1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25/* png.c - location for general purpose libpng functions
26 *
27 * This file is available under and governed by the GNU General Public
28 * License version 2 only, as published by the Free Software Foundation.
29 * However, the following notice accompanied the original version of this
30 * file and, per its terms, should not be removed:
31 *
32 * Last changed in libpng 1.6.28 [January 5, 2017]
33 * Copyright (c) 1998-2002,2004,2006-2017 Glenn Randers-Pehrson
34 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
35 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
36 *
37 * This code is released under the libpng license.
38 * For conditions of distribution and use, see the disclaimer
39 * and license in png.h
40 */
41
42#include "pngpriv.h"
43
44/* Generate a compiler error if there is an old png.h in the search path. */
45typedef png_libpng_version_1_6_28 Your_png_h_is_not_version_1_6_28;
46
47/* Tells libpng that we have already handled the first "num_bytes" bytes
48 * of the PNG file signature.  If the PNG data is embedded into another
49 * stream we can set num_bytes = 8 so that libpng will not attempt to read
50 * or write any of the magic bytes before it starts on the IHDR.
51 */
52
53#ifdef PNG_READ_SUPPORTED
54void PNGAPI
55png_set_sig_bytes(png_structrp png_ptr, int num_bytes)
56{
57   unsigned int nb = (unsigned int)num_bytes;
58
59   png_debug(1, "in png_set_sig_bytes");
60
61   if (png_ptr == NULL)
62      return;
63
64   if (num_bytes < 0)
65      nb = 0;
66
67   if (nb > 8)
68      png_error(png_ptr, "Too many bytes for PNG signature");
69
70   png_ptr->sig_bytes = (png_byte)nb;
71}
72
73/* Checks whether the supplied bytes match the PNG signature.  We allow
74 * checking less than the full 8-byte signature so that those apps that
75 * already read the first few bytes of a file to determine the file type
76 * can simply check the remaining bytes for extra assurance.  Returns
77 * an integer less than, equal to, or greater than zero if sig is found,
78 * respectively, to be less than, to match, or be greater than the correct
79 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
80 */
81int PNGAPI
82png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
83{
84   png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
85
86   if (num_to_check > 8)
87      num_to_check = 8;
88
89   else if (num_to_check < 1)
90      return (-1);
91
92   if (start > 7)
93      return (-1);
94
95   if (start + num_to_check > 8)
96      num_to_check = 8 - start;
97
98   return ((int)(memcmp(&sig[start], &png_signature[start], num_to_check)));
99}
100
101#endif /* READ */
102
103#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
104/* Function to allocate memory for zlib */
105PNG_FUNCTION(voidpf /* PRIVATE */,
106png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
107{
108   png_alloc_size_t num_bytes = size;
109
110   if (png_ptr == NULL)
111      return NULL;
112
113   if (items >= (~(png_alloc_size_t)0)/size)
114   {
115      png_warning (png_voidcast(png_structrp, png_ptr),
116          "Potential overflow in png_zalloc()");
117      return NULL;
118   }
119
120   num_bytes *= items;
121   return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes);
122}
123
124/* Function to free memory for zlib */
125void /* PRIVATE */
126png_zfree(voidpf png_ptr, voidpf ptr)
127{
128   png_free(png_voidcast(png_const_structrp,png_ptr), ptr);
129}
130
131/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
132 * in case CRC is > 32 bits to leave the top bits 0.
133 */
134void /* PRIVATE */
135png_reset_crc(png_structrp png_ptr)
136{
137   /* The cast is safe because the crc is a 32-bit value. */
138   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
139}
140
141/* Calculate the CRC over a section of data.  We can only pass as
142 * much data to this routine as the largest single buffer size.  We
143 * also check that this data will actually be used before going to the
144 * trouble of calculating it.
145 */
146void /* PRIVATE */
147png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, png_size_t length)
148{
149   int need_crc = 1;
150
151   if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0)
152   {
153      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
154          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
155         need_crc = 0;
156   }
157
158   else /* critical */
159   {
160      if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0)
161         need_crc = 0;
162   }
163
164   /* 'uLong' is defined in zlib.h as unsigned long; this means that on some
165    * systems it is a 64-bit value.  crc32, however, returns 32 bits so the
166    * following cast is safe.  'uInt' may be no more than 16 bits, so it is
167    * necessary to perform a loop here.
168    */
169   if (need_crc != 0 && length > 0)
170   {
171      uLong crc = png_ptr->crc; /* Should never issue a warning */
172
173      do
174      {
175         uInt safe_length = (uInt)length;
176#ifndef __COVERITY__
177         if (safe_length == 0)
178            safe_length = (uInt)-1; /* evil, but safe */
179#endif
180
181         crc = crc32(crc, ptr, safe_length);
182
183         /* The following should never issue compiler warnings; if they do the
184          * target system has characteristics that will probably violate other
185          * assumptions within the libpng code.
186          */
187         ptr += safe_length;
188         length -= safe_length;
189      }
190      while (length > 0);
191
192      /* And the following is always safe because the crc is only 32 bits. */
193      png_ptr->crc = (png_uint_32)crc;
194   }
195}
196
197/* Check a user supplied version number, called from both read and write
198 * functions that create a png_struct.
199 */
200int
201png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver)
202{
203   /* Libpng versions 1.0.0 and later are binary compatible if the version
204    * string matches through the second '.'; we must recompile any
205    * applications that use any older library version.
206    */
207
208   if (user_png_ver != NULL)
209   {
210      int i = -1;
211      int found_dots = 0;
212
213      do
214      {
215         i++;
216         if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i])
217            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
218         if (user_png_ver[i] == '.')
219            found_dots++;
220      } while (found_dots < 2 && user_png_ver[i] != 0 &&
221            PNG_LIBPNG_VER_STRING[i] != 0);
222   }
223
224   else
225      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
226
227   if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0)
228   {
229#ifdef PNG_WARNINGS_SUPPORTED
230      size_t pos = 0;
231      char m[128];
232
233      pos = png_safecat(m, (sizeof m), pos,
234          "Application built with libpng-");
235      pos = png_safecat(m, (sizeof m), pos, user_png_ver);
236      pos = png_safecat(m, (sizeof m), pos, " but running with ");
237      pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING);
238      PNG_UNUSED(pos)
239
240      png_warning(png_ptr, m);
241#endif
242
243#ifdef PNG_ERROR_NUMBERS_SUPPORTED
244      png_ptr->flags = 0;
245#endif
246
247      return 0;
248   }
249
250   /* Success return. */
251   return 1;
252}
253
254/* Generic function to create a png_struct for either read or write - this
255 * contains the common initialization.
256 */
257PNG_FUNCTION(png_structp /* PRIVATE */,
258png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
259    png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
260    png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
261{
262   png_struct create_struct;
263#  ifdef PNG_SETJMP_SUPPORTED
264      jmp_buf create_jmp_buf;
265#  endif
266
267   /* This temporary stack-allocated structure is used to provide a place to
268    * build enough context to allow the user provided memory allocator (if any)
269    * to be called.
270    */
271   memset(&create_struct, 0, (sizeof create_struct));
272
273   /* Added at libpng-1.2.6 */
274#  ifdef PNG_USER_LIMITS_SUPPORTED
275      create_struct.user_width_max = PNG_USER_WIDTH_MAX;
276      create_struct.user_height_max = PNG_USER_HEIGHT_MAX;
277
278#     ifdef PNG_USER_CHUNK_CACHE_MAX
279      /* Added at libpng-1.2.43 and 1.4.0 */
280      create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
281#     endif
282
283#     ifdef PNG_USER_CHUNK_MALLOC_MAX
284      /* Added at libpng-1.2.43 and 1.4.1, required only for read but exists
285       * in png_struct regardless.
286       */
287      create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
288#     endif
289#  endif
290
291   /* The following two API calls simply set fields in png_struct, so it is safe
292    * to do them now even though error handling is not yet set up.
293    */
294#  ifdef PNG_USER_MEM_SUPPORTED
295      png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn);
296#  else
297      PNG_UNUSED(mem_ptr)
298      PNG_UNUSED(malloc_fn)
299      PNG_UNUSED(free_fn)
300#  endif
301
302   /* (*error_fn) can return control to the caller after the error_ptr is set,
303    * this will result in a memory leak unless the error_fn does something
304    * extremely sophisticated.  The design lacks merit but is implicit in the
305    * API.
306    */
307   png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn);
308
309#  ifdef PNG_SETJMP_SUPPORTED
310      if (!setjmp(create_jmp_buf))
311#  endif
312      {
313#  ifdef PNG_SETJMP_SUPPORTED
314         /* Temporarily fake out the longjmp information until we have
315          * successfully completed this function.  This only works if we have
316          * setjmp() support compiled in, but it is safe - this stuff should
317          * never happen.
318          */
319         create_struct.jmp_buf_ptr = &create_jmp_buf;
320         create_struct.jmp_buf_size = 0; /*stack allocation*/
321         create_struct.longjmp_fn = longjmp;
322#  endif
323         /* Call the general version checker (shared with read and write code):
324          */
325         if (png_user_version_check(&create_struct, user_png_ver) != 0)
326         {
327            png_structrp png_ptr = png_voidcast(png_structrp,
328                png_malloc_warn(&create_struct, (sizeof *png_ptr)));
329
330            if (png_ptr != NULL)
331            {
332               /* png_ptr->zstream holds a back-pointer to the png_struct, so
333                * this can only be done now:
334                */
335               create_struct.zstream.zalloc = png_zalloc;
336               create_struct.zstream.zfree = png_zfree;
337               create_struct.zstream.opaque = png_ptr;
338
339#              ifdef PNG_SETJMP_SUPPORTED
340               /* Eliminate the local error handling: */
341               create_struct.jmp_buf_ptr = NULL;
342               create_struct.jmp_buf_size = 0;
343               create_struct.longjmp_fn = 0;
344#              endif
345
346               *png_ptr = create_struct;
347
348               /* This is the successful return point */
349               return png_ptr;
350            }
351         }
352      }
353
354   /* A longjmp because of a bug in the application storage allocator or a
355    * simple failure to allocate the png_struct.
356    */
357   return NULL;
358}
359
360/* Allocate the memory for an info_struct for the application. */
361PNG_FUNCTION(png_infop,PNGAPI
362png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED)
363{
364   png_inforp info_ptr;
365
366   png_debug(1, "in png_create_info_struct");
367
368   if (png_ptr == NULL)
369      return NULL;
370
371   /* Use the internal API that does not (or at least should not) error out, so
372    * that this call always returns ok.  The application typically sets up the
373    * error handling *after* creating the info_struct because this is the way it
374    * has always been done in 'example.c'.
375    */
376   info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr,
377       (sizeof *info_ptr)));
378
379   if (info_ptr != NULL)
380      memset(info_ptr, 0, (sizeof *info_ptr));
381
382   return info_ptr;
383}
384
385/* This function frees the memory associated with a single info struct.
386 * Normally, one would use either png_destroy_read_struct() or
387 * png_destroy_write_struct() to free an info struct, but this may be
388 * useful for some applications.  From libpng 1.6.0 this function is also used
389 * internally to implement the png_info release part of the 'struct' destroy
390 * APIs.  This ensures that all possible approaches free the same data (all of
391 * it).
392 */
393void PNGAPI
394png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr)
395{
396   png_inforp info_ptr = NULL;
397
398   png_debug(1, "in png_destroy_info_struct");
399
400   if (png_ptr == NULL)
401      return;
402
403   if (info_ptr_ptr != NULL)
404      info_ptr = *info_ptr_ptr;
405
406   if (info_ptr != NULL)
407   {
408      /* Do this first in case of an error below; if the app implements its own
409       * memory management this can lead to png_free calling png_error, which
410       * will abort this routine and return control to the app error handler.
411       * An infinite loop may result if it then tries to free the same info
412       * ptr.
413       */
414      *info_ptr_ptr = NULL;
415
416      png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
417      memset(info_ptr, 0, (sizeof *info_ptr));
418      png_free(png_ptr, info_ptr);
419   }
420}
421
422/* Initialize the info structure.  This is now an internal function (0.89)
423 * and applications using it are urged to use png_create_info_struct()
424 * instead.  Use deprecated in 1.6.0, internal use removed (used internally it
425 * is just a memset).
426 *
427 * NOTE: it is almost inconceivable that this API is used because it bypasses
428 * the user-memory mechanism and the user error handling/warning mechanisms in
429 * those cases where it does anything other than a memset.
430 */
431PNG_FUNCTION(void,PNGAPI
432png_info_init_3,(png_infopp ptr_ptr, png_size_t png_info_struct_size),
433    PNG_DEPRECATED)
434{
435   png_inforp info_ptr = *ptr_ptr;
436
437   png_debug(1, "in png_info_init_3");
438
439   if (info_ptr == NULL)
440      return;
441
442   if ((sizeof (png_info)) > png_info_struct_size)
443   {
444      *ptr_ptr = NULL;
445      /* The following line is why this API should not be used: */
446      free(info_ptr);
447      info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL,
448          (sizeof *info_ptr)));
449      if (info_ptr == NULL)
450         return;
451      *ptr_ptr = info_ptr;
452   }
453
454   /* Set everything to 0 */
455   memset(info_ptr, 0, (sizeof *info_ptr));
456}
457
458/* The following API is not called internally */
459void PNGAPI
460png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr,
461    int freer, png_uint_32 mask)
462{
463   png_debug(1, "in png_data_freer");
464
465   if (png_ptr == NULL || info_ptr == NULL)
466      return;
467
468   if (freer == PNG_DESTROY_WILL_FREE_DATA)
469      info_ptr->free_me |= mask;
470
471   else if (freer == PNG_USER_WILL_FREE_DATA)
472      info_ptr->free_me &= ~mask;
473
474   else
475      png_error(png_ptr, "Unknown freer parameter in png_data_freer");
476}
477
478void PNGAPI
479png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask,
480    int num)
481{
482   png_debug(1, "in png_free_data");
483
484   if (png_ptr == NULL || info_ptr == NULL)
485      return;
486
487#ifdef PNG_TEXT_SUPPORTED
488   /* Free text item num or (if num == -1) all text items */
489   if (info_ptr->text != NULL &&
490       ((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0)
491   {
492      if (num != -1)
493      {
494         png_free(png_ptr, info_ptr->text[num].key);
495         info_ptr->text[num].key = NULL;
496      }
497
498      else
499      {
500         int i;
501
502         for (i = 0; i < info_ptr->num_text; i++)
503            png_free(png_ptr, info_ptr->text[i].key);
504
505         png_free(png_ptr, info_ptr->text);
506         info_ptr->text = NULL;
507         info_ptr->num_text = 0;
508         info_ptr->max_text = 0;
509      }
510   }
511#endif
512
513#ifdef PNG_tRNS_SUPPORTED
514   /* Free any tRNS entry */
515   if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0)
516   {
517      info_ptr->valid &= ~PNG_INFO_tRNS;
518      png_free(png_ptr, info_ptr->trans_alpha);
519      info_ptr->trans_alpha = NULL;
520      info_ptr->num_trans = 0;
521   }
522#endif
523
524#ifdef PNG_sCAL_SUPPORTED
525   /* Free any sCAL entry */
526   if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0)
527   {
528      png_free(png_ptr, info_ptr->scal_s_width);
529      png_free(png_ptr, info_ptr->scal_s_height);
530      info_ptr->scal_s_width = NULL;
531      info_ptr->scal_s_height = NULL;
532      info_ptr->valid &= ~PNG_INFO_sCAL;
533   }
534#endif
535
536#ifdef PNG_pCAL_SUPPORTED
537   /* Free any pCAL entry */
538   if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0)
539   {
540      png_free(png_ptr, info_ptr->pcal_purpose);
541      png_free(png_ptr, info_ptr->pcal_units);
542      info_ptr->pcal_purpose = NULL;
543      info_ptr->pcal_units = NULL;
544
545      if (info_ptr->pcal_params != NULL)
546         {
547            int i;
548
549            for (i = 0; i < info_ptr->pcal_nparams; i++)
550               png_free(png_ptr, info_ptr->pcal_params[i]);
551
552            png_free(png_ptr, info_ptr->pcal_params);
553            info_ptr->pcal_params = NULL;
554         }
555      info_ptr->valid &= ~PNG_INFO_pCAL;
556   }
557#endif
558
559#ifdef PNG_iCCP_SUPPORTED
560   /* Free any profile entry */
561   if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0)
562   {
563      png_free(png_ptr, info_ptr->iccp_name);
564      png_free(png_ptr, info_ptr->iccp_profile);
565      info_ptr->iccp_name = NULL;
566      info_ptr->iccp_profile = NULL;
567      info_ptr->valid &= ~PNG_INFO_iCCP;
568   }
569#endif
570
571#ifdef PNG_sPLT_SUPPORTED
572   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
573   if (info_ptr->splt_palettes != NULL &&
574       ((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0)
575   {
576      if (num != -1)
577      {
578         png_free(png_ptr, info_ptr->splt_palettes[num].name);
579         png_free(png_ptr, info_ptr->splt_palettes[num].entries);
580         info_ptr->splt_palettes[num].name = NULL;
581         info_ptr->splt_palettes[num].entries = NULL;
582      }
583
584      else
585      {
586         int i;
587
588         for (i = 0; i < info_ptr->splt_palettes_num; i++)
589         {
590            png_free(png_ptr, info_ptr->splt_palettes[i].name);
591            png_free(png_ptr, info_ptr->splt_palettes[i].entries);
592         }
593
594         png_free(png_ptr, info_ptr->splt_palettes);
595         info_ptr->splt_palettes = NULL;
596         info_ptr->splt_palettes_num = 0;
597         info_ptr->valid &= ~PNG_INFO_sPLT;
598      }
599   }
600#endif
601
602#ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
603   if (info_ptr->unknown_chunks != NULL &&
604       ((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0)
605   {
606      if (num != -1)
607      {
608          png_free(png_ptr, info_ptr->unknown_chunks[num].data);
609          info_ptr->unknown_chunks[num].data = NULL;
610      }
611
612      else
613      {
614         int i;
615
616         for (i = 0; i < info_ptr->unknown_chunks_num; i++)
617            png_free(png_ptr, info_ptr->unknown_chunks[i].data);
618
619         png_free(png_ptr, info_ptr->unknown_chunks);
620         info_ptr->unknown_chunks = NULL;
621         info_ptr->unknown_chunks_num = 0;
622      }
623   }
624#endif
625
626#ifdef PNG_hIST_SUPPORTED
627   /* Free any hIST entry */
628   if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0)
629   {
630      png_free(png_ptr, info_ptr->hist);
631      info_ptr->hist = NULL;
632      info_ptr->valid &= ~PNG_INFO_hIST;
633   }
634#endif
635
636   /* Free any PLTE entry that was internally allocated */
637   if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0)
638   {
639      png_free(png_ptr, info_ptr->palette);
640      info_ptr->palette = NULL;
641      info_ptr->valid &= ~PNG_INFO_PLTE;
642      info_ptr->num_palette = 0;
643   }
644
645#ifdef PNG_INFO_IMAGE_SUPPORTED
646   /* Free any image bits attached to the info structure */
647   if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0)
648   {
649      if (info_ptr->row_pointers != NULL)
650      {
651         png_uint_32 row;
652         for (row = 0; row < info_ptr->height; row++)
653            png_free(png_ptr, info_ptr->row_pointers[row]);
654
655         png_free(png_ptr, info_ptr->row_pointers);
656         info_ptr->row_pointers = NULL;
657      }
658      info_ptr->valid &= ~PNG_INFO_IDAT;
659   }
660#endif
661
662   if (num != -1)
663      mask &= ~PNG_FREE_MUL;
664
665   info_ptr->free_me &= ~mask;
666}
667#endif /* READ || WRITE */
668
669/* This function returns a pointer to the io_ptr associated with the user
670 * functions.  The application should free any memory associated with this
671 * pointer before png_write_destroy() or png_read_destroy() are called.
672 */
673png_voidp PNGAPI
674png_get_io_ptr(png_const_structrp png_ptr)
675{
676   if (png_ptr == NULL)
677      return (NULL);
678
679   return (png_ptr->io_ptr);
680}
681
682#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
683#  ifdef PNG_STDIO_SUPPORTED
684/* Initialize the default input/output functions for the PNG file.  If you
685 * use your own read or write routines, you can call either png_set_read_fn()
686 * or png_set_write_fn() instead of png_init_io().  If you have defined
687 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
688 * function of your own because "FILE *" isn't necessarily available.
689 */
690void PNGAPI
691png_init_io(png_structrp png_ptr, png_FILE_p fp)
692{
693   png_debug(1, "in png_init_io");
694
695   if (png_ptr == NULL)
696      return;
697
698   png_ptr->io_ptr = (png_voidp)fp;
699}
700#  endif
701
702#  ifdef PNG_SAVE_INT_32_SUPPORTED
703/* PNG signed integers are saved in 32-bit 2's complement format.  ANSI C-90
704 * defines a cast of a signed integer to an unsigned integer either to preserve
705 * the value, if it is positive, or to calculate:
706 *
707 *     (UNSIGNED_MAX+1) + integer
708 *
709 * Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the
710 * negative integral value is added the result will be an unsigned value
711 * correspnding to the 2's complement representation.
712 */
713void PNGAPI
714png_save_int_32(png_bytep buf, png_int_32 i)
715{
716   png_save_uint_32(buf, (png_uint_32)i);
717}
718#  endif
719
720#  ifdef PNG_TIME_RFC1123_SUPPORTED
721/* Convert the supplied time into an RFC 1123 string suitable for use in
722 * a "Creation Time" or other text-based time string.
723 */
724int PNGAPI
725png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime)
726{
727   static PNG_CONST char short_months[12][4] =
728        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
729         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
730
731   if (out == NULL)
732      return 0;
733
734   if (ptime->year > 9999 /* RFC1123 limitation */ ||
735       ptime->month == 0    ||  ptime->month > 12  ||
736       ptime->day   == 0    ||  ptime->day   > 31  ||
737       ptime->hour  > 23    ||  ptime->minute > 59 ||
738       ptime->second > 60)
739      return 0;
740
741   {
742      size_t pos = 0;
743      char number_buf[5]; /* enough for a four-digit year */
744
745#     define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string))
746#     define APPEND_NUMBER(format, value)\
747         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
748#     define APPEND(ch) if (pos < 28) out[pos++] = (ch)
749
750      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
751      APPEND(' ');
752      APPEND_STRING(short_months[(ptime->month - 1)]);
753      APPEND(' ');
754      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
755      APPEND(' ');
756      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
757      APPEND(':');
758      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
759      APPEND(':');
760      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
761      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
762      PNG_UNUSED (pos)
763
764#     undef APPEND
765#     undef APPEND_NUMBER
766#     undef APPEND_STRING
767   }
768
769   return 1;
770}
771
772#    if PNG_LIBPNG_VER < 10700
773/* To do: remove the following from libpng-1.7 */
774/* Original API that uses a private buffer in png_struct.
775 * Deprecated because it causes png_struct to carry a spurious temporary
776 * buffer (png_struct::time_buffer), better to have the caller pass this in.
777 */
778png_const_charp PNGAPI
779png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime)
780{
781   if (png_ptr != NULL)
782   {
783      /* The only failure above if png_ptr != NULL is from an invalid ptime */
784      if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0)
785         png_warning(png_ptr, "Ignoring invalid time value");
786
787      else
788         return png_ptr->time_buffer;
789   }
790
791   return NULL;
792}
793#    endif /* LIBPNG_VER < 10700 */
794#  endif /* TIME_RFC1123 */
795
796#endif /* READ || WRITE */
797
798png_const_charp PNGAPI
799png_get_copyright(png_const_structrp png_ptr)
800{
801   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
802#ifdef PNG_STRING_COPYRIGHT
803   return PNG_STRING_COPYRIGHT
804#else
805#  ifdef __STDC__
806   return PNG_STRING_NEWLINE \
807      "libpng version 1.6.28 - January 5, 2017" PNG_STRING_NEWLINE \
808      "Copyright (c) 1998-2002,2004,2006-2017 Glenn Randers-Pehrson" \
809      PNG_STRING_NEWLINE \
810      "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
811      "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
812      PNG_STRING_NEWLINE;
813#  else
814   return "libpng version 1.6.28 - January 5, 2017\
815      Copyright (c) 1998-2002,2004,2006-2017 Glenn Randers-Pehrson\
816      Copyright (c) 1996-1997 Andreas Dilger\
817      Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
818#  endif
819#endif
820}
821
822/* The following return the library version as a short string in the
823 * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
824 * used with your application, print out PNG_LIBPNG_VER_STRING, which
825 * is defined in png.h.
826 * Note: now there is no difference between png_get_libpng_ver() and
827 * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
828 * it is guaranteed that png.c uses the correct version of png.h.
829 */
830png_const_charp PNGAPI
831png_get_libpng_ver(png_const_structrp png_ptr)
832{
833   /* Version of *.c files used when building libpng */
834   return png_get_header_ver(png_ptr);
835}
836
837png_const_charp PNGAPI
838png_get_header_ver(png_const_structrp png_ptr)
839{
840   /* Version of *.h files used when building libpng */
841   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
842   return PNG_LIBPNG_VER_STRING;
843}
844
845png_const_charp PNGAPI
846png_get_header_version(png_const_structrp png_ptr)
847{
848   /* Returns longer string containing both version and date */
849   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
850#ifdef __STDC__
851   return PNG_HEADER_VERSION_STRING
852#  ifndef PNG_READ_SUPPORTED
853      " (NO READ SUPPORT)"
854#  endif
855      PNG_STRING_NEWLINE;
856#else
857   return PNG_HEADER_VERSION_STRING;
858#endif
859}
860
861#ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED
862/* NOTE: this routine is not used internally! */
863/* Build a grayscale palette.  Palette is assumed to be 1 << bit_depth
864 * large of png_color.  This lets grayscale images be treated as
865 * paletted.  Most useful for gamma correction and simplification
866 * of code.  This API is not used internally.
867 */
868void PNGAPI
869png_build_grayscale_palette(int bit_depth, png_colorp palette)
870{
871   int num_palette;
872   int color_inc;
873   int i;
874   int v;
875
876   png_debug(1, "in png_do_build_grayscale_palette");
877
878   if (palette == NULL)
879      return;
880
881   switch (bit_depth)
882   {
883      case 1:
884         num_palette = 2;
885         color_inc = 0xff;
886         break;
887
888      case 2:
889         num_palette = 4;
890         color_inc = 0x55;
891         break;
892
893      case 4:
894         num_palette = 16;
895         color_inc = 0x11;
896         break;
897
898      case 8:
899         num_palette = 256;
900         color_inc = 1;
901         break;
902
903      default:
904         num_palette = 0;
905         color_inc = 0;
906         break;
907   }
908
909   for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
910   {
911      palette[i].red = (png_byte)(v & 0xff);
912      palette[i].green = (png_byte)(v & 0xff);
913      palette[i].blue = (png_byte)(v & 0xff);
914   }
915}
916#endif
917
918#ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
919int PNGAPI
920png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name)
921{
922   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
923   png_const_bytep p, p_end;
924
925   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0)
926      return PNG_HANDLE_CHUNK_AS_DEFAULT;
927
928   p_end = png_ptr->chunk_list;
929   p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
930
931   /* The code is the fifth byte after each four byte string.  Historically this
932    * code was always searched from the end of the list, this is no longer
933    * necessary because the 'set' routine handles duplicate entries correcty.
934    */
935   do /* num_chunk_list > 0, so at least one */
936   {
937      p -= 5;
938
939      if (memcmp(chunk_name, p, 4) == 0)
940         return p[4];
941   }
942   while (p > p_end);
943
944   /* This means that known chunks should be processed and unknown chunks should
945    * be handled according to the value of png_ptr->unknown_default; this can be
946    * confusing because, as a result, there are two levels of defaulting for
947    * unknown chunks.
948    */
949   return PNG_HANDLE_CHUNK_AS_DEFAULT;
950}
951
952#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\
953   defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
954int /* PRIVATE */
955png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name)
956{
957   png_byte chunk_string[5];
958
959   PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
960   return png_handle_as_unknown(png_ptr, chunk_string);
961}
962#endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */
963#endif /* SET_UNKNOWN_CHUNKS */
964
965#ifdef PNG_READ_SUPPORTED
966/* This function, added to libpng-1.0.6g, is untested. */
967int PNGAPI
968png_reset_zstream(png_structrp png_ptr)
969{
970   if (png_ptr == NULL)
971      return Z_STREAM_ERROR;
972
973   /* WARNING: this resets the window bits to the maximum! */
974   return (inflateReset(&png_ptr->zstream));
975}
976#endif /* READ */
977
978/* This function was added to libpng-1.0.7 */
979png_uint_32 PNGAPI
980png_access_version_number(void)
981{
982   /* Version of *.c files used when building libpng */
983   return((png_uint_32)PNG_LIBPNG_VER);
984}
985
986#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
987/* Ensure that png_ptr->zstream.msg holds some appropriate error message string.
988 * If it doesn't 'ret' is used to set it to something appropriate, even in cases
989 * like Z_OK or Z_STREAM_END where the error code is apparently a success code.
990 */
991void /* PRIVATE */
992png_zstream_error(png_structrp png_ptr, int ret)
993{
994   /* Translate 'ret' into an appropriate error string, priority is given to the
995    * one in zstream if set.  This always returns a string, even in cases like
996    * Z_OK or Z_STREAM_END where the error code is a success code.
997    */
998   if (png_ptr->zstream.msg == NULL) switch (ret)
999   {
1000      default:
1001      case Z_OK:
1002         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code");
1003         break;
1004
1005      case Z_STREAM_END:
1006         /* Normal exit */
1007         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream");
1008         break;
1009
1010      case Z_NEED_DICT:
1011         /* This means the deflate stream did not have a dictionary; this
1012          * indicates a bogus PNG.
1013          */
1014         png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary");
1015         break;
1016
1017      case Z_ERRNO:
1018         /* gz APIs only: should not happen */
1019         png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error");
1020         break;
1021
1022      case Z_STREAM_ERROR:
1023         /* internal libpng error */
1024         png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib");
1025         break;
1026
1027      case Z_DATA_ERROR:
1028         png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream");
1029         break;
1030
1031      case Z_MEM_ERROR:
1032         png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory");
1033         break;
1034
1035      case Z_BUF_ERROR:
1036         /* End of input or output; not a problem if the caller is doing
1037          * incremental read or write.
1038          */
1039         png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated");
1040         break;
1041
1042      case Z_VERSION_ERROR:
1043         png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version");
1044         break;
1045
1046      case PNG_UNEXPECTED_ZLIB_RETURN:
1047         /* Compile errors here mean that zlib now uses the value co-opted in
1048          * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
1049          * and change pngpriv.h.  Note that this message is "... return",
1050          * whereas the default/Z_OK one is "... return code".
1051          */
1052         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return");
1053         break;
1054   }
1055}
1056
1057/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
1058 * at libpng 1.5.5!
1059 */
1060
1061/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
1062#ifdef PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */
1063static int
1064png_colorspace_check_gamma(png_const_structrp png_ptr,
1065    png_colorspacerp colorspace, png_fixed_point gAMA, int from)
1066   /* This is called to check a new gamma value against an existing one.  The
1067    * routine returns false if the new gamma value should not be written.
1068    *
1069    * 'from' says where the new gamma value comes from:
1070    *
1071    *    0: the new gamma value is the libpng estimate for an ICC profile
1072    *    1: the new gamma value comes from a gAMA chunk
1073    *    2: the new gamma value comes from an sRGB chunk
1074    */
1075{
1076   png_fixed_point gtest;
1077
1078   if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 &&
1079       (png_muldiv(&gtest, colorspace->gamma, PNG_FP_1, gAMA) == 0  ||
1080      png_gamma_significant(gtest) != 0))
1081   {
1082      /* Either this is an sRGB image, in which case the calculated gamma
1083       * approximation should match, or this is an image with a profile and the
1084       * value libpng calculates for the gamma of the profile does not match the
1085       * value recorded in the file.  The former, sRGB, case is an error, the
1086       * latter is just a warning.
1087       */
1088      if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2)
1089      {
1090         png_chunk_report(png_ptr, "gamma value does not match sRGB",
1091             PNG_CHUNK_ERROR);
1092         /* Do not overwrite an sRGB value */
1093         return from == 2;
1094      }
1095
1096      else /* sRGB tag not involved */
1097      {
1098         png_chunk_report(png_ptr, "gamma value does not match libpng estimate",
1099             PNG_CHUNK_WARNING);
1100         return from == 1;
1101      }
1102   }
1103
1104   return 1;
1105}
1106
1107void /* PRIVATE */
1108png_colorspace_set_gamma(png_const_structrp png_ptr,
1109    png_colorspacerp colorspace, png_fixed_point gAMA)
1110{
1111   /* Changed in libpng-1.5.4 to limit the values to ensure overflow can't
1112    * occur.  Since the fixed point representation is asymetrical it is
1113    * possible for 1/gamma to overflow the limit of 21474 and this means the
1114    * gamma value must be at least 5/100000 and hence at most 20000.0.  For
1115    * safety the limits here are a little narrower.  The values are 0.00016 to
1116    * 6250.0, which are truly ridiculous gamma values (and will produce
1117    * displays that are all black or all white.)
1118    *
1119    * In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk
1120    * handling code, which only required the value to be >0.
1121    */
1122   png_const_charp errmsg;
1123
1124   if (gAMA < 16 || gAMA > 625000000)
1125      errmsg = "gamma value out of range";
1126
1127#  ifdef PNG_READ_gAMA_SUPPORTED
1128   /* Allow the application to set the gamma value more than once */
1129   else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 &&
1130      (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0)
1131      errmsg = "duplicate";
1132#  endif
1133
1134   /* Do nothing if the colorspace is already invalid */
1135   else if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
1136      return;
1137
1138   else
1139   {
1140      if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA,
1141          1/*from gAMA*/) != 0)
1142      {
1143         /* Store this gamma value. */
1144         colorspace->gamma = gAMA;
1145         colorspace->flags |=
1146            (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA);
1147      }
1148
1149      /* At present if the check_gamma test fails the gamma of the colorspace is
1150       * not updated however the colorspace is not invalidated.  This
1151       * corresponds to the case where the existing gamma comes from an sRGB
1152       * chunk or profile.  An error message has already been output.
1153       */
1154      return;
1155   }
1156
1157   /* Error exit - errmsg has been set. */
1158   colorspace->flags |= PNG_COLORSPACE_INVALID;
1159   png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR);
1160}
1161
1162void /* PRIVATE */
1163png_colorspace_sync_info(png_const_structrp png_ptr, png_inforp info_ptr)
1164{
1165   if ((info_ptr->colorspace.flags & PNG_COLORSPACE_INVALID) != 0)
1166   {
1167      /* Everything is invalid */
1168      info_ptr->valid &= ~(PNG_INFO_gAMA|PNG_INFO_cHRM|PNG_INFO_sRGB|
1169         PNG_INFO_iCCP);
1170
1171#     ifdef PNG_COLORSPACE_SUPPORTED
1172      /* Clean up the iCCP profile now if it won't be used. */
1173      png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, -1/*not used*/);
1174#     else
1175      PNG_UNUSED(png_ptr)
1176#     endif
1177   }
1178
1179   else
1180   {
1181#     ifdef PNG_COLORSPACE_SUPPORTED
1182      /* Leave the INFO_iCCP flag set if the pngset.c code has already set
1183       * it; this allows a PNG to contain a profile which matches sRGB and
1184       * yet still have that profile retrievable by the application.
1185       */
1186      if ((info_ptr->colorspace.flags & PNG_COLORSPACE_MATCHES_sRGB) != 0)
1187         info_ptr->valid |= PNG_INFO_sRGB;
1188
1189      else
1190         info_ptr->valid &= ~PNG_INFO_sRGB;
1191
1192      if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
1193         info_ptr->valid |= PNG_INFO_cHRM;
1194
1195      else
1196         info_ptr->valid &= ~PNG_INFO_cHRM;
1197#     endif
1198
1199      if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA) != 0)
1200         info_ptr->valid |= PNG_INFO_gAMA;
1201
1202      else
1203         info_ptr->valid &= ~PNG_INFO_gAMA;
1204   }
1205}
1206
1207#ifdef PNG_READ_SUPPORTED
1208void /* PRIVATE */
1209png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr)
1210{
1211   if (info_ptr == NULL) /* reduce code size; check here not in the caller */
1212      return;
1213
1214   info_ptr->colorspace = png_ptr->colorspace;
1215   png_colorspace_sync_info(png_ptr, info_ptr);
1216}
1217#endif
1218#endif /* GAMMA */
1219
1220#ifdef PNG_COLORSPACE_SUPPORTED
1221/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
1222 * cHRM, as opposed to using chromaticities.  These internal APIs return
1223 * non-zero on a parameter error.  The X, Y and Z values are required to be
1224 * positive and less than 1.0.
1225 */
1226static int
1227png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ)
1228{
1229   png_int_32 d, dwhite, whiteX, whiteY;
1230
1231   d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z;
1232   if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d) == 0)
1233      return 1;
1234   if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d) == 0)
1235      return 1;
1236   dwhite = d;
1237   whiteX = XYZ->red_X;
1238   whiteY = XYZ->red_Y;
1239
1240   d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z;
1241   if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d) == 0)
1242      return 1;
1243   if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d) == 0)
1244      return 1;
1245   dwhite += d;
1246   whiteX += XYZ->green_X;
1247   whiteY += XYZ->green_Y;
1248
1249   d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z;
1250   if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d) == 0)
1251      return 1;
1252   if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d) == 0)
1253      return 1;
1254   dwhite += d;
1255   whiteX += XYZ->blue_X;
1256   whiteY += XYZ->blue_Y;
1257
1258   /* The reference white is simply the sum of the end-point (X,Y,Z) vectors,
1259    * thus:
1260    */
1261   if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0)
1262      return 1;
1263   if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0)
1264      return 1;
1265
1266   return 0;
1267}
1268
1269static int
1270png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy)
1271{
1272   png_fixed_point red_inverse, green_inverse, blue_scale;
1273   png_fixed_point left, right, denominator;
1274
1275   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
1276    * have end points with 0 tristimulus values (these are impossible end
1277    * points, but they are used to cover the possible colors).  We check
1278    * xy->whitey against 5, not 0, to avoid a possible integer overflow.
1279    */
1280   if (xy->redx   < 0 || xy->redx > PNG_FP_1) return 1;
1281   if (xy->redy   < 0 || xy->redy > PNG_FP_1-xy->redx) return 1;
1282   if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1;
1283   if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1;
1284   if (xy->bluex  < 0 || xy->bluex > PNG_FP_1) return 1;
1285   if (xy->bluey  < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1;
1286   if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1;
1287   if (xy->whitey < 5 || xy->whitey > PNG_FP_1-xy->whitex) return 1;
1288
1289   /* The reverse calculation is more difficult because the original tristimulus
1290    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
1291    * derived values were recorded in the cHRM chunk;
1292    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
1293    * therefore an arbitrary ninth value has to be introduced to undo the
1294    * original transformations.
1295    *
1296    * Think of the original end-points as points in (X,Y,Z) space.  The
1297    * chromaticity values (c) have the property:
1298    *
1299    *           C
1300    *   c = ---------
1301    *       X + Y + Z
1302    *
1303    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
1304    * three chromaticity values (x,y,z) for each end-point obey the
1305    * relationship:
1306    *
1307    *   x + y + z = 1
1308    *
1309    * This describes the plane in (X,Y,Z) space that intersects each axis at the
1310    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
1311    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
1312    * and chromaticity is the intersection of the vector from the origin to the
1313    * (X,Y,Z) value with the chromaticity plane.
1314    *
1315    * To fully invert the chromaticity calculation we would need the three
1316    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
1317    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
1318    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
1319    * given all three of the scale factors since:
1320    *
1321    *    color-C = color-c * color-scale
1322    *    white-C = red-C + green-C + blue-C
1323    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1324    *
1325    * But cHRM records only white-x and white-y, so we have lost the white scale
1326    * factor:
1327    *
1328    *    white-C = white-c*white-scale
1329    *
1330    * To handle this the inverse transformation makes an arbitrary assumption
1331    * about white-scale:
1332    *
1333    *    Assume: white-Y = 1.0
1334    *    Hence:  white-scale = 1/white-y
1335    *    Or:     red-Y + green-Y + blue-Y = 1.0
1336    *
1337    * Notice the last statement of the assumption gives an equation in three of
1338    * the nine values we want to calculate.  8 more equations come from the
1339    * above routine as summarised at the top above (the chromaticity
1340    * calculation):
1341    *
1342    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
1343    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
1344    *
1345    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
1346    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
1347    * determinants, however this is not as bad as it seems because only 28 of
1348    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
1349    * Cramer's rule is notoriously numerically unstable because the determinant
1350    * calculation involves the difference of large, but similar, numbers.  It is
1351    * difficult to be sure that the calculation is stable for real world values
1352    * and it is certain that it becomes unstable where the end points are close
1353    * together.
1354    *
1355    * So this code uses the perhaps slightly less optimal but more
1356    * understandable and totally obvious approach of calculating color-scale.
1357    *
1358    * This algorithm depends on the precision in white-scale and that is
1359    * (1/white-y), so we can immediately see that as white-y approaches 0 the
1360    * accuracy inherent in the cHRM chunk drops off substantially.
1361    *
1362    * libpng arithmetic: a simple inversion of the above equations
1363    * ------------------------------------------------------------
1364    *
1365    *    white_scale = 1/white-y
1366    *    white-X = white-x * white-scale
1367    *    white-Y = 1.0
1368    *    white-Z = (1 - white-x - white-y) * white_scale
1369    *
1370    *    white-C = red-C + green-C + blue-C
1371    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1372    *
1373    * This gives us three equations in (red-scale,green-scale,blue-scale) where
1374    * all the coefficients are now known:
1375    *
1376    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
1377    *       = white-x/white-y
1378    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
1379    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
1380    *       = (1 - white-x - white-y)/white-y
1381    *
1382    * In the last equation color-z is (1 - color-x - color-y) so we can add all
1383    * three equations together to get an alternative third:
1384    *
1385    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
1386    *
1387    * So now we have a Cramer's rule solution where the determinants are just
1388    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
1389    * multiplication of three coefficients so we can't guarantee to avoid
1390    * overflow in the libpng fixed point representation.  Using Cramer's rule in
1391    * floating point is probably a good choice here, but it's not an option for
1392    * fixed point.  Instead proceed to simplify the first two equations by
1393    * eliminating what is likely to be the largest value, blue-scale:
1394    *
1395    *    blue-scale = white-scale - red-scale - green-scale
1396    *
1397    * Hence:
1398    *
1399    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1400    *                (white-x - blue-x)*white-scale
1401    *
1402    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1403    *                1 - blue-y*white-scale
1404    *
1405    * And now we can trivially solve for (red-scale,green-scale):
1406    *
1407    *    green-scale =
1408    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1409    *                -----------------------------------------------------------
1410    *                                  green-x - blue-x
1411    *
1412    *    red-scale =
1413    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1414    *                ---------------------------------------------------------
1415    *                                  red-y - blue-y
1416    *
1417    * Hence:
1418    *
1419    *    red-scale =
1420    *          ( (green-x - blue-x) * (white-y - blue-y) -
1421    *            (green-y - blue-y) * (white-x - blue-x) ) / white-y
1422    * -------------------------------------------------------------------------
1423    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1424    *
1425    *    green-scale =
1426    *          ( (red-y - blue-y) * (white-x - blue-x) -
1427    *            (red-x - blue-x) * (white-y - blue-y) ) / white-y
1428    * -------------------------------------------------------------------------
1429    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1430    *
1431    * Accuracy:
1432    * The input values have 5 decimal digits of accuracy.  The values are all in
1433    * the range 0 < value < 1, so simple products are in the same range but may
1434    * need up to 10 decimal digits to preserve the original precision and avoid
1435    * underflow.  Because we are using a 32-bit signed representation we cannot
1436    * match this; the best is a little over 9 decimal digits, less than 10.
1437    *
1438    * The approach used here is to preserve the maximum precision within the
1439    * signed representation.  Because the red-scale calculation above uses the
1440    * difference between two products of values that must be in the range -1..+1
1441    * it is sufficient to divide the product by 7; ceil(100,000/32767*2).  The
1442    * factor is irrelevant in the calculation because it is applied to both
1443    * numerator and denominator.
1444    *
1445    * Note that the values of the differences of the products of the
1446    * chromaticities in the above equations tend to be small, for example for
1447    * the sRGB chromaticities they are:
1448    *
1449    * red numerator:    -0.04751
1450    * green numerator:  -0.08788
1451    * denominator:      -0.2241 (without white-y multiplication)
1452    *
1453    *  The resultant Y coefficients from the chromaticities of some widely used
1454    *  color space definitions are (to 15 decimal places):
1455    *
1456    *  sRGB
1457    *    0.212639005871510 0.715168678767756 0.072192315360734
1458    *  Kodak ProPhoto
1459    *    0.288071128229293 0.711843217810102 0.000085653960605
1460    *  Adobe RGB
1461    *    0.297344975250536 0.627363566255466 0.075291458493998
1462    *  Adobe Wide Gamut RGB
1463    *    0.258728243040113 0.724682314948566 0.016589442011321
1464    */
1465   /* By the argument, above overflow should be impossible here. The return
1466    * value of 2 indicates an internal error to the caller.
1467    */
1468   if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7) == 0)
1469      return 2;
1470   if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7) == 0)
1471      return 2;
1472   denominator = left - right;
1473
1474   /* Now find the red numerator. */
1475   if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7) == 0)
1476      return 2;
1477   if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7) == 0)
1478      return 2;
1479
1480   /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1481    * chunk values.  This calculation actually returns the reciprocal of the
1482    * scale value because this allows us to delay the multiplication of white-y
1483    * into the denominator, which tends to produce a small number.
1484    */
1485   if (png_muldiv(&red_inverse, xy->whitey, denominator, left-right) == 0 ||
1486       red_inverse <= xy->whitey /* r+g+b scales = white scale */)
1487      return 1;
1488
1489   /* Similarly for green_inverse: */
1490   if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7) == 0)
1491      return 2;
1492   if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7) == 0)
1493      return 2;
1494   if (png_muldiv(&green_inverse, xy->whitey, denominator, left-right) == 0 ||
1495       green_inverse <= xy->whitey)
1496      return 1;
1497
1498   /* And the blue scale, the checks above guarantee this can't overflow but it
1499    * can still produce 0 for extreme cHRM values.
1500    */
1501   blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) -
1502       png_reciprocal(green_inverse);
1503   if (blue_scale <= 0)
1504      return 1;
1505
1506
1507   /* And fill in the png_XYZ: */
1508   if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0)
1509      return 1;
1510   if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0)
1511      return 1;
1512   if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
1513       red_inverse) == 0)
1514      return 1;
1515
1516   if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0)
1517      return 1;
1518   if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0)
1519      return 1;
1520   if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
1521       green_inverse) == 0)
1522      return 1;
1523
1524   if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0)
1525      return 1;
1526   if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0)
1527      return 1;
1528   if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
1529       PNG_FP_1) == 0)
1530      return 1;
1531
1532   return 0; /*success*/
1533}
1534
1535static int
1536png_XYZ_normalize(png_XYZ *XYZ)
1537{
1538   png_int_32 Y;
1539
1540   if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 ||
1541      XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 ||
1542      XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0)
1543      return 1;
1544
1545   /* Normalize by scaling so the sum of the end-point Y values is PNG_FP_1.
1546    * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
1547    * relying on addition of two positive values producing a negative one is not
1548    * safe.
1549    */
1550   Y = XYZ->red_Y;
1551   if (0x7fffffff - Y < XYZ->green_X)
1552      return 1;
1553   Y += XYZ->green_Y;
1554   if (0x7fffffff - Y < XYZ->blue_X)
1555      return 1;
1556   Y += XYZ->blue_Y;
1557
1558   if (Y != PNG_FP_1)
1559   {
1560      if (png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y) == 0)
1561         return 1;
1562      if (png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y) == 0)
1563         return 1;
1564      if (png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y) == 0)
1565         return 1;
1566
1567      if (png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y) == 0)
1568         return 1;
1569      if (png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y) == 0)
1570         return 1;
1571      if (png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y) == 0)
1572         return 1;
1573
1574      if (png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y) == 0)
1575         return 1;
1576      if (png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y) == 0)
1577         return 1;
1578      if (png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y) == 0)
1579         return 1;
1580   }
1581
1582   return 0;
1583}
1584
1585static int
1586png_colorspace_endpoints_match(const png_xy *xy1, const png_xy *xy2, int delta)
1587{
1588   /* Allow an error of +/-0.01 (absolute value) on each chromaticity */
1589   if (PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) ||
1590       PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) ||
1591       PNG_OUT_OF_RANGE(xy1->redx,   xy2->redx,  delta) ||
1592       PNG_OUT_OF_RANGE(xy1->redy,   xy2->redy,  delta) ||
1593       PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) ||
1594       PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) ||
1595       PNG_OUT_OF_RANGE(xy1->bluex,  xy2->bluex, delta) ||
1596       PNG_OUT_OF_RANGE(xy1->bluey,  xy2->bluey, delta))
1597      return 0;
1598   return 1;
1599}
1600
1601/* Added in libpng-1.6.0, a different check for the validity of a set of cHRM
1602 * chunk chromaticities.  Earlier checks used to simply look for the overflow
1603 * condition (where the determinant of the matrix to solve for XYZ ends up zero
1604 * because the chromaticity values are not all distinct.)  Despite this it is
1605 * theoretically possible to produce chromaticities that are apparently valid
1606 * but that rapidly degrade to invalid, potentially crashing, sets because of
1607 * arithmetic inaccuracies when calculations are performed on them.  The new
1608 * check is to round-trip xy -> XYZ -> xy and then check that the result is
1609 * within a small percentage of the original.
1610 */
1611static int
1612png_colorspace_check_xy(png_XYZ *XYZ, const png_xy *xy)
1613{
1614   int result;
1615   png_xy xy_test;
1616
1617   /* As a side-effect this routine also returns the XYZ endpoints. */
1618   result = png_XYZ_from_xy(XYZ, xy);
1619   if (result != 0)
1620      return result;
1621
1622   result = png_xy_from_XYZ(&xy_test, XYZ);
1623   if (result != 0)
1624      return result;
1625
1626   if (png_colorspace_endpoints_match(xy, &xy_test,
1627       5/*actually, the math is pretty accurate*/) != 0)
1628      return 0;
1629
1630   /* Too much slip */
1631   return 1;
1632}
1633
1634/* This is the check going the other way.  The XYZ is modified to normalize it
1635 * (another side-effect) and the xy chromaticities are returned.
1636 */
1637static int
1638png_colorspace_check_XYZ(png_xy *xy, png_XYZ *XYZ)
1639{
1640   int result;
1641   png_XYZ XYZtemp;
1642
1643   result = png_XYZ_normalize(XYZ);
1644   if (result != 0)
1645      return result;
1646
1647   result = png_xy_from_XYZ(xy, XYZ);
1648   if (result != 0)
1649      return result;
1650
1651   XYZtemp = *XYZ;
1652   return png_colorspace_check_xy(&XYZtemp, xy);
1653}
1654
1655/* Used to check for an endpoint match against sRGB */
1656static const png_xy sRGB_xy = /* From ITU-R BT.709-3 */
1657{
1658   /* color      x       y */
1659   /* red   */ 64000, 33000,
1660   /* green */ 30000, 60000,
1661   /* blue  */ 15000,  6000,
1662   /* white */ 31270, 32900
1663};
1664
1665static int
1666png_colorspace_set_xy_and_XYZ(png_const_structrp png_ptr,
1667    png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ,
1668    int preferred)
1669{
1670   if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
1671      return 0;
1672
1673   /* The consistency check is performed on the chromaticities; this factors out
1674    * variations because of the normalization (or not) of the end point Y
1675    * values.
1676    */
1677   if (preferred < 2 &&
1678       (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
1679   {
1680      /* The end points must be reasonably close to any we already have.  The
1681       * following allows an error of up to +/-.001
1682       */
1683      if (png_colorspace_endpoints_match(xy, &colorspace->end_points_xy,
1684          100) == 0)
1685      {
1686         colorspace->flags |= PNG_COLORSPACE_INVALID;
1687         png_benign_error(png_ptr, "inconsistent chromaticities");
1688         return 0; /* failed */
1689      }
1690
1691      /* Only overwrite with preferred values */
1692      if (preferred == 0)
1693         return 1; /* ok, but no change */
1694   }
1695
1696   colorspace->end_points_xy = *xy;
1697   colorspace->end_points_XYZ = *XYZ;
1698   colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS;
1699
1700   /* The end points are normally quoted to two decimal digits, so allow +/-0.01
1701    * on this test.
1702    */
1703   if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000) != 0)
1704      colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB;
1705
1706   else
1707      colorspace->flags &= PNG_COLORSPACE_CANCEL(
1708         PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1709
1710   return 2; /* ok and changed */
1711}
1712
1713int /* PRIVATE */
1714png_colorspace_set_chromaticities(png_const_structrp png_ptr,
1715    png_colorspacerp colorspace, const png_xy *xy, int preferred)
1716{
1717   /* We must check the end points to ensure they are reasonable - in the past
1718    * color management systems have crashed as a result of getting bogus
1719    * colorant values, while this isn't the fault of libpng it is the
1720    * responsibility of libpng because PNG carries the bomb and libpng is in a
1721    * position to protect against it.
1722    */
1723   png_XYZ XYZ;
1724
1725   switch (png_colorspace_check_xy(&XYZ, xy))
1726   {
1727      case 0: /* success */
1728         return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ,
1729             preferred);
1730
1731      case 1:
1732         /* We can't invert the chromaticities so we can't produce value XYZ
1733          * values.  Likely as not a color management system will fail too.
1734          */
1735         colorspace->flags |= PNG_COLORSPACE_INVALID;
1736         png_benign_error(png_ptr, "invalid chromaticities");
1737         break;
1738
1739      default:
1740         /* libpng is broken; this should be a warning but if it happens we
1741          * want error reports so for the moment it is an error.
1742          */
1743         colorspace->flags |= PNG_COLORSPACE_INVALID;
1744         png_error(png_ptr, "internal error checking chromaticities");
1745   }
1746
1747   return 0; /* failed */
1748}
1749
1750int /* PRIVATE */
1751png_colorspace_set_endpoints(png_const_structrp png_ptr,
1752    png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred)
1753{
1754   png_XYZ XYZ = *XYZ_in;
1755   png_xy xy;
1756
1757   switch (png_colorspace_check_XYZ(&xy, &XYZ))
1758   {
1759      case 0:
1760         return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ,
1761             preferred);
1762
1763      case 1:
1764         /* End points are invalid. */
1765         colorspace->flags |= PNG_COLORSPACE_INVALID;
1766         png_benign_error(png_ptr, "invalid end points");
1767         break;
1768
1769      default:
1770         colorspace->flags |= PNG_COLORSPACE_INVALID;
1771         png_error(png_ptr, "internal error checking chromaticities");
1772   }
1773
1774   return 0; /* failed */
1775}
1776
1777#if defined(PNG_sRGB_SUPPORTED) || defined(PNG_iCCP_SUPPORTED)
1778/* Error message generation */
1779static char
1780png_icc_tag_char(png_uint_32 byte)
1781{
1782   byte &= 0xff;
1783   if (byte >= 32 && byte <= 126)
1784      return (char)byte;
1785   else
1786      return '?';
1787}
1788
1789static void
1790png_icc_tag_name(char *name, png_uint_32 tag)
1791{
1792   name[0] = '\'';
1793   name[1] = png_icc_tag_char(tag >> 24);
1794   name[2] = png_icc_tag_char(tag >> 16);
1795   name[3] = png_icc_tag_char(tag >>  8);
1796   name[4] = png_icc_tag_char(tag      );
1797   name[5] = '\'';
1798}
1799
1800static int
1801is_ICC_signature_char(png_alloc_size_t it)
1802{
1803   return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
1804      (it >= 97 && it <= 122);
1805}
1806
1807static int
1808is_ICC_signature(png_alloc_size_t it)
1809{
1810   return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
1811      is_ICC_signature_char((it >> 16) & 0xff) &&
1812      is_ICC_signature_char((it >> 8) & 0xff) &&
1813      is_ICC_signature_char(it & 0xff);
1814}
1815
1816static int
1817png_icc_profile_error(png_const_structrp png_ptr, png_colorspacerp colorspace,
1818    png_const_charp name, png_alloc_size_t value, png_const_charp reason)
1819{
1820   size_t pos;
1821   char message[196]; /* see below for calculation */
1822
1823   if (colorspace != NULL)
1824      colorspace->flags |= PNG_COLORSPACE_INVALID;
1825
1826   pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
1827   pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
1828   pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
1829   if (is_ICC_signature(value) != 0)
1830   {
1831      /* So 'value' is at most 4 bytes and the following cast is safe */
1832      png_icc_tag_name(message+pos, (png_uint_32)value);
1833      pos += 6; /* total +8; less than the else clause */
1834      message[pos++] = ':';
1835      message[pos++] = ' ';
1836   }
1837#  ifdef PNG_WARNINGS_SUPPORTED
1838   else
1839      {
1840         char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114*/
1841
1842         pos = png_safecat(message, (sizeof message), pos,
1843             png_format_number(number, number+(sizeof number),
1844             PNG_NUMBER_FORMAT_x, value));
1845         pos = png_safecat(message, (sizeof message), pos, "h: "); /*+2 = 116*/
1846      }
1847#  endif
1848   /* The 'reason' is an arbitrary message, allow +79 maximum 195 */
1849   pos = png_safecat(message, (sizeof message), pos, reason);
1850   PNG_UNUSED(pos)
1851
1852   /* This is recoverable, but make it unconditionally an app_error on write to
1853    * avoid writing invalid ICC profiles into PNG files (i.e., we handle them
1854    * on read, with a warning, but on write unless the app turns off
1855    * application errors the PNG won't be written.)
1856    */
1857   png_chunk_report(png_ptr, message,
1858       (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR);
1859
1860   return 0;
1861}
1862#endif /* sRGB || iCCP */
1863
1864#ifdef PNG_sRGB_SUPPORTED
1865int /* PRIVATE */
1866png_colorspace_set_sRGB(png_const_structrp png_ptr, png_colorspacerp colorspace,
1867    int intent)
1868{
1869   /* sRGB sets known gamma, end points and (from the chunk) intent. */
1870   /* IMPORTANT: these are not necessarily the values found in an ICC profile
1871    * because ICC profiles store values adapted to a D50 environment; it is
1872    * expected that the ICC profile mediaWhitePointTag will be D50; see the
1873    * checks and code elsewhere to understand this better.
1874    *
1875    * These XYZ values, which are accurate to 5dp, produce rgb to gray
1876    * coefficients of (6968,23435,2366), which are reduced (because they add up
1877    * to 32769 not 32768) to (6968,23434,2366).  These are the values that
1878    * libpng has traditionally used (and are the best values given the 15bit
1879    * algorithm used by the rgb to gray code.)
1880    */
1881   static const png_XYZ sRGB_XYZ = /* D65 XYZ (*not* the D50 adapted values!) */
1882   {
1883      /* color      X      Y      Z */
1884      /* red   */ 41239, 21264,  1933,
1885      /* green */ 35758, 71517, 11919,
1886      /* blue  */ 18048,  7219, 95053
1887   };
1888
1889   /* Do nothing if the colorspace is already invalidated. */
1890   if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
1891      return 0;
1892
1893   /* Check the intent, then check for existing settings.  It is valid for the
1894    * PNG file to have cHRM or gAMA chunks along with sRGB, but the values must
1895    * be consistent with the correct values.  If, however, this function is
1896    * called below because an iCCP chunk matches sRGB then it is quite
1897    * conceivable that an older app recorded incorrect gAMA and cHRM because of
1898    * an incorrect calculation based on the values in the profile - this does
1899    * *not* invalidate the profile (though it still produces an error, which can
1900    * be ignored.)
1901    */
1902   if (intent < 0 || intent >= PNG_sRGB_INTENT_LAST)
1903      return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1904          (unsigned)intent, "invalid sRGB rendering intent");
1905
1906   if ((colorspace->flags & PNG_COLORSPACE_HAVE_INTENT) != 0 &&
1907       colorspace->rendering_intent != intent)
1908      return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1909         (unsigned)intent, "inconsistent rendering intents");
1910
1911   if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0)
1912   {
1913      png_benign_error(png_ptr, "duplicate sRGB information ignored");
1914      return 0;
1915   }
1916
1917   /* If the standard sRGB cHRM chunk does not match the one from the PNG file
1918    * warn but overwrite the value with the correct one.
1919    */
1920   if ((colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0 &&
1921       !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy,
1922       100))
1923      png_chunk_report(png_ptr, "cHRM chunk does not match sRGB",
1924         PNG_CHUNK_ERROR);
1925
1926   /* This check is just done for the error reporting - the routine always
1927    * returns true when the 'from' argument corresponds to sRGB (2).
1928    */
1929   (void)png_colorspace_check_gamma(png_ptr, colorspace, PNG_GAMMA_sRGB_INVERSE,
1930       2/*from sRGB*/);
1931
1932   /* intent: bugs in GCC force 'int' to be used as the parameter type. */
1933   colorspace->rendering_intent = (png_uint_16)intent;
1934   colorspace->flags |= PNG_COLORSPACE_HAVE_INTENT;
1935
1936   /* endpoints */
1937   colorspace->end_points_xy = sRGB_xy;
1938   colorspace->end_points_XYZ = sRGB_XYZ;
1939   colorspace->flags |=
1940      (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1941
1942   /* gamma */
1943   colorspace->gamma = PNG_GAMMA_sRGB_INVERSE;
1944   colorspace->flags |= PNG_COLORSPACE_HAVE_GAMMA;
1945
1946   /* Finally record that we have an sRGB profile */
1947   colorspace->flags |=
1948      (PNG_COLORSPACE_MATCHES_sRGB|PNG_COLORSPACE_FROM_sRGB);
1949
1950   return 1; /* set */
1951}
1952#endif /* sRGB */
1953
1954#ifdef PNG_iCCP_SUPPORTED
1955/* Encoded value of D50 as an ICC XYZNumber.  From the ICC 2010 spec the value
1956 * is XYZ(0.9642,1.0,0.8249), which scales to:
1957 *
1958 *    (63189.8112, 65536, 54060.6464)
1959 */
1960static const png_byte D50_nCIEXYZ[12] =
1961   { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d };
1962
1963static int /* bool */
1964icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace,
1965    png_const_charp name, png_uint_32 profile_length)
1966{
1967   if (profile_length < 132)
1968      return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1969          "too short");
1970
1971   return 1;
1972}
1973
1974#ifdef PNG_READ_iCCP_SUPPORTED
1975int /* PRIVATE */
1976png_icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace,
1977    png_const_charp name, png_uint_32 profile_length)
1978{
1979   if (!icc_check_length(png_ptr, colorspace, name, profile_length))
1980      return 0;
1981
1982   /* This needs to be here because the 'normal' check is in
1983    * png_decompress_chunk, yet this happens after the attempt to
1984    * png_malloc_base the required data.  We only need this on read; on write
1985    * the caller supplies the profile buffer so libpng doesn't allocate it.  See
1986    * the call to icc_check_length below (the write case).
1987    */
1988#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
1989      else if (png_ptr->user_chunk_malloc_max > 0 &&
1990               png_ptr->user_chunk_malloc_max < profile_length)
1991         return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1992             "exceeds application limits");
1993#  elif PNG_USER_CHUNK_MALLOC_MAX > 0
1994      else if (PNG_USER_CHUNK_MALLOC_MAX < profile_length)
1995         return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1996             "exceeds libpng limits");
1997#  else /* !SET_USER_LIMITS */
1998      /* This will get compiled out on all 32-bit and better systems. */
1999      else if (PNG_SIZE_MAX < profile_length)
2000         return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
2001             "exceeds system limits");
2002#  endif /* !SET_USER_LIMITS */
2003
2004   return 1;
2005}
2006#endif /* READ_iCCP */
2007
2008int /* PRIVATE */
2009png_icc_check_header(png_const_structrp png_ptr, png_colorspacerp colorspace,
2010    png_const_charp name, png_uint_32 profile_length,
2011    png_const_bytep profile/* first 132 bytes only */, int color_type)
2012{
2013   png_uint_32 temp;
2014
2015   /* Length check; this cannot be ignored in this code because profile_length
2016    * is used later to check the tag table, so even if the profile seems over
2017    * long profile_length from the caller must be correct.  The caller can fix
2018    * this up on read or write by just passing in the profile header length.
2019    */
2020   temp = png_get_uint_32(profile);
2021   if (temp != profile_length)
2022      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2023          "length does not match profile");
2024
2025   temp = (png_uint_32) (*(profile+8));
2026   if (temp > 3 && (profile_length & 3))
2027      return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
2028          "invalid length");
2029
2030   temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
2031   if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
2032      profile_length < 132+12*temp) /* truncated tag table */
2033      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2034          "tag count too large");
2035
2036   /* The 'intent' must be valid or we can't store it, ICC limits the intent to
2037    * 16 bits.
2038    */
2039   temp = png_get_uint_32(profile+64);
2040   if (temp >= 0xffff) /* The ICC limit */
2041      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2042          "invalid rendering intent");
2043
2044   /* This is just a warning because the profile may be valid in future
2045    * versions.
2046    */
2047   if (temp >= PNG_sRGB_INTENT_LAST)
2048      (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2049          "intent outside defined range");
2050
2051   /* At this point the tag table can't be checked because it hasn't necessarily
2052    * been loaded; however, various header fields can be checked.  These checks
2053    * are for values permitted by the PNG spec in an ICC profile; the PNG spec
2054    * restricts the profiles that can be passed in an iCCP chunk (they must be
2055    * appropriate to processing PNG data!)
2056    */
2057
2058   /* Data checks (could be skipped).  These checks must be independent of the
2059    * version number; however, the version number doesn't accomodate changes in
2060    * the header fields (just the known tags and the interpretation of the
2061    * data.)
2062    */
2063   temp = png_get_uint_32(profile+36); /* signature 'ascp' */
2064   if (temp != 0x61637370)
2065      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2066          "invalid signature");
2067
2068   /* Currently the PCS illuminant/adopted white point (the computational
2069    * white point) are required to be D50,
2070    * however the profile contains a record of the illuminant so perhaps ICC
2071    * expects to be able to change this in the future (despite the rationale in
2072    * the introduction for using a fixed PCS adopted white.)  Consequently the
2073    * following is just a warning.
2074    */
2075   if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
2076      (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/,
2077          "PCS illuminant is not D50");
2078
2079   /* The PNG spec requires this:
2080    * "If the iCCP chunk is present, the image samples conform to the colour
2081    * space represented by the embedded ICC profile as defined by the
2082    * International Color Consortium [ICC]. The colour space of the ICC profile
2083    * shall be an RGB colour space for colour images (PNG colour types 2, 3, and
2084    * 6), or a greyscale colour space for greyscale images (PNG colour types 0
2085    * and 4)."
2086    *
2087    * This checking code ensures the embedded profile (on either read or write)
2088    * conforms to the specification requirements.  Notice that an ICC 'gray'
2089    * color-space profile contains the information to transform the monochrome
2090    * data to XYZ or L*a*b (according to which PCS the profile uses) and this
2091    * should be used in preference to the standard libpng K channel replication
2092    * into R, G and B channels.
2093    *
2094    * Previously it was suggested that an RGB profile on grayscale data could be
2095    * handled.  However it it is clear that using an RGB profile in this context
2096    * must be an error - there is no specification of what it means.  Thus it is
2097    * almost certainly more correct to ignore the profile.
2098    */
2099   temp = png_get_uint_32(profile+16); /* data colour space field */
2100   switch (temp)
2101   {
2102      case 0x52474220: /* 'RGB ' */
2103         if ((color_type & PNG_COLOR_MASK_COLOR) == 0)
2104            return png_icc_profile_error(png_ptr, colorspace, name, temp,
2105                "RGB color space not permitted on grayscale PNG");
2106         break;
2107
2108      case 0x47524159: /* 'GRAY' */
2109         if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
2110            return png_icc_profile_error(png_ptr, colorspace, name, temp,
2111                "Gray color space not permitted on RGB PNG");
2112         break;
2113
2114      default:
2115         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2116             "invalid ICC profile color space");
2117   }
2118
2119   /* It is up to the application to check that the profile class matches the
2120    * application requirements; the spec provides no guidance, but it's pretty
2121    * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
2122    * ('prtr') or 'spac' (for generic color spaces).  Issue a warning in these
2123    * cases.  Issue an error for device link or abstract profiles - these don't
2124    * contain the records necessary to transform the color-space to anything
2125    * other than the target device (and not even that for an abstract profile).
2126    * Profiles of these classes may not be embedded in images.
2127    */
2128   temp = png_get_uint_32(profile+12); /* profile/device class */
2129   switch (temp)
2130   {
2131      case 0x73636e72: /* 'scnr' */
2132      case 0x6d6e7472: /* 'mntr' */
2133      case 0x70727472: /* 'prtr' */
2134      case 0x73706163: /* 'spac' */
2135         /* All supported */
2136         break;
2137
2138      case 0x61627374: /* 'abst' */
2139         /* May not be embedded in an image */
2140         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2141             "invalid embedded Abstract ICC profile");
2142
2143      case 0x6c696e6b: /* 'link' */
2144         /* DeviceLink profiles cannot be interpreted in a non-device specific
2145          * fashion, if an app uses the AToB0Tag in the profile the results are
2146          * undefined unless the result is sent to the intended device,
2147          * therefore a DeviceLink profile should not be found embedded in a
2148          * PNG.
2149          */
2150         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2151             "unexpected DeviceLink ICC profile class");
2152
2153      case 0x6e6d636c: /* 'nmcl' */
2154         /* A NamedColor profile is also device specific, however it doesn't
2155          * contain an AToB0 tag that is open to misinterpretation.  Almost
2156          * certainly it will fail the tests below.
2157          */
2158         (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2159             "unexpected NamedColor ICC profile class");
2160         break;
2161
2162      default:
2163         /* To allow for future enhancements to the profile accept unrecognized
2164          * profile classes with a warning, these then hit the test below on the
2165          * tag content to ensure they are backward compatible with one of the
2166          * understood profiles.
2167          */
2168         (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2169             "unrecognized ICC profile class");
2170         break;
2171   }
2172
2173   /* For any profile other than a device link one the PCS must be encoded
2174    * either in XYZ or Lab.
2175    */
2176   temp = png_get_uint_32(profile+20);
2177   switch (temp)
2178   {
2179      case 0x58595a20: /* 'XYZ ' */
2180      case 0x4c616220: /* 'Lab ' */
2181         break;
2182
2183      default:
2184         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2185             "unexpected ICC PCS encoding");
2186   }
2187
2188   return 1;
2189}
2190
2191int /* PRIVATE */
2192png_icc_check_tag_table(png_const_structrp png_ptr, png_colorspacerp colorspace,
2193    png_const_charp name, png_uint_32 profile_length,
2194    png_const_bytep profile /* header plus whole tag table */)
2195{
2196   png_uint_32 tag_count = png_get_uint_32(profile+128);
2197   png_uint_32 itag;
2198   png_const_bytep tag = profile+132; /* The first tag */
2199
2200   /* First scan all the tags in the table and add bits to the icc_info value
2201    * (temporarily in 'tags').
2202    */
2203   for (itag=0; itag < tag_count; ++itag, tag += 12)
2204   {
2205      png_uint_32 tag_id = png_get_uint_32(tag+0);
2206      png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
2207      png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
2208
2209      /* The ICC specification does not exclude zero length tags, therefore the
2210       * start might actually be anywhere if there is no data, but this would be
2211       * a clear abuse of the intent of the standard so the start is checked for
2212       * being in range.  All defined tag types have an 8 byte header - a 4 byte
2213       * type signature then 0.
2214       */
2215      if ((tag_start & 3) != 0)
2216      {
2217         /* CNHP730S.icc shipped with Microsoft Windows 64 violates this, it is
2218          * only a warning here because libpng does not care about the
2219          * alignment.
2220          */
2221         (void)png_icc_profile_error(png_ptr, NULL, name, tag_id,
2222             "ICC profile tag start not a multiple of 4");
2223      }
2224
2225      /* This is a hard error; potentially it can cause read outside the
2226       * profile.
2227       */
2228      if (tag_start > profile_length || tag_length > profile_length - tag_start)
2229         return png_icc_profile_error(png_ptr, colorspace, name, tag_id,
2230             "ICC profile tag outside profile");
2231   }
2232
2233   return 1; /* success, maybe with warnings */
2234}
2235
2236#ifdef PNG_sRGB_SUPPORTED
2237#if PNG_sRGB_PROFILE_CHECKS >= 0
2238/* Information about the known ICC sRGB profiles */
2239static const struct
2240{
2241   png_uint_32 adler, crc, length;
2242   png_uint_32 md5[4];
2243   png_byte    have_md5;
2244   png_byte    is_broken;
2245   png_uint_16 intent;
2246
2247#  define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0)
2248#  define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\
2249      { adler, crc, length, md5, broke, intent },
2250
2251} png_sRGB_checks[] =
2252{
2253   /* This data comes from contrib/tools/checksum-icc run on downloads of
2254    * all four ICC sRGB profiles from www.color.org.
2255    */
2256   /* adler32, crc32, MD5[4], intent, date, length, file-name */
2257   PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9,
2258       PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0,
2259       "2009/03/27 21:36:31", 3048, "sRGB_IEC61966-2-1_black_scaled.icc")
2260
2261   /* ICC sRGB v2 perceptual no black-compensation: */
2262   PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21,
2263       PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0,
2264       "2009/03/27 21:37:45", 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc")
2265
2266   PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae,
2267       PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0,
2268       "2009/08/10 17:28:01", 60988, "sRGB_v4_ICC_preference_displayclass.icc")
2269
2270   /* ICC sRGB v4 perceptual */
2271   PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812,
2272       PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0,
2273       "2007/07/25 00:05:37", 60960, "sRGB_v4_ICC_preference.icc")
2274
2275   /* The following profiles have no known MD5 checksum. If there is a match
2276    * on the (empty) MD5 the other fields are used to attempt a match and
2277    * a warning is produced.  The first two of these profiles have a 'cprt' tag
2278    * which suggests that they were also made by Hewlett Packard.
2279    */
2280   PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce,
2281       PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0,
2282       "2004/07/21 18:57:42", 3024, "sRGB_IEC61966-2-1_noBPC.icc")
2283
2284   /* This is a 'mntr' (display) profile with a mediaWhitePointTag that does not
2285    * match the D50 PCS illuminant in the header (it is in fact the D65 values,
2286    * so the white point is recorded as the un-adapted value.)  The profiles
2287    * below only differ in one byte - the intent - and are basically the same as
2288    * the previous profile except for the mediaWhitePointTag error and a missing
2289    * chromaticAdaptationTag.
2290    */
2291   PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552,
2292       PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/,
2293       "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 perceptual")
2294
2295   PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d,
2296       PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/,
2297       "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 media-relative")
2298};
2299
2300static int
2301png_compare_ICC_profile_with_sRGB(png_const_structrp png_ptr,
2302    png_const_bytep profile, uLong adler)
2303{
2304   /* The quick check is to verify just the MD5 signature and trust the
2305    * rest of the data.  Because the profile has already been verified for
2306    * correctness this is safe.  png_colorspace_set_sRGB will check the 'intent'
2307    * field too, so if the profile has been edited with an intent not defined
2308    * by sRGB (but maybe defined by a later ICC specification) the read of
2309    * the profile will fail at that point.
2310    */
2311
2312   png_uint_32 length = 0;
2313   png_uint_32 intent = 0x10000; /* invalid */
2314#if PNG_sRGB_PROFILE_CHECKS > 1
2315   uLong crc = 0; /* the value for 0 length data */
2316#endif
2317   unsigned int i;
2318
2319#ifdef PNG_SET_OPTION_SUPPORTED
2320   /* First see if PNG_SKIP_sRGB_CHECK_PROFILE has been set to "on" */
2321   if (((png_ptr->options >> PNG_SKIP_sRGB_CHECK_PROFILE) & 3) ==
2322               PNG_OPTION_ON)
2323      return 0;
2324#endif
2325
2326   for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i)
2327   {
2328      if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] &&
2329         png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] &&
2330         png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] &&
2331         png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3])
2332      {
2333         /* This may be one of the old HP profiles without an MD5, in that
2334          * case we can only use the length and Adler32 (note that these
2335          * are not used by default if there is an MD5!)
2336          */
2337#        if PNG_sRGB_PROFILE_CHECKS == 0
2338            if (png_sRGB_checks[i].have_md5 != 0)
2339               return 1+png_sRGB_checks[i].is_broken;
2340#        endif
2341
2342         /* Profile is unsigned or more checks have been configured in. */
2343         if (length == 0)
2344         {
2345            length = png_get_uint_32(profile);
2346            intent = png_get_uint_32(profile+64);
2347         }
2348
2349         /* Length *and* intent must match */
2350         if (length == (png_uint_32) png_sRGB_checks[i].length &&
2351            intent == (png_uint_32) png_sRGB_checks[i].intent)
2352         {
2353            /* Now calculate the adler32 if not done already. */
2354            if (adler == 0)
2355            {
2356               adler = adler32(0, NULL, 0);
2357               adler = adler32(adler, profile, length);
2358            }
2359
2360            if (adler == png_sRGB_checks[i].adler)
2361            {
2362               /* These basic checks suggest that the data has not been
2363                * modified, but if the check level is more than 1 perform
2364                * our own crc32 checksum on the data.
2365                */
2366#              if PNG_sRGB_PROFILE_CHECKS > 1
2367                  if (crc == 0)
2368                  {
2369                     crc = crc32(0, NULL, 0);
2370                     crc = crc32(crc, profile, length);
2371                  }
2372
2373                  /* So this check must pass for the 'return' below to happen.
2374                   */
2375                  if (crc == png_sRGB_checks[i].crc)
2376#              endif
2377               {
2378                  if (png_sRGB_checks[i].is_broken != 0)
2379                  {
2380                     /* These profiles are known to have bad data that may cause
2381                      * problems if they are used, therefore attempt to
2382                      * discourage their use, skip the 'have_md5' warning below,
2383                      * which is made irrelevant by this error.
2384                      */
2385                     png_chunk_report(png_ptr, "known incorrect sRGB profile",
2386                         PNG_CHUNK_ERROR);
2387                  }
2388
2389                  /* Warn that this being done; this isn't even an error since
2390                   * the profile is perfectly valid, but it would be nice if
2391                   * people used the up-to-date ones.
2392                   */
2393                  else if (png_sRGB_checks[i].have_md5 == 0)
2394                  {
2395                     png_chunk_report(png_ptr,
2396                         "out-of-date sRGB profile with no signature",
2397                         PNG_CHUNK_WARNING);
2398                  }
2399
2400                  return 1+png_sRGB_checks[i].is_broken;
2401               }
2402            }
2403
2404# if PNG_sRGB_PROFILE_CHECKS > 0
2405         /* The signature matched, but the profile had been changed in some
2406          * way.  This probably indicates a data error or uninformed hacking.
2407          * Fall through to "no match".
2408          */
2409         png_chunk_report(png_ptr,
2410             "Not recognizing known sRGB profile that has been edited",
2411             PNG_CHUNK_WARNING);
2412         break;
2413# endif
2414         }
2415      }
2416   }
2417
2418   return 0; /* no match */
2419}
2420
2421void /* PRIVATE */
2422png_icc_set_sRGB(png_const_structrp png_ptr,
2423    png_colorspacerp colorspace, png_const_bytep profile, uLong adler)
2424{
2425   /* Is this profile one of the known ICC sRGB profiles?  If it is, just set
2426    * the sRGB information.
2427    */
2428   if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler) != 0)
2429      (void)png_colorspace_set_sRGB(png_ptr, colorspace,
2430         (int)/*already checked*/png_get_uint_32(profile+64));
2431}
2432#endif /* PNG_sRGB_PROFILE_CHECKS >= 0 */
2433#endif /* sRGB */
2434
2435int /* PRIVATE */
2436png_colorspace_set_ICC(png_const_structrp png_ptr, png_colorspacerp colorspace,
2437    png_const_charp name, png_uint_32 profile_length, png_const_bytep profile,
2438    int color_type)
2439{
2440   if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
2441      return 0;
2442
2443   if (icc_check_length(png_ptr, colorspace, name, profile_length) != 0 &&
2444       png_icc_check_header(png_ptr, colorspace, name, profile_length, profile,
2445           color_type) != 0 &&
2446       png_icc_check_tag_table(png_ptr, colorspace, name, profile_length,
2447           profile) != 0)
2448   {
2449#     if defined(PNG_sRGB_SUPPORTED) && PNG_sRGB_PROFILE_CHECKS >= 0
2450         /* If no sRGB support, don't try storing sRGB information */
2451         png_icc_set_sRGB(png_ptr, colorspace, profile, 0);
2452#     endif
2453      return 1;
2454   }
2455
2456   /* Failure case */
2457   return 0;
2458}
2459#endif /* iCCP */
2460
2461#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
2462void /* PRIVATE */
2463png_colorspace_set_rgb_coefficients(png_structrp png_ptr)
2464{
2465   /* Set the rgb_to_gray coefficients from the colorspace. */
2466   if (png_ptr->rgb_to_gray_coefficients_set == 0 &&
2467      (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
2468   {
2469      /* png_set_background has not been called, get the coefficients from the Y
2470       * values of the colorspace colorants.
2471       */
2472      png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y;
2473      png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y;
2474      png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y;
2475      png_fixed_point total = r+g+b;
2476
2477      if (total > 0 &&
2478         r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
2479         g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
2480         b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
2481         r+g+b <= 32769)
2482      {
2483         /* We allow 0 coefficients here.  r+g+b may be 32769 if two or
2484          * all of the coefficients were rounded up.  Handle this by
2485          * reducing the *largest* coefficient by 1; this matches the
2486          * approach used for the default coefficients in pngrtran.c
2487          */
2488         int add = 0;
2489
2490         if (r+g+b > 32768)
2491            add = -1;
2492         else if (r+g+b < 32768)
2493            add = 1;
2494
2495         if (add != 0)
2496         {
2497            if (g >= r && g >= b)
2498               g += add;
2499            else if (r >= g && r >= b)
2500               r += add;
2501            else
2502               b += add;
2503         }
2504
2505         /* Check for an internal error. */
2506         if (r+g+b != 32768)
2507            png_error(png_ptr,
2508                "internal error handling cHRM coefficients");
2509
2510         else
2511         {
2512            png_ptr->rgb_to_gray_red_coeff   = (png_uint_16)r;
2513            png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g;
2514         }
2515      }
2516
2517      /* This is a png_error at present even though it could be ignored -
2518       * it should never happen, but it is important that if it does, the
2519       * bug is fixed.
2520       */
2521      else
2522         png_error(png_ptr, "internal error handling cHRM->XYZ");
2523   }
2524}
2525#endif /* READ_RGB_TO_GRAY */
2526
2527#endif /* COLORSPACE */
2528
2529#ifdef __GNUC__
2530/* This exists solely to work round a warning from GNU C. */
2531static int /* PRIVATE */
2532png_gt(size_t a, size_t b)
2533{
2534   return a > b;
2535}
2536#else
2537#   define png_gt(a,b) ((a) > (b))
2538#endif
2539
2540void /* PRIVATE */
2541png_check_IHDR(png_const_structrp png_ptr,
2542    png_uint_32 width, png_uint_32 height, int bit_depth,
2543    int color_type, int interlace_type, int compression_type,
2544    int filter_type)
2545{
2546   int error = 0;
2547
2548   /* Check for width and height valid values */
2549   if (width == 0)
2550   {
2551      png_warning(png_ptr, "Image width is zero in IHDR");
2552      error = 1;
2553   }
2554
2555   if (width > PNG_UINT_31_MAX)
2556   {
2557      png_warning(png_ptr, "Invalid image width in IHDR");
2558      error = 1;
2559   }
2560
2561   if (png_gt(((width + 7) & (~7U)),
2562       ((PNG_SIZE_MAX
2563           - 48        /* big_row_buf hack */
2564           - 1)        /* filter byte */
2565           / 8)        /* 8-byte RGBA pixels */
2566           - 1))       /* extra max_pixel_depth pad */
2567   {
2568      /* The size of the row must be within the limits of this architecture.
2569       * Because the read code can perform arbitrary transformations the
2570       * maximum size is checked here.  Because the code in png_read_start_row
2571       * adds extra space "for safety's sake" in several places a conservative
2572       * limit is used here.
2573       *
2574       * NOTE: it would be far better to check the size that is actually used,
2575       * but the effect in the real world is minor and the changes are more
2576       * extensive, therefore much more dangerous and much more difficult to
2577       * write in a way that avoids compiler warnings.
2578       */
2579      png_warning(png_ptr, "Image width is too large for this architecture");
2580      error = 1;
2581   }
2582
2583#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2584   if (width > png_ptr->user_width_max)
2585#else
2586   if (width > PNG_USER_WIDTH_MAX)
2587#endif
2588   {
2589      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
2590      error = 1;
2591   }
2592
2593   if (height == 0)
2594   {
2595      png_warning(png_ptr, "Image height is zero in IHDR");
2596      error = 1;
2597   }
2598
2599   if (height > PNG_UINT_31_MAX)
2600   {
2601      png_warning(png_ptr, "Invalid image height in IHDR");
2602      error = 1;
2603   }
2604
2605#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2606   if (height > png_ptr->user_height_max)
2607#else
2608   if (height > PNG_USER_HEIGHT_MAX)
2609#endif
2610   {
2611      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
2612      error = 1;
2613   }
2614
2615   /* Check other values */
2616   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
2617       bit_depth != 8 && bit_depth != 16)
2618   {
2619      png_warning(png_ptr, "Invalid bit depth in IHDR");
2620      error = 1;
2621   }
2622
2623   if (color_type < 0 || color_type == 1 ||
2624       color_type == 5 || color_type > 6)
2625   {
2626      png_warning(png_ptr, "Invalid color type in IHDR");
2627      error = 1;
2628   }
2629
2630   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
2631       ((color_type == PNG_COLOR_TYPE_RGB ||
2632         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
2633         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
2634   {
2635      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
2636      error = 1;
2637   }
2638
2639   if (interlace_type >= PNG_INTERLACE_LAST)
2640   {
2641      png_warning(png_ptr, "Unknown interlace method in IHDR");
2642      error = 1;
2643   }
2644
2645   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
2646   {
2647      png_warning(png_ptr, "Unknown compression method in IHDR");
2648      error = 1;
2649   }
2650
2651#ifdef PNG_MNG_FEATURES_SUPPORTED
2652   /* Accept filter_method 64 (intrapixel differencing) only if
2653    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
2654    * 2. Libpng did not read a PNG signature (this filter_method is only
2655    *    used in PNG datastreams that are embedded in MNG datastreams) and
2656    * 3. The application called png_permit_mng_features with a mask that
2657    *    included PNG_FLAG_MNG_FILTER_64 and
2658    * 4. The filter_method is 64 and
2659    * 5. The color_type is RGB or RGBA
2660    */
2661   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 &&
2662       png_ptr->mng_features_permitted != 0)
2663      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
2664
2665   if (filter_type != PNG_FILTER_TYPE_BASE)
2666   {
2667      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
2668          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
2669          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
2670          (color_type == PNG_COLOR_TYPE_RGB ||
2671          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
2672      {
2673         png_warning(png_ptr, "Unknown filter method in IHDR");
2674         error = 1;
2675      }
2676
2677      if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0)
2678      {
2679         png_warning(png_ptr, "Invalid filter method in IHDR");
2680         error = 1;
2681      }
2682   }
2683
2684#else
2685   if (filter_type != PNG_FILTER_TYPE_BASE)
2686   {
2687      png_warning(png_ptr, "Unknown filter method in IHDR");
2688      error = 1;
2689   }
2690#endif
2691
2692   if (error == 1)
2693      png_error(png_ptr, "Invalid IHDR data");
2694}
2695
2696#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
2697/* ASCII to fp functions */
2698/* Check an ASCII formated floating point value, see the more detailed
2699 * comments in pngpriv.h
2700 */
2701/* The following is used internally to preserve the sticky flags */
2702#define png_fp_add(state, flags) ((state) |= (flags))
2703#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
2704
2705int /* PRIVATE */
2706png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
2707    png_size_tp whereami)
2708{
2709   int state = *statep;
2710   png_size_t i = *whereami;
2711
2712   while (i < size)
2713   {
2714      int type;
2715      /* First find the type of the next character */
2716      switch (string[i])
2717      {
2718      case 43:  type = PNG_FP_SAW_SIGN;                   break;
2719      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
2720      case 46:  type = PNG_FP_SAW_DOT;                    break;
2721      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
2722      case 49: case 50: case 51: case 52:
2723      case 53: case 54: case 55: case 56:
2724      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
2725      case 69:
2726      case 101: type = PNG_FP_SAW_E;                      break;
2727      default:  goto PNG_FP_End;
2728      }
2729
2730      /* Now deal with this type according to the current
2731       * state, the type is arranged to not overlap the
2732       * bits of the PNG_FP_STATE.
2733       */
2734      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
2735      {
2736      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
2737         if ((state & PNG_FP_SAW_ANY) != 0)
2738            goto PNG_FP_End; /* not a part of the number */
2739
2740         png_fp_add(state, type);
2741         break;
2742
2743      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
2744         /* Ok as trailer, ok as lead of fraction. */
2745         if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */
2746            goto PNG_FP_End;
2747
2748         else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */
2749            png_fp_add(state, type);
2750
2751         else
2752            png_fp_set(state, PNG_FP_FRACTION | type);
2753
2754         break;
2755
2756      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
2757         if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */
2758            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
2759
2760         png_fp_add(state, type | PNG_FP_WAS_VALID);
2761
2762         break;
2763
2764      case PNG_FP_INTEGER + PNG_FP_SAW_E:
2765         if ((state & PNG_FP_SAW_DIGIT) == 0)
2766            goto PNG_FP_End;
2767
2768         png_fp_set(state, PNG_FP_EXPONENT);
2769
2770         break;
2771
2772   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
2773         goto PNG_FP_End; ** no sign in fraction */
2774
2775   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
2776         goto PNG_FP_End; ** Because SAW_DOT is always set */
2777
2778      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
2779         png_fp_add(state, type | PNG_FP_WAS_VALID);
2780         break;
2781
2782      case PNG_FP_FRACTION + PNG_FP_SAW_E:
2783         /* This is correct because the trailing '.' on an
2784          * integer is handled above - so we can only get here
2785          * with the sequence ".E" (with no preceding digits).
2786          */
2787         if ((state & PNG_FP_SAW_DIGIT) == 0)
2788            goto PNG_FP_End;
2789
2790         png_fp_set(state, PNG_FP_EXPONENT);
2791
2792         break;
2793
2794      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
2795         if ((state & PNG_FP_SAW_ANY) != 0)
2796            goto PNG_FP_End; /* not a part of the number */
2797
2798         png_fp_add(state, PNG_FP_SAW_SIGN);
2799
2800         break;
2801
2802   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
2803         goto PNG_FP_End; */
2804
2805      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
2806         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
2807
2808         break;
2809
2810   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
2811         goto PNG_FP_End; */
2812
2813      default: goto PNG_FP_End; /* I.e. break 2 */
2814      }
2815
2816      /* The character seems ok, continue. */
2817      ++i;
2818   }
2819
2820PNG_FP_End:
2821   /* Here at the end, update the state and return the correct
2822    * return code.
2823    */
2824   *statep = state;
2825   *whereami = i;
2826
2827   return (state & PNG_FP_SAW_DIGIT) != 0;
2828}
2829
2830
2831/* The same but for a complete string. */
2832int
2833png_check_fp_string(png_const_charp string, png_size_t size)
2834{
2835   int        state=0;
2836   png_size_t char_index=0;
2837
2838   if (png_check_fp_number(string, size, &state, &char_index) != 0 &&
2839      (char_index == size || string[char_index] == 0))
2840      return state /* must be non-zero - see above */;
2841
2842   return 0; /* i.e. fail */
2843}
2844#endif /* pCAL || sCAL */
2845
2846#ifdef PNG_sCAL_SUPPORTED
2847#  ifdef PNG_FLOATING_POINT_SUPPORTED
2848/* Utility used below - a simple accurate power of ten from an integral
2849 * exponent.
2850 */
2851static double
2852png_pow10(int power)
2853{
2854   int recip = 0;
2855   double d = 1;
2856
2857   /* Handle negative exponent with a reciprocal at the end because
2858    * 10 is exact whereas .1 is inexact in base 2
2859    */
2860   if (power < 0)
2861   {
2862      if (power < DBL_MIN_10_EXP) return 0;
2863      recip = 1, power = -power;
2864   }
2865
2866   if (power > 0)
2867   {
2868      /* Decompose power bitwise. */
2869      double mult = 10;
2870      do
2871      {
2872         if (power & 1) d *= mult;
2873         mult *= mult;
2874         power >>= 1;
2875      }
2876      while (power > 0);
2877
2878      if (recip != 0) d = 1/d;
2879   }
2880   /* else power is 0 and d is 1 */
2881
2882   return d;
2883}
2884
2885/* Function to format a floating point value in ASCII with a given
2886 * precision.
2887 */
2888void /* PRIVATE */
2889png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, png_size_t size,
2890    double fp, unsigned int precision)
2891{
2892   /* We use standard functions from math.h, but not printf because
2893    * that would require stdio.  The caller must supply a buffer of
2894    * sufficient size or we will png_error.  The tests on size and
2895    * the space in ascii[] consumed are indicated below.
2896    */
2897   if (precision < 1)
2898      precision = DBL_DIG;
2899
2900   /* Enforce the limit of the implementation precision too. */
2901   if (precision > DBL_DIG+1)
2902      precision = DBL_DIG+1;
2903
2904   /* Basic sanity checks */
2905   if (size >= precision+5) /* See the requirements below. */
2906   {
2907      if (fp < 0)
2908      {
2909         fp = -fp;
2910         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
2911         --size;
2912      }
2913
2914      if (fp >= DBL_MIN && fp <= DBL_MAX)
2915      {
2916         int exp_b10;   /* A base 10 exponent */
2917         double base;   /* 10^exp_b10 */
2918
2919         /* First extract a base 10 exponent of the number,
2920          * the calculation below rounds down when converting
2921          * from base 2 to base 10 (multiply by log10(2) -
2922          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
2923          * be increased.  Note that the arithmetic shift
2924          * performs a floor() unlike C arithmetic - using a
2925          * C multiply would break the following for negative
2926          * exponents.
2927          */
2928         (void)frexp(fp, &exp_b10); /* exponent to base 2 */
2929
2930         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
2931
2932         /* Avoid underflow here. */
2933         base = png_pow10(exp_b10); /* May underflow */
2934
2935         while (base < DBL_MIN || base < fp)
2936         {
2937            /* And this may overflow. */
2938            double test = png_pow10(exp_b10+1);
2939
2940            if (test <= DBL_MAX)
2941               ++exp_b10, base = test;
2942
2943            else
2944               break;
2945         }
2946
2947         /* Normalize fp and correct exp_b10, after this fp is in the
2948          * range [.1,1) and exp_b10 is both the exponent and the digit
2949          * *before* which the decimal point should be inserted
2950          * (starting with 0 for the first digit).  Note that this
2951          * works even if 10^exp_b10 is out of range because of the
2952          * test on DBL_MAX above.
2953          */
2954         fp /= base;
2955         while (fp >= 1) fp /= 10, ++exp_b10;
2956
2957         /* Because of the code above fp may, at this point, be
2958          * less than .1, this is ok because the code below can
2959          * handle the leading zeros this generates, so no attempt
2960          * is made to correct that here.
2961          */
2962
2963         {
2964            unsigned int czero, clead, cdigits;
2965            char exponent[10];
2966
2967            /* Allow up to two leading zeros - this will not lengthen
2968             * the number compared to using E-n.
2969             */
2970            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
2971            {
2972               czero = (unsigned int)(-exp_b10); /* PLUS 2 digits: TOTAL 3 */
2973               exp_b10 = 0;      /* Dot added below before first output. */
2974            }
2975            else
2976               czero = 0;    /* No zeros to add */
2977
2978            /* Generate the digit list, stripping trailing zeros and
2979             * inserting a '.' before a digit if the exponent is 0.
2980             */
2981            clead = czero; /* Count of leading zeros */
2982            cdigits = 0;   /* Count of digits in list. */
2983
2984            do
2985            {
2986               double d;
2987
2988               fp *= 10;
2989               /* Use modf here, not floor and subtract, so that
2990                * the separation is done in one step.  At the end
2991                * of the loop don't break the number into parts so
2992                * that the final digit is rounded.
2993                */
2994               if (cdigits+czero+1 < precision+clead)
2995                  fp = modf(fp, &d);
2996
2997               else
2998               {
2999                  d = floor(fp + .5);
3000
3001                  if (d > 9)
3002                  {
3003                     /* Rounding up to 10, handle that here. */
3004                     if (czero > 0)
3005                     {
3006                        --czero, d = 1;
3007                        if (cdigits == 0) --clead;
3008                     }
3009                     else
3010                     {
3011                        while (cdigits > 0 && d > 9)
3012                        {
3013                           int ch = *--ascii;
3014
3015                           if (exp_b10 != (-1))
3016                              ++exp_b10;
3017
3018                           else if (ch == 46)
3019                           {
3020                              ch = *--ascii, ++size;
3021                              /* Advance exp_b10 to '1', so that the
3022                               * decimal point happens after the
3023                               * previous digit.
3024                               */
3025                              exp_b10 = 1;
3026                           }
3027
3028                           --cdigits;
3029                           d = ch - 47;  /* I.e. 1+(ch-48) */
3030                        }
3031
3032                        /* Did we reach the beginning? If so adjust the
3033                         * exponent but take into account the leading
3034                         * decimal point.
3035                         */
3036                        if (d > 9)  /* cdigits == 0 */
3037                        {
3038                           if (exp_b10 == (-1))
3039                           {
3040                              /* Leading decimal point (plus zeros?), if
3041                               * we lose the decimal point here it must
3042                               * be reentered below.
3043                               */
3044                              int ch = *--ascii;
3045
3046                              if (ch == 46)
3047                                 ++size, exp_b10 = 1;
3048
3049                              /* Else lost a leading zero, so 'exp_b10' is
3050                               * still ok at (-1)
3051                               */
3052                           }
3053                           else
3054                              ++exp_b10;
3055
3056                           /* In all cases we output a '1' */
3057                           d = 1;
3058                        }
3059                     }
3060                  }
3061                  fp = 0; /* Guarantees termination below. */
3062               }
3063
3064               if (d == 0)
3065               {
3066                  ++czero;
3067                  if (cdigits == 0) ++clead;
3068               }
3069               else
3070               {
3071                  /* Included embedded zeros in the digit count. */
3072                  cdigits += czero - clead;
3073                  clead = 0;
3074
3075                  while (czero > 0)
3076                  {
3077                     /* exp_b10 == (-1) means we just output the decimal
3078                      * place - after the DP don't adjust 'exp_b10' any
3079                      * more!
3080                      */
3081                     if (exp_b10 != (-1))
3082                     {
3083                        if (exp_b10 == 0) *ascii++ = 46, --size;
3084                        /* PLUS 1: TOTAL 4 */
3085                        --exp_b10;
3086                     }
3087                     *ascii++ = 48, --czero;
3088                  }
3089
3090                  if (exp_b10 != (-1))
3091                  {
3092                     if (exp_b10 == 0)
3093                        *ascii++ = 46, --size; /* counted above */
3094
3095                     --exp_b10;
3096                  }
3097                  *ascii++ = (char)(48 + (int)d), ++cdigits;
3098               }
3099            }
3100            while (cdigits+czero < precision+clead && fp > DBL_MIN);
3101
3102            /* The total output count (max) is now 4+precision */
3103
3104            /* Check for an exponent, if we don't need one we are
3105             * done and just need to terminate the string.  At
3106             * this point exp_b10==(-1) is effectively if flag - it got
3107             * to '-1' because of the decrement after outputting
3108             * the decimal point above (the exponent required is
3109             * *not* -1!)
3110             */
3111            if (exp_b10 >= (-1) && exp_b10 <= 2)
3112            {
3113               /* The following only happens if we didn't output the
3114                * leading zeros above for negative exponent, so this
3115                * doesn't add to the digit requirement.  Note that the
3116                * two zeros here can only be output if the two leading
3117                * zeros were *not* output, so this doesn't increase
3118                * the output count.
3119                */
3120               while (--exp_b10 >= 0) *ascii++ = 48;
3121
3122               *ascii = 0;
3123
3124               /* Total buffer requirement (including the '\0') is
3125                * 5+precision - see check at the start.
3126                */
3127               return;
3128            }
3129
3130            /* Here if an exponent is required, adjust size for
3131             * the digits we output but did not count.  The total
3132             * digit output here so far is at most 1+precision - no
3133             * decimal point and no leading or trailing zeros have
3134             * been output.
3135             */
3136            size -= cdigits;
3137
3138            *ascii++ = 69, --size;    /* 'E': PLUS 1 TOTAL 2+precision */
3139
3140            /* The following use of an unsigned temporary avoids ambiguities in
3141             * the signed arithmetic on exp_b10 and permits GCC at least to do
3142             * better optimization.
3143             */
3144            {
3145               unsigned int uexp_b10;
3146
3147               if (exp_b10 < 0)
3148               {
3149                  *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
3150                  uexp_b10 = (unsigned int)(-exp_b10);
3151               }
3152
3153               else
3154                  uexp_b10 = (unsigned int)exp_b10;
3155
3156               cdigits = 0;
3157
3158               while (uexp_b10 > 0)
3159               {
3160                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
3161                  uexp_b10 /= 10;
3162               }
3163            }
3164
3165            /* Need another size check here for the exponent digits, so
3166             * this need not be considered above.
3167             */
3168            if (size > cdigits)
3169            {
3170               while (cdigits > 0) *ascii++ = exponent[--cdigits];
3171
3172               *ascii = 0;
3173
3174               return;
3175            }
3176         }
3177      }
3178      else if (!(fp >= DBL_MIN))
3179      {
3180         *ascii++ = 48; /* '0' */
3181         *ascii = 0;
3182         return;
3183      }
3184      else
3185      {
3186         *ascii++ = 105; /* 'i' */
3187         *ascii++ = 110; /* 'n' */
3188         *ascii++ = 102; /* 'f' */
3189         *ascii = 0;
3190         return;
3191      }
3192   }
3193
3194   /* Here on buffer too small. */
3195   png_error(png_ptr, "ASCII conversion buffer too small");
3196}
3197
3198#  endif /* FLOATING_POINT */
3199
3200#  ifdef PNG_FIXED_POINT_SUPPORTED
3201/* Function to format a fixed point value in ASCII.
3202 */
3203void /* PRIVATE */
3204png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii,
3205    png_size_t size, png_fixed_point fp)
3206{
3207   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
3208    * trailing \0, 13 characters:
3209    */
3210   if (size > 12)
3211   {
3212      png_uint_32 num;
3213
3214      /* Avoid overflow here on the minimum integer. */
3215      if (fp < 0)
3216         *ascii++ = 45, num = (png_uint_32)(-fp);
3217      else
3218         num = (png_uint_32)fp;
3219
3220      if (num <= 0x80000000) /* else overflowed */
3221      {
3222         unsigned int ndigits = 0, first = 16 /* flag value */;
3223         char digits[10];
3224
3225         while (num)
3226         {
3227            /* Split the low digit off num: */
3228            unsigned int tmp = num/10;
3229            num -= tmp*10;
3230            digits[ndigits++] = (char)(48 + num);
3231            /* Record the first non-zero digit, note that this is a number
3232             * starting at 1, it's not actually the array index.
3233             */
3234            if (first == 16 && num > 0)
3235               first = ndigits;
3236            num = tmp;
3237         }
3238
3239         if (ndigits > 0)
3240         {
3241            while (ndigits > 5) *ascii++ = digits[--ndigits];
3242            /* The remaining digits are fractional digits, ndigits is '5' or
3243             * smaller at this point.  It is certainly not zero.  Check for a
3244             * non-zero fractional digit:
3245             */
3246            if (first <= 5)
3247            {
3248               unsigned int i;
3249               *ascii++ = 46; /* decimal point */
3250               /* ndigits may be <5 for small numbers, output leading zeros
3251                * then ndigits digits to first:
3252                */
3253               i = 5;
3254               while (ndigits < i) *ascii++ = 48, --i;
3255               while (ndigits >= first) *ascii++ = digits[--ndigits];
3256               /* Don't output the trailing zeros! */
3257            }
3258         }
3259         else
3260            *ascii++ = 48;
3261
3262         /* And null terminate the string: */
3263         *ascii = 0;
3264         return;
3265      }
3266   }
3267
3268   /* Here on buffer too small. */
3269   png_error(png_ptr, "ASCII conversion buffer too small");
3270}
3271#   endif /* FIXED_POINT */
3272#endif /* SCAL */
3273
3274#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
3275   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
3276   (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \
3277   defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3278   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \
3279   (defined(PNG_sCAL_SUPPORTED) && \
3280   defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))
3281png_fixed_point
3282png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text)
3283{
3284   double r = floor(100000 * fp + .5);
3285
3286   if (r > 2147483647. || r < -2147483648.)
3287      png_fixed_error(png_ptr, text);
3288
3289#  ifndef PNG_ERROR_TEXT_SUPPORTED
3290   PNG_UNUSED(text)
3291#  endif
3292
3293   return (png_fixed_point)r;
3294}
3295#endif
3296
3297#if defined(PNG_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\
3298    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
3299/* muldiv functions */
3300/* This API takes signed arguments and rounds the result to the nearest
3301 * integer (or, for a fixed point number - the standard argument - to
3302 * the nearest .00001).  Overflow and divide by zero are signalled in
3303 * the result, a boolean - true on success, false on overflow.
3304 */
3305int
3306png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
3307    png_int_32 divisor)
3308{
3309   /* Return a * times / divisor, rounded. */
3310   if (divisor != 0)
3311   {
3312      if (a == 0 || times == 0)
3313      {
3314         *res = 0;
3315         return 1;
3316      }
3317      else
3318      {
3319#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3320         double r = a;
3321         r *= times;
3322         r /= divisor;
3323         r = floor(r+.5);
3324
3325         /* A png_fixed_point is a 32-bit integer. */
3326         if (r <= 2147483647. && r >= -2147483648.)
3327         {
3328            *res = (png_fixed_point)r;
3329            return 1;
3330         }
3331#else
3332         int negative = 0;
3333         png_uint_32 A, T, D;
3334         png_uint_32 s16, s32, s00;
3335
3336         if (a < 0)
3337            negative = 1, A = -a;
3338         else
3339            A = a;
3340
3341         if (times < 0)
3342            negative = !negative, T = -times;
3343         else
3344            T = times;
3345
3346         if (divisor < 0)
3347            negative = !negative, D = -divisor;
3348         else
3349            D = divisor;
3350
3351         /* Following can't overflow because the arguments only
3352          * have 31 bits each, however the result may be 32 bits.
3353          */
3354         s16 = (A >> 16) * (T & 0xffff) +
3355                           (A & 0xffff) * (T >> 16);
3356         /* Can't overflow because the a*times bit is only 30
3357          * bits at most.
3358          */
3359         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
3360         s00 = (A & 0xffff) * (T & 0xffff);
3361
3362         s16 = (s16 & 0xffff) << 16;
3363         s00 += s16;
3364
3365         if (s00 < s16)
3366            ++s32; /* carry */
3367
3368         if (s32 < D) /* else overflow */
3369         {
3370            /* s32.s00 is now the 64-bit product, do a standard
3371             * division, we know that s32 < D, so the maximum
3372             * required shift is 31.
3373             */
3374            int bitshift = 32;
3375            png_fixed_point result = 0; /* NOTE: signed */
3376
3377            while (--bitshift >= 0)
3378            {
3379               png_uint_32 d32, d00;
3380
3381               if (bitshift > 0)
3382                  d32 = D >> (32-bitshift), d00 = D << bitshift;
3383
3384               else
3385                  d32 = 0, d00 = D;
3386
3387               if (s32 > d32)
3388               {
3389                  if (s00 < d00) --s32; /* carry */
3390                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
3391               }
3392
3393               else
3394                  if (s32 == d32 && s00 >= d00)
3395                     s32 = 0, s00 -= d00, result += 1<<bitshift;
3396            }
3397
3398            /* Handle the rounding. */
3399            if (s00 >= (D >> 1))
3400               ++result;
3401
3402            if (negative != 0)
3403               result = -result;
3404
3405            /* Check for overflow. */
3406            if ((negative != 0 && result <= 0) ||
3407                (negative == 0 && result >= 0))
3408            {
3409               *res = result;
3410               return 1;
3411            }
3412         }
3413#endif
3414      }
3415   }
3416
3417   return 0;
3418}
3419#endif /* READ_GAMMA || INCH_CONVERSIONS */
3420
3421#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
3422/* The following is for when the caller doesn't much care about the
3423 * result.
3424 */
3425png_fixed_point
3426png_muldiv_warn(png_const_structrp png_ptr, png_fixed_point a, png_int_32 times,
3427    png_int_32 divisor)
3428{
3429   png_fixed_point result;
3430
3431   if (png_muldiv(&result, a, times, divisor) != 0)
3432      return result;
3433
3434   png_warning(png_ptr, "fixed point overflow ignored");
3435   return 0;
3436}
3437#endif
3438
3439#ifdef PNG_GAMMA_SUPPORTED /* more fixed point functions for gamma */
3440/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
3441png_fixed_point
3442png_reciprocal(png_fixed_point a)
3443{
3444#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3445   double r = floor(1E10/a+.5);
3446
3447   if (r <= 2147483647. && r >= -2147483648.)
3448      return (png_fixed_point)r;
3449#else
3450   png_fixed_point res;
3451
3452   if (png_muldiv(&res, 100000, 100000, a) != 0)
3453      return res;
3454#endif
3455
3456   return 0; /* error/overflow */
3457}
3458
3459/* This is the shared test on whether a gamma value is 'significant' - whether
3460 * it is worth doing gamma correction.
3461 */
3462int /* PRIVATE */
3463png_gamma_significant(png_fixed_point gamma_val)
3464{
3465   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
3466       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
3467}
3468#endif
3469
3470#ifdef PNG_READ_GAMMA_SUPPORTED
3471#ifdef PNG_16BIT_SUPPORTED
3472/* A local convenience routine. */
3473static png_fixed_point
3474png_product2(png_fixed_point a, png_fixed_point b)
3475{
3476   /* The required result is 1/a * 1/b; the following preserves accuracy. */
3477#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3478   double r = a * 1E-5;
3479   r *= b;
3480   r = floor(r+.5);
3481
3482   if (r <= 2147483647. && r >= -2147483648.)
3483      return (png_fixed_point)r;
3484#else
3485   png_fixed_point res;
3486
3487   if (png_muldiv(&res, a, b, 100000) != 0)
3488      return res;
3489#endif
3490
3491   return 0; /* overflow */
3492}
3493#endif /* 16BIT */
3494
3495/* The inverse of the above. */
3496png_fixed_point
3497png_reciprocal2(png_fixed_point a, png_fixed_point b)
3498{
3499   /* The required result is 1/a * 1/b; the following preserves accuracy. */
3500#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3501   if (a != 0 && b != 0)
3502   {
3503      double r = 1E15/a;
3504      r /= b;
3505      r = floor(r+.5);
3506
3507      if (r <= 2147483647. && r >= -2147483648.)
3508         return (png_fixed_point)r;
3509   }
3510#else
3511   /* This may overflow because the range of png_fixed_point isn't symmetric,
3512    * but this API is only used for the product of file and screen gamma so it
3513    * doesn't matter that the smallest number it can produce is 1/21474, not
3514    * 1/100000
3515    */
3516   png_fixed_point res = png_product2(a, b);
3517
3518   if (res != 0)
3519      return png_reciprocal(res);
3520#endif
3521
3522   return 0; /* overflow */
3523}
3524#endif /* READ_GAMMA */
3525
3526#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
3527#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
3528/* Fixed point gamma.
3529 *
3530 * The code to calculate the tables used below can be found in the shell script
3531 * contrib/tools/intgamma.sh
3532 *
3533 * To calculate gamma this code implements fast log() and exp() calls using only
3534 * fixed point arithmetic.  This code has sufficient precision for either 8-bit
3535 * or 16-bit sample values.
3536 *
3537 * The tables used here were calculated using simple 'bc' programs, but C double
3538 * precision floating point arithmetic would work fine.
3539 *
3540 * 8-bit log table
3541 *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
3542 *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
3543 *   mantissa.  The numbers are 32-bit fractions.
3544 */
3545static const png_uint_32
3546png_8bit_l2[128] =
3547{
3548   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
3549   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3550   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
3551   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
3552   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
3553   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
3554   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
3555   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
3556   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
3557   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
3558   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
3559   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
3560   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
3561   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
3562   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
3563   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
3564   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
3565   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
3566   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
3567   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
3568   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
3569   24347096U, 0U
3570
3571#if 0
3572   /* The following are the values for 16-bit tables - these work fine for the
3573    * 8-bit conversions but produce very slightly larger errors in the 16-bit
3574    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
3575    * use these all the shifts below must be adjusted appropriately.
3576    */
3577   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
3578   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
3579   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
3580   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
3581   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
3582   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
3583   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
3584   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
3585   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
3586   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
3587   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
3588   1119, 744, 372
3589#endif
3590};
3591
3592static png_int_32
3593png_log8bit(unsigned int x)
3594{
3595   unsigned int lg2 = 0;
3596   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
3597    * because the log is actually negate that means adding 1.  The final
3598    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
3599    * input), return -1 for the overflow (log 0) case, - so the result is
3600    * always at most 19 bits.
3601    */
3602   if ((x &= 0xff) == 0)
3603      return -1;
3604
3605   if ((x & 0xf0) == 0)
3606      lg2  = 4, x <<= 4;
3607
3608   if ((x & 0xc0) == 0)
3609      lg2 += 2, x <<= 2;
3610
3611   if ((x & 0x80) == 0)
3612      lg2 += 1, x <<= 1;
3613
3614   /* result is at most 19 bits, so this cast is safe: */
3615   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
3616}
3617
3618/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
3619 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
3620 * get an approximation then multiply the approximation by a correction factor
3621 * determined by the remaining up to 8 bits.  This requires an additional step
3622 * in the 16-bit case.
3623 *
3624 * We want log2(value/65535), we have log2(v'/255), where:
3625 *
3626 *    value = v' * 256 + v''
3627 *          = v' * f
3628 *
3629 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
3630 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
3631 * than 258.  The final factor also needs to correct for the fact that our 8-bit
3632 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
3633 *
3634 * This gives a final formula using a calculated value 'x' which is value/v' and
3635 * scaling by 65536 to match the above table:
3636 *
3637 *   log2(x/257) * 65536
3638 *
3639 * Since these numbers are so close to '1' we can use simple linear
3640 * interpolation between the two end values 256/257 (result -368.61) and 258/257
3641 * (result 367.179).  The values used below are scaled by a further 64 to give
3642 * 16-bit precision in the interpolation:
3643 *
3644 * Start (256): -23591
3645 * Zero  (257):      0
3646 * End   (258):  23499
3647 */
3648#ifdef PNG_16BIT_SUPPORTED
3649static png_int_32
3650png_log16bit(png_uint_32 x)
3651{
3652   unsigned int lg2 = 0;
3653
3654   /* As above, but now the input has 16 bits. */
3655   if ((x &= 0xffff) == 0)
3656      return -1;
3657
3658   if ((x & 0xff00) == 0)
3659      lg2  = 8, x <<= 8;
3660
3661   if ((x & 0xf000) == 0)
3662      lg2 += 4, x <<= 4;
3663
3664   if ((x & 0xc000) == 0)
3665      lg2 += 2, x <<= 2;
3666
3667   if ((x & 0x8000) == 0)
3668      lg2 += 1, x <<= 1;
3669
3670   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
3671    * value.
3672    */
3673   lg2 <<= 28;
3674   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
3675
3676   /* Now we need to interpolate the factor, this requires a division by the top
3677    * 8 bits.  Do this with maximum precision.
3678    */
3679   x = ((x << 16) + (x >> 9)) / (x >> 8);
3680
3681   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
3682    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
3683    * 16 bits to interpolate to get the low bits of the result.  Round the
3684    * answer.  Note that the end point values are scaled by 64 to retain overall
3685    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
3686    * the overall scaling by 6-12.  Round at every step.
3687    */
3688   x -= 1U << 24;
3689
3690   if (x <= 65536U) /* <= '257' */
3691      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
3692
3693   else
3694      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
3695
3696   /* Safe, because the result can't have more than 20 bits: */
3697   return (png_int_32)((lg2 + 2048) >> 12);
3698}
3699#endif /* 16BIT */
3700
3701/* The 'exp()' case must invert the above, taking a 20-bit fixed point
3702 * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
3703 * each case only the low 16 bits are relevant - the fraction - since the
3704 * integer bits (the top 4) simply determine a shift.
3705 *
3706 * The worst case is the 16-bit distinction between 65535 and 65534. This
3707 * requires perhaps spurious accuracy in the decoding of the logarithm to
3708 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
3709 * of getting this accuracy in practice.
3710 *
3711 * To deal with this the following exp() function works out the exponent of the
3712 * frational part of the logarithm by using an accurate 32-bit value from the
3713 * top four fractional bits then multiplying in the remaining bits.
3714 */
3715static const png_uint_32
3716png_32bit_exp[16] =
3717{
3718   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
3719   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3720   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
3721   2553802834U, 2445529972U, 2341847524U, 2242560872U
3722};
3723
3724/* Adjustment table; provided to explain the numbers in the code below. */
3725#if 0
3726for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
3727   11 44937.64284865548751208448
3728   10 45180.98734845585101160448
3729    9 45303.31936980687359311872
3730    8 45364.65110595323018870784
3731    7 45395.35850361789624614912
3732    6 45410.72259715102037508096
3733    5 45418.40724413220722311168
3734    4 45422.25021786898173001728
3735    3 45424.17186732298419044352
3736    2 45425.13273269940811464704
3737    1 45425.61317555035558641664
3738    0 45425.85339951654943850496
3739#endif
3740
3741static png_uint_32
3742png_exp(png_fixed_point x)
3743{
3744   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
3745   {
3746      /* Obtain a 4-bit approximation */
3747      png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f];
3748
3749      /* Incorporate the low 12 bits - these decrease the returned value by
3750       * multiplying by a number less than 1 if the bit is set.  The multiplier
3751       * is determined by the above table and the shift. Notice that the values
3752       * converge on 45426 and this is used to allow linear interpolation of the
3753       * low bits.
3754       */
3755      if (x & 0x800)
3756         e -= (((e >> 16) * 44938U) +  16U) >> 5;
3757
3758      if (x & 0x400)
3759         e -= (((e >> 16) * 45181U) +  32U) >> 6;
3760
3761      if (x & 0x200)
3762         e -= (((e >> 16) * 45303U) +  64U) >> 7;
3763
3764      if (x & 0x100)
3765         e -= (((e >> 16) * 45365U) + 128U) >> 8;
3766
3767      if (x & 0x080)
3768         e -= (((e >> 16) * 45395U) + 256U) >> 9;
3769
3770      if (x & 0x040)
3771         e -= (((e >> 16) * 45410U) + 512U) >> 10;
3772
3773      /* And handle the low 6 bits in a single block. */
3774      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
3775
3776      /* Handle the upper bits of x. */
3777      e >>= x >> 16;
3778      return e;
3779   }
3780
3781   /* Check for overflow */
3782   if (x <= 0)
3783      return png_32bit_exp[0];
3784
3785   /* Else underflow */
3786   return 0;
3787}
3788
3789static png_byte
3790png_exp8bit(png_fixed_point lg2)
3791{
3792   /* Get a 32-bit value: */
3793   png_uint_32 x = png_exp(lg2);
3794
3795   /* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the
3796    * second, rounding, step can't overflow because of the first, subtraction,
3797    * step.
3798    */
3799   x -= x >> 8;
3800   return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff);
3801}
3802
3803#ifdef PNG_16BIT_SUPPORTED
3804static png_uint_16
3805png_exp16bit(png_fixed_point lg2)
3806{
3807   /* Get a 32-bit value: */
3808   png_uint_32 x = png_exp(lg2);
3809
3810   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
3811   x -= x >> 16;
3812   return (png_uint_16)((x + 32767U) >> 16);
3813}
3814#endif /* 16BIT */
3815#endif /* FLOATING_ARITHMETIC */
3816
3817png_byte
3818png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
3819{
3820   if (value > 0 && value < 255)
3821   {
3822#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3823         /* 'value' is unsigned, ANSI-C90 requires the compiler to correctly
3824          * convert this to a floating point value.  This includes values that
3825          * would overflow if 'value' were to be converted to 'int'.
3826          *
3827          * Apparently GCC, however, does an intermediate conversion to (int)
3828          * on some (ARM) but not all (x86) platforms, possibly because of
3829          * hardware FP limitations.  (E.g. if the hardware conversion always
3830          * assumes the integer register contains a signed value.)  This results
3831          * in ANSI-C undefined behavior for large values.
3832          *
3833          * Other implementations on the same machine might actually be ANSI-C90
3834          * conformant and therefore compile spurious extra code for the large
3835          * values.
3836          *
3837          * We can be reasonably sure that an unsigned to float conversion
3838          * won't be faster than an int to float one.  Therefore this code
3839          * assumes responsibility for the undefined behavior, which it knows
3840          * can't happen because of the check above.
3841          *
3842          * Note the argument to this routine is an (unsigned int) because, on
3843          * 16-bit platforms, it is assigned a value which might be out of
3844          * range for an (int); that would result in undefined behavior in the
3845          * caller if the *argument* ('value') were to be declared (int).
3846          */
3847         double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5);
3848         return (png_byte)r;
3849#     else
3850         png_int_32 lg2 = png_log8bit(value);
3851         png_fixed_point res;
3852
3853         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3854            return png_exp8bit(res);
3855
3856         /* Overflow. */
3857         value = 0;
3858#     endif
3859   }
3860
3861   return (png_byte)(value & 0xff);
3862}
3863
3864#ifdef PNG_16BIT_SUPPORTED
3865png_uint_16
3866png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
3867{
3868   if (value > 0 && value < 65535)
3869   {
3870# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3871      /* The same (unsigned int)->(double) constraints apply here as above,
3872       * however in this case the (unsigned int) to (int) conversion can
3873       * overflow on an ANSI-C90 compliant system so the cast needs to ensure
3874       * that this is not possible.
3875       */
3876      double r = floor(65535*pow((png_int_32)value/65535.,
3877          gamma_val*.00001)+.5);
3878      return (png_uint_16)r;
3879# else
3880      png_int_32 lg2 = png_log16bit(value);
3881      png_fixed_point res;
3882
3883      if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3884         return png_exp16bit(res);
3885
3886      /* Overflow. */
3887      value = 0;
3888# endif
3889   }
3890
3891   return (png_uint_16)value;
3892}
3893#endif /* 16BIT */
3894
3895/* This does the right thing based on the bit_depth field of the
3896 * png_struct, interpreting values as 8-bit or 16-bit.  While the result
3897 * is nominally a 16-bit value if bit depth is 8 then the result is
3898 * 8-bit (as are the arguments.)
3899 */
3900png_uint_16 /* PRIVATE */
3901png_gamma_correct(png_structrp png_ptr, unsigned int value,
3902    png_fixed_point gamma_val)
3903{
3904   if (png_ptr->bit_depth == 8)
3905      return png_gamma_8bit_correct(value, gamma_val);
3906
3907#ifdef PNG_16BIT_SUPPORTED
3908   else
3909      return png_gamma_16bit_correct(value, gamma_val);
3910#else
3911      /* should not reach this */
3912      return 0;
3913#endif /* 16BIT */
3914}
3915
3916#ifdef PNG_16BIT_SUPPORTED
3917/* Internal function to build a single 16-bit table - the table consists of
3918 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
3919 * to shift the input values right (or 16-number_of_signifiant_bits).
3920 *
3921 * The caller is responsible for ensuring that the table gets cleaned up on
3922 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
3923 * should be somewhere that will be cleaned.
3924 */
3925static void
3926png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable,
3927    PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
3928{
3929   /* Various values derived from 'shift': */
3930   PNG_CONST unsigned int num = 1U << (8U - shift);
3931#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3932   /* CSE the division and work round wacky GCC warnings (see the comments
3933    * in png_gamma_8bit_correct for where these come from.)
3934    */
3935   PNG_CONST double fmax = 1./(((png_int_32)1 << (16U - shift))-1);
3936#endif
3937   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
3938   PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
3939   unsigned int i;
3940
3941   png_uint_16pp table = *ptable =
3942       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3943
3944   for (i = 0; i < num; i++)
3945   {
3946      png_uint_16p sub_table = table[i] =
3947          (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16)));
3948
3949      /* The 'threshold' test is repeated here because it can arise for one of
3950       * the 16-bit tables even if the others don't hit it.
3951       */
3952      if (png_gamma_significant(gamma_val) != 0)
3953      {
3954         /* The old code would overflow at the end and this would cause the
3955          * 'pow' function to return a result >1, resulting in an
3956          * arithmetic error.  This code follows the spec exactly; ig is
3957          * the recovered input sample, it always has 8-16 bits.
3958          *
3959          * We want input * 65535/max, rounded, the arithmetic fits in 32
3960          * bits (unsigned) so long as max <= 32767.
3961          */
3962         unsigned int j;
3963         for (j = 0; j < 256; j++)
3964         {
3965            png_uint_32 ig = (j << (8-shift)) + i;
3966#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3967               /* Inline the 'max' scaling operation: */
3968               /* See png_gamma_8bit_correct for why the cast to (int) is
3969                * required here.
3970                */
3971               double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5);
3972               sub_table[j] = (png_uint_16)d;
3973#           else
3974               if (shift != 0)
3975                  ig = (ig * 65535U + max_by_2)/max;
3976
3977               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
3978#           endif
3979         }
3980      }
3981      else
3982      {
3983         /* We must still build a table, but do it the fast way. */
3984         unsigned int j;
3985
3986         for (j = 0; j < 256; j++)
3987         {
3988            png_uint_32 ig = (j << (8-shift)) + i;
3989
3990            if (shift != 0)
3991               ig = (ig * 65535U + max_by_2)/max;
3992
3993            sub_table[j] = (png_uint_16)ig;
3994         }
3995      }
3996   }
3997}
3998
3999/* NOTE: this function expects the *inverse* of the overall gamma transformation
4000 * required.
4001 */
4002static void
4003png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable,
4004    PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
4005{
4006   PNG_CONST unsigned int num = 1U << (8U - shift);
4007   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
4008   unsigned int i;
4009   png_uint_32 last;
4010
4011   png_uint_16pp table = *ptable =
4012       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
4013
4014   /* 'num' is the number of tables and also the number of low bits of low
4015    * bits of the input 16-bit value used to select a table.  Each table is
4016    * itself indexed by the high 8 bits of the value.
4017    */
4018   for (i = 0; i < num; i++)
4019      table[i] = (png_uint_16p)png_malloc(png_ptr,
4020          256 * (sizeof (png_uint_16)));
4021
4022   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
4023    * pow(out,g) is an *input* value.  'last' is the last input value set.
4024    *
4025    * In the loop 'i' is used to find output values.  Since the output is
4026    * 8-bit there are only 256 possible values.  The tables are set up to
4027    * select the closest possible output value for each input by finding
4028    * the input value at the boundary between each pair of output values
4029    * and filling the table up to that boundary with the lower output
4030    * value.
4031    *
4032    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
4033    * values the code below uses a 16-bit value in i; the values start at
4034    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
4035    * entries are filled with 255).  Start i at 128 and fill all 'last'
4036    * table entries <= 'max'
4037    */
4038   last = 0;
4039   for (i = 0; i < 255; ++i) /* 8-bit output value */
4040   {
4041      /* Find the corresponding maximum input value */
4042      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
4043
4044      /* Find the boundary value in 16 bits: */
4045      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
4046
4047      /* Adjust (round) to (16-shift) bits: */
4048      bound = (bound * max + 32768U)/65535U + 1U;
4049
4050      while (last < bound)
4051      {
4052         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
4053         last++;
4054      }
4055   }
4056
4057   /* And fill in the final entries. */
4058   while (last < (num << 8))
4059   {
4060      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
4061      last++;
4062   }
4063}
4064#endif /* 16BIT */
4065
4066/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
4067 * typically much faster).  Note that libpng currently does no sBIT processing
4068 * (apparently contrary to the spec) so a 256-entry table is always generated.
4069 */
4070static void
4071png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable,
4072    PNG_CONST png_fixed_point gamma_val)
4073{
4074   unsigned int i;
4075   png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
4076
4077   if (png_gamma_significant(gamma_val) != 0)
4078      for (i=0; i<256; i++)
4079         table[i] = png_gamma_8bit_correct(i, gamma_val);
4080
4081   else
4082      for (i=0; i<256; ++i)
4083         table[i] = (png_byte)(i & 0xff);
4084}
4085
4086/* Used from png_read_destroy and below to release the memory used by the gamma
4087 * tables.
4088 */
4089void /* PRIVATE */
4090png_destroy_gamma_table(png_structrp png_ptr)
4091{
4092   png_free(png_ptr, png_ptr->gamma_table);
4093   png_ptr->gamma_table = NULL;
4094
4095#ifdef PNG_16BIT_SUPPORTED
4096   if (png_ptr->gamma_16_table != NULL)
4097   {
4098      int i;
4099      int istop = (1 << (8 - png_ptr->gamma_shift));
4100      for (i = 0; i < istop; i++)
4101      {
4102         png_free(png_ptr, png_ptr->gamma_16_table[i]);
4103      }
4104   png_free(png_ptr, png_ptr->gamma_16_table);
4105   png_ptr->gamma_16_table = NULL;
4106   }
4107#endif /* 16BIT */
4108
4109#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4110   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4111   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4112   png_free(png_ptr, png_ptr->gamma_from_1);
4113   png_ptr->gamma_from_1 = NULL;
4114   png_free(png_ptr, png_ptr->gamma_to_1);
4115   png_ptr->gamma_to_1 = NULL;
4116
4117#ifdef PNG_16BIT_SUPPORTED
4118   if (png_ptr->gamma_16_from_1 != NULL)
4119   {
4120      int i;
4121      int istop = (1 << (8 - png_ptr->gamma_shift));
4122      for (i = 0; i < istop; i++)
4123      {
4124         png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
4125      }
4126   png_free(png_ptr, png_ptr->gamma_16_from_1);
4127   png_ptr->gamma_16_from_1 = NULL;
4128   }
4129   if (png_ptr->gamma_16_to_1 != NULL)
4130   {
4131      int i;
4132      int istop = (1 << (8 - png_ptr->gamma_shift));
4133      for (i = 0; i < istop; i++)
4134      {
4135         png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
4136      }
4137   png_free(png_ptr, png_ptr->gamma_16_to_1);
4138   png_ptr->gamma_16_to_1 = NULL;
4139   }
4140#endif /* 16BIT */
4141#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4142}
4143
4144/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
4145 * tables, we don't make a full table if we are reducing to 8-bit in
4146 * the future.  Note also how the gamma_16 tables are segmented so that
4147 * we don't need to allocate > 64K chunks for a full 16-bit table.
4148 */
4149void /* PRIVATE */
4150png_build_gamma_table(png_structrp png_ptr, int bit_depth)
4151{
4152   png_debug(1, "in png_build_gamma_table");
4153
4154   /* Remove any existing table; this copes with multiple calls to
4155    * png_read_update_info. The warning is because building the gamma tables
4156    * multiple times is a performance hit - it's harmless but the ability to
4157    * call png_read_update_info() multiple times is new in 1.5.6 so it seems
4158    * sensible to warn if the app introduces such a hit.
4159    */
4160   if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
4161   {
4162      png_warning(png_ptr, "gamma table being rebuilt");
4163      png_destroy_gamma_table(png_ptr);
4164   }
4165
4166   if (bit_depth <= 8)
4167   {
4168      png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
4169          png_ptr->screen_gamma > 0 ?
4170          png_reciprocal2(png_ptr->colorspace.gamma,
4171          png_ptr->screen_gamma) : PNG_FP_1);
4172
4173#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4174   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4175   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4176      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
4177      {
4178         png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
4179             png_reciprocal(png_ptr->colorspace.gamma));
4180
4181         png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
4182             png_ptr->screen_gamma > 0 ?
4183             png_reciprocal(png_ptr->screen_gamma) :
4184             png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
4185      }
4186#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4187   }
4188#ifdef PNG_16BIT_SUPPORTED
4189   else
4190   {
4191      png_byte shift, sig_bit;
4192
4193      if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
4194      {
4195         sig_bit = png_ptr->sig_bit.red;
4196
4197         if (png_ptr->sig_bit.green > sig_bit)
4198            sig_bit = png_ptr->sig_bit.green;
4199
4200         if (png_ptr->sig_bit.blue > sig_bit)
4201            sig_bit = png_ptr->sig_bit.blue;
4202      }
4203      else
4204         sig_bit = png_ptr->sig_bit.gray;
4205
4206      /* 16-bit gamma code uses this equation:
4207       *
4208       *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
4209       *
4210       * Where 'iv' is the input color value and 'ov' is the output value -
4211       * pow(iv, gamma).
4212       *
4213       * Thus the gamma table consists of up to 256 256-entry tables.  The table
4214       * is selected by the (8-gamma_shift) most significant of the low 8 bits
4215       * of the color value then indexed by the upper 8 bits:
4216       *
4217       *   table[low bits][high 8 bits]
4218       *
4219       * So the table 'n' corresponds to all those 'iv' of:
4220       *
4221       *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
4222       *
4223       */
4224      if (sig_bit > 0 && sig_bit < 16U)
4225         /* shift == insignificant bits */
4226         shift = (png_byte)((16U - sig_bit) & 0xff);
4227
4228      else
4229         shift = 0; /* keep all 16 bits */
4230
4231      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
4232      {
4233         /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
4234          * the significant bits in the *input* when the output will
4235          * eventually be 8 bits.  By default it is 11.
4236          */
4237         if (shift < (16U - PNG_MAX_GAMMA_8))
4238            shift = (16U - PNG_MAX_GAMMA_8);
4239      }
4240
4241      if (shift > 8U)
4242         shift = 8U; /* Guarantees at least one table! */
4243
4244      png_ptr->gamma_shift = shift;
4245
4246      /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
4247       * PNG_COMPOSE).  This effectively smashed the background calculation for
4248       * 16-bit output because the 8-bit table assumes the result will be
4249       * reduced to 8 bits.
4250       */
4251      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
4252          png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
4253          png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma,
4254          png_ptr->screen_gamma) : PNG_FP_1);
4255
4256      else
4257          png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
4258          png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma,
4259          png_ptr->screen_gamma) : PNG_FP_1);
4260
4261#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4262   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4263   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4264      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
4265      {
4266         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
4267             png_reciprocal(png_ptr->colorspace.gamma));
4268
4269         /* Notice that the '16 from 1' table should be full precision, however
4270          * the lookup on this table still uses gamma_shift, so it can't be.
4271          * TODO: fix this.
4272          */
4273         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
4274             png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
4275             png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
4276      }
4277#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4278   }
4279#endif /* 16BIT */
4280}
4281#endif /* READ_GAMMA */
4282
4283/* HARDWARE OR SOFTWARE OPTION SUPPORT */
4284#ifdef PNG_SET_OPTION_SUPPORTED
4285int PNGAPI
4286png_set_option(png_structrp png_ptr, int option, int onoff)
4287{
4288   if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT &&
4289      (option & 1) == 0)
4290   {
4291      png_uint_32 mask = 3 << option;
4292      png_uint_32 setting = (2 + (onoff != 0)) << option;
4293      png_uint_32 current = png_ptr->options;
4294
4295      png_ptr->options = (png_uint_32)(((current & ~mask) | setting) & 0xff);
4296
4297      return (current & mask) >> option;
4298   }
4299
4300   return PNG_OPTION_INVALID;
4301}
4302#endif
4303
4304/* sRGB support */
4305#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4306   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4307/* sRGB conversion tables; these are machine generated with the code in
4308 * contrib/tools/makesRGB.c.  The actual sRGB transfer curve defined in the
4309 * specification (see the article at http://en.wikipedia.org/wiki/SRGB)
4310 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
4311 * The sRGB to linear table is exact (to the nearest 16-bit linear fraction).
4312 * The inverse (linear to sRGB) table has accuracies as follows:
4313 *
4314 * For all possible (255*65535+1) input values:
4315 *
4316 *    error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
4317 *
4318 * For the input values corresponding to the 65536 16-bit values:
4319 *
4320 *    error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
4321 *
4322 * In all cases the inexact readings are only off by one.
4323 */
4324
4325#ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4326/* The convert-to-sRGB table is only currently required for read. */
4327const png_uint_16 png_sRGB_table[256] =
4328{
4329   0,20,40,60,80,99,119,139,
4330   159,179,199,219,241,264,288,313,
4331   340,367,396,427,458,491,526,562,
4332   599,637,677,718,761,805,851,898,
4333   947,997,1048,1101,1156,1212,1270,1330,
4334   1391,1453,1517,1583,1651,1720,1790,1863,
4335   1937,2013,2090,2170,2250,2333,2418,2504,
4336   2592,2681,2773,2866,2961,3058,3157,3258,
4337   3360,3464,3570,3678,3788,3900,4014,4129,
4338   4247,4366,4488,4611,4736,4864,4993,5124,
4339   5257,5392,5530,5669,5810,5953,6099,6246,
4340   6395,6547,6700,6856,7014,7174,7335,7500,
4341   7666,7834,8004,8177,8352,8528,8708,8889,
4342   9072,9258,9445,9635,9828,10022,10219,10417,
4343   10619,10822,11028,11235,11446,11658,11873,12090,
4344   12309,12530,12754,12980,13209,13440,13673,13909,
4345   14146,14387,14629,14874,15122,15371,15623,15878,
4346   16135,16394,16656,16920,17187,17456,17727,18001,
4347   18277,18556,18837,19121,19407,19696,19987,20281,
4348   20577,20876,21177,21481,21787,22096,22407,22721,
4349   23038,23357,23678,24002,24329,24658,24990,25325,
4350   25662,26001,26344,26688,27036,27386,27739,28094,
4351   28452,28813,29176,29542,29911,30282,30656,31033,
4352   31412,31794,32179,32567,32957,33350,33745,34143,
4353   34544,34948,35355,35764,36176,36591,37008,37429,
4354   37852,38278,38706,39138,39572,40009,40449,40891,
4355   41337,41785,42236,42690,43147,43606,44069,44534,
4356   45002,45473,45947,46423,46903,47385,47871,48359,
4357   48850,49344,49841,50341,50844,51349,51858,52369,
4358   52884,53401,53921,54445,54971,55500,56032,56567,
4359   57105,57646,58190,58737,59287,59840,60396,60955,
4360   61517,62082,62650,63221,63795,64372,64952,65535
4361};
4362#endif /* SIMPLIFIED_READ */
4363
4364/* The base/delta tables are required for both read and write (but currently
4365 * only the simplified versions.)
4366 */
4367const png_uint_16 png_sRGB_base[512] =
4368{
4369   128,1782,3383,4644,5675,6564,7357,8074,
4370   8732,9346,9921,10463,10977,11466,11935,12384,
4371   12816,13233,13634,14024,14402,14769,15125,15473,
4372   15812,16142,16466,16781,17090,17393,17690,17981,
4373   18266,18546,18822,19093,19359,19621,19879,20133,
4374   20383,20630,20873,21113,21349,21583,21813,22041,
4375   22265,22487,22707,22923,23138,23350,23559,23767,
4376   23972,24175,24376,24575,24772,24967,25160,25352,
4377   25542,25730,25916,26101,26284,26465,26645,26823,
4378   27000,27176,27350,27523,27695,27865,28034,28201,
4379   28368,28533,28697,28860,29021,29182,29341,29500,
4380   29657,29813,29969,30123,30276,30429,30580,30730,
4381   30880,31028,31176,31323,31469,31614,31758,31902,
4382   32045,32186,32327,32468,32607,32746,32884,33021,
4383   33158,33294,33429,33564,33697,33831,33963,34095,
4384   34226,34357,34486,34616,34744,34873,35000,35127,
4385   35253,35379,35504,35629,35753,35876,35999,36122,
4386   36244,36365,36486,36606,36726,36845,36964,37083,
4387   37201,37318,37435,37551,37668,37783,37898,38013,
4388   38127,38241,38354,38467,38580,38692,38803,38915,
4389   39026,39136,39246,39356,39465,39574,39682,39790,
4390   39898,40005,40112,40219,40325,40431,40537,40642,
4391   40747,40851,40955,41059,41163,41266,41369,41471,
4392   41573,41675,41777,41878,41979,42079,42179,42279,
4393   42379,42478,42577,42676,42775,42873,42971,43068,
4394   43165,43262,43359,43456,43552,43648,43743,43839,
4395   43934,44028,44123,44217,44311,44405,44499,44592,
4396   44685,44778,44870,44962,45054,45146,45238,45329,
4397   45420,45511,45601,45692,45782,45872,45961,46051,
4398   46140,46229,46318,46406,46494,46583,46670,46758,
4399   46846,46933,47020,47107,47193,47280,47366,47452,
4400   47538,47623,47709,47794,47879,47964,48048,48133,
4401   48217,48301,48385,48468,48552,48635,48718,48801,
4402   48884,48966,49048,49131,49213,49294,49376,49458,
4403   49539,49620,49701,49782,49862,49943,50023,50103,
4404   50183,50263,50342,50422,50501,50580,50659,50738,
4405   50816,50895,50973,51051,51129,51207,51285,51362,
4406   51439,51517,51594,51671,51747,51824,51900,51977,
4407   52053,52129,52205,52280,52356,52432,52507,52582,
4408   52657,52732,52807,52881,52956,53030,53104,53178,
4409   53252,53326,53400,53473,53546,53620,53693,53766,
4410   53839,53911,53984,54056,54129,54201,54273,54345,
4411   54417,54489,54560,54632,54703,54774,54845,54916,
4412   54987,55058,55129,55199,55269,55340,55410,55480,
4413   55550,55620,55689,55759,55828,55898,55967,56036,
4414   56105,56174,56243,56311,56380,56448,56517,56585,
4415   56653,56721,56789,56857,56924,56992,57059,57127,
4416   57194,57261,57328,57395,57462,57529,57595,57662,
4417   57728,57795,57861,57927,57993,58059,58125,58191,
4418   58256,58322,58387,58453,58518,58583,58648,58713,
4419   58778,58843,58908,58972,59037,59101,59165,59230,
4420   59294,59358,59422,59486,59549,59613,59677,59740,
4421   59804,59867,59930,59993,60056,60119,60182,60245,
4422   60308,60370,60433,60495,60558,60620,60682,60744,
4423   60806,60868,60930,60992,61054,61115,61177,61238,
4424   61300,61361,61422,61483,61544,61605,61666,61727,
4425   61788,61848,61909,61969,62030,62090,62150,62211,
4426   62271,62331,62391,62450,62510,62570,62630,62689,
4427   62749,62808,62867,62927,62986,63045,63104,63163,
4428   63222,63281,63340,63398,63457,63515,63574,63632,
4429   63691,63749,63807,63865,63923,63981,64039,64097,
4430   64155,64212,64270,64328,64385,64443,64500,64557,
4431   64614,64672,64729,64786,64843,64900,64956,65013,
4432   65070,65126,65183,65239,65296,65352,65409,65465
4433};
4434
4435const png_byte png_sRGB_delta[512] =
4436{
4437   207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,
4438   52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,
4439   35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,
4440   28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,
4441   23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,
4442   21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,
4443   19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,
4444   17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,
4445   16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,
4446   15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,
4447   14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,
4448   13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,
4449   12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
4450   12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,
4451   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4452   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4453   11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4454   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4455   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4456   10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4457   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4458   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4459   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4460   9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4461   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4462   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4463   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4464   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4465   8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,
4466   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4467   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4468   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
4469};
4470#endif /* SIMPLIFIED READ/WRITE sRGB support */
4471
4472/* SIMPLIFIED READ/WRITE SUPPORT */
4473#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4474   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4475static int
4476png_image_free_function(png_voidp argument)
4477{
4478   png_imagep image = png_voidcast(png_imagep, argument);
4479   png_controlp cp = image->opaque;
4480   png_control c;
4481
4482   /* Double check that we have a png_ptr - it should be impossible to get here
4483    * without one.
4484    */
4485   if (cp->png_ptr == NULL)
4486      return 0;
4487
4488   /* First free any data held in the control structure. */
4489#  ifdef PNG_STDIO_SUPPORTED
4490      if (cp->owned_file != 0)
4491      {
4492         FILE *fp = png_voidcast(FILE*, cp->png_ptr->io_ptr);
4493         cp->owned_file = 0;
4494
4495         /* Ignore errors here. */
4496         if (fp != NULL)
4497         {
4498            cp->png_ptr->io_ptr = NULL;
4499            (void)fclose(fp);
4500         }
4501      }
4502#  endif
4503
4504   /* Copy the control structure so that the original, allocated, version can be
4505    * safely freed.  Notice that a png_error here stops the remainder of the
4506    * cleanup, but this is probably fine because that would indicate bad memory
4507    * problems anyway.
4508    */
4509   c = *cp;
4510   image->opaque = &c;
4511   png_free(c.png_ptr, cp);
4512
4513   /* Then the structures, calling the correct API. */
4514   if (c.for_write != 0)
4515   {
4516#     ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED
4517         png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
4518#     else
4519         png_error(c.png_ptr, "simplified write not supported");
4520#     endif
4521   }
4522   else
4523   {
4524#     ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4525         png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
4526#     else
4527         png_error(c.png_ptr, "simplified read not supported");
4528#     endif
4529   }
4530
4531   /* Success. */
4532   return 1;
4533}
4534
4535void PNGAPI
4536png_image_free(png_imagep image)
4537{
4538   /* Safely call the real function, but only if doing so is safe at this point
4539    * (if not inside an error handling context).  Otherwise assume
4540    * png_safe_execute will call this API after the return.
4541    */
4542   if (image != NULL && image->opaque != NULL &&
4543      image->opaque->error_buf == NULL)
4544   {
4545      /* Ignore errors here: */
4546      (void)png_safe_execute(image, png_image_free_function, image);
4547      image->opaque = NULL;
4548   }
4549}
4550
4551int /* PRIVATE */
4552png_image_error(png_imagep image, png_const_charp error_message)
4553{
4554   /* Utility to log an error. */
4555   png_safecat(image->message, (sizeof image->message), 0, error_message);
4556   image->warning_or_error |= PNG_IMAGE_ERROR;
4557   png_image_free(image);
4558   return 0;
4559}
4560
4561#endif /* SIMPLIFIED READ/WRITE */
4562#endif /* READ || WRITE */
4563