1/*
2 * reserved comment block
3 * DO NOT REMOVE OR ALTER!
4 */
5/*
6 * jidctred.c
7 *
8 * Copyright (C) 1994-1998, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
11 *
12 * This file contains inverse-DCT routines that produce reduced-size output:
13 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
14 *
15 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
16 * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
17 * with an 8-to-4 step that produces the four averages of two adjacent outputs
18 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
19 * These steps were derived by computing the corresponding values at the end
20 * of the normal LL&M code, then simplifying as much as possible.
21 *
22 * 1x1 is trivial: just take the DC coefficient divided by 8.
23 *
24 * See jidctint.c for additional comments.
25 */
26
27#define JPEG_INTERNALS
28#include "jinclude.h"
29#include "jpeglib.h"
30#include "jdct.h"               /* Private declarations for DCT subsystem */
31
32#ifdef IDCT_SCALING_SUPPORTED
33
34
35/*
36 * This module is specialized to the case DCTSIZE = 8.
37 */
38
39#if DCTSIZE != 8
40  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
41#endif
42
43
44/* Scaling is the same as in jidctint.c. */
45
46#if BITS_IN_JSAMPLE == 8
47#define CONST_BITS  13
48#define PASS1_BITS  2
49#else
50#define CONST_BITS  13
51#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
52#endif
53
54/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
55 * causing a lot of useless floating-point operations at run time.
56 * To get around this we use the following pre-calculated constants.
57 * If you change CONST_BITS you may want to add appropriate values.
58 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
59 */
60
61#if CONST_BITS == 13
62#define FIX_0_211164243  ((INT32)  1730)        /* FIX(0.211164243) */
63#define FIX_0_509795579  ((INT32)  4176)        /* FIX(0.509795579) */
64#define FIX_0_601344887  ((INT32)  4926)        /* FIX(0.601344887) */
65#define FIX_0_720959822  ((INT32)  5906)        /* FIX(0.720959822) */
66#define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
67#define FIX_0_850430095  ((INT32)  6967)        /* FIX(0.850430095) */
68#define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
69#define FIX_1_061594337  ((INT32)  8697)        /* FIX(1.061594337) */
70#define FIX_1_272758580  ((INT32)  10426)       /* FIX(1.272758580) */
71#define FIX_1_451774981  ((INT32)  11893)       /* FIX(1.451774981) */
72#define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
73#define FIX_2_172734803  ((INT32)  17799)       /* FIX(2.172734803) */
74#define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
75#define FIX_3_624509785  ((INT32)  29692)       /* FIX(3.624509785) */
76#else
77#define FIX_0_211164243  FIX(0.211164243)
78#define FIX_0_509795579  FIX(0.509795579)
79#define FIX_0_601344887  FIX(0.601344887)
80#define FIX_0_720959822  FIX(0.720959822)
81#define FIX_0_765366865  FIX(0.765366865)
82#define FIX_0_850430095  FIX(0.850430095)
83#define FIX_0_899976223  FIX(0.899976223)
84#define FIX_1_061594337  FIX(1.061594337)
85#define FIX_1_272758580  FIX(1.272758580)
86#define FIX_1_451774981  FIX(1.451774981)
87#define FIX_1_847759065  FIX(1.847759065)
88#define FIX_2_172734803  FIX(2.172734803)
89#define FIX_2_562915447  FIX(2.562915447)
90#define FIX_3_624509785  FIX(3.624509785)
91#endif
92
93
94/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
95 * For 8-bit samples with the recommended scaling, all the variable
96 * and constant values involved are no more than 16 bits wide, so a
97 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
98 * For 12-bit samples, a full 32-bit multiplication will be needed.
99 */
100
101#if BITS_IN_JSAMPLE == 8
102#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
103#else
104#define MULTIPLY(var,const)  ((var) * (const))
105#endif
106
107
108/* Dequantize a coefficient by multiplying it by the multiplier-table
109 * entry; produce an int result.  In this module, both inputs and result
110 * are 16 bits or less, so either int or short multiply will work.
111 */
112
113#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
114
115
116/*
117 * Perform dequantization and inverse DCT on one block of coefficients,
118 * producing a reduced-size 4x4 output block.
119 */
120
121GLOBAL(void)
122jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
123               JCOEFPTR coef_block,
124               JSAMPARRAY output_buf, JDIMENSION output_col)
125{
126  INT32 tmp0, tmp2, tmp10, tmp12;
127  INT32 z1, z2, z3, z4;
128  JCOEFPTR inptr;
129  ISLOW_MULT_TYPE * quantptr;
130  int * wsptr;
131  JSAMPROW outptr;
132  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
133  int ctr;
134  int workspace[DCTSIZE*4];     /* buffers data between passes */
135  SHIFT_TEMPS
136
137  /* Pass 1: process columns from input, store into work array. */
138
139  inptr = coef_block;
140  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
141  wsptr = workspace;
142  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
143    /* Don't bother to process column 4, because second pass won't use it */
144    if (ctr == DCTSIZE-4)
145      continue;
146    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
147        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
148        inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
149      /* AC terms all zero; we need not examine term 4 for 4x4 output */
150      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
151
152      wsptr[DCTSIZE*0] = dcval;
153      wsptr[DCTSIZE*1] = dcval;
154      wsptr[DCTSIZE*2] = dcval;
155      wsptr[DCTSIZE*3] = dcval;
156
157      continue;
158    }
159
160    /* Even part */
161
162    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
163    tmp0 <<= (CONST_BITS+1);
164
165    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
166    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
167
168    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
169
170    tmp10 = tmp0 + tmp2;
171    tmp12 = tmp0 - tmp2;
172
173    /* Odd part */
174
175    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
176    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
177    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
178    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
179
180    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
181         + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
182         + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
183         + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
184
185    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
186         + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
187         + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
188         + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
189
190    /* Final output stage */
191
192    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
193    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
194    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
195    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
196  }
197
198  /* Pass 2: process 4 rows from work array, store into output array. */
199
200  wsptr = workspace;
201  for (ctr = 0; ctr < 4; ctr++) {
202    outptr = output_buf[ctr] + output_col;
203    /* It's not clear whether a zero row test is worthwhile here ... */
204
205#ifndef NO_ZERO_ROW_TEST
206    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
207        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
208      /* AC terms all zero */
209      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
210                                  & RANGE_MASK];
211
212      outptr[0] = dcval;
213      outptr[1] = dcval;
214      outptr[2] = dcval;
215      outptr[3] = dcval;
216
217      wsptr += DCTSIZE;         /* advance pointer to next row */
218      continue;
219    }
220#endif
221
222    /* Even part */
223
224    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
225
226    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
227         + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
228
229    tmp10 = tmp0 + tmp2;
230    tmp12 = tmp0 - tmp2;
231
232    /* Odd part */
233
234    z1 = (INT32) wsptr[7];
235    z2 = (INT32) wsptr[5];
236    z3 = (INT32) wsptr[3];
237    z4 = (INT32) wsptr[1];
238
239    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
240         + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
241         + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
242         + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
243
244    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
245         + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
246         + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
247         + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
248
249    /* Final output stage */
250
251    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
252                                          CONST_BITS+PASS1_BITS+3+1)
253                            & RANGE_MASK];
254    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
255                                          CONST_BITS+PASS1_BITS+3+1)
256                            & RANGE_MASK];
257    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
258                                          CONST_BITS+PASS1_BITS+3+1)
259                            & RANGE_MASK];
260    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
261                                          CONST_BITS+PASS1_BITS+3+1)
262                            & RANGE_MASK];
263
264    wsptr += DCTSIZE;           /* advance pointer to next row */
265  }
266}
267
268
269/*
270 * Perform dequantization and inverse DCT on one block of coefficients,
271 * producing a reduced-size 2x2 output block.
272 */
273
274GLOBAL(void)
275jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
276               JCOEFPTR coef_block,
277               JSAMPARRAY output_buf, JDIMENSION output_col)
278{
279  INT32 tmp0, tmp10, z1;
280  JCOEFPTR inptr;
281  ISLOW_MULT_TYPE * quantptr;
282  int * wsptr;
283  JSAMPROW outptr;
284  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
285  int ctr;
286  int workspace[DCTSIZE*2];     /* buffers data between passes */
287  SHIFT_TEMPS
288
289  /* Pass 1: process columns from input, store into work array. */
290
291  inptr = coef_block;
292  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
293  wsptr = workspace;
294  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
295    /* Don't bother to process columns 2,4,6 */
296    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
297      continue;
298    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
299        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
300      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
301      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
302
303      wsptr[DCTSIZE*0] = dcval;
304      wsptr[DCTSIZE*1] = dcval;
305
306      continue;
307    }
308
309    /* Even part */
310
311    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
312    tmp10 = z1 << (CONST_BITS+2);
313
314    /* Odd part */
315
316    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
317    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
318    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
319    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
320    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
321    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
322    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
323    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
324
325    /* Final output stage */
326
327    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
328    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
329  }
330
331  /* Pass 2: process 2 rows from work array, store into output array. */
332
333  wsptr = workspace;
334  for (ctr = 0; ctr < 2; ctr++) {
335    outptr = output_buf[ctr] + output_col;
336    /* It's not clear whether a zero row test is worthwhile here ... */
337
338#ifndef NO_ZERO_ROW_TEST
339    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
340      /* AC terms all zero */
341      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
342                                  & RANGE_MASK];
343
344      outptr[0] = dcval;
345      outptr[1] = dcval;
346
347      wsptr += DCTSIZE;         /* advance pointer to next row */
348      continue;
349    }
350#endif
351
352    /* Even part */
353
354    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
355
356    /* Odd part */
357
358    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
359         + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
360         + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
361         + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
362
363    /* Final output stage */
364
365    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
366                                          CONST_BITS+PASS1_BITS+3+2)
367                            & RANGE_MASK];
368    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
369                                          CONST_BITS+PASS1_BITS+3+2)
370                            & RANGE_MASK];
371
372    wsptr += DCTSIZE;           /* advance pointer to next row */
373  }
374}
375
376
377/*
378 * Perform dequantization and inverse DCT on one block of coefficients,
379 * producing a reduced-size 1x1 output block.
380 */
381
382GLOBAL(void)
383jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
384               JCOEFPTR coef_block,
385               JSAMPARRAY output_buf, JDIMENSION output_col)
386{
387  int dcval;
388  ISLOW_MULT_TYPE * quantptr;
389  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
390  SHIFT_TEMPS
391
392  /* We hardly need an inverse DCT routine for this: just take the
393   * average pixel value, which is one-eighth of the DC coefficient.
394   */
395  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
396  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
397  dcval = (int) DESCALE((INT32) dcval, 3);
398
399  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
400}
401
402#endif /* IDCT_SCALING_SUPPORTED */
403