ref = class_SourceFile_RUN.getRefN();
4486        CHECK_0;
4487        if (ref == null) {
4488          bytes& n = cur_class->ref(0)->value.b;
4489          // parse n = (<pkg>/)*<outer>?($<id>)*
4490          int pkglen = lastIndexOf(SLASH_MIN,  SLASH_MAX,  n, (int)n.len)+1;
4491          bytes prefix = n.slice(pkglen, n.len);
4492          for (;;) {
4493            // Work backwards, finding all '$', '#', etc.
4494            int dollar = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, prefix, (int)prefix.len);
4495            if (dollar < 0)  break;
4496            prefix = prefix.slice(0, dollar);
4497          }
4498          const char* suffix = ".java";
4499          int len = (int)(prefix.len + strlen(suffix));
4500          bytes name; name.set(T_NEW(byte, add_size(len, 1)), len);
4501          name.strcat(prefix).strcat(suffix);
4502          ref = cp.ensureUtf8(name);
4503        }
4504        putref(ref);
4505        break;
4506
4507      case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_EnclosingMethod):
4508        aname = cp.sym[cpool::s_EnclosingMethod];
4509        putref(class_EnclosingMethod_RC.getRefN());
4510        CHECK_0;
4511        putref(class_EnclosingMethod_RDN.getRefN());
4512        break;
4513
4514      case ADH_BYTE(ATTR_CONTEXT_FIELD, FIELD_ATTR_ConstantValue):
4515        aname = cp.sym[cpool::s_ConstantValue];
4516        putref(field_ConstantValue_KQ.getRefUsing(cp.getKQIndex()));
4517        break;
4518
4519      case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Code):
4520        aname = cp.sym[cpool::s_Code];
4521        write_code();
4522        break;
4523
4524      case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Exceptions):
4525        aname = cp.sym[cpool::s_Exceptions];
4526        putu2(count = method_Exceptions_N.getInt());
4527        for (j = 0; j < count; j++) {
4528          putref(method_Exceptions_RC.getRefN());
4529          CHECK_0;
4530        }
4531        break;
4532
4533      case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_MethodParameters):
4534        aname = cp.sym[cpool::s_MethodParameters];
4535        putu1(count = method_MethodParameters_NB.getByte());
4536        for (j = 0; j < count; j++) {
4537          putref(method_MethodParameters_name_RUN.getRefN());
4538          putu2(method_MethodParameters_flag_FH.getInt());
4539        }
4540        break;
4541
4542      case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_StackMapTable):
4543        aname = cp.sym[cpool::s_StackMapTable];
4544        // (keep this code aligned with its brother in unpacker::read_attrs)
4545        putu2(count = code_StackMapTable_N.getInt());
4546        for (j = 0; j < count; j++) {
4547          int tag = code_StackMapTable_frame_T.getByte();
4548          putu1(tag);
4549          if (tag <= 127) {
4550            // (64-127)  [(2)]
4551            if (tag >= 64)  put_stackmap_type();
4552            CHECK_0;
4553          } else if (tag <= 251) {
4554            // (247)     [(1)(2)]
4555            // (248-251) [(1)]
4556            if (tag >= 247)  putu2(code_StackMapTable_offset.getInt());
4557            if (tag == 247)  put_stackmap_type();
4558            CHECK_0;
4559          } else if (tag <= 254) {
4560            // (252)     [(1)(2)]
4561            // (253)     [(1)(2)(2)]
4562            // (254)     [(1)(2)(2)(2)]
4563            putu2(code_StackMapTable_offset.getInt());
4564            CHECK_0;
4565            for (int k = (tag - 251); k > 0; k--) {
4566              put_stackmap_type();
4567              CHECK_0;
4568            }
4569          } else {
4570            // (255)     [(1)NH[(2)]NH[(2)]]
4571            putu2(code_StackMapTable_offset.getInt());
4572            putu2(j2 = code_StackMapTable_local_N.getInt());
4573            while (j2-- > 0) {put_stackmap_type(); CHECK_0;}
4574            putu2(j2 = code_StackMapTable_stack_N.getInt());
4575            while (j2-- > 0)  {put_stackmap_type(); CHECK_0;}
4576          }
4577        }
4578        break;
4579
4580      case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LineNumberTable):
4581        aname = cp.sym[cpool::s_LineNumberTable];
4582        putu2(count = code_LineNumberTable_N.getInt());
4583        for (j = 0; j < count; j++) {
4584          putu2(to_bci(code_LineNumberTable_bci_P.getInt()));
4585          CHECK_0;
4586          putu2(code_LineNumberTable_line.getInt());
4587        }
4588        break;
4589
4590      case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTable):
4591        aname = cp.sym[cpool::s_LocalVariableTable];
4592        putu2(count = code_LocalVariableTable_N.getInt());
4593        for (j = 0; j < count; j++) {
4594          int bii = code_LocalVariableTable_bci_P.getInt();
4595          int bci = to_bci(bii);
4596          CHECK_0;
4597          putu2(bci);
4598          bii    += code_LocalVariableTable_span_O.getInt();
4599          putu2(to_bci(bii) - bci);
4600          CHECK_0;
4601          putref(code_LocalVariableTable_name_RU.getRefN());
4602          CHECK_0;
4603          putref(code_LocalVariableTable_type_RS.getRefN());
4604          CHECK_0;
4605          putu2(code_LocalVariableTable_slot.getInt());
4606        }
4607        break;
4608
4609      case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTypeTable):
4610        aname = cp.sym[cpool::s_LocalVariableTypeTable];
4611        putu2(count = code_LocalVariableTypeTable_N.getInt());
4612        for (j = 0; j < count; j++) {
4613          int bii = code_LocalVariableTypeTable_bci_P.getInt();
4614          int bci = to_bci(bii);
4615          CHECK_0;
4616          putu2(bci);
4617          bii    += code_LocalVariableTypeTable_span_O.getInt();
4618          putu2(to_bci(bii) - bci);
4619          CHECK_0;
4620          putref(code_LocalVariableTypeTable_name_RU.getRefN());
4621          CHECK_0;
4622          putref(code_LocalVariableTypeTable_type_RS.getRefN());
4623          CHECK_0;
4624          putu2(code_LocalVariableTypeTable_slot.getInt());
4625        }
4626        break;
4627
4628      case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_Signature):
4629        aname = cp.sym[cpool::s_Signature];
4630        putref(class_Signature_RS.getRefN());
4631        break;
4632
4633      case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_Signature):
4634        aname = cp.sym[cpool::s_Signature];
4635        putref(field_Signature_RS.getRefN());
4636        break;
4637
4638      case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Signature):
4639        aname = cp.sym[cpool::s_Signature];
4640        putref(method_Signature_RS.getRefN());
4641        break;
4642
4643      case ADH_BYTE(ATTR_CONTEXT_CLASS,  X_ATTR_Deprecated):
4644      case ADH_BYTE(ATTR_CONTEXT_FIELD,  X_ATTR_Deprecated):
4645      case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Deprecated):
4646        aname = cp.sym[cpool::s_Deprecated];
4647        // no data
4648        break;
4649      }
4650    }
4651    CHECK_0;
4652    if (aname == null) {
4653      // Unparse a compressor-defined attribute.
4654      layout_definition* lo = ad.getLayout(idx);
4655      if (lo == null) {
4656        abort("bad layout index");
4657        break;
4658      }
4659      assert((int)lo->idx == idx);
4660      aname = lo->nameEntry;
4661      if (aname == null) {
4662        bytes nameb; nameb.set(lo->name);
4663        aname = cp.ensureUtf8(nameb);
4664        // Cache the name entry for next time.
4665        lo->nameEntry = aname;
4666      }
4667      // Execute all the layout elements.
4668      band** bands = lo->bands();
4669      if (lo->hasCallables()) {
4670        band& cble = *bands[0];
4671        assert(cble.le_kind == EK_CBLE);
4672        bands = cble.le_body;
4673      }
4674      putlayout(bands);
4675    }
4676
4677    if (aname == null)
4678      abort("bad attribute index");
4679    CHECK_0;
4680
4681    byte* wp1 = wp;
4682    wp = wp_at(abase);
4683
4684    // DTRT if this attr is on the strip-list.
4685    // (Note that we emptied the data out of the band first.)
4686    if (ad.strip_names.contains(aname)) {
4687      continue;
4688    }
4689
4690    // patch the name and length
4691    putref(aname);
4692    putu4((int)(wp1 - (wp+4)));  // put the attr size
4693    wp = wp1;
4694    na++;  // count the attrs actually written
4695  }
4696
4697  if (na != na0)
4698    // Refresh changed count.
4699    putu2_at(wp_at(naOffset), na);
4700  return na;
4701}
4702
4703void unpacker::write_members(int num, int attrc) {
4704  CHECK;
4705  attr_definitions& ad = attr_defs[attrc];
4706  band& member_flags_hi = ad.xxx_flags_hi();
4707  band& member_flags_lo = ad.xxx_flags_lo();
4708  band& member_descr = (&member_flags_hi)[e_field_descr-e_field_flags_hi];
4709  assert(endsWith(member_descr.name, "_descr"));
4710  assert(endsWith(member_flags_lo.name, "_flags_lo"));
4711  assert(endsWith(member_flags_lo.name, "_flags_lo"));
4712  bool haveLongFlags = ad.haveLongFlags();
4713
4714  putu2(num);
4715  julong indexMask = attr_defs[attrc].flagIndexMask();
4716  for (int i = 0; i < num; i++) {
4717    julong mflags = member_flags_hi.getLong(member_flags_lo, haveLongFlags);
4718    entry* mdescr = member_descr.getRef();
4719    cur_descr = mdescr;
4720    putu2(cur_descr_flags = (ushort)(mflags & ~indexMask));
4721    CHECK;
4722    putref(mdescr->descrName());
4723    putref(mdescr->descrType());
4724    write_attrs(attrc, (mflags & indexMask));
4725    CHECK;
4726  }
4727  cur_descr = null;
4728}
4729
4730extern "C"
4731int raw_address_cmp(const void* p1p, const void* p2p) {
4732  void* p1 = *(void**) p1p;
4733  void* p2 = *(void**) p2p;
4734  return (p1 > p2)? 1: (p1 < p2)? -1: 0;
4735}
4736
4737/*
4738 * writes the InnerClass attributes and returns the updated attribute
4739 */
4740int  unpacker::write_ics(int naOffset, int na) {
4741#ifdef ASSERT
4742  for (int i = 0; i < ic_count; i++) {
4743    assert(!ics[i].requested);
4744  }
4745#endif
4746  // First, consult the global table and the local constant pool,
4747  // and decide on the globally implied inner classes.
4748  // (Note that we read the cpool's outputIndex fields, but we
4749  // do not yet write them, since the local IC attribute might
4750  // reverse a global decision to declare an IC.)
4751  assert(requested_ics.length() == 0);  // must start out empty
4752  // Always include all members of the current class.
4753  for (inner_class* child = cp.getFirstChildIC(cur_class);
4754       child != null;
4755       child = cp.getNextChildIC(child)) {
4756    child->requested = true;
4757    requested_ics.add(child);
4758  }
4759  // And, for each inner class mentioned in the constant pool,
4760  // include it and all its outers.
4761  int    noes =           cp.outputEntries.length();
4762  entry** oes = (entry**) cp.outputEntries.base();
4763  for (int i = 0; i < noes; i++) {
4764    entry& e = *oes[i];
4765    if (e.tag != CONSTANT_Class)  continue;  // wrong sort
4766    for (inner_class* ic = cp.getIC(&e);
4767         ic != null;
4768         ic = cp.getIC(ic->outer)) {
4769      if (ic->requested)  break;  // already processed
4770      ic->requested = true;
4771      requested_ics.add(ic);
4772    }
4773  }
4774  int local_ics = requested_ics.length();
4775  // Second, consult a local attribute (if any) and adjust the global set.
4776  inner_class* extra_ics = null;
4777  int      num_extra_ics = 0;
4778  if (cur_class_has_local_ics) {
4779    // adjust the set of ICs by symmetric set difference w/ the locals
4780    num_extra_ics = class_InnerClasses_N.getInt();
4781    if (num_extra_ics == 0) {
4782      // Explicit zero count has an irregular meaning:  It deletes the attr.
4783      local_ics = 0;  // (short-circuit all tests of requested bits)
4784    } else {
4785      extra_ics = T_NEW(inner_class, num_extra_ics);
4786      // Note:  extra_ics will be freed up by next call to get_next_file().
4787    }
4788  }
4789  for (int i = 0; i < num_extra_ics; i++) {
4790    inner_class& extra_ic = extra_ics[i];
4791    extra_ic.inner = class_InnerClasses_RC.getRef();
4792    CHECK_0;
4793    // Find the corresponding equivalent global IC:
4794    inner_class* global_ic = cp.getIC(extra_ic.inner);
4795    int flags = class_InnerClasses_F.getInt();
4796    if (flags == 0) {
4797      // The extra IC is simply a copy of a global IC.
4798      if (global_ic == null) {
4799        abort("bad reference to inner class");
4800        break;
4801      }
4802      extra_ic = (*global_ic);  // fill in rest of fields
4803    } else {
4804      flags &= ~ACC_IC_LONG_FORM;  // clear high bit if set to get clean zero
4805      extra_ic.flags = flags;
4806      extra_ic.outer = class_InnerClasses_outer_RCN.getRefN();
4807      CHECK_0;
4808      extra_ic.name  = class_InnerClasses_name_RUN.getRefN();
4809      CHECK_0;
4810      // Detect if this is an exact copy of the global tuple.
4811      if (global_ic != null) {
4812        if (global_ic->flags != extra_ic.flags ||
4813            global_ic->outer != extra_ic.outer ||
4814            global_ic->name  != extra_ic.name) {
4815          global_ic = null;  // not really the same, so break the link
4816        }
4817      }
4818    }
4819    if (global_ic != null && global_ic->requested) {
4820      // This local repetition reverses the globally implied request.
4821      global_ic->requested = false;
4822      extra_ic.requested = false;
4823      local_ics -= 1;
4824    } else {
4825      // The global either does not exist, or is not yet requested.
4826      extra_ic.requested = true;
4827      local_ics += 1;
4828    }
4829  }
4830  // Finally, if there are any that survived, put them into an attribute.
4831  // (Note that a zero-count attribute is always deleted.)
4832  // The putref calls below will tell the constant pool to add any
4833  // necessary local CP references to support the InnerClasses attribute.
4834  // This step must be the last round of additions to the local CP.
4835  if (local_ics > 0) {
4836    // append the new attribute:
4837    putref(cp.sym[cpool::s_InnerClasses]);
4838    putu4(2 + 2*4*local_ics);
4839    putu2(local_ics);
4840    PTRLIST_QSORT(requested_ics, raw_address_cmp);
4841    int num_global_ics = requested_ics.length();
4842    for (int i = -num_global_ics; i < num_extra_ics; i++) {
4843      inner_class* ic;
4844      if (i < 0)
4845        ic = (inner_class*) requested_ics.get(num_global_ics+i);
4846      else
4847        ic = &extra_ics[i];
4848      if (ic->requested) {
4849        putref(ic->inner);
4850        putref(ic->outer);
4851        putref(ic->name);
4852        putu2(ic->flags);
4853        NOT_PRODUCT(local_ics--);
4854      }
4855    }
4856    assert(local_ics == 0);           // must balance
4857    putu2_at(wp_at(naOffset), ++na);  // increment class attr count
4858  }
4859
4860  // Tidy up global 'requested' bits:
4861  for (int i = requested_ics.length(); --i >= 0; ) {
4862    inner_class* ic = (inner_class*) requested_ics.get(i);
4863    ic->requested = false;
4864  }
4865  requested_ics.empty();
4866  return na;
4867}
4868
4869/*
4870 * Writes the BootstrapMethods attribute and returns the updated attribute count
4871 */
4872int unpacker::write_bsms(int naOffset, int na) {
4873  cur_class_local_bsm_count = cp.requested_bsms.length();
4874  if (cur_class_local_bsm_count > 0) {
4875    int    noes =           cp.outputEntries.length();
4876    entry** oes = (entry**) cp.outputEntries.base();
4877    PTRLIST_QSORT(cp.requested_bsms, outputEntry_cmp);
4878    // append the BootstrapMethods attribute (after the InnerClasses attr):
4879    putref(cp.sym[cpool::s_BootstrapMethods]);
4880    // make a note of the offset, for lazy patching
4881    int sizeOffset = (int)wpoffset();
4882    putu4(-99);  // attr size will be patched
4883    putu2(cur_class_local_bsm_count);
4884    int written_bsms = 0;
4885    for (int i = 0 ; i < cur_class_local_bsm_count ; i++) {
4886      entry* e = (entry*)cp.requested_bsms.get(i);
4887      assert(e->outputIndex != REQUESTED_NONE);
4888      // output index is the index within the array
4889      e->outputIndex = i;
4890      putref(e->refs[0]);  // bsm
4891      putu2(e->nrefs-1);  // number of args after bsm
4892      for (int j = 1; j < e->nrefs; j++) {
4893        putref(e->refs[j]);
4894      }
4895      written_bsms += 1;
4896    }
4897    assert(written_bsms == cur_class_local_bsm_count);  // else insane
4898    byte* sizewp = wp_at(sizeOffset);
4899    putu4_at(sizewp, (int)(wp - (sizewp+4)));  // size of code attr
4900    putu2_at(wp_at(naOffset), ++na);  // increment class attr count
4901  }
4902  return na;
4903}
4904
4905void unpacker::write_classfile_tail() {
4906
4907  cur_classfile_tail.empty();
4908  set_output(&cur_classfile_tail);
4909
4910  int i, num;
4911
4912  attr_definitions& ad = attr_defs[ATTR_CONTEXT_CLASS];
4913
4914  bool haveLongFlags = ad.haveLongFlags();
4915  julong kflags = class_flags_hi.getLong(class_flags_lo, haveLongFlags);
4916  julong indexMask = ad.flagIndexMask();
4917
4918  cur_class = class_this.getRef();
4919  CHECK;
4920  cur_super = class_super.getRef();
4921  CHECK;
4922
4923  if (cur_super == cur_class)  cur_super = null;
4924  // special representation for java/lang/Object
4925
4926  putu2((ushort)(kflags & ~indexMask));
4927  putref(cur_class);
4928  putref(cur_super);
4929
4930  putu2(num = class_interface_count.getInt());
4931  for (i = 0; i < num; i++) {
4932    putref(class_interface.getRef());
4933    CHECK;
4934  }
4935
4936  write_members(class_field_count.getInt(),  ATTR_CONTEXT_FIELD);
4937  write_members(class_method_count.getInt(), ATTR_CONTEXT_METHOD);
4938  CHECK;
4939
4940  cur_class_has_local_ics = false;  // may be set true by write_attrs
4941
4942  int naOffset = (int)wpoffset();   // note the attr count location
4943  int na = write_attrs(ATTR_CONTEXT_CLASS, (kflags & indexMask));
4944  CHECK;
4945
4946  na = write_bsms(naOffset, na);
4947  CHECK;
4948
4949  // choose which inner classes (if any) pertain to k:
4950  na = write_ics(naOffset, na);
4951  CHECK;
4952
4953  close_output();
4954  cp.computeOutputIndexes();
4955
4956  // rewrite CP references in the tail
4957  int nextref = 0;
4958  for (i = 0; i < (int)class_fixup_type.size(); i++) {
4959    int    type = class_fixup_type.getByte(i);
4960    byte*  fixp = wp_at(class_fixup_offset.get(i));
4961    entry* e    = (entry*)class_fixup_ref.get(nextref++);
4962    int    idx  = e->getOutputIndex();
4963    switch (type) {
4964    case 1:  putu1_at(fixp, idx);  break;
4965    case 2:  putu2_at(fixp, idx);  break;
4966    default: assert(false);  // should not reach here
4967    }
4968  }
4969  CHECK;
4970}
4971
4972void unpacker::write_classfile_head() {
4973  cur_classfile_head.empty();
4974  set_output(&cur_classfile_head);
4975
4976  putu4(JAVA_MAGIC);
4977  putu2(cur_class_minver);
4978  putu2(cur_class_majver);
4979  putu2(cp.outputIndexLimit);
4980
4981  int checkIndex = 1;
4982  int    noes =           cp.outputEntries.length();
4983  entry** oes = (entry**) cp.outputEntries.base();
4984  for (int i = 0; i < noes; i++) {
4985    entry& e = *oes[i];
4986    assert(e.getOutputIndex() == checkIndex++);
4987    byte tag = e.tag;
4988    assert(tag != CONSTANT_Signature);
4989    putu1(tag);
4990    switch (tag) {
4991    case CONSTANT_Utf8:
4992      putu2((int)e.value.b.len);
4993      put_bytes(e.value.b);
4994      break;
4995    case CONSTANT_Integer:
4996    case CONSTANT_Float:
4997      putu4(e.value.i);
4998      break;
4999    case CONSTANT_Long:
5000    case CONSTANT_Double:
5001      putu8(e.value.l);
5002      assert(checkIndex++);
5003      break;
5004    case CONSTANT_Class:
5005    case CONSTANT_String:
5006      // just write the ref
5007      putu2(e.refs[0]->getOutputIndex());
5008      break;
5009    case CONSTANT_Fieldref:
5010    case CONSTANT_Methodref:
5011    case CONSTANT_InterfaceMethodref:
5012    case CONSTANT_NameandType:
5013    case CONSTANT_InvokeDynamic:
5014      putu2(e.refs[0]->getOutputIndex());
5015      putu2(e.refs[1]->getOutputIndex());
5016      break;
5017    case CONSTANT_MethodHandle:
5018        putu1(e.value.i);
5019        putu2(e.refs[0]->getOutputIndex());
5020        break;
5021    case CONSTANT_MethodType:
5022      putu2(e.refs[0]->getOutputIndex());
5023      break;
5024    case CONSTANT_BootstrapMethod: // should not happen
5025    default:
5026      abort(ERROR_INTERNAL);
5027    }
5028  }
5029
5030#ifndef PRODUCT
5031  total_cp_size[0] += cp.outputIndexLimit;
5032  total_cp_size[1] += (int)cur_classfile_head.size();
5033#endif
5034  close_output();
5035}
5036
5037unpacker::file* unpacker::get_next_file() {
5038  CHECK_0;
5039  free_temps();
5040  if (files_remaining == 0) {
5041    // Leave a clue that we're exhausted.
5042    cur_file.name = null;
5043    cur_file.size = null;
5044    if (archive_size != 0) {
5045      julong predicted_size = unsized_bytes_read + archive_size;
5046      if (predicted_size != bytes_read)
5047        abort("archive header had incorrect size");
5048    }
5049    return null;
5050  }
5051  files_remaining -= 1;
5052  assert(files_written < file_count || classes_written < class_count);
5053  cur_file.name = "";
5054  cur_file.size = 0;
5055  cur_file.modtime = default_file_modtime;
5056  cur_file.options = default_file_options;
5057  cur_file.data[0].set(null, 0);
5058  cur_file.data[1].set(null, 0);
5059  if (files_written < file_count) {
5060    entry* e = file_name.getRef();
5061    CHECK_0;
5062    cur_file.name = e->utf8String();
5063    CHECK_0;
5064    bool haveLongSize = (testBit(archive_options, AO_HAVE_FILE_SIZE_HI));
5065    cur_file.size = file_size_hi.getLong(file_size_lo, haveLongSize);
5066    if (testBit(archive_options, AO_HAVE_FILE_MODTIME))
5067      cur_file.modtime += file_modtime.getInt();  //relative to archive modtime
5068    if (testBit(archive_options, AO_HAVE_FILE_OPTIONS))
5069      cur_file.options |= file_options.getInt() & ~suppress_file_options;
5070  } else if (classes_written < class_count) {
5071    // there is a class for a missing file record
5072    cur_file.options |= FO_IS_CLASS_STUB;
5073  }
5074  if ((cur_file.options & FO_IS_CLASS_STUB) != 0) {
5075    assert(classes_written < class_count);
5076    classes_written += 1;
5077    if (cur_file.size != 0) {
5078      abort("class file size transmitted");
5079      return null;
5080    }
5081    reset_cur_classfile();
5082
5083    // write the meat of the classfile:
5084    write_classfile_tail();
5085    cur_file.data[1] = cur_classfile_tail.b;
5086    CHECK_0;
5087
5088    // write the CP of the classfile, second:
5089    write_classfile_head();
5090    cur_file.data[0] = cur_classfile_head.b;
5091    CHECK_0;
5092
5093    cur_file.size += cur_file.data[0].len;
5094    cur_file.size += cur_file.data[1].len;
5095    if (cur_file.name[0] == '\0') {
5096      bytes& prefix = cur_class->ref(0)->value.b;
5097      const char* suffix = ".class";
5098      int len = (int)(prefix.len + strlen(suffix));
5099      bytes name; name.set(T_NEW(byte, add_size(len, 1)), len);
5100      cur_file.name = name.strcat(prefix).strcat(suffix).strval();
5101    }
5102  } else {
5103    // If there is buffered file data, produce a pointer to it.
5104    if (cur_file.size != (size_t) cur_file.size) {
5105      // Silly size specified.
5106      abort("resource file too large");
5107      return null;
5108    }
5109    size_t rpleft = input_remaining();
5110    if (rpleft > 0) {
5111      if (rpleft > cur_file.size)
5112        rpleft = (size_t) cur_file.size;
5113      cur_file.data[0].set(rp, rpleft);
5114      rp += rpleft;
5115    }
5116    if (rpleft < cur_file.size) {
5117      // Caller must read the rest.
5118      size_t fleft = (size_t)cur_file.size - rpleft;
5119      bytes_read += fleft;  // Credit it to the overall archive size.
5120    }
5121  }
5122  CHECK_0;
5123  bytes_written += cur_file.size;
5124  files_written += 1;
5125  return &cur_file;
5126}
5127
5128// Write a file to jarout.
5129void unpacker::write_file_to_jar(unpacker::file* f) {
5130  size_t htsize = f->data[0].len + f->data[1].len;
5131  julong fsize = f->size;
5132#ifndef PRODUCT
5133  if (nowrite NOT_PRODUCT(|| skipfiles-- > 0)) {
5134    PRINTCR((2,"would write %d bytes to %s", (int) fsize, f->name));
5135    return;
5136  }
5137#endif
5138  if (htsize == fsize) {
5139    jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
5140                        f->data[0], f->data[1]);
5141  } else {
5142    assert(input_remaining() == 0);
5143    bytes part1, part2;
5144    part1.len = f->data[0].len;
5145    part1.set(T_NEW(byte, part1.len), part1.len);
5146    part1.copyFrom(f->data[0]);
5147    assert(f->data[1].len == 0);
5148    part2.set(null, 0);
5149    size_t fleft = (size_t) fsize - part1.len;
5150    assert(bytes_read > fleft);  // part2 already credited by get_next_file
5151    bytes_read -= fleft;
5152    if (fleft > 0) {
5153      // Must read some more.
5154      if (live_input) {
5155        // Stop using the input buffer.  Make a new one:
5156        if (free_input)  input.free();
5157        input.init(fleft > (1<<12) ? fleft : (1<<12));
5158        free_input = true;
5159        live_input = false;
5160      } else {
5161        // Make it large enough.
5162        assert(free_input);  // must be reallocable
5163        input.ensureSize(fleft);
5164      }
5165      rplimit = rp = input.base();
5166      CHECK;
5167      input.setLimit(rp + fleft);
5168      if (!ensure_input(fleft))
5169        abort("EOF reading resource file");
5170      part2.ptr = input_scan();
5171      part2.len = input_remaining();
5172      rplimit = rp = input.base();
5173    }
5174    jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
5175                        part1, part2);
5176  }
5177  if (verbose >= 3) {
5178    fprintf(errstrm, "Wrote "
5179                     LONG_LONG_FORMAT " bytes to: %s\n", fsize, f->name);
5180  }
5181}
5182
5183// Redirect the stdio to the specified file in the unpack.log.file option
5184void unpacker::redirect_stdio() {
5185  if (log_file == null) {
5186    log_file = LOGFILE_STDOUT;
5187  }
5188  if (log_file == errstrm_name)
5189    // Nothing more to be done.
5190    return;
5191  errstrm_name = log_file;
5192  if (strcmp(log_file, LOGFILE_STDERR) == 0) {
5193    errstrm = stderr;
5194    return;
5195  } else if (strcmp(log_file, LOGFILE_STDOUT) == 0) {
5196    errstrm = stdout;
5197    return;
5198  } else if (log_file[0] != '\0' && (errstrm = fopen(log_file,"a+")) != NULL) {
5199    return;
5200  } else {
5201    fprintf(stderr, "Can not open log file %s\n", log_file);
5202    // Last resort
5203    // (Do not use stdout, since it might be jarout->jarfp.)
5204    errstrm = stderr;
5205    log_file = errstrm_name = LOGFILE_STDERR;
5206  }
5207}
5208
5209#ifndef PRODUCT
5210int unpacker::printcr_if_verbose(int level, const char* fmt ...) {
5211  if (verbose < level)  return 0;
5212  va_list vl;
5213  va_start(vl, fmt);
5214  char fmtbuf[300];
5215  strcpy(fmtbuf+100, fmt);
5216  strcat(fmtbuf+100, "\n");
5217  char* fmt2 = fmtbuf+100;
5218  while (level-- > 0)  *--fmt2 = ' ';
5219  vfprintf(errstrm, fmt2, vl);
5220  return 1;  // for ?: usage
5221}
5222#endif
5223
5224void unpacker::abort(const char* message) {
5225  if (message == null)  message = "error unpacking archive";
5226#ifdef UNPACK_JNI
5227  if (message[0] == '@') {  // secret convention for sprintf
5228     bytes saved;
5229     saved.saveFrom(message+1);
5230     mallocs.add(message = saved.strval());
5231   }
5232  abort_message = message;
5233  return;
5234#else
5235  if (message[0] == '@')  ++message;
5236  fprintf(errstrm, "%s\n", message);
5237#ifndef PRODUCT
5238  fflush(errstrm);
5239  ::abort();
5240#else
5241  exit(-1);
5242#endif
5243#endif // JNI
5244}
5245