1/*
2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package sun.java2d.marlin;
27
28import sun.awt.geom.PathConsumer2D;
29import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
30import jdk.internal.misc.Unsafe;
31
32final class Renderer implements PathConsumer2D, MarlinRenderer {
33
34    static final boolean DISABLE_RENDER = false;
35
36    static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
37    static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
38
39    private static final int ALL_BUT_LSB = 0xFFFFFFFE;
40    private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
41
42    private static final double POWER_2_TO_32 = 0x1.0p32d;
43
44    // use float to make tosubpix methods faster (no int to float conversion)
45    static final float SUBPIXEL_SCALE_X = (float) SUBPIXEL_POSITIONS_X;
46    static final float SUBPIXEL_SCALE_Y = (float) SUBPIXEL_POSITIONS_Y;
47    static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
48    static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
49
50    // number of subpixels corresponding to a tile line
51    private static final int SUBPIXEL_TILE
52        = TILE_H << SUBPIXEL_LG_POSITIONS_Y;
53
54    // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
55    static final int INITIAL_BUCKET_ARRAY
56        = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
57
58    // crossing capacity = edges count / 4 ~ 1024
59    static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 2;
60
61    public static final int WIND_EVEN_ODD = 0;
62    public static final int WIND_NON_ZERO = 1;
63
64    // common to all types of input path segments.
65    // OFFSET as bytes
66    // only integer values:
67    public static final long OFF_CURX_OR  = 0;
68    public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
69    public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
70    public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
71    public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
72    public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
73
74    // size of one edge in bytes
75    public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
76
77    // curve break into lines
78    // cubic error in subpixels to decrement step
79    private static final float CUB_DEC_ERR_SUBPIX
80        = MarlinProperties.getCubicDecD2() * (NORM_SUBPIXELS / 8.0f); // 1 pixel
81    // cubic error in subpixels to increment step
82    private static final float CUB_INC_ERR_SUBPIX
83        = MarlinProperties.getCubicIncD1() * (NORM_SUBPIXELS / 8.0f); // 0.4 pixel
84
85    // TestNonAARasterization (JDK-8170879): cubics
86    // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
87
88    // cubic bind length to decrement step
89    public static final float CUB_DEC_BND
90        = 8.0f * CUB_DEC_ERR_SUBPIX;
91    // cubic bind length to increment step
92    public static final float CUB_INC_BND
93        = 8.0f * CUB_INC_ERR_SUBPIX;
94
95    // cubic countlg
96    public static final int CUB_COUNT_LG = 2;
97    // cubic count = 2^countlg
98    private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
99    // cubic count^2 = 4^countlg
100    private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
101    // cubic count^3 = 8^countlg
102    private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
103    // cubic dt = 1 / count
104    private static final float CUB_INV_COUNT = 1.0f / CUB_COUNT;
105    // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
106    private static final float CUB_INV_COUNT_2 = 1.0f / CUB_COUNT_2;
107    // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
108    private static final float CUB_INV_COUNT_3 = 1.0f / CUB_COUNT_3;
109
110    // quad break into lines
111    // quadratic error in subpixels
112    private static final float QUAD_DEC_ERR_SUBPIX
113        = MarlinProperties.getQuadDecD2() * (NORM_SUBPIXELS / 8.0f); // 0.5 pixel
114
115    // TestNonAARasterization (JDK-8170879): quads
116    // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
117
118    // quadratic bind length to decrement step
119    public static final float QUAD_DEC_BND
120        = 8.0f * QUAD_DEC_ERR_SUBPIX;
121
122//////////////////////////////////////////////////////////////////////////////
123//  SCAN LINE
124//////////////////////////////////////////////////////////////////////////////
125    // crossings ie subpixel edge x coordinates
126    private int[] crossings;
127    // auxiliary storage for crossings (merge sort)
128    private int[] aux_crossings;
129
130    // indices into the segment pointer lists. They indicate the "active"
131    // sublist in the segment lists (the portion of the list that contains
132    // all the segments that cross the next scan line).
133    private int edgeCount;
134    private int[] edgePtrs;
135    // auxiliary storage for edge pointers (merge sort)
136    private int[] aux_edgePtrs;
137
138    // max used for both edgePtrs and crossings (stats only)
139    private int activeEdgeMaxUsed;
140
141    // crossings ref (dirty)
142    private final IntArrayCache.Reference crossings_ref;
143    // edgePtrs ref (dirty)
144    private final IntArrayCache.Reference edgePtrs_ref;
145    // merge sort initial arrays (large enough to satisfy most usages) (1024)
146    // aux_crossings ref (dirty)
147    private final IntArrayCache.Reference aux_crossings_ref;
148    // aux_edgePtrs ref (dirty)
149    private final IntArrayCache.Reference aux_edgePtrs_ref;
150
151//////////////////////////////////////////////////////////////////////////////
152//  EDGE LIST
153//////////////////////////////////////////////////////////////////////////////
154    private int edgeMinY = Integer.MAX_VALUE;
155    private int edgeMaxY = Integer.MIN_VALUE;
156    private float edgeMinX = Float.POSITIVE_INFINITY;
157    private float edgeMaxX = Float.NEGATIVE_INFINITY;
158
159    // edges [ints] stored in off-heap memory
160    private final OffHeapArray edges;
161
162    private int[] edgeBuckets;
163    private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
164    // used range for edgeBuckets / edgeBucketCounts
165    private int buckets_minY;
166    private int buckets_maxY;
167
168    // edgeBuckets ref (clean)
169    private final IntArrayCache.Reference edgeBuckets_ref;
170    // edgeBucketCounts ref (clean)
171    private final IntArrayCache.Reference edgeBucketCounts_ref;
172
173    // Flattens using adaptive forward differencing. This only carries out
174    // one iteration of the AFD loop. All it does is update AFD variables (i.e.
175    // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
176    private void quadBreakIntoLinesAndAdd(float x0, float y0,
177                                          final Curve c,
178                                          final float x2, final float y2)
179    {
180        int count = 1; // dt = 1 / count
181
182        // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
183        float maxDD = Math.abs(c.dbx) + Math.abs(c.dby);
184
185        final float _DEC_BND = QUAD_DEC_BND;
186
187        while (maxDD >= _DEC_BND) {
188            // divide step by half:
189            maxDD /= 4.0f; // error divided by 2^2 = 4
190
191            count <<= 1;
192            if (DO_STATS) {
193                rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
194            }
195        }
196
197        int nL = 0; // line count
198        if (count > 1) {
199            final float icount = 1.0f / count; // dt
200            final float icount2 = icount * icount; // dt^2
201
202            final float ddx = c.dbx * icount2;
203            final float ddy = c.dby * icount2;
204            float dx = c.bx * icount2 + c.cx * icount;
205            float dy = c.by * icount2 + c.cy * icount;
206
207            float x1, y1;
208
209            while (--count > 0) {
210                x1 = x0 + dx;
211                dx += ddx;
212                y1 = y0 + dy;
213                dy += ddy;
214
215                addLine(x0, y0, x1, y1);
216
217                if (DO_STATS) { nL++; }
218                x0 = x1;
219                y0 = y1;
220            }
221        }
222        addLine(x0, y0, x2, y2);
223
224        if (DO_STATS) {
225            rdrCtx.stats.stat_rdr_quadBreak.add(nL + 1);
226        }
227    }
228
229    // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
230    // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
231    // numerical errors, and our callers already have the exact values.
232    // Another alternative would be to pass all the control points, and call
233    // c.set here, but then too many numbers are passed around.
234    private void curveBreakIntoLinesAndAdd(float x0, float y0,
235                                           final Curve c,
236                                           final float x3, final float y3)
237    {
238        int count           = CUB_COUNT;
239        final float icount  = CUB_INV_COUNT;   // dt
240        final float icount2 = CUB_INV_COUNT_2; // dt^2
241        final float icount3 = CUB_INV_COUNT_3; // dt^3
242
243        // the dx and dy refer to forward differencing variables, not the last
244        // coefficients of the "points" polynomial
245        float dddx, dddy, ddx, ddy, dx, dy;
246        dddx = 2.0f * c.dax * icount3;
247        dddy = 2.0f * c.day * icount3;
248        ddx = dddx + c.dbx * icount2;
249        ddy = dddy + c.dby * icount2;
250        dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
251        dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
252
253        // we use x0, y0 to walk the line
254        float x1 = x0, y1 = y0;
255        int nL = 0; // line count
256
257        final float _DEC_BND = CUB_DEC_BND;
258        final float _INC_BND = CUB_INC_BND;
259
260        while (count > 0) {
261            // divide step by half:
262            while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) {
263                dddx /= 8.0f;
264                dddy /= 8.0f;
265                ddx = ddx / 4.0f - dddx;
266                ddy = ddy / 4.0f - dddy;
267                dx = (dx - ddx) / 2.0f;
268                dy = (dy - ddy) / 2.0f;
269
270                count <<= 1;
271                if (DO_STATS) {
272                    rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
273                }
274            }
275
276            // double step:
277            // can only do this on even "count" values, because we must divide count by 2
278            while (count % 2 == 0
279                   && Math.abs(dx) + Math.abs(dy) <= _INC_BND)
280            {
281                dx = 2.0f * dx + ddx;
282                dy = 2.0f * dy + ddy;
283                ddx = 4.0f * (ddx + dddx);
284                ddy = 4.0f * (ddy + dddy);
285                dddx *= 8.0f;
286                dddy *= 8.0f;
287
288                count >>= 1;
289                if (DO_STATS) {
290                    rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
291                }
292            }
293            if (--count > 0) {
294                x1 += dx;
295                dx += ddx;
296                ddx += dddx;
297                y1 += dy;
298                dy += ddy;
299                ddy += dddy;
300            } else {
301                x1 = x3;
302                y1 = y3;
303            }
304
305            addLine(x0, y0, x1, y1);
306
307            if (DO_STATS) { nL++; }
308            x0 = x1;
309            y0 = y1;
310        }
311        if (DO_STATS) {
312            rdrCtx.stats.stat_rdr_curveBreak.add(nL);
313        }
314    }
315
316    private void addLine(float x1, float y1, float x2, float y2) {
317        if (DO_MONITORS) {
318            rdrCtx.stats.mon_rdr_addLine.start();
319        }
320        if (DO_STATS) {
321            rdrCtx.stats.stat_rdr_addLine.add(1);
322        }
323        int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
324        if (y2 < y1) {
325            or = 0;
326            float tmp = y2;
327            y2 = y1;
328            y1 = tmp;
329            tmp = x2;
330            x2 = x1;
331            x1 = tmp;
332        }
333
334        // convert subpixel coordinates [float] into pixel positions [int]
335
336        // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
337        // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
338        // ceil(y1) or ceil(y2)
339        // upper integer (inclusive)
340        final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
341
342        // note: use boundsMaxY (last Y exclusive) to compute correct coverage
343        // upper integer (exclusive)
344        final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
345
346        /* skip horizontal lines in pixel space and clip edges
347           out of y range [boundsMinY; boundsMaxY] */
348        if (firstCrossing >= lastCrossing) {
349            if (DO_MONITORS) {
350                rdrCtx.stats.mon_rdr_addLine.stop();
351            }
352            if (DO_STATS) {
353                rdrCtx.stats.stat_rdr_addLine_skip.add(1);
354            }
355            return;
356        }
357
358        // edge min/max X/Y are in subpixel space (half-open interval):
359        // note: Use integer crossings to ensure consistent range within
360        // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
361        if (firstCrossing < edgeMinY) {
362            edgeMinY = firstCrossing;
363        }
364        if (lastCrossing > edgeMaxY) {
365            edgeMaxY = lastCrossing;
366        }
367
368        // Use double-precision for improved accuracy:
369        final double x1d   = x1;
370        final double y1d   = y1;
371        final double slope = (x1d - x2) / (y1d - y2);
372
373        if (slope >= 0.0d) { // <==> x1 < x2
374            if (x1 < edgeMinX) {
375                edgeMinX = x1;
376            }
377            if (x2 > edgeMaxX) {
378                edgeMaxX = x2;
379            }
380        } else {
381            if (x2 < edgeMinX) {
382                edgeMinX = x2;
383            }
384            if (x1 > edgeMaxX) {
385                edgeMaxX = x1;
386            }
387        }
388
389        // local variables for performance:
390        final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
391
392        final OffHeapArray _edges = edges;
393
394        // get free pointer (ie length in bytes)
395        final int edgePtr = _edges.used;
396
397        // use substraction to avoid integer overflow:
398        if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
399            // suppose _edges.length > _SIZEOF_EDGE_BYTES
400            // so doubling size is enough to add needed bytes
401            // note: throw IOOB if neededSize > 2Gb:
402            final long edgeNewSize = ArrayCacheConst.getNewLargeSize(
403                                        _edges.length,
404                                        edgePtr + _SIZEOF_EDGE_BYTES);
405
406            if (DO_STATS) {
407                rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
408            }
409            _edges.resize(edgeNewSize);
410        }
411
412
413        final Unsafe _unsafe = OffHeapArray.UNSAFE;
414        final long SIZE_INT = 4L;
415        long addr   = _edges.address + edgePtr;
416
417        // The x value must be bumped up to its position at the next HPC we will evaluate.
418        // "firstcrossing" is the (sub)pixel number where the next crossing occurs
419        // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
420        // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
421        // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
422        // y1 = trueY - 0.5
423        // trueY = y1 + 0.5
424        // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
425        //                             = firstcrossing - y1
426        // The x coordinate at that HPC is then:
427        // x1_intercept = x1 + (firstcrossing - y1) * slope
428        // The next VPC is then given by:
429        // VPC index = ceil(x1_intercept - 0.5), or alternately
430        // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
431        // epsilon is hard to pin down in floating point, but easy in fixed point, so if
432        // we convert to fixed point then these operations get easier:
433        // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
434        // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
435        //                 = fixed_floor(x1_fixed + 2^31 - 1)
436        //                 = fixed_floor(x1_fixed + 0x7FFFFFFF)
437        // and error       = fixed_fract(x1_fixed + 0x7FFFFFFF)
438        final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
439
440        // inlined scalb(x1_intercept, 32):
441        final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
442                                     + 0x7FFFFFFFL;
443        // curx:
444        // last bit corresponds to the orientation
445        _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
446        addr += SIZE_INT;
447        _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
448        addr += SIZE_INT;
449
450        // inlined scalb(slope, 32):
451        final long slope_fixed = (long) (POWER_2_TO_32 * slope);
452
453        // last bit set to 0 to keep orientation:
454        _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
455        addr += SIZE_INT;
456        _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
457        addr += SIZE_INT;
458
459        final int[] _edgeBuckets      = edgeBuckets;
460        final int[] _edgeBucketCounts = edgeBucketCounts;
461
462        final int _boundsMinY = boundsMinY;
463
464        // each bucket is a linked list. this method adds ptr to the
465        // start of the "bucket"th linked list.
466        final int bucketIdx = firstCrossing - _boundsMinY;
467
468        // pointer from bucket
469        _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
470        addr += SIZE_INT;
471        // y max (exclusive)
472        _unsafe.putInt(addr,  lastCrossing);
473
474        // Update buckets:
475        // directly the edge struct "pointer"
476        _edgeBuckets[bucketIdx]       = edgePtr;
477        _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
478        // last bit means edge end
479        _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
480
481        // update free pointer (ie length in bytes)
482        _edges.used += _SIZEOF_EDGE_BYTES;
483
484        if (DO_MONITORS) {
485            rdrCtx.stats.mon_rdr_addLine.stop();
486        }
487    }
488
489// END EDGE LIST
490//////////////////////////////////////////////////////////////////////////////
491
492    // Cache to store RLE-encoded coverage mask of the current primitive
493    final MarlinCache cache;
494
495    // Bounds of the drawing region, at subpixel precision.
496    private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
497
498    // Current winding rule
499    private int windingRule;
500
501    // Current drawing position, i.e., final point of last segment
502    private float x0, y0;
503
504    // Position of most recent 'moveTo' command
505    private float sx0, sy0;
506
507    // per-thread renderer context
508    final RendererContext rdrCtx;
509    // dirty curve
510    private final Curve curve;
511
512    // clean alpha array (zero filled)
513    private int[] alphaLine;
514
515    // alphaLine ref (clean)
516    private final IntArrayCache.Reference alphaLine_ref;
517
518    private boolean enableBlkFlags = false;
519    private boolean prevUseBlkFlags = false;
520
521    /* block flags (0|1) */
522    private int[] blkFlags;
523
524    // blkFlags ref (clean)
525    private final IntArrayCache.Reference blkFlags_ref;
526
527    Renderer(final RendererContext rdrCtx) {
528        this.rdrCtx = rdrCtx;
529
530        this.edges = rdrCtx.newOffHeapArray(INITIAL_EDGES_CAPACITY); // 96K
531
532        this.curve = rdrCtx.curve;
533
534        edgeBuckets_ref      = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
535        edgeBucketCounts_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
536
537        edgeBuckets      = edgeBuckets_ref.initial;
538        edgeBucketCounts = edgeBucketCounts_ref.initial;
539
540        // 2048 (pixelsize) pixel large
541        alphaLine_ref = rdrCtx.newCleanIntArrayRef(INITIAL_AA_ARRAY); // 8K
542        alphaLine     = alphaLine_ref.initial;
543
544        this.cache = rdrCtx.cache;
545
546        crossings_ref     = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
547        aux_crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
548        edgePtrs_ref      = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
549        aux_edgePtrs_ref  = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
550
551        crossings     = crossings_ref.initial;
552        aux_crossings = aux_crossings_ref.initial;
553        edgePtrs      = edgePtrs_ref.initial;
554        aux_edgePtrs  = aux_edgePtrs_ref.initial;
555
556        blkFlags_ref = rdrCtx.newCleanIntArrayRef(INITIAL_ARRAY); // 1K = 1 tile line
557        blkFlags     = blkFlags_ref.initial;
558    }
559
560    Renderer init(final int pix_boundsX, final int pix_boundsY,
561                  final int pix_boundsWidth, final int pix_boundsHeight,
562                  final int windingRule)
563    {
564        this.windingRule = windingRule;
565
566        // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
567        this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
568        this.boundsMaxX =
569            (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
570        this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
571        this.boundsMaxY =
572            (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
573
574        if (DO_LOG_BOUNDS) {
575            MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
576                                + boundsMaxX + "[ [" + boundsMinY + " ... "
577                                + boundsMaxY + "[");
578        }
579
580        // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
581        // +1 for edgeBucketCounts
582        final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
583
584        if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
585            if (DO_STATS) {
586                rdrCtx.stats.stat_array_renderer_edgeBuckets
587                    .add(edgeBucketsLength);
588                rdrCtx.stats.stat_array_renderer_edgeBucketCounts
589                    .add(edgeBucketsLength);
590            }
591            edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
592            edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
593        }
594
595        edgeMinY = Integer.MAX_VALUE;
596        edgeMaxY = Integer.MIN_VALUE;
597        edgeMinX = Float.POSITIVE_INFINITY;
598        edgeMaxX = Float.NEGATIVE_INFINITY;
599
600        // reset used mark:
601        edgeCount = 0;
602        activeEdgeMaxUsed = 0;
603        edges.used = 0;
604
605        return this; // fluent API
606    }
607
608    /**
609     * Disposes this renderer and recycle it clean up before reusing this instance
610     */
611    void dispose() {
612        if (DO_STATS) {
613            rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
614            rdrCtx.stats.stat_rdr_edges.add(edges.used);
615            rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
616            rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
617            rdrCtx.stats.totalOffHeap += edges.length;
618        }
619        // Return arrays:
620        crossings = crossings_ref.putArray(crossings);
621        aux_crossings = aux_crossings_ref.putArray(aux_crossings);
622
623        edgePtrs = edgePtrs_ref.putArray(edgePtrs);
624        aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);
625
626        alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled
627        blkFlags  = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled
628
629        if (edgeMinY != Integer.MAX_VALUE) {
630            // if context is maked as DIRTY:
631            if (rdrCtx.dirty) {
632                // may happen if an exception if thrown in the pipeline processing:
633                // clear completely buckets arrays:
634                buckets_minY = 0;
635                buckets_maxY = boundsMaxY - boundsMinY;
636            }
637            // clear only used part
638            edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY,
639                                                                buckets_maxY);
640            edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts,
641                                                             buckets_minY,
642                                                             buckets_maxY + 1);
643        } else {
644            // unused arrays
645            edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
646            edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
647        }
648
649        // At last: resize back off-heap edges to initial size
650        if (edges.length != INITIAL_EDGES_CAPACITY) {
651            // note: may throw OOME:
652            edges.resize(INITIAL_EDGES_CAPACITY);
653        }
654        if (DO_CLEAN_DIRTY) {
655            // Force zero-fill dirty arrays:
656            edges.fill(BYTE_0);
657        }
658        if (DO_MONITORS) {
659            rdrCtx.stats.mon_rdr_endRendering.stop();
660        }
661        // recycle the RendererContext instance
662        MarlinRenderingEngine.returnRendererContext(rdrCtx);
663    }
664
665    private static float tosubpixx(final float pix_x) {
666        return SUBPIXEL_SCALE_X * pix_x;
667    }
668
669    private static float tosubpixy(final float pix_y) {
670        // shift y by -0.5 for fast ceil(y - 0.5):
671        return SUBPIXEL_SCALE_Y * pix_y - 0.5f;
672    }
673
674    @Override
675    public void moveTo(float pix_x0, float pix_y0) {
676        closePath();
677        final float sx = tosubpixx(pix_x0);
678        final float sy = tosubpixy(pix_y0);
679        this.sx0 = sx;
680        this.sy0 = sy;
681        this.x0 = sx;
682        this.y0 = sy;
683    }
684
685    @Override
686    public void lineTo(float pix_x1, float pix_y1) {
687        final float x1 = tosubpixx(pix_x1);
688        final float y1 = tosubpixy(pix_y1);
689        addLine(x0, y0, x1, y1);
690        x0 = x1;
691        y0 = y1;
692    }
693
694    @Override
695    public void curveTo(float x1, float y1,
696                        float x2, float y2,
697                        float x3, float y3)
698    {
699        final float xe = tosubpixx(x3);
700        final float ye = tosubpixy(y3);
701        curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
702                          tosubpixx(x2), tosubpixy(y2), xe, ye);
703        curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
704        x0 = xe;
705        y0 = ye;
706    }
707
708    @Override
709    public void quadTo(float x1, float y1, float x2, float y2) {
710        final float xe = tosubpixx(x2);
711        final float ye = tosubpixy(y2);
712        curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
713        quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
714        x0 = xe;
715        y0 = ye;
716    }
717
718    @Override
719    public void closePath() {
720        addLine(x0, y0, sx0, sy0);
721        x0 = sx0;
722        y0 = sy0;
723    }
724
725    @Override
726    public void pathDone() {
727        closePath();
728    }
729
730    @Override
731    public long getNativeConsumer() {
732        throw new InternalError("Renderer does not use a native consumer.");
733    }
734
735    private void _endRendering(final int ymin, final int ymax) {
736        if (DISABLE_RENDER) {
737            return;
738        }
739
740        // Get X bounds as true pixel boundaries to compute correct pixel coverage:
741        final int bboxx0 = bbox_spminX;
742        final int bboxx1 = bbox_spmaxX;
743
744        final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
745
746        // Useful when processing tile line by tile line
747        final int[] _alpha = alphaLine;
748
749        // local vars (performance):
750        final MarlinCache _cache = cache;
751        final OffHeapArray _edges = edges;
752        final int[] _edgeBuckets = edgeBuckets;
753        final int[] _edgeBucketCounts = edgeBucketCounts;
754
755        int[] _crossings = this.crossings;
756        int[] _edgePtrs  = this.edgePtrs;
757
758        // merge sort auxiliary storage:
759        int[] _aux_crossings = this.aux_crossings;
760        int[] _aux_edgePtrs  = this.aux_edgePtrs;
761
762        // copy constants:
763        final long _OFF_ERROR    = OFF_ERROR;
764        final long _OFF_BUMP_X   = OFF_BUMP_X;
765        final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
766
767        final long _OFF_NEXT     = OFF_NEXT;
768        final long _OFF_YMAX     = OFF_YMAX;
769
770        final int _ALL_BUT_LSB   = ALL_BUT_LSB;
771        final int _ERR_STEP_MAX  = ERR_STEP_MAX;
772
773        // unsafe I/O:
774        final Unsafe _unsafe = OffHeapArray.UNSAFE;
775        final long    addr0  = _edges.address;
776        long addr;
777        final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
778        final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
779        final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
780        final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
781        final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
782
783        final int _MIN_VALUE = Integer.MIN_VALUE;
784        final int _MAX_VALUE = Integer.MAX_VALUE;
785
786        // Now we iterate through the scanlines. We must tell emitRow the coord
787        // of the first non-transparent pixel, so we must keep accumulators for
788        // the first and last pixels of the section of the current pixel row
789        // that we will emit.
790        // We also need to accumulate pix_bbox, but the iterator does it
791        // for us. We will just get the values from it once this loop is done
792        int minX = _MAX_VALUE;
793        int maxX = _MIN_VALUE;
794
795        int y = ymin;
796        int bucket = y - boundsMinY;
797
798        int numCrossings = this.edgeCount;
799        int edgePtrsLen = _edgePtrs.length;
800        int crossingsLen = _crossings.length;
801        int _arrayMaxUsed = activeEdgeMaxUsed;
802        int ptrLen = 0, newCount, ptrEnd;
803
804        int bucketcount, i, j, ecur;
805        int cross, lastCross;
806        int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
807        int pix_x, pix_xmaxm1, pix_xmax;
808
809        int low, high, mid, prevNumCrossings;
810        boolean useBinarySearch;
811
812        final int[] _blkFlags = blkFlags;
813        final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
814        final int _BLK_SIZE = BLOCK_SIZE;
815
816        final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
817
818        // Use block flags if large pixel span and few crossings:
819        // ie mean(distance between crossings) is high
820        boolean useBlkFlags = this.prevUseBlkFlags;
821
822        final int stroking = rdrCtx.stroking;
823
824        int lastY = -1; // last emited row
825
826
827        // Iteration on scanlines
828        for (; y < ymax; y++, bucket++) {
829            // --- from former ScanLineIterator.next()
830            bucketcount = _edgeBucketCounts[bucket];
831
832            // marker on previously sorted edges:
833            prevNumCrossings = numCrossings;
834
835            // bucketCount indicates new edge / edge end:
836            if (bucketcount != 0) {
837                if (DO_STATS) {
838                    rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings);
839                }
840
841                // last bit set to 1 means that edges ends
842                if ((bucketcount & 0x1) != 0) {
843                    // eviction in active edge list
844                    // cache edges[] address + offset
845                    addr = addr0 + _OFF_YMAX;
846
847                    for (i = 0, newCount = 0; i < numCrossings; i++) {
848                        // get the pointer to the edge
849                        ecur = _edgePtrs[i];
850                        // random access so use unsafe:
851                        if (_unsafe.getInt(addr + ecur) > y) {
852                            _edgePtrs[newCount++] = ecur;
853                        }
854                    }
855                    // update marker on sorted edges minus removed edges:
856                    prevNumCrossings = numCrossings = newCount;
857                }
858
859                ptrLen = bucketcount >> 1; // number of new edge
860
861                if (ptrLen != 0) {
862                    if (DO_STATS) {
863                        rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen);
864                        if (ptrLen > 10) {
865                            rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen);
866                        }
867                    }
868                    ptrEnd = numCrossings + ptrLen;
869
870                    if (edgePtrsLen < ptrEnd) {
871                        if (DO_STATS) {
872                            rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd);
873                        }
874                        this.edgePtrs = _edgePtrs
875                            = edgePtrs_ref.widenArray(_edgePtrs, numCrossings,
876                                                      ptrEnd);
877
878                        edgePtrsLen = _edgePtrs.length;
879                        // Get larger auxiliary storage:
880                        aux_edgePtrs_ref.putArray(_aux_edgePtrs);
881
882                        // use ArrayCache.getNewSize() to use the same growing
883                        // factor than widenArray():
884                        if (DO_STATS) {
885                            rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd);
886                        }
887                        this.aux_edgePtrs = _aux_edgePtrs
888                            = aux_edgePtrs_ref.getArray(
889                                ArrayCacheConst.getNewSize(numCrossings, ptrEnd)
890                            );
891                    }
892
893                    // cache edges[] address + offset
894                    addr = addr0 + _OFF_NEXT;
895
896                    // add new edges to active edge list:
897                    for (ecur = _edgeBuckets[bucket];
898                         numCrossings < ptrEnd; numCrossings++)
899                    {
900                        // store the pointer to the edge
901                        _edgePtrs[numCrossings] = ecur;
902                        // random access so use unsafe:
903                        ecur = _unsafe.getInt(addr + ecur);
904                    }
905
906                    if (crossingsLen < numCrossings) {
907                        // Get larger array:
908                        crossings_ref.putArray(_crossings);
909
910                        if (DO_STATS) {
911                            rdrCtx.stats.stat_array_renderer_crossings
912                                .add(numCrossings);
913                        }
914                        this.crossings = _crossings
915                            = crossings_ref.getArray(numCrossings);
916
917                        // Get larger auxiliary storage:
918                        aux_crossings_ref.putArray(_aux_crossings);
919
920                        if (DO_STATS) {
921                            rdrCtx.stats.stat_array_renderer_aux_crossings
922                                .add(numCrossings);
923                        }
924                        this.aux_crossings = _aux_crossings
925                            = aux_crossings_ref.getArray(numCrossings);
926
927                        crossingsLen = _crossings.length;
928                    }
929                    if (DO_STATS) {
930                        // update max used mark
931                        if (numCrossings > _arrayMaxUsed) {
932                            _arrayMaxUsed = numCrossings;
933                        }
934                    }
935                } // ptrLen != 0
936            } // bucketCount != 0
937
938
939            if (numCrossings != 0) {
940                /*
941                 * thresholds to switch to optimized merge sort
942                 * for newly added edges + final merge pass.
943                 */
944                if ((ptrLen < 10) || (numCrossings < 40)) {
945                    if (DO_STATS) {
946                        rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
947                        rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
948                    }
949
950                    /*
951                     * threshold to use binary insertion sort instead of
952                     * straight insertion sort (to reduce minimize comparisons).
953                     */
954                    useBinarySearch = (numCrossings >= 20);
955
956                    // if small enough:
957                    lastCross = _MIN_VALUE;
958
959                    for (i = 0; i < numCrossings; i++) {
960                        // get the pointer to the edge
961                        ecur = _edgePtrs[i];
962
963                        /* convert subpixel coordinates into pixel
964                            positions for coming scanline */
965                        /* note: it is faster to always update edges even
966                           if it is removed from AEL for coming or last scanline */
967
968                        // random access so use unsafe:
969                        addr = addr0 + ecur; // ecur + OFF_F_CURX
970
971                        // get current crossing:
972                        curx = _unsafe.getInt(addr);
973
974                        // update crossing with orientation at last bit:
975                        cross = curx;
976
977                        // Increment x using DDA (fixed point):
978                        curx += _unsafe.getInt(addr + _OFF_BUMP_X);
979
980                        // Increment error:
981                        err  =  _unsafe.getInt(addr + _OFF_ERROR)
982                              + _unsafe.getInt(addr + _OFF_BUMP_ERR);
983
984                        // Manual carry handling:
985                        // keep sign and carry bit only and ignore last bit (preserve orientation):
986                        _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
987                        _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
988
989                        if (DO_STATS) {
990                            rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
991                        }
992
993                        // insertion sort of crossings:
994                        if (cross < lastCross) {
995                            if (DO_STATS) {
996                                rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
997                            }
998
999                            /* use binary search for newly added edges
1000                               in crossings if arrays are large enough */
1001                            if (useBinarySearch && (i >= prevNumCrossings)) {
1002                                if (DO_STATS) {
1003                                    rdrCtx.stats.stat_rdr_crossings_bsearch.add(i);
1004                                }
1005                                low = 0;
1006                                high = i - 1;
1007
1008                                do {
1009                                    // note: use signed shift (not >>>) for performance
1010                                    // as indices are small enough to exceed Integer.MAX_VALUE
1011                                    mid = (low + high) >> 1;
1012
1013                                    if (_crossings[mid] < cross) {
1014                                        low = mid + 1;
1015                                    } else {
1016                                        high = mid - 1;
1017                                    }
1018                                } while (low <= high);
1019
1020                                for (j = i - 1; j >= low; j--) {
1021                                    _crossings[j + 1] = _crossings[j];
1022                                    _edgePtrs [j + 1] = _edgePtrs[j];
1023                                }
1024                                _crossings[low] = cross;
1025                                _edgePtrs [low] = ecur;
1026
1027                            } else {
1028                                j = i - 1;
1029                                _crossings[i] = _crossings[j];
1030                                _edgePtrs[i] = _edgePtrs[j];
1031
1032                                while ((--j >= 0) && (_crossings[j] > cross)) {
1033                                    _crossings[j + 1] = _crossings[j];
1034                                    _edgePtrs [j + 1] = _edgePtrs[j];
1035                                }
1036                                _crossings[j + 1] = cross;
1037                                _edgePtrs [j + 1] = ecur;
1038                            }
1039
1040                        } else {
1041                            _crossings[i] = lastCross = cross;
1042                        }
1043                    }
1044                } else {
1045                    if (DO_STATS) {
1046                        rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
1047                        rdrCtx.stats.hist_rdr_crossings_ratio
1048                            .add((1000 * ptrLen) / numCrossings);
1049                        rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
1050                        rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
1051                    }
1052
1053                    // Copy sorted data in auxiliary arrays
1054                    // and perform insertion sort on almost sorted data
1055                    // (ie i < prevNumCrossings):
1056
1057                    lastCross = _MIN_VALUE;
1058
1059                    for (i = 0; i < numCrossings; i++) {
1060                        // get the pointer to the edge
1061                        ecur = _edgePtrs[i];
1062
1063                        /* convert subpixel coordinates into pixel
1064                            positions for coming scanline */
1065                        /* note: it is faster to always update edges even
1066                           if it is removed from AEL for coming or last scanline */
1067
1068                        // random access so use unsafe:
1069                        addr = addr0 + ecur; // ecur + OFF_F_CURX
1070
1071                        // get current crossing:
1072                        curx = _unsafe.getInt(addr);
1073
1074                        // update crossing with orientation at last bit:
1075                        cross = curx;
1076
1077                        // Increment x using DDA (fixed point):
1078                        curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1079
1080                        // Increment error:
1081                        err  =  _unsafe.getInt(addr + _OFF_ERROR)
1082                              + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1083
1084                        // Manual carry handling:
1085                        // keep sign and carry bit only and ignore last bit (preserve orientation):
1086                        _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
1087                        _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1088
1089                        if (DO_STATS) {
1090                            rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
1091                        }
1092
1093                        if (i >= prevNumCrossings) {
1094                            // simply store crossing as edgePtrs is in-place:
1095                            // will be copied and sorted efficiently by mergesort later:
1096                            _crossings[i]     = cross;
1097
1098                        } else if (cross < lastCross) {
1099                            if (DO_STATS) {
1100                                rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
1101                            }
1102
1103                            // (straight) insertion sort of crossings:
1104                            j = i - 1;
1105                            _aux_crossings[i] = _aux_crossings[j];
1106                            _aux_edgePtrs[i] = _aux_edgePtrs[j];
1107
1108                            while ((--j >= 0) && (_aux_crossings[j] > cross)) {
1109                                _aux_crossings[j + 1] = _aux_crossings[j];
1110                                _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
1111                            }
1112                            _aux_crossings[j + 1] = cross;
1113                            _aux_edgePtrs [j + 1] = ecur;
1114
1115                        } else {
1116                            // auxiliary storage:
1117                            _aux_crossings[i] = lastCross = cross;
1118                            _aux_edgePtrs [i] = ecur;
1119                        }
1120                    }
1121
1122                    // use Mergesort using auxiliary arrays (sort only right part)
1123                    MergeSort.mergeSortNoCopy(_crossings,     _edgePtrs,
1124                                              _aux_crossings, _aux_edgePtrs,
1125                                              numCrossings,   prevNumCrossings);
1126                }
1127
1128                // reset ptrLen
1129                ptrLen = 0;
1130                // --- from former ScanLineIterator.next()
1131
1132
1133                /* note: bboxx0 and bboxx1 must be pixel boundaries
1134                   to have correct coverage computation */
1135
1136                // right shift on crossings to get the x-coordinate:
1137                curxo = _crossings[0];
1138                x0    = curxo >> 1;
1139                if (x0 < minX) {
1140                    minX = x0; // subpixel coordinate
1141                }
1142
1143                x1 = _crossings[numCrossings - 1] >> 1;
1144                if (x1 > maxX) {
1145                    maxX = x1; // subpixel coordinate
1146                }
1147
1148
1149                // compute pixel coverages
1150                prev = curx = x0;
1151                // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1152                // last bit contains orientation (0 or 1)
1153                crorientation = ((curxo & 0x1) << 1) - 1;
1154
1155                if (windingRuleEvenOdd) {
1156                    sum = crorientation;
1157
1158                    // Even Odd winding rule: take care of mask ie sum(orientations)
1159                    for (i = 1; i < numCrossings; i++) {
1160                        curxo = _crossings[i];
1161                        curx  =  curxo >> 1;
1162                        // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1163                        // last bit contains orientation (0 or 1)
1164                        crorientation = ((curxo & 0x1) << 1) - 1;
1165
1166                        if ((sum & 0x1) != 0) {
1167                            // TODO: perform line clipping on left-right sides
1168                            // to avoid such bound checks:
1169                            x0 = (prev > bboxx0) ? prev : bboxx0;
1170
1171                            if (curx < bboxx1) {
1172                                x1 = curx;
1173                            } else {
1174                                x1 = bboxx1;
1175                                // skip right side (fast exit loop):
1176                                i = numCrossings;
1177                            }
1178
1179                            if (x0 < x1) {
1180                                x0 -= bboxx0; // turn x0, x1 from coords to indices
1181                                x1 -= bboxx0; // in the alpha array.
1182
1183                                pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1184                                pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1185
1186                                if (pix_x == pix_xmaxm1) {
1187                                    // Start and end in same pixel
1188                                    tmp = (x1 - x0); // number of subpixels
1189                                    _alpha[pix_x    ] += tmp;
1190                                    _alpha[pix_x + 1] -= tmp;
1191
1192                                    if (useBlkFlags) {
1193                                        // flag used blocks:
1194                                        // note: block processing handles extra pixel:
1195                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1196                                    }
1197                                } else {
1198                                    tmp = (x0 & _SUBPIXEL_MASK_X);
1199                                    _alpha[pix_x    ]
1200                                        += (_SUBPIXEL_POSITIONS_X - tmp);
1201                                    _alpha[pix_x + 1]
1202                                        += tmp;
1203
1204                                    pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1205
1206                                    tmp = (x1 & _SUBPIXEL_MASK_X);
1207                                    _alpha[pix_xmax    ]
1208                                        -= (_SUBPIXEL_POSITIONS_X - tmp);
1209                                    _alpha[pix_xmax + 1]
1210                                        -= tmp;
1211
1212                                    if (useBlkFlags) {
1213                                        // flag used blocks:
1214                                        // note: block processing handles extra pixel:
1215                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1216                                        _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1217                                    }
1218                                }
1219                            }
1220                        }
1221
1222                        sum += crorientation;
1223                        prev = curx;
1224                    }
1225                } else {
1226                    // Non-zero winding rule: optimize that case (default)
1227                    // and avoid processing intermediate crossings
1228                    for (i = 1, sum = 0;; i++) {
1229                        sum += crorientation;
1230
1231                        if (sum != 0) {
1232                            // prev = min(curx)
1233                            if (prev > curx) {
1234                                prev = curx;
1235                            }
1236                        } else {
1237                            // TODO: perform line clipping on left-right sides
1238                            // to avoid such bound checks:
1239                            x0 = (prev > bboxx0) ? prev : bboxx0;
1240
1241                            if (curx < bboxx1) {
1242                                x1 = curx;
1243                            } else {
1244                                x1 = bboxx1;
1245                                // skip right side (fast exit loop):
1246                                i = numCrossings;
1247                            }
1248
1249                            if (x0 < x1) {
1250                                x0 -= bboxx0; // turn x0, x1 from coords to indices
1251                                x1 -= bboxx0; // in the alpha array.
1252
1253                                pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1254                                pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1255
1256                                if (pix_x == pix_xmaxm1) {
1257                                    // Start and end in same pixel
1258                                    tmp = (x1 - x0); // number of subpixels
1259                                    _alpha[pix_x    ] += tmp;
1260                                    _alpha[pix_x + 1] -= tmp;
1261
1262                                    if (useBlkFlags) {
1263                                        // flag used blocks:
1264                                        // note: block processing handles extra pixel:
1265                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1266                                    }
1267                                } else {
1268                                    tmp = (x0 & _SUBPIXEL_MASK_X);
1269                                    _alpha[pix_x    ]
1270                                        += (_SUBPIXEL_POSITIONS_X - tmp);
1271                                    _alpha[pix_x + 1]
1272                                        += tmp;
1273
1274                                    pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1275
1276                                    tmp = (x1 & _SUBPIXEL_MASK_X);
1277                                    _alpha[pix_xmax    ]
1278                                        -= (_SUBPIXEL_POSITIONS_X - tmp);
1279                                    _alpha[pix_xmax + 1]
1280                                        -= tmp;
1281
1282                                    if (useBlkFlags) {
1283                                        // flag used blocks:
1284                                        // note: block processing handles extra pixel:
1285                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1286                                        _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1287                                    }
1288                                }
1289                            }
1290                            prev = _MAX_VALUE;
1291                        }
1292
1293                        if (i == numCrossings) {
1294                            break;
1295                        }
1296
1297                        curxo = _crossings[i];
1298                        curx  =  curxo >> 1;
1299                        // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1300                        // last bit contains orientation (0 or 1)
1301                        crorientation = ((curxo & 0x1) << 1) - 1;
1302                    }
1303                }
1304            } // numCrossings > 0
1305
1306            // even if this last row had no crossings, alpha will be zeroed
1307            // from the last emitRow call. But this doesn't matter because
1308            // maxX < minX, so no row will be emitted to the MarlinCache.
1309            if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1310                lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1311
1312                // convert subpixel to pixel coordinate within boundaries:
1313                minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1314                maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1315
1316                if (maxX >= minX) {
1317                    // note: alpha array will be zeroed by copyAARow()
1318                    // +1 because alpha [pix_minX; pix_maxX[
1319                    // fix range [x0; x1[
1320                    // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1321                    // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
1322                    // (normally so never cleared below)
1323                    copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags);
1324
1325                    // speculative for next pixel row (scanline coherence):
1326                    if (_enableBlkFlagsHeuristics) {
1327                        // Use block flags if large pixel span and few crossings:
1328                        // ie mean(distance between crossings) is larger than
1329                        // 1 block size;
1330
1331                        // fast check width:
1332                        maxX -= minX;
1333
1334                        // if stroking: numCrossings /= 2
1335                        // => shift numCrossings by 1
1336                        // condition = (width / (numCrossings - 1)) > blockSize
1337                        useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1338                            (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1339
1340                        if (DO_STATS) {
1341                            tmp = FloatMath.max(1,
1342                                    ((numCrossings >> stroking) - 1));
1343                            rdrCtx.stats.hist_tile_generator_encoding_dist
1344                                .add(maxX / tmp);
1345                        }
1346                    }
1347                } else {
1348                    _cache.clearAARow(lastY);
1349                }
1350                minX = _MAX_VALUE;
1351                maxX = _MIN_VALUE;
1352            }
1353        } // scan line iterator
1354
1355        // Emit final row
1356        y--;
1357        y >>= _SUBPIXEL_LG_POSITIONS_Y;
1358
1359        // convert subpixel to pixel coordinate within boundaries:
1360        minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1361        maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1362
1363        if (maxX >= minX) {
1364            // note: alpha array will be zeroed by copyAARow()
1365            // +1 because alpha [pix_minX; pix_maxX[
1366            // fix range [x0; x1[
1367            // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1368            // inclusive: alpha[bboxx1] ignored then cleared and
1369            // alpha[bboxx1+1] == 0 (normally so never cleared after)
1370            copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags);
1371        } else if (y != lastY) {
1372            _cache.clearAARow(y);
1373        }
1374
1375        // update member:
1376        edgeCount = numCrossings;
1377        prevUseBlkFlags = useBlkFlags;
1378
1379        if (DO_STATS) {
1380            // update max used mark
1381            activeEdgeMaxUsed = _arrayMaxUsed;
1382        }
1383    }
1384
1385    boolean endRendering() {
1386        if (DO_MONITORS) {
1387            rdrCtx.stats.mon_rdr_endRendering.start();
1388        }
1389        if (edgeMinY == Integer.MAX_VALUE) {
1390            return false; // undefined edges bounds
1391        }
1392
1393        // bounds as half-open intervals
1394        final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
1395        final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX);
1396
1397        // edge Min/Max Y are already rounded to subpixels within bounds:
1398        final int spminY = edgeMinY;
1399        final int spmaxY = edgeMaxY;
1400
1401        buckets_minY = spminY - boundsMinY;
1402        buckets_maxY = spmaxY - boundsMinY;
1403
1404        if (DO_LOG_BOUNDS) {
1405            MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1406                                + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
1407            MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1408                                + "[ [" + spminY + " ... " + spmaxY + "[");
1409        }
1410
1411        // test clipping for shapes out of bounds
1412        if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
1413            return false;
1414        }
1415
1416        // half open intervals
1417        // inclusive:
1418        final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1419        // exclusive:
1420        final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1421        // inclusive:
1422        final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1423        // exclusive:
1424        final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1425
1426        // store BBox to answer ptg.getBBox():
1427        this.cache.init(pminX, pminY, pmaxX, pmaxY);
1428
1429        // Heuristics for using block flags:
1430        if (ENABLE_BLOCK_FLAGS) {
1431            enableBlkFlags = this.cache.useRLE;
1432            prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1433
1434            if (enableBlkFlags) {
1435                // ensure blockFlags array is large enough:
1436                // note: +2 to ensure enough space left at end
1437                final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
1438                if (blkLen > INITIAL_ARRAY) {
1439                    blkFlags = blkFlags_ref.getArray(blkLen);
1440                }
1441            }
1442        }
1443
1444        // memorize the rendering bounding box:
1445        /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1446           to have correct coverage computation */
1447        // inclusive:
1448        bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1449        // exclusive:
1450        bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1451        // inclusive:
1452        bbox_spminY = spminY;
1453        // exclusive:
1454        bbox_spmaxY = spmaxY;
1455
1456        if (DO_LOG_BOUNDS) {
1457            MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1458                                + "[ [" + pminY + " ... " + pmaxY + "[");
1459            MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1460                                + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1461                                + bbox_spmaxY + "[");
1462        }
1463
1464        // Prepare alpha line:
1465        // add 2 to better deal with the last pixel in a pixel row.
1466        final int width = (pmaxX - pminX) + 2;
1467
1468        // Useful when processing tile line by tile line
1469        if (width > INITIAL_AA_ARRAY) {
1470            if (DO_STATS) {
1471                rdrCtx.stats.stat_array_renderer_alphaline.add(width);
1472            }
1473            alphaLine = alphaLine_ref.getArray(width);
1474        }
1475
1476        // process first tile line:
1477        endRendering(pminY);
1478
1479        return true;
1480    }
1481
1482    private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
1483
1484    void endRendering(final int pminY) {
1485        if (DO_MONITORS) {
1486            rdrCtx.stats.mon_rdr_endRendering_Y.start();
1487        }
1488
1489        final int spminY       = pminY << SUBPIXEL_LG_POSITIONS_Y;
1490        final int fixed_spminY = FloatMath.max(bbox_spminY, spminY);
1491
1492        // avoid rendering for last call to nextTile()
1493        if (fixed_spminY < bbox_spmaxY) {
1494            // process a complete tile line ie scanlines for 32 rows
1495            final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE);
1496
1497            // process tile line [0 - 32]
1498            cache.resetTileLine(pminY);
1499
1500            // Process only one tile line:
1501            _endRendering(fixed_spminY, spmaxY);
1502        }
1503        if (DO_MONITORS) {
1504            rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1505        }
1506    }
1507
1508    void copyAARow(final int[] alphaRow,
1509                   final int pix_y, final int pix_from, final int pix_to,
1510                   final boolean useBlockFlags)
1511    {
1512        if (DO_MONITORS) {
1513            rdrCtx.stats.mon_rdr_copyAARow.start();
1514        }
1515        if (useBlockFlags) {
1516            if (DO_STATS) {
1517                rdrCtx.stats.hist_tile_generator_encoding.add(1);
1518            }
1519            cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1520        } else {
1521            if (DO_STATS) {
1522                rdrCtx.stats.hist_tile_generator_encoding.add(0);
1523            }
1524            cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);
1525        }
1526        if (DO_MONITORS) {
1527            rdrCtx.stats.mon_rdr_copyAARow.stop();
1528        }
1529    }
1530}
1531