1/*
2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3 * Use is subject to license terms.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public License
16 * along with this library; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24/* *********************************************************************
25 *
26 * The Original Code is the elliptic curve math library for prime field curves.
27 *
28 * The Initial Developer of the Original Code is
29 * Sun Microsystems, Inc.
30 * Portions created by the Initial Developer are Copyright (C) 2003
31 * the Initial Developer. All Rights Reserved.
32 *
33 * Contributor(s):
34 *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
35 *   Stephen Fung <fungstep@hotmail.com>, and
36 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
37 *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
38 *   Nils Larsch <nla@trustcenter.de>, and
39 *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
40 *
41 * Last Modified Date from the Original Code: May 2017
42 *********************************************************************** */
43
44#include "ecp.h"
45#include "mplogic.h"
46#ifndef _KERNEL
47#include <stdlib.h>
48#endif
49#ifdef ECL_DEBUG
50#include <assert.h>
51#endif
52
53/* Converts a point P(px, py) from affine coordinates to Jacobian
54 * projective coordinates R(rx, ry, rz). Assumes input is already
55 * field-encoded using field_enc, and returns output that is still
56 * field-encoded. */
57mp_err
58ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
59                                  mp_int *ry, mp_int *rz, const ECGroup *group)
60{
61        mp_err res = MP_OKAY;
62
63        if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
64                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
65        } else {
66                MP_CHECKOK(mp_copy(px, rx));
67                MP_CHECKOK(mp_copy(py, ry));
68                MP_CHECKOK(mp_set_int(rz, 1));
69                if (group->meth->field_enc) {
70                        MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
71                }
72        }
73  CLEANUP:
74        return res;
75}
76
77/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
78 * affine coordinates R(rx, ry).  P and R can share x and y coordinates.
79 * Assumes input is already field-encoded using field_enc, and returns
80 * output that is still field-encoded. */
81mp_err
82ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
83                                  mp_int *rx, mp_int *ry, const ECGroup *group)
84{
85        mp_err res = MP_OKAY;
86        mp_int z1, z2, z3;
87
88        MP_DIGITS(&z1) = 0;
89        MP_DIGITS(&z2) = 0;
90        MP_DIGITS(&z3) = 0;
91        MP_CHECKOK(mp_init(&z1, FLAG(px)));
92        MP_CHECKOK(mp_init(&z2, FLAG(px)));
93        MP_CHECKOK(mp_init(&z3, FLAG(px)));
94
95        /* if point at infinity, then set point at infinity and exit */
96        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
97                MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
98                goto CLEANUP;
99        }
100
101        /* transform (px, py, pz) into (px / pz^2, py / pz^3) */
102        if (mp_cmp_d(pz, 1) == 0) {
103                MP_CHECKOK(mp_copy(px, rx));
104                MP_CHECKOK(mp_copy(py, ry));
105        } else {
106                MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
107                MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
108                MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
109                MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
110                MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
111        }
112
113  CLEANUP:
114        mp_clear(&z1);
115        mp_clear(&z2);
116        mp_clear(&z3);
117        return res;
118}
119
120/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
121 * coordinates. */
122mp_err
123ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
124{
125        return mp_cmp_z(pz);
126}
127
128/* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
129 * coordinates. */
130mp_err
131ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
132{
133        mp_zero(pz);
134        return MP_OKAY;
135}
136
137/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
138 * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
139 * Uses mixed Jacobian-affine coordinates. Assumes input is already
140 * field-encoded using field_enc, and returns output that is still
141 * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
142 * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
143 * Fields. */
144mp_err
145ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
146                                          const mp_int *qx, const mp_int *qy, mp_int *rx,
147                                          mp_int *ry, mp_int *rz, const ECGroup *group)
148{
149        mp_err res = MP_OKAY;
150        mp_int A, B, C, D, C2, C3;
151
152        MP_DIGITS(&A) = 0;
153        MP_DIGITS(&B) = 0;
154        MP_DIGITS(&C) = 0;
155        MP_DIGITS(&D) = 0;
156        MP_DIGITS(&C2) = 0;
157        MP_DIGITS(&C3) = 0;
158        MP_CHECKOK(mp_init(&A, FLAG(px)));
159        MP_CHECKOK(mp_init(&B, FLAG(px)));
160        MP_CHECKOK(mp_init(&C, FLAG(px)));
161        MP_CHECKOK(mp_init(&D, FLAG(px)));
162        MP_CHECKOK(mp_init(&C2, FLAG(px)));
163        MP_CHECKOK(mp_init(&C3, FLAG(px)));
164
165        /* If either P or Q is the point at infinity, then return the other
166         * point */
167        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
168                MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
169                goto CLEANUP;
170        }
171        if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
172                MP_CHECKOK(mp_copy(px, rx));
173                MP_CHECKOK(mp_copy(py, ry));
174                MP_CHECKOK(mp_copy(pz, rz));
175                goto CLEANUP;
176        }
177
178        /* A = qx * pz^2, B = qy * pz^3 */
179        MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
180        MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
181        MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
182        MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
183
184        /*
185         * Additional checks for point equality and point at infinity
186         */
187        if (mp_cmp(px, &A) == 0 && mp_cmp(py, &B) == 0) {
188            /* POINT_DOUBLE(P) */
189            MP_CHECKOK(ec_GFp_pt_dbl_jac(px, py, pz, rx, ry, rz, group));
190            goto CLEANUP;
191        }
192
193        /* C = A - px, D = B - py */
194        MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
195        MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
196
197        /* C2 = C^2, C3 = C^3 */
198        MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
199        MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
200
201        /* rz = pz * C */
202        MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
203
204        /* C = px * C^2 */
205        MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
206        /* A = D^2 */
207        MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
208
209        /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
210        MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
211        MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
212        MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
213
214        /* C3 = py * C^3 */
215        MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
216
217        /* ry = D * (px * C^2 - rx) - py * C^3 */
218        MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
219        MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
220        MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
221
222  CLEANUP:
223        mp_clear(&A);
224        mp_clear(&B);
225        mp_clear(&C);
226        mp_clear(&D);
227        mp_clear(&C2);
228        mp_clear(&C3);
229        return res;
230}
231
232/* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses
233 * Jacobian coordinates.
234 *
235 * Assumes input is already field-encoded using field_enc, and returns
236 * output that is still field-encoded.
237 *
238 * This routine implements Point Doubling in the Jacobian Projective
239 * space as described in the paper "Efficient elliptic curve exponentiation
240 * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
241 */
242mp_err
243ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
244                                  mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
245{
246        mp_err res = MP_OKAY;
247        mp_int t0, t1, M, S;
248
249        MP_DIGITS(&t0) = 0;
250        MP_DIGITS(&t1) = 0;
251        MP_DIGITS(&M) = 0;
252        MP_DIGITS(&S) = 0;
253        MP_CHECKOK(mp_init(&t0, FLAG(px)));
254        MP_CHECKOK(mp_init(&t1, FLAG(px)));
255        MP_CHECKOK(mp_init(&M, FLAG(px)));
256        MP_CHECKOK(mp_init(&S, FLAG(px)));
257
258        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
259                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
260                goto CLEANUP;
261        }
262
263        if (mp_cmp_d(pz, 1) == 0) {
264                /* M = 3 * px^2 + a */
265                MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
266                MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
267                MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
268                MP_CHECKOK(group->meth->
269                                   field_add(&t0, &group->curvea, &M, group->meth));
270        } else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) {
271                /* M = 3 * (px + pz^2) * (px - pz^2) */
272                MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
273                MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
274                MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
275                MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
276                MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
277                MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
278        } else {
279                /* M = 3 * (px^2) + a * (pz^4) */
280                MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
281                MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
282                MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
283                MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
284                MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
285                MP_CHECKOK(group->meth->
286                                   field_mul(&M, &group->curvea, &M, group->meth));
287                MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
288        }
289
290        /* rz = 2 * py * pz */
291        /* t0 = 4 * py^2 */
292        if (mp_cmp_d(pz, 1) == 0) {
293                MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
294                MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
295        } else {
296                MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
297                MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
298                MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
299        }
300
301        /* S = 4 * px * py^2 = px * (2 * py)^2 */
302        MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
303
304        /* rx = M^2 - 2 * S */
305        MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
306        MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
307        MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
308
309        /* ry = M * (S - rx) - 8 * py^4 */
310        MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
311        if (mp_isodd(&t1)) {
312                MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
313        }
314        MP_CHECKOK(mp_div_2(&t1, &t1));
315        MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
316        MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
317        MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
318
319  CLEANUP:
320        mp_clear(&t0);
321        mp_clear(&t1);
322        mp_clear(&M);
323        mp_clear(&S);
324        return res;
325}
326
327/* by default, this routine is unused and thus doesn't need to be compiled */
328#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
329/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
330 * a, b and p are the elliptic curve coefficients and the prime that
331 * determines the field GFp.  Elliptic curve points P and R can be
332 * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
333 * already field-encoded using field_enc, and returns output that is still
334 * field-encoded. Uses 4-bit window method. */
335mp_err
336ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
337                                  mp_int *rx, mp_int *ry, const ECGroup *group)
338{
339        mp_err res = MP_OKAY;
340        mp_int precomp[16][2], rz;
341        int i, ni, d;
342
343        MP_DIGITS(&rz) = 0;
344        for (i = 0; i < 16; i++) {
345                MP_DIGITS(&precomp[i][0]) = 0;
346                MP_DIGITS(&precomp[i][1]) = 0;
347        }
348
349        ARGCHK(group != NULL, MP_BADARG);
350        ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
351
352        /* initialize precomputation table */
353        for (i = 0; i < 16; i++) {
354                MP_CHECKOK(mp_init(&precomp[i][0]));
355                MP_CHECKOK(mp_init(&precomp[i][1]));
356        }
357
358        /* fill precomputation table */
359        mp_zero(&precomp[0][0]);
360        mp_zero(&precomp[0][1]);
361        MP_CHECKOK(mp_copy(px, &precomp[1][0]));
362        MP_CHECKOK(mp_copy(py, &precomp[1][1]));
363        for (i = 2; i < 16; i++) {
364                MP_CHECKOK(group->
365                                   point_add(&precomp[1][0], &precomp[1][1],
366                                                         &precomp[i - 1][0], &precomp[i - 1][1],
367                                                         &precomp[i][0], &precomp[i][1], group));
368        }
369
370        d = (mpl_significant_bits(n) + 3) / 4;
371
372        /* R = inf */
373        MP_CHECKOK(mp_init(&rz));
374        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
375
376        for (i = d - 1; i >= 0; i--) {
377                /* compute window ni */
378                ni = MP_GET_BIT(n, 4 * i + 3);
379                ni <<= 1;
380                ni |= MP_GET_BIT(n, 4 * i + 2);
381                ni <<= 1;
382                ni |= MP_GET_BIT(n, 4 * i + 1);
383                ni <<= 1;
384                ni |= MP_GET_BIT(n, 4 * i);
385                /* R = 2^4 * R */
386                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
387                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
388                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
389                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
390                /* R = R + (ni * P) */
391                MP_CHECKOK(ec_GFp_pt_add_jac_aff
392                                   (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
393                                        &rz, group));
394        }
395
396        /* convert result S to affine coordinates */
397        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
398
399  CLEANUP:
400        mp_clear(&rz);
401        for (i = 0; i < 16; i++) {
402                mp_clear(&precomp[i][0]);
403                mp_clear(&precomp[i][1]);
404        }
405        return res;
406}
407#endif
408
409/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
410 * k2 * P(x, y), where G is the generator (base point) of the group of
411 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
412 * Uses mixed Jacobian-affine coordinates. Input and output values are
413 * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
414 * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
415 * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
416mp_err
417ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
418                                   const mp_int *py, mp_int *rx, mp_int *ry,
419                                   const ECGroup *group, int timing)
420{
421        mp_err res = MP_OKAY;
422        mp_int precomp[4][4][2];
423        mp_int rz;
424        const mp_int *a, *b;
425        int i, j;
426        int ai, bi, d;
427
428        for (i = 0; i < 4; i++) {
429                for (j = 0; j < 4; j++) {
430                        MP_DIGITS(&precomp[i][j][0]) = 0;
431                        MP_DIGITS(&precomp[i][j][1]) = 0;
432                }
433        }
434        MP_DIGITS(&rz) = 0;
435
436        ARGCHK(group != NULL, MP_BADARG);
437        ARGCHK(!((k1 == NULL)
438                         && ((k2 == NULL) || (px == NULL)
439                                 || (py == NULL))), MP_BADARG);
440
441        /* if some arguments are not defined used ECPoint_mul */
442        if (k1 == NULL) {
443                return ECPoint_mul(group, k2, px, py, rx, ry, timing);
444        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
445                return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing);
446        }
447
448        /* initialize precomputation table */
449        for (i = 0; i < 4; i++) {
450                for (j = 0; j < 4; j++) {
451                        MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1)));
452                        MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1)));
453                }
454        }
455
456        /* fill precomputation table */
457        /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
458        if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
459                a = k2;
460                b = k1;
461                if (group->meth->field_enc) {
462                        MP_CHECKOK(group->meth->
463                                           field_enc(px, &precomp[1][0][0], group->meth));
464                        MP_CHECKOK(group->meth->
465                                           field_enc(py, &precomp[1][0][1], group->meth));
466                } else {
467                        MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
468                        MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
469                }
470                MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
471                MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
472        } else {
473                a = k1;
474                b = k2;
475                MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
476                MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
477                if (group->meth->field_enc) {
478                        MP_CHECKOK(group->meth->
479                                           field_enc(px, &precomp[0][1][0], group->meth));
480                        MP_CHECKOK(group->meth->
481                                           field_enc(py, &precomp[0][1][1], group->meth));
482                } else {
483                        MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
484                        MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
485                }
486        }
487        /* precompute [*][0][*] */
488        mp_zero(&precomp[0][0][0]);
489        mp_zero(&precomp[0][0][1]);
490        MP_CHECKOK(group->
491                           point_dbl(&precomp[1][0][0], &precomp[1][0][1],
492                                                 &precomp[2][0][0], &precomp[2][0][1], group));
493        MP_CHECKOK(group->
494                           point_add(&precomp[1][0][0], &precomp[1][0][1],
495                                                 &precomp[2][0][0], &precomp[2][0][1],
496                                                 &precomp[3][0][0], &precomp[3][0][1], group));
497        /* precompute [*][1][*] */
498        for (i = 1; i < 4; i++) {
499                MP_CHECKOK(group->
500                                   point_add(&precomp[0][1][0], &precomp[0][1][1],
501                                                         &precomp[i][0][0], &precomp[i][0][1],
502                                                         &precomp[i][1][0], &precomp[i][1][1], group));
503        }
504        /* precompute [*][2][*] */
505        MP_CHECKOK(group->
506                           point_dbl(&precomp[0][1][0], &precomp[0][1][1],
507                                                 &precomp[0][2][0], &precomp[0][2][1], group));
508        for (i = 1; i < 4; i++) {
509                MP_CHECKOK(group->
510                                   point_add(&precomp[0][2][0], &precomp[0][2][1],
511                                                         &precomp[i][0][0], &precomp[i][0][1],
512                                                         &precomp[i][2][0], &precomp[i][2][1], group));
513        }
514        /* precompute [*][3][*] */
515        MP_CHECKOK(group->
516                           point_add(&precomp[0][1][0], &precomp[0][1][1],
517                                                 &precomp[0][2][0], &precomp[0][2][1],
518                                                 &precomp[0][3][0], &precomp[0][3][1], group));
519        for (i = 1; i < 4; i++) {
520                MP_CHECKOK(group->
521                                   point_add(&precomp[0][3][0], &precomp[0][3][1],
522                                                         &precomp[i][0][0], &precomp[i][0][1],
523                                                         &precomp[i][3][0], &precomp[i][3][1], group));
524        }
525
526        d = (mpl_significant_bits(a) + 1) / 2;
527
528        /* R = inf */
529        MP_CHECKOK(mp_init(&rz, FLAG(k1)));
530        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
531
532        for (i = d - 1; i >= 0; i--) {
533                ai = MP_GET_BIT(a, 2 * i + 1);
534                ai <<= 1;
535                ai |= MP_GET_BIT(a, 2 * i);
536                bi = MP_GET_BIT(b, 2 * i + 1);
537                bi <<= 1;
538                bi |= MP_GET_BIT(b, 2 * i);
539                /* R = 2^2 * R */
540                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
541                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
542                /* R = R + (ai * A + bi * B) */
543                MP_CHECKOK(ec_GFp_pt_add_jac_aff
544                                   (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
545                                        rx, ry, &rz, group));
546        }
547
548        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
549
550        if (group->meth->field_dec) {
551                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
552                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
553        }
554
555  CLEANUP:
556        mp_clear(&rz);
557        for (i = 0; i < 4; i++) {
558                for (j = 0; j < 4; j++) {
559                        mp_clear(&precomp[i][j][0]);
560                        mp_clear(&precomp[i][j][1]);
561                }
562        }
563        return res;
564}
565