1/*
2 * reserved comment block
3 * DO NOT REMOVE OR ALTER!
4 */
5/*
6 * jmemmgr.c
7 *
8 * Copyright (C) 1991-1997, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
11 *
12 * This file contains the JPEG system-independent memory management
13 * routines.  This code is usable across a wide variety of machines; most
14 * of the system dependencies have been isolated in a separate file.
15 * The major functions provided here are:
16 *   * pool-based allocation and freeing of memory;
17 *   * policy decisions about how to divide available memory among the
18 *     virtual arrays;
19 *   * control logic for swapping virtual arrays between main memory and
20 *     backing storage.
21 * The separate system-dependent file provides the actual backing-storage
22 * access code, and it contains the policy decision about how much total
23 * main memory to use.
24 * This file is system-dependent in the sense that some of its functions
25 * are unnecessary in some systems.  For example, if there is enough virtual
26 * memory so that backing storage will never be used, much of the virtual
27 * array control logic could be removed.  (Of course, if you have that much
28 * memory then you shouldn't care about a little bit of unused code...)
29 */
30
31#define JPEG_INTERNALS
32#define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
33#include "jinclude.h"
34#include "jpeglib.h"
35#include "jmemsys.h"            /* import the system-dependent declarations */
36
37#ifndef NO_GETENV
38#ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
39extern char * getenv JPP((const char * name));
40#endif
41#endif
42
43
44/*
45 * Some important notes:
46 *   The allocation routines provided here must never return NULL.
47 *   They should exit to error_exit if unsuccessful.
48 *
49 *   It's not a good idea to try to merge the sarray and barray routines,
50 *   even though they are textually almost the same, because samples are
51 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
52 *   in machines where byte pointers have a different representation from
53 *   word pointers, the resulting machine code could not be the same.
54 */
55
56
57/*
58 * Many machines require storage alignment: longs must start on 4-byte
59 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
60 * always returns pointers that are multiples of the worst-case alignment
61 * requirement, and we had better do so too.
62 * There isn't any really portable way to determine the worst-case alignment
63 * requirement.  This module assumes that the alignment requirement is
64 * multiples of sizeof(ALIGN_TYPE).
65 * By default, we define ALIGN_TYPE as double.  This is necessary on some
66 * workstations (where doubles really do need 8-byte alignment) and will work
67 * fine on nearly everything.  If your machine has lesser alignment needs,
68 * you can save a few bytes by making ALIGN_TYPE smaller.
69 * The only place I know of where this will NOT work is certain Macintosh
70 * 680x0 compilers that define double as a 10-byte IEEE extended float.
71 * Doing 10-byte alignment is counterproductive because longwords won't be
72 * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
73 * such a compiler.
74 */
75
76#ifndef ALIGN_TYPE              /* so can override from jconfig.h */
77#define ALIGN_TYPE  double
78#endif
79
80
81/*
82 * We allocate objects from "pools", where each pool is gotten with a single
83 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
84 * overhead within a pool, except for alignment padding.  Each pool has a
85 * header with a link to the next pool of the same class.
86 * Small and large pool headers are identical except that the latter's
87 * link pointer must be FAR on 80x86 machines.
88 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
89 * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
90 * of the alignment requirement of ALIGN_TYPE.
91 */
92
93typedef union small_pool_struct * small_pool_ptr;
94
95typedef union small_pool_struct {
96  struct {
97    small_pool_ptr next;        /* next in list of pools */
98    size_t bytes_used;          /* how many bytes already used within pool */
99    size_t bytes_left;          /* bytes still available in this pool */
100  } hdr;
101  ALIGN_TYPE dummy;             /* included in union to ensure alignment */
102} small_pool_hdr;
103
104typedef union large_pool_struct FAR * large_pool_ptr;
105
106typedef union large_pool_struct {
107  struct {
108    large_pool_ptr next;        /* next in list of pools */
109    size_t bytes_used;          /* how many bytes already used within pool */
110    size_t bytes_left;          /* bytes still available in this pool */
111  } hdr;
112  ALIGN_TYPE dummy;             /* included in union to ensure alignment */
113} large_pool_hdr;
114
115
116/*
117 * Here is the full definition of a memory manager object.
118 */
119
120typedef struct {
121  struct jpeg_memory_mgr pub;   /* public fields */
122
123  /* Each pool identifier (lifetime class) names a linked list of pools. */
124  small_pool_ptr small_list[JPOOL_NUMPOOLS];
125  large_pool_ptr large_list[JPOOL_NUMPOOLS];
126
127  /* Since we only have one lifetime class of virtual arrays, only one
128   * linked list is necessary (for each datatype).  Note that the virtual
129   * array control blocks being linked together are actually stored somewhere
130   * in the small-pool list.
131   */
132  jvirt_sarray_ptr virt_sarray_list;
133  jvirt_barray_ptr virt_barray_list;
134
135  /* This counts total space obtained from jpeg_get_small/large */
136  size_t total_space_allocated;
137
138  /* alloc_sarray and alloc_barray set this value for use by virtual
139   * array routines.
140   */
141  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
142} my_memory_mgr;
143
144typedef my_memory_mgr * my_mem_ptr;
145
146
147/*
148 * The control blocks for virtual arrays.
149 * Note that these blocks are allocated in the "small" pool area.
150 * System-dependent info for the associated backing store (if any) is hidden
151 * inside the backing_store_info struct.
152 */
153
154struct jvirt_sarray_control {
155  JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
156  JDIMENSION rows_in_array;     /* total virtual array height */
157  JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
158  JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
159  JDIMENSION rows_in_mem;       /* height of memory buffer */
160  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
161  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
162  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
163  boolean pre_zero;             /* pre-zero mode requested? */
164  boolean dirty;                /* do current buffer contents need written? */
165  boolean b_s_open;             /* is backing-store data valid? */
166  jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
167  backing_store_info b_s_info;  /* System-dependent control info */
168};
169
170struct jvirt_barray_control {
171  JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
172  JDIMENSION rows_in_array;     /* total virtual array height */
173  JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
174  JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
175  JDIMENSION rows_in_mem;       /* height of memory buffer */
176  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
177  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
178  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
179  boolean pre_zero;             /* pre-zero mode requested? */
180  boolean dirty;                /* do current buffer contents need written? */
181  boolean b_s_open;             /* is backing-store data valid? */
182  jvirt_barray_ptr next;        /* link to next virtual barray control block */
183  backing_store_info b_s_info;  /* System-dependent control info */
184};
185
186
187#ifdef MEM_STATS                /* optional extra stuff for statistics */
188
189LOCAL(void)
190print_mem_stats (j_common_ptr cinfo, int pool_id)
191{
192  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
193  small_pool_ptr shdr_ptr;
194  large_pool_ptr lhdr_ptr;
195
196  /* Since this is only a debugging stub, we can cheat a little by using
197   * fprintf directly rather than going through the trace message code.
198   * This is helpful because message parm array can't handle longs.
199   */
200  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
201          pool_id, mem->total_space_allocated);
202
203  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
204       lhdr_ptr = lhdr_ptr->hdr.next) {
205    fprintf(stderr, "  Large chunk used %ld\n",
206            (long) lhdr_ptr->hdr.bytes_used);
207  }
208
209  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
210       shdr_ptr = shdr_ptr->hdr.next) {
211    fprintf(stderr, "  Small chunk used %ld free %ld\n",
212            (long) shdr_ptr->hdr.bytes_used,
213            (long) shdr_ptr->hdr.bytes_left);
214  }
215}
216
217#endif /* MEM_STATS */
218
219
220LOCAL(void)
221out_of_memory (j_common_ptr cinfo, int which)
222/* Report an out-of-memory error and stop execution */
223/* If we compiled MEM_STATS support, report alloc requests before dying */
224{
225#ifdef MEM_STATS
226  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
227#endif
228  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
229}
230
231
232/*
233 * Allocation of "small" objects.
234 *
235 * For these, we use pooled storage.  When a new pool must be created,
236 * we try to get enough space for the current request plus a "slop" factor,
237 * where the slop will be the amount of leftover space in the new pool.
238 * The speed vs. space tradeoff is largely determined by the slop values.
239 * A different slop value is provided for each pool class (lifetime),
240 * and we also distinguish the first pool of a class from later ones.
241 * NOTE: the values given work fairly well on both 16- and 32-bit-int
242 * machines, but may be too small if longs are 64 bits or more.
243 */
244
245static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
246{
247        1600,                   /* first PERMANENT pool */
248        16000                   /* first IMAGE pool */
249};
250
251static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
252{
253        0,                      /* additional PERMANENT pools */
254        5000                    /* additional IMAGE pools */
255};
256
257#define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
258
259
260METHODDEF(void *)
261alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
262/* Allocate a "small" object */
263{
264  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
265  small_pool_ptr hdr_ptr, prev_hdr_ptr;
266  char * data_ptr;
267  size_t odd_bytes, min_request, slop;
268
269  /* Check for unsatisfiable request (do now to ensure no overflow below) */
270  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
271    out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
272
273  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
274  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
275  if (odd_bytes > 0)
276    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
277
278  /* See if space is available in any existing pool */
279  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
280    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
281  prev_hdr_ptr = NULL;
282  hdr_ptr = mem->small_list[pool_id];
283  while (hdr_ptr != NULL) {
284    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
285      break;                    /* found pool with enough space */
286    prev_hdr_ptr = hdr_ptr;
287    hdr_ptr = hdr_ptr->hdr.next;
288  }
289
290  /* Time to make a new pool? */
291  if (hdr_ptr == NULL) {
292    /* min_request is what we need now, slop is what will be leftover */
293    min_request = sizeofobject + SIZEOF(small_pool_hdr);
294    if (prev_hdr_ptr == NULL)   /* first pool in class? */
295      slop = first_pool_slop[pool_id];
296    else
297      slop = extra_pool_slop[pool_id];
298    /* Don't ask for more than MAX_ALLOC_CHUNK */
299    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
300      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
301    /* Try to get space, if fail reduce slop and try again */
302    for (;;) {
303      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
304      if (hdr_ptr != NULL)
305        break;
306      slop /= 2;
307      if (slop < MIN_SLOP)      /* give up when it gets real small */
308        out_of_memory(cinfo, 2); /* jpeg_get_small failed */
309    }
310    mem->total_space_allocated += min_request + slop;
311    /* Success, initialize the new pool header and add to end of list */
312    hdr_ptr->hdr.next = NULL;
313    hdr_ptr->hdr.bytes_used = 0;
314    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
315    if (prev_hdr_ptr == NULL)   /* first pool in class? */
316      mem->small_list[pool_id] = hdr_ptr;
317    else
318      prev_hdr_ptr->hdr.next = hdr_ptr;
319  }
320
321  /* OK, allocate the object from the current pool */
322  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
323  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
324  hdr_ptr->hdr.bytes_used += sizeofobject;
325  hdr_ptr->hdr.bytes_left -= sizeofobject;
326
327  return (void *) data_ptr;
328}
329
330
331/*
332 * Allocation of "large" objects.
333 *
334 * The external semantics of these are the same as "small" objects,
335 * except that FAR pointers are used on 80x86.  However the pool
336 * management heuristics are quite different.  We assume that each
337 * request is large enough that it may as well be passed directly to
338 * jpeg_get_large; the pool management just links everything together
339 * so that we can free it all on demand.
340 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
341 * structures.  The routines that create these structures (see below)
342 * deliberately bunch rows together to ensure a large request size.
343 */
344
345METHODDEF(void FAR *)
346alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
347/* Allocate a "large" object */
348{
349  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
350  large_pool_ptr hdr_ptr;
351  size_t odd_bytes;
352
353  /* Check for unsatisfiable request (do now to ensure no overflow below) */
354  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
355    out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
356
357  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
358  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
359  if (odd_bytes > 0)
360    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
361
362  /* Always make a new pool */
363  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
364    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
365
366  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
367                                            SIZEOF(large_pool_hdr));
368  if (hdr_ptr == NULL)
369    out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
370  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
371
372  /* Success, initialize the new pool header and add to list */
373  hdr_ptr->hdr.next = mem->large_list[pool_id];
374  /* We maintain space counts in each pool header for statistical purposes,
375   * even though they are not needed for allocation.
376   */
377  hdr_ptr->hdr.bytes_used = sizeofobject;
378  hdr_ptr->hdr.bytes_left = 0;
379  mem->large_list[pool_id] = hdr_ptr;
380
381  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
382}
383
384
385/*
386 * Creation of 2-D sample arrays.
387 * The pointers are in near heap, the samples themselves in FAR heap.
388 *
389 * To minimize allocation overhead and to allow I/O of large contiguous
390 * blocks, we allocate the sample rows in groups of as many rows as possible
391 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
392 * NB: the virtual array control routines, later in this file, know about
393 * this chunking of rows.  The rowsperchunk value is left in the mem manager
394 * object so that it can be saved away if this sarray is the workspace for
395 * a virtual array.
396 */
397
398METHODDEF(JSAMPARRAY)
399alloc_sarray (j_common_ptr cinfo, int pool_id,
400              JDIMENSION samplesperrow, JDIMENSION numrows)
401/* Allocate a 2-D sample array */
402{
403  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
404  JSAMPARRAY result;
405  JSAMPROW workspace;
406  JDIMENSION rowsperchunk, currow, i;
407  long ltemp;
408
409  /* Calculate max # of rows allowed in one allocation chunk */
410  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
411          ((long) samplesperrow * SIZEOF(JSAMPLE));
412  if (ltemp <= 0)
413    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
414  if (ltemp < (long) numrows)
415    rowsperchunk = (JDIMENSION) ltemp;
416  else
417    rowsperchunk = numrows;
418  mem->last_rowsperchunk = rowsperchunk;
419
420  /* Get space for row pointers (small object) */
421  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
422                                    (size_t) (numrows * SIZEOF(JSAMPROW)));
423
424  /* Get the rows themselves (large objects) */
425  currow = 0;
426  while (currow < numrows) {
427    rowsperchunk = MIN(rowsperchunk, numrows - currow);
428    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
429        (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
430                  * SIZEOF(JSAMPLE)));
431    for (i = rowsperchunk; i > 0; i--) {
432      result[currow++] = workspace;
433      workspace += samplesperrow;
434    }
435  }
436
437  return result;
438}
439
440
441/*
442 * Creation of 2-D coefficient-block arrays.
443 * This is essentially the same as the code for sample arrays, above.
444 */
445
446METHODDEF(JBLOCKARRAY)
447alloc_barray (j_common_ptr cinfo, int pool_id,
448              JDIMENSION blocksperrow, JDIMENSION numrows)
449/* Allocate a 2-D coefficient-block array */
450{
451  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
452  JBLOCKARRAY result;
453  JBLOCKROW workspace;
454  JDIMENSION rowsperchunk, currow, i;
455  long ltemp;
456
457  /* Calculate max # of rows allowed in one allocation chunk */
458  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
459          ((long) blocksperrow * SIZEOF(JBLOCK));
460  if (ltemp <= 0)
461    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
462  if (ltemp < (long) numrows)
463    rowsperchunk = (JDIMENSION) ltemp;
464  else
465    rowsperchunk = numrows;
466  mem->last_rowsperchunk = rowsperchunk;
467
468  /* Get space for row pointers (small object) */
469  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
470                                     (size_t) (numrows * SIZEOF(JBLOCKROW)));
471
472  /* Get the rows themselves (large objects) */
473  currow = 0;
474  while (currow < numrows) {
475    rowsperchunk = MIN(rowsperchunk, numrows - currow);
476    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
477        (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
478                  * SIZEOF(JBLOCK)));
479    for (i = rowsperchunk; i > 0; i--) {
480      result[currow++] = workspace;
481      workspace += blocksperrow;
482    }
483  }
484
485  return result;
486}
487
488
489/*
490 * About virtual array management:
491 *
492 * The above "normal" array routines are only used to allocate strip buffers
493 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
494 * are handled as "virtual" arrays.  The array is still accessed a strip at a
495 * time, but the memory manager must save the whole array for repeated
496 * accesses.  The intended implementation is that there is a strip buffer in
497 * memory (as high as is possible given the desired memory limit), plus a
498 * backing file that holds the rest of the array.
499 *
500 * The request_virt_array routines are told the total size of the image and
501 * the maximum number of rows that will be accessed at once.  The in-memory
502 * buffer must be at least as large as the maxaccess value.
503 *
504 * The request routines create control blocks but not the in-memory buffers.
505 * That is postponed until realize_virt_arrays is called.  At that time the
506 * total amount of space needed is known (approximately, anyway), so free
507 * memory can be divided up fairly.
508 *
509 * The access_virt_array routines are responsible for making a specific strip
510 * area accessible (after reading or writing the backing file, if necessary).
511 * Note that the access routines are told whether the caller intends to modify
512 * the accessed strip; during a read-only pass this saves having to rewrite
513 * data to disk.  The access routines are also responsible for pre-zeroing
514 * any newly accessed rows, if pre-zeroing was requested.
515 *
516 * In current usage, the access requests are usually for nonoverlapping
517 * strips; that is, successive access start_row numbers differ by exactly
518 * num_rows = maxaccess.  This means we can get good performance with simple
519 * buffer dump/reload logic, by making the in-memory buffer be a multiple
520 * of the access height; then there will never be accesses across bufferload
521 * boundaries.  The code will still work with overlapping access requests,
522 * but it doesn't handle bufferload overlaps very efficiently.
523 */
524
525
526METHODDEF(jvirt_sarray_ptr)
527request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
528                     JDIMENSION samplesperrow, JDIMENSION numrows,
529                     JDIMENSION maxaccess)
530/* Request a virtual 2-D sample array */
531{
532  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
533  jvirt_sarray_ptr result;
534
535  /* Only IMAGE-lifetime virtual arrays are currently supported */
536  if (pool_id != JPOOL_IMAGE)
537    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
538
539  /* get control block */
540  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
541                                          SIZEOF(struct jvirt_sarray_control));
542
543  result->mem_buffer = NULL;    /* marks array not yet realized */
544  result->rows_in_array = numrows;
545  result->samplesperrow = samplesperrow;
546  result->maxaccess = maxaccess;
547  result->pre_zero = pre_zero;
548  result->b_s_open = FALSE;     /* no associated backing-store object */
549  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
550  mem->virt_sarray_list = result;
551
552  return result;
553}
554
555
556METHODDEF(jvirt_barray_ptr)
557request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
558                     JDIMENSION blocksperrow, JDIMENSION numrows,
559                     JDIMENSION maxaccess)
560/* Request a virtual 2-D coefficient-block array */
561{
562  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
563  jvirt_barray_ptr result;
564
565  /* Only IMAGE-lifetime virtual arrays are currently supported */
566  if (pool_id != JPOOL_IMAGE)
567    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
568
569  /* get control block */
570  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
571                                          SIZEOF(struct jvirt_barray_control));
572
573  result->mem_buffer = NULL;    /* marks array not yet realized */
574  result->rows_in_array = numrows;
575  result->blocksperrow = blocksperrow;
576  result->maxaccess = maxaccess;
577  result->pre_zero = pre_zero;
578  result->b_s_open = FALSE;     /* no associated backing-store object */
579  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
580  mem->virt_barray_list = result;
581
582  return result;
583}
584
585
586METHODDEF(void)
587realize_virt_arrays (j_common_ptr cinfo)
588/* Allocate the in-memory buffers for any unrealized virtual arrays */
589{
590  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
591  size_t space_per_minheight, maximum_space, avail_mem;
592  size_t minheights, max_minheights;
593  jvirt_sarray_ptr sptr;
594  jvirt_barray_ptr bptr;
595
596  /* Compute the minimum space needed (maxaccess rows in each buffer)
597   * and the maximum space needed (full image height in each buffer).
598   * These may be of use to the system-dependent jpeg_mem_available routine.
599   */
600  space_per_minheight = 0;
601  maximum_space = 0;
602  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
603    if (sptr->mem_buffer == NULL) { /* if not realized yet */
604      space_per_minheight += (long) sptr->maxaccess *
605                             (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
606      maximum_space += (long) sptr->rows_in_array *
607                       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
608    }
609  }
610  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
611    if (bptr->mem_buffer == NULL) { /* if not realized yet */
612      space_per_minheight += (long) bptr->maxaccess *
613                             (long) bptr->blocksperrow * SIZEOF(JBLOCK);
614      maximum_space += (long) bptr->rows_in_array *
615                       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
616    }
617  }
618
619  if (space_per_minheight <= 0)
620    return;                     /* no unrealized arrays, no work */
621
622  /* Determine amount of memory to actually use; this is system-dependent. */
623  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
624                                 mem->total_space_allocated);
625
626  /* If the maximum space needed is available, make all the buffers full
627   * height; otherwise parcel it out with the same number of minheights
628   * in each buffer.
629   */
630  if (avail_mem >= maximum_space)
631    max_minheights = 1000000000L;
632  else {
633    max_minheights = avail_mem / space_per_minheight;
634    /* If there doesn't seem to be enough space, try to get the minimum
635     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
636     */
637    if (max_minheights <= 0)
638      max_minheights = 1;
639  }
640
641  /* Allocate the in-memory buffers and initialize backing store as needed. */
642
643  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
644    if (sptr->mem_buffer == NULL) { /* if not realized yet */
645      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
646      if (minheights <= max_minheights) {
647        /* This buffer fits in memory */
648        sptr->rows_in_mem = sptr->rows_in_array;
649      } else {
650        /* It doesn't fit in memory, create backing store. */
651        sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
652        jpeg_open_backing_store(cinfo, & sptr->b_s_info,
653                                (long) sptr->rows_in_array *
654                                (long) sptr->samplesperrow *
655                                (long) SIZEOF(JSAMPLE));
656        sptr->b_s_open = TRUE;
657      }
658      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
659                                      sptr->samplesperrow, sptr->rows_in_mem);
660      sptr->rowsperchunk = mem->last_rowsperchunk;
661      sptr->cur_start_row = 0;
662      sptr->first_undef_row = 0;
663      sptr->dirty = FALSE;
664    }
665  }
666
667  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
668    if (bptr->mem_buffer == NULL) { /* if not realized yet */
669      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
670      if (minheights <= max_minheights) {
671        /* This buffer fits in memory */
672        bptr->rows_in_mem = bptr->rows_in_array;
673      } else {
674        /* It doesn't fit in memory, create backing store. */
675        bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
676        jpeg_open_backing_store(cinfo, & bptr->b_s_info,
677                                (long) bptr->rows_in_array *
678                                (long) bptr->blocksperrow *
679                                (long) SIZEOF(JBLOCK));
680        bptr->b_s_open = TRUE;
681      }
682      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
683                                      bptr->blocksperrow, bptr->rows_in_mem);
684      bptr->rowsperchunk = mem->last_rowsperchunk;
685      bptr->cur_start_row = 0;
686      bptr->first_undef_row = 0;
687      bptr->dirty = FALSE;
688    }
689  }
690}
691
692
693LOCAL(void)
694do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
695/* Do backing store read or write of a virtual sample array */
696{
697  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
698
699  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
700  file_offset = ptr->cur_start_row * bytesperrow;
701  /* Loop to read or write each allocation chunk in mem_buffer */
702  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
703    /* One chunk, but check for short chunk at end of buffer */
704    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
705    /* Transfer no more than is currently defined */
706    thisrow = (long) ptr->cur_start_row + i;
707    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
708    /* Transfer no more than fits in file */
709    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
710    if (rows <= 0)              /* this chunk might be past end of file! */
711      break;
712    byte_count = rows * bytesperrow;
713    if (writing)
714      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
715                                            (void FAR *) ptr->mem_buffer[i],
716                                            file_offset, byte_count);
717    else
718      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
719                                           (void FAR *) ptr->mem_buffer[i],
720                                           file_offset, byte_count);
721    file_offset += byte_count;
722  }
723}
724
725
726LOCAL(void)
727do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
728/* Do backing store read or write of a virtual coefficient-block array */
729{
730  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
731
732  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
733  file_offset = ptr->cur_start_row * bytesperrow;
734  /* Loop to read or write each allocation chunk in mem_buffer */
735  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
736    /* One chunk, but check for short chunk at end of buffer */
737    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
738    /* Transfer no more than is currently defined */
739    thisrow = (long) ptr->cur_start_row + i;
740    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
741    /* Transfer no more than fits in file */
742    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
743    if (rows <= 0)              /* this chunk might be past end of file! */
744      break;
745    byte_count = rows * bytesperrow;
746    if (writing)
747      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
748                                            (void FAR *) ptr->mem_buffer[i],
749                                            file_offset, byte_count);
750    else
751      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
752                                           (void FAR *) ptr->mem_buffer[i],
753                                           file_offset, byte_count);
754    file_offset += byte_count;
755  }
756}
757
758
759METHODDEF(JSAMPARRAY)
760access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
761                    JDIMENSION start_row, JDIMENSION num_rows,
762                    boolean writable)
763/* Access the part of a virtual sample array starting at start_row */
764/* and extending for num_rows rows.  writable is true if  */
765/* caller intends to modify the accessed area. */
766{
767  JDIMENSION end_row = start_row + num_rows;
768  JDIMENSION undef_row;
769
770  /* debugging check */
771  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
772      ptr->mem_buffer == NULL)
773    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
774
775  /* Make the desired part of the virtual array accessible */
776  if (start_row < ptr->cur_start_row ||
777      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
778    if (! ptr->b_s_open)
779      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
780    /* Flush old buffer contents if necessary */
781    if (ptr->dirty) {
782      do_sarray_io(cinfo, ptr, TRUE);
783      ptr->dirty = FALSE;
784    }
785    /* Decide what part of virtual array to access.
786     * Algorithm: if target address > current window, assume forward scan,
787     * load starting at target address.  If target address < current window,
788     * assume backward scan, load so that target area is top of window.
789     * Note that when switching from forward write to forward read, will have
790     * start_row = 0, so the limiting case applies and we load from 0 anyway.
791     */
792    if (start_row > ptr->cur_start_row) {
793      ptr->cur_start_row = start_row;
794    } else {
795      /* use long arithmetic here to avoid overflow & unsigned problems */
796      long ltemp;
797
798      ltemp = (long) end_row - (long) ptr->rows_in_mem;
799      if (ltemp < 0)
800        ltemp = 0;              /* don't fall off front end of file */
801      ptr->cur_start_row = (JDIMENSION) ltemp;
802    }
803    /* Read in the selected part of the array.
804     * During the initial write pass, we will do no actual read
805     * because the selected part is all undefined.
806     */
807    do_sarray_io(cinfo, ptr, FALSE);
808  }
809  /* Ensure the accessed part of the array is defined; prezero if needed.
810   * To improve locality of access, we only prezero the part of the array
811   * that the caller is about to access, not the entire in-memory array.
812   */
813  if (ptr->first_undef_row < end_row) {
814    if (ptr->first_undef_row < start_row) {
815      if (writable)             /* writer skipped over a section of array */
816        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
817      undef_row = start_row;    /* but reader is allowed to read ahead */
818    } else {
819      undef_row = ptr->first_undef_row;
820    }
821    if (writable)
822      ptr->first_undef_row = end_row;
823    if (ptr->pre_zero) {
824      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
825      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
826      end_row -= ptr->cur_start_row;
827      while (undef_row < end_row) {
828        jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
829        undef_row++;
830      }
831    } else {
832      if (! writable)           /* reader looking at undefined data */
833        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
834    }
835  }
836  /* Flag the buffer dirty if caller will write in it */
837  if (writable)
838    ptr->dirty = TRUE;
839  /* Return address of proper part of the buffer */
840  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
841}
842
843
844METHODDEF(JBLOCKARRAY)
845access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
846                    JDIMENSION start_row, JDIMENSION num_rows,
847                    boolean writable)
848/* Access the part of a virtual block array starting at start_row */
849/* and extending for num_rows rows.  writable is true if  */
850/* caller intends to modify the accessed area. */
851{
852  JDIMENSION end_row = start_row + num_rows;
853  JDIMENSION undef_row;
854
855  /* debugging check */
856  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
857      ptr->mem_buffer == NULL)
858    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
859
860  /* Make the desired part of the virtual array accessible */
861  if (start_row < ptr->cur_start_row ||
862      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
863    if (! ptr->b_s_open)
864      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
865    /* Flush old buffer contents if necessary */
866    if (ptr->dirty) {
867      do_barray_io(cinfo, ptr, TRUE);
868      ptr->dirty = FALSE;
869    }
870    /* Decide what part of virtual array to access.
871     * Algorithm: if target address > current window, assume forward scan,
872     * load starting at target address.  If target address < current window,
873     * assume backward scan, load so that target area is top of window.
874     * Note that when switching from forward write to forward read, will have
875     * start_row = 0, so the limiting case applies and we load from 0 anyway.
876     */
877    if (start_row > ptr->cur_start_row) {
878      ptr->cur_start_row = start_row;
879    } else {
880      /* use long arithmetic here to avoid overflow & unsigned problems */
881      long ltemp;
882
883      ltemp = (long) end_row - (long) ptr->rows_in_mem;
884      if (ltemp < 0)
885        ltemp = 0;              /* don't fall off front end of file */
886      ptr->cur_start_row = (JDIMENSION) ltemp;
887    }
888    /* Read in the selected part of the array.
889     * During the initial write pass, we will do no actual read
890     * because the selected part is all undefined.
891     */
892    do_barray_io(cinfo, ptr, FALSE);
893  }
894  /* Ensure the accessed part of the array is defined; prezero if needed.
895   * To improve locality of access, we only prezero the part of the array
896   * that the caller is about to access, not the entire in-memory array.
897   */
898  if (ptr->first_undef_row < end_row) {
899    if (ptr->first_undef_row < start_row) {
900      if (writable)             /* writer skipped over a section of array */
901        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
902      undef_row = start_row;    /* but reader is allowed to read ahead */
903    } else {
904      undef_row = ptr->first_undef_row;
905    }
906    if (writable)
907      ptr->first_undef_row = end_row;
908    if (ptr->pre_zero) {
909      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
910      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
911      end_row -= ptr->cur_start_row;
912      while (undef_row < end_row) {
913        jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
914        undef_row++;
915      }
916    } else {
917      if (! writable)           /* reader looking at undefined data */
918        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
919    }
920  }
921  /* Flag the buffer dirty if caller will write in it */
922  if (writable)
923    ptr->dirty = TRUE;
924  /* Return address of proper part of the buffer */
925  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
926}
927
928
929/*
930 * Release all objects belonging to a specified pool.
931 */
932
933METHODDEF(void)
934free_pool (j_common_ptr cinfo, int pool_id)
935{
936  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
937  small_pool_ptr shdr_ptr;
938  large_pool_ptr lhdr_ptr;
939  size_t space_freed;
940
941  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
942    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
943
944#ifdef MEM_STATS
945  if (cinfo->err->trace_level > 1)
946    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
947#endif
948
949  /* If freeing IMAGE pool, close any virtual arrays first */
950  if (pool_id == JPOOL_IMAGE) {
951    jvirt_sarray_ptr sptr;
952    jvirt_barray_ptr bptr;
953
954    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
955      if (sptr->b_s_open) {     /* there may be no backing store */
956        sptr->b_s_open = FALSE; /* prevent recursive close if error */
957        (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
958      }
959    }
960    mem->virt_sarray_list = NULL;
961    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
962      if (bptr->b_s_open) {     /* there may be no backing store */
963        bptr->b_s_open = FALSE; /* prevent recursive close if error */
964        (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
965      }
966    }
967    mem->virt_barray_list = NULL;
968  }
969
970  /* Release large objects */
971  lhdr_ptr = mem->large_list[pool_id];
972  mem->large_list[pool_id] = NULL;
973
974  while (lhdr_ptr != NULL) {
975    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
976    space_freed = lhdr_ptr->hdr.bytes_used +
977                  lhdr_ptr->hdr.bytes_left +
978                  SIZEOF(large_pool_hdr);
979    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
980    mem->total_space_allocated -= space_freed;
981    lhdr_ptr = next_lhdr_ptr;
982  }
983
984  /* Release small objects */
985  shdr_ptr = mem->small_list[pool_id];
986  mem->small_list[pool_id] = NULL;
987
988  while (shdr_ptr != NULL) {
989    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
990    space_freed = shdr_ptr->hdr.bytes_used +
991                  shdr_ptr->hdr.bytes_left +
992                  SIZEOF(small_pool_hdr);
993    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
994    mem->total_space_allocated -= space_freed;
995    shdr_ptr = next_shdr_ptr;
996  }
997}
998
999
1000/*
1001 * Close up shop entirely.
1002 * Note that this cannot be called unless cinfo->mem is non-NULL.
1003 */
1004
1005METHODDEF(void)
1006self_destruct (j_common_ptr cinfo)
1007{
1008  int pool;
1009
1010  /* Close all backing store, release all memory.
1011   * Releasing pools in reverse order might help avoid fragmentation
1012   * with some (brain-damaged) malloc libraries.
1013   */
1014  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1015    free_pool(cinfo, pool);
1016  }
1017
1018  /* Release the memory manager control block too. */
1019  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1020  cinfo->mem = NULL;            /* ensures I will be called only once */
1021
1022  jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1023}
1024
1025
1026/*
1027 * Memory manager initialization.
1028 * When this is called, only the error manager pointer is valid in cinfo!
1029 */
1030
1031GLOBAL(void)
1032jinit_memory_mgr (j_common_ptr cinfo)
1033{
1034  my_mem_ptr mem;
1035  size_t max_to_use;
1036  int pool;
1037  size_t test_mac;
1038
1039  cinfo->mem = NULL;            /* for safety if init fails */
1040
1041  /* Check for configuration errors.
1042   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1043   * doesn't reflect any real hardware alignment requirement.
1044   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1045   * in common if and only if X is a power of 2, ie has only one one-bit.
1046   * Some compilers may give an "unreachable code" warning here; ignore it.
1047   */
1048  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1049    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1050  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1051   * a multiple of SIZEOF(ALIGN_TYPE).
1052   * Again, an "unreachable code" warning may be ignored here.
1053   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1054   */
1055  test_mac = (size_t) MAX_ALLOC_CHUNK;
1056  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1057      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1058    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1059
1060  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1061
1062  /* Attempt to allocate memory manager's control block */
1063  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1064
1065  if (mem == NULL) {
1066    jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1067    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1068  }
1069
1070  /* OK, fill in the method pointers */
1071  mem->pub.alloc_small = alloc_small;
1072  mem->pub.alloc_large = alloc_large;
1073  mem->pub.alloc_sarray = alloc_sarray;
1074  mem->pub.alloc_barray = alloc_barray;
1075  mem->pub.request_virt_sarray = request_virt_sarray;
1076  mem->pub.request_virt_barray = request_virt_barray;
1077  mem->pub.realize_virt_arrays = realize_virt_arrays;
1078  mem->pub.access_virt_sarray = access_virt_sarray;
1079  mem->pub.access_virt_barray = access_virt_barray;
1080  mem->pub.free_pool = free_pool;
1081  mem->pub.self_destruct = self_destruct;
1082
1083  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1084  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1085
1086  /* Initialize working state */
1087  mem->pub.max_memory_to_use = max_to_use;
1088
1089  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1090    mem->small_list[pool] = NULL;
1091    mem->large_list[pool] = NULL;
1092  }
1093  mem->virt_sarray_list = NULL;
1094  mem->virt_barray_list = NULL;
1095
1096  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1097
1098  /* Declare ourselves open for business */
1099  cinfo->mem = & mem->pub;
1100
1101  /* Check for an environment variable JPEGMEM; if found, override the
1102   * default max_memory setting from jpeg_mem_init.  Note that the
1103   * surrounding application may again override this value.
1104   * If your system doesn't support getenv(), define NO_GETENV to disable
1105   * this feature.
1106   */
1107#ifndef NO_GETENV
1108  { char * memenv;
1109
1110    if ((memenv = getenv("JPEGMEM")) != NULL) {
1111      char ch = 'x';
1112      unsigned int mem_max = 0u;
1113
1114      if (sscanf(memenv, "%u%c", &mem_max, &ch) > 0) {
1115        max_to_use = (size_t)mem_max;
1116        if (ch == 'm' || ch == 'M')
1117          max_to_use *= 1000L;
1118        mem->pub.max_memory_to_use = max_to_use * 1000L;
1119      }
1120    }
1121  }
1122#endif
1123
1124}
1125