1/*
2 * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package sun.java2d.pisces;
27
28import java.awt.Shape;
29import java.awt.BasicStroke;
30import java.awt.geom.Path2D;
31import java.awt.geom.AffineTransform;
32import java.awt.geom.PathIterator;
33
34import sun.awt.geom.PathConsumer2D;
35import sun.java2d.pipe.Region;
36import sun.java2d.pipe.RenderingEngine;
37import sun.java2d.pipe.AATileGenerator;
38
39public class PiscesRenderingEngine extends RenderingEngine {
40    private static enum NormMode {OFF, ON_NO_AA, ON_WITH_AA}
41
42    /**
43     * Create a widened path as specified by the parameters.
44     * <p>
45     * The specified {@code src} {@link Shape} is widened according
46     * to the specified attribute parameters as per the
47     * {@link BasicStroke} specification.
48     *
49     * @param src the source path to be widened
50     * @param width the width of the widened path as per {@code BasicStroke}
51     * @param caps the end cap decorations as per {@code BasicStroke}
52     * @param join the segment join decorations as per {@code BasicStroke}
53     * @param miterlimit the miter limit as per {@code BasicStroke}
54     * @param dashes the dash length array as per {@code BasicStroke}
55     * @param dashphase the initial dash phase as per {@code BasicStroke}
56     * @return the widened path stored in a new {@code Shape} object
57     * @since 1.7
58     */
59    public Shape createStrokedShape(Shape src,
60                                    float width,
61                                    int caps,
62                                    int join,
63                                    float miterlimit,
64                                    float dashes[],
65                                    float dashphase)
66    {
67        final Path2D p2d = new Path2D.Float();
68
69        strokeTo(src,
70                 null,
71                 width,
72                 NormMode.OFF,
73                 caps,
74                 join,
75                 miterlimit,
76                 dashes,
77                 dashphase,
78                 new PathConsumer2D() {
79                     public void moveTo(float x0, float y0) {
80                         p2d.moveTo(x0, y0);
81                     }
82                     public void lineTo(float x1, float y1) {
83                         p2d.lineTo(x1, y1);
84                     }
85                     public void closePath() {
86                         p2d.closePath();
87                     }
88                     public void pathDone() {}
89                     public void curveTo(float x1, float y1,
90                                         float x2, float y2,
91                                         float x3, float y3) {
92                         p2d.curveTo(x1, y1, x2, y2, x3, y3);
93                     }
94                     public void quadTo(float x1, float y1, float x2, float y2) {
95                         p2d.quadTo(x1, y1, x2, y2);
96                     }
97                     public long getNativeConsumer() {
98                         throw new InternalError("Not using a native peer");
99                     }
100                 });
101        return p2d;
102    }
103
104    /**
105     * Sends the geometry for a widened path as specified by the parameters
106     * to the specified consumer.
107     * <p>
108     * The specified {@code src} {@link Shape} is widened according
109     * to the parameters specified by the {@link BasicStroke} object.
110     * Adjustments are made to the path as appropriate for the
111     * {@link java.awt.RenderingHints#VALUE_STROKE_NORMALIZE} hint if the
112     * {@code normalize} boolean parameter is true.
113     * Adjustments are made to the path as appropriate for the
114     * {@link java.awt.RenderingHints#VALUE_ANTIALIAS_ON} hint if the
115     * {@code antialias} boolean parameter is true.
116     * <p>
117     * The geometry of the widened path is forwarded to the indicated
118     * {@link PathConsumer2D} object as it is calculated.
119     *
120     * @param src the source path to be widened
121     * @param bs the {@code BasicSroke} object specifying the
122     *           decorations to be applied to the widened path
123     * @param normalize indicates whether stroke normalization should
124     *                  be applied
125     * @param antialias indicates whether or not adjustments appropriate
126     *                  to antialiased rendering should be applied
127     * @param consumer the {@code PathConsumer2D} instance to forward
128     *                 the widened geometry to
129     * @since 1.7
130     */
131    public void strokeTo(Shape src,
132                         AffineTransform at,
133                         BasicStroke bs,
134                         boolean thin,
135                         boolean normalize,
136                         boolean antialias,
137                         final PathConsumer2D consumer)
138    {
139        NormMode norm = (normalize) ?
140                ((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA)
141                : NormMode.OFF;
142        strokeTo(src, at, bs, thin, norm, antialias, consumer);
143    }
144
145    void strokeTo(Shape src,
146                  AffineTransform at,
147                  BasicStroke bs,
148                  boolean thin,
149                  NormMode normalize,
150                  boolean antialias,
151                  PathConsumer2D pc2d)
152    {
153        float lw;
154        if (thin) {
155            if (antialias) {
156                lw = userSpaceLineWidth(at, 0.5f);
157            } else {
158                lw = userSpaceLineWidth(at, 1.0f);
159            }
160        } else {
161            lw = bs.getLineWidth();
162        }
163        strokeTo(src,
164                 at,
165                 lw,
166                 normalize,
167                 bs.getEndCap(),
168                 bs.getLineJoin(),
169                 bs.getMiterLimit(),
170                 bs.getDashArray(),
171                 bs.getDashPhase(),
172                 pc2d);
173    }
174
175    private float userSpaceLineWidth(AffineTransform at, float lw) {
176
177        double widthScale;
178
179        if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
180                            AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
181            widthScale = Math.sqrt(at.getDeterminant());
182        } else {
183            /* First calculate the "maximum scale" of this transform. */
184            double A = at.getScaleX();       // m00
185            double C = at.getShearX();       // m01
186            double B = at.getShearY();       // m10
187            double D = at.getScaleY();       // m11
188
189            /*
190             * Given a 2 x 2 affine matrix [ A B ] such that
191             *                             [ C D ]
192             * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
193             * find the maximum magnitude (norm) of the vector v'
194             * with the constraint (x^2 + y^2 = 1).
195             * The equation to maximize is
196             *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
197             * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
198             * Since sqrt is monotonic we can maximize |v'|^2
199             * instead and plug in the substitution y = sqrt(1 - x^2).
200             * Trigonometric equalities can then be used to get
201             * rid of most of the sqrt terms.
202             */
203
204            double EA = A*A + B*B;          // x^2 coefficient
205            double EB = 2*(A*C + B*D);      // xy coefficient
206            double EC = C*C + D*D;          // y^2 coefficient
207
208            /*
209             * There is a lot of calculus omitted here.
210             *
211             * Conceptually, in the interests of understanding the
212             * terms that the calculus produced we can consider
213             * that EA and EC end up providing the lengths along
214             * the major axes and the hypot term ends up being an
215             * adjustment for the additional length along the off-axis
216             * angle of rotated or sheared ellipses as well as an
217             * adjustment for the fact that the equation below
218             * averages the two major axis lengths.  (Notice that
219             * the hypot term contains a part which resolves to the
220             * difference of these two axis lengths in the absence
221             * of rotation.)
222             *
223             * In the calculus, the ratio of the EB and (EA-EC) terms
224             * ends up being the tangent of 2*theta where theta is
225             * the angle that the long axis of the ellipse makes
226             * with the horizontal axis.  Thus, this equation is
227             * calculating the length of the hypotenuse of a triangle
228             * along that axis.
229             */
230
231            double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
232            /* sqrt omitted, compare to squared limits below. */
233            double widthsquared = ((EA + EC + hypot)/2.0);
234
235            widthScale = Math.sqrt(widthsquared);
236        }
237
238        return (float) (lw / widthScale);
239    }
240
241    void strokeTo(Shape src,
242                  AffineTransform at,
243                  float width,
244                  NormMode normalize,
245                  int caps,
246                  int join,
247                  float miterlimit,
248                  float dashes[],
249                  float dashphase,
250                  PathConsumer2D pc2d)
251    {
252        // We use strokerat and outat so that in Stroker and Dasher we can work only
253        // with the pre-transformation coordinates. This will repeat a lot of
254        // computations done in the path iterator, but the alternative is to
255        // work with transformed paths and compute untransformed coordinates
256        // as needed. This would be faster but I do not think the complexity
257        // of working with both untransformed and transformed coordinates in
258        // the same code is worth it.
259        // However, if a path's width is constant after a transformation,
260        // we can skip all this untransforming.
261
262        // If normalization is off we save some transformations by not
263        // transforming the input to pisces. Instead, we apply the
264        // transformation after the path processing has been done.
265        // We can't do this if normalization is on, because it isn't a good
266        // idea to normalize before the transformation is applied.
267        AffineTransform strokerat = null;
268        AffineTransform outat = null;
269
270        PathIterator pi = null;
271
272        if (at != null && !at.isIdentity()) {
273            final double a = at.getScaleX();
274            final double b = at.getShearX();
275            final double c = at.getShearY();
276            final double d = at.getScaleY();
277            final double det = a * d - c * b;
278            if (Math.abs(det) <= 2 * Float.MIN_VALUE) {
279                // this rendering engine takes one dimensional curves and turns
280                // them into 2D shapes by giving them width.
281                // However, if everything is to be passed through a singular
282                // transformation, these 2D shapes will be squashed down to 1D
283                // again so, nothing can be drawn.
284
285                // Every path needs an initial moveTo and a pathDone. If these
286                // are not there this causes a SIGSEGV in libawt.so (at the time
287                // of writing of this comment (September 16, 2010)). Actually,
288                // I am not sure if the moveTo is necessary to avoid the SIGSEGV
289                // but the pathDone is definitely needed.
290                pc2d.moveTo(0, 0);
291                pc2d.pathDone();
292                return;
293            }
294
295            // If the transform is a constant multiple of an orthogonal transformation
296            // then every length is just multiplied by a constant, so we just
297            // need to transform input paths to stroker and tell stroker
298            // the scaled width. This condition is satisfied if
299            // a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we
300            // leave a bit of room for error.
301            if (nearZero(a*b + c*d, 2) && nearZero(a*a+c*c - (b*b+d*d), 2)) {
302                double scale = Math.sqrt(a*a + c*c);
303                if (dashes != null) {
304                    dashes = java.util.Arrays.copyOf(dashes, dashes.length);
305                    for (int i = 0; i < dashes.length; i++) {
306                        dashes[i] = (float)(scale * dashes[i]);
307                    }
308                    dashphase = (float)(scale * dashphase);
309                }
310                width = (float)(scale * width);
311                pi = src.getPathIterator(at);
312                if (normalize != NormMode.OFF) {
313                    pi = new NormalizingPathIterator(pi, normalize);
314                }
315                // by now strokerat == null && outat == null. Input paths to
316                // stroker (and maybe dasher) will have the full transform at
317                // applied to them and nothing will happen to the output paths.
318            } else {
319                if (normalize != NormMode.OFF) {
320                    strokerat = at;
321                    pi = src.getPathIterator(at);
322                    pi = new NormalizingPathIterator(pi, normalize);
323                    // by now strokerat == at && outat == null. Input paths to
324                    // stroker (and maybe dasher) will have the full transform at
325                    // applied to them, then they will be normalized, and then
326                    // the inverse of *only the non translation part of at* will
327                    // be applied to the normalized paths. This won't cause problems
328                    // in stroker, because, suppose at = T*A, where T is just the
329                    // translation part of at, and A is the rest. T*A has already
330                    // been applied to Stroker/Dasher's input. Then Ainv will be
331                    // applied. Ainv*T*A is not equal to T, but it is a translation,
332                    // which means that none of stroker's assumptions about its
333                    // input will be violated. After all this, A will be applied
334                    // to stroker's output.
335                } else {
336                    outat = at;
337                    pi = src.getPathIterator(null);
338                    // outat == at && strokerat == null. This is because if no
339                    // normalization is done, we can just apply all our
340                    // transformations to stroker's output.
341                }
342            }
343        } else {
344            // either at is null or it's the identity. In either case
345            // we don't transform the path.
346            pi = src.getPathIterator(null);
347            if (normalize != NormMode.OFF) {
348                pi = new NormalizingPathIterator(pi, normalize);
349            }
350        }
351
352        // by now, at least one of outat and strokerat will be null. Unless at is not
353        // a constant multiple of an orthogonal transformation, they will both be
354        // null. In other cases, outat == at if normalization is off, and if
355        // normalization is on, strokerat == at.
356        pc2d = TransformingPathConsumer2D.transformConsumer(pc2d, outat);
357        pc2d = TransformingPathConsumer2D.deltaTransformConsumer(pc2d, strokerat);
358        pc2d = new Stroker(pc2d, width, caps, join, miterlimit);
359        if (dashes != null) {
360            pc2d = new Dasher(pc2d, dashes, dashphase);
361        }
362        pc2d = TransformingPathConsumer2D.inverseDeltaTransformConsumer(pc2d, strokerat);
363        pathTo(pi, pc2d);
364    }
365
366    private static boolean nearZero(double num, int nulps) {
367        return Math.abs(num) < nulps * Math.ulp(num);
368    }
369
370    private static class NormalizingPathIterator implements PathIterator {
371
372        private final PathIterator src;
373
374        // the adjustment applied to the current position.
375        private float curx_adjust, cury_adjust;
376        // the adjustment applied to the last moveTo position.
377        private float movx_adjust, movy_adjust;
378
379        // constants used in normalization computations
380        private final float lval, rval;
381
382        NormalizingPathIterator(PathIterator src, NormMode mode) {
383            this.src = src;
384            switch (mode) {
385            case ON_NO_AA:
386                // round to nearest (0.25, 0.25) pixel
387                lval = rval = 0.25f;
388                break;
389            case ON_WITH_AA:
390                // round to nearest pixel center
391                lval = 0f;
392                rval = 0.5f;
393                break;
394            case OFF:
395                throw new InternalError("A NormalizingPathIterator should " +
396                         "not be created if no normalization is being done");
397            default:
398                throw new InternalError("Unrecognized normalization mode");
399            }
400        }
401
402        public int currentSegment(float[] coords) {
403            int type = src.currentSegment(coords);
404
405            int lastCoord;
406            switch(type) {
407            case PathIterator.SEG_CUBICTO:
408                lastCoord = 4;
409                break;
410            case PathIterator.SEG_QUADTO:
411                lastCoord = 2;
412                break;
413            case PathIterator.SEG_LINETO:
414            case PathIterator.SEG_MOVETO:
415                lastCoord = 0;
416                break;
417            case PathIterator.SEG_CLOSE:
418                // we don't want to deal with this case later. We just exit now
419                curx_adjust = movx_adjust;
420                cury_adjust = movy_adjust;
421                return type;
422            default:
423                throw new InternalError("Unrecognized curve type");
424            }
425
426            // normalize endpoint
427            float x_adjust = (float)Math.floor(coords[lastCoord] + lval) +
428                         rval - coords[lastCoord];
429            float y_adjust = (float)Math.floor(coords[lastCoord+1] + lval) +
430                         rval - coords[lastCoord + 1];
431
432            coords[lastCoord    ] += x_adjust;
433            coords[lastCoord + 1] += y_adjust;
434
435            // now that the end points are done, normalize the control points
436            switch(type) {
437            case PathIterator.SEG_CUBICTO:
438                coords[0] += curx_adjust;
439                coords[1] += cury_adjust;
440                coords[2] += x_adjust;
441                coords[3] += y_adjust;
442                break;
443            case PathIterator.SEG_QUADTO:
444                coords[0] += (curx_adjust + x_adjust) / 2;
445                coords[1] += (cury_adjust + y_adjust) / 2;
446                break;
447            case PathIterator.SEG_LINETO:
448                break;
449            case PathIterator.SEG_MOVETO:
450                movx_adjust = x_adjust;
451                movy_adjust = y_adjust;
452                break;
453            case PathIterator.SEG_CLOSE:
454                throw new InternalError("This should be handled earlier.");
455            }
456            curx_adjust = x_adjust;
457            cury_adjust = y_adjust;
458            return type;
459        }
460
461        public int currentSegment(double[] coords) {
462            float[] tmp = new float[6];
463            int type = this.currentSegment(tmp);
464            for (int i = 0; i < 6; i++) {
465                coords[i] = tmp[i];
466            }
467            return type;
468        }
469
470        public int getWindingRule() {
471            return src.getWindingRule();
472        }
473
474        public boolean isDone() {
475            return src.isDone();
476        }
477
478        public void next() {
479            src.next();
480        }
481    }
482
483    static void pathTo(PathIterator pi, PathConsumer2D pc2d) {
484        RenderingEngine.feedConsumer(pi, pc2d);
485        pc2d.pathDone();
486    }
487
488    /**
489     * Construct an antialiased tile generator for the given shape with
490     * the given rendering attributes and store the bounds of the tile
491     * iteration in the bbox parameter.
492     * The {@code at} parameter specifies a transform that should affect
493     * both the shape and the {@code BasicStroke} attributes.
494     * The {@code clip} parameter specifies the current clip in effect
495     * in device coordinates and can be used to prune the data for the
496     * operation, but the renderer is not required to perform any
497     * clipping.
498     * If the {@code BasicStroke} parameter is null then the shape
499     * should be filled as is, otherwise the attributes of the
500     * {@code BasicStroke} should be used to specify a draw operation.
501     * The {@code thin} parameter indicates whether or not the
502     * transformed {@code BasicStroke} represents coordinates smaller
503     * than the minimum resolution of the antialiasing rasterizer as
504     * specified by the {@code getMinimumAAPenWidth()} method.
505     * <p>
506     * Upon returning, this method will fill the {@code bbox} parameter
507     * with 4 values indicating the bounds of the iteration of the
508     * tile generator.
509     * The iteration order of the tiles will be as specified by the
510     * pseudo-code:
511     * <pre>
512     *     for (y = bbox[1]; y < bbox[3]; y += tileheight) {
513     *         for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
514     *         }
515     *     }
516     * </pre>
517     * If there is no output to be rendered, this method may return
518     * null.
519     *
520     * @param s the shape to be rendered (fill or draw)
521     * @param at the transform to be applied to the shape and the
522     *           stroke attributes
523     * @param clip the current clip in effect in device coordinates
524     * @param bs if non-null, a {@code BasicStroke} whose attributes
525     *           should be applied to this operation
526     * @param thin true if the transformed stroke attributes are smaller
527     *             than the minimum dropout pen width
528     * @param normalize true if the {@code VALUE_STROKE_NORMALIZE}
529     *                  {@code RenderingHint} is in effect
530     * @param bbox returns the bounds of the iteration
531     * @return the {@code AATileGenerator} instance to be consulted
532     *         for tile coverages, or null if there is no output to render
533     * @since 1.7
534     */
535    public AATileGenerator getAATileGenerator(Shape s,
536                                              AffineTransform at,
537                                              Region clip,
538                                              BasicStroke bs,
539                                              boolean thin,
540                                              boolean normalize,
541                                              int bbox[])
542    {
543        Renderer r;
544        NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF;
545        if (bs == null) {
546            PathIterator pi;
547            if (normalize) {
548                pi = new NormalizingPathIterator(s.getPathIterator(at), norm);
549            } else {
550                pi = s.getPathIterator(at);
551            }
552            r = new Renderer(3, 3,
553                             clip.getLoX(), clip.getLoY(),
554                             clip.getWidth(), clip.getHeight(),
555                             pi.getWindingRule());
556            pathTo(pi, r);
557        } else {
558            r = new Renderer(3, 3,
559                             clip.getLoX(), clip.getLoY(),
560                             clip.getWidth(), clip.getHeight(),
561                             PathIterator.WIND_NON_ZERO);
562            strokeTo(s, at, bs, thin, norm, true, r);
563        }
564        r.endRendering();
565        PiscesTileGenerator ptg = new PiscesTileGenerator(r, r.MAX_AA_ALPHA);
566        ptg.getBbox(bbox);
567        return ptg;
568    }
569
570    public AATileGenerator getAATileGenerator(double x, double y,
571                                              double dx1, double dy1,
572                                              double dx2, double dy2,
573                                              double lw1, double lw2,
574                                              Region clip,
575                                              int bbox[])
576    {
577        // REMIND: Deal with large coordinates!
578        double ldx1, ldy1, ldx2, ldy2;
579        boolean innerpgram = (lw1 > 0 && lw2 > 0);
580
581        if (innerpgram) {
582            ldx1 = dx1 * lw1;
583            ldy1 = dy1 * lw1;
584            ldx2 = dx2 * lw2;
585            ldy2 = dy2 * lw2;
586            x -= (ldx1 + ldx2) / 2.0;
587            y -= (ldy1 + ldy2) / 2.0;
588            dx1 += ldx1;
589            dy1 += ldy1;
590            dx2 += ldx2;
591            dy2 += ldy2;
592            if (lw1 > 1 && lw2 > 1) {
593                // Inner parallelogram was entirely consumed by stroke...
594                innerpgram = false;
595            }
596        } else {
597            ldx1 = ldy1 = ldx2 = ldy2 = 0;
598        }
599
600        Renderer r = new Renderer(3, 3,
601                clip.getLoX(), clip.getLoY(),
602                clip.getWidth(), clip.getHeight(),
603                PathIterator.WIND_EVEN_ODD);
604
605        r.moveTo((float) x, (float) y);
606        r.lineTo((float) (x+dx1), (float) (y+dy1));
607        r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
608        r.lineTo((float) (x+dx2), (float) (y+dy2));
609        r.closePath();
610
611        if (innerpgram) {
612            x += ldx1 + ldx2;
613            y += ldy1 + ldy2;
614            dx1 -= 2.0 * ldx1;
615            dy1 -= 2.0 * ldy1;
616            dx2 -= 2.0 * ldx2;
617            dy2 -= 2.0 * ldy2;
618            r.moveTo((float) x, (float) y);
619            r.lineTo((float) (x+dx1), (float) (y+dy1));
620            r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
621            r.lineTo((float) (x+dx2), (float) (y+dy2));
622            r.closePath();
623        }
624
625        r.pathDone();
626
627        r.endRendering();
628        PiscesTileGenerator ptg = new PiscesTileGenerator(r, r.MAX_AA_ALPHA);
629        ptg.getBbox(bbox);
630        return ptg;
631    }
632
633    /**
634     * Returns the minimum pen width that the antialiasing rasterizer
635     * can represent without dropouts occurring.
636     * @since 1.7
637     */
638    public float getMinimumAAPenSize() {
639        return 0.5f;
640    }
641
642    static {
643        if (PathIterator.WIND_NON_ZERO != Renderer.WIND_NON_ZERO ||
644            PathIterator.WIND_EVEN_ODD != Renderer.WIND_EVEN_ODD ||
645            BasicStroke.JOIN_MITER != Stroker.JOIN_MITER ||
646            BasicStroke.JOIN_ROUND != Stroker.JOIN_ROUND ||
647            BasicStroke.JOIN_BEVEL != Stroker.JOIN_BEVEL ||
648            BasicStroke.CAP_BUTT != Stroker.CAP_BUTT ||
649            BasicStroke.CAP_ROUND != Stroker.CAP_ROUND ||
650            BasicStroke.CAP_SQUARE != Stroker.CAP_SQUARE)
651        {
652            throw new InternalError("mismatched renderer constants");
653        }
654    }
655}
656
657