1/*
2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package sun.java2d.marlin;
27
28import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
29import jdk.internal.misc.Unsafe;
30
31final class DRenderer implements DPathConsumer2D, MarlinRenderer {
32
33    static final boolean DISABLE_RENDER = false;
34
35    static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
36    static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
37
38    private static final int ALL_BUT_LSB = 0xFFFFFFFE;
39    private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
40
41    private static final double POWER_2_TO_32 = 0x1.0p32d;
42
43    // use double to make tosubpix methods faster (no int to double conversion)
44    static final double SUBPIXEL_SCALE_X = SUBPIXEL_POSITIONS_X;
45    static final double SUBPIXEL_SCALE_Y = SUBPIXEL_POSITIONS_Y;
46    static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
47    static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
48
49    // number of subpixels corresponding to a tile line
50    private static final int SUBPIXEL_TILE
51        = TILE_H << SUBPIXEL_LG_POSITIONS_Y;
52
53    // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
54    static final int INITIAL_BUCKET_ARRAY
55        = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
56
57    // crossing capacity = edges count / 4 ~ 1024
58    static final int INITIAL_CROSSING_COUNT = INITIAL_EDGES_COUNT >> 2;
59
60    public static final int WIND_EVEN_ODD = 0;
61    public static final int WIND_NON_ZERO = 1;
62
63    // common to all types of input path segments.
64    // OFFSET as bytes
65    // only integer values:
66    public static final long OFF_CURX_OR  = 0;
67    public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
68    public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
69    public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
70    public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
71    public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
72
73    // size of one edge in bytes
74    public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
75
76    // curve break into lines
77    // cubic error in subpixels to decrement step
78    private static final double CUB_DEC_ERR_SUBPIX
79        = MarlinProperties.getCubicDecD2() * (NORM_SUBPIXELS / 8.0d); // 1 pixel
80    // cubic error in subpixels to increment step
81    private static final double CUB_INC_ERR_SUBPIX
82        = MarlinProperties.getCubicIncD1() * (NORM_SUBPIXELS / 8.0d); // 0.4 pixel
83
84    // TestNonAARasterization (JDK-8170879): cubics
85    // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
86
87    // cubic bind length to decrement step
88    public static final double CUB_DEC_BND
89        = 8.0d * CUB_DEC_ERR_SUBPIX;
90    // cubic bind length to increment step
91    public static final double CUB_INC_BND
92        = 8.0d * CUB_INC_ERR_SUBPIX;
93
94    // cubic countlg
95    public static final int CUB_COUNT_LG = 2;
96    // cubic count = 2^countlg
97    private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
98    // cubic count^2 = 4^countlg
99    private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
100    // cubic count^3 = 8^countlg
101    private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
102    // cubic dt = 1 / count
103    private static final double CUB_INV_COUNT = 1.0d / CUB_COUNT;
104    // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
105    private static final double CUB_INV_COUNT_2 = 1.0d / CUB_COUNT_2;
106    // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
107    private static final double CUB_INV_COUNT_3 = 1.0d / CUB_COUNT_3;
108
109    // quad break into lines
110    // quadratic error in subpixels
111    private static final double QUAD_DEC_ERR_SUBPIX
112        = MarlinProperties.getQuadDecD2() * (NORM_SUBPIXELS / 8.0d); // 0.5 pixel
113
114    // TestNonAARasterization (JDK-8170879): quads
115    // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
116
117    // quadratic bind length to decrement step
118    public static final double QUAD_DEC_BND
119        = 8.0d * QUAD_DEC_ERR_SUBPIX;
120
121//////////////////////////////////////////////////////////////////////////////
122//  SCAN LINE
123//////////////////////////////////////////////////////////////////////////////
124    // crossings ie subpixel edge x coordinates
125    private int[] crossings;
126    // auxiliary storage for crossings (merge sort)
127    private int[] aux_crossings;
128
129    // indices into the segment pointer lists. They indicate the "active"
130    // sublist in the segment lists (the portion of the list that contains
131    // all the segments that cross the next scan line).
132    private int edgeCount;
133    private int[] edgePtrs;
134    // auxiliary storage for edge pointers (merge sort)
135    private int[] aux_edgePtrs;
136
137    // max used for both edgePtrs and crossings (stats only)
138    private int activeEdgeMaxUsed;
139
140    // crossings ref (dirty)
141    private final IntArrayCache.Reference crossings_ref;
142    // edgePtrs ref (dirty)
143    private final IntArrayCache.Reference edgePtrs_ref;
144    // merge sort initial arrays (large enough to satisfy most usages) (1024)
145    // aux_crossings ref (dirty)
146    private final IntArrayCache.Reference aux_crossings_ref;
147    // aux_edgePtrs ref (dirty)
148    private final IntArrayCache.Reference aux_edgePtrs_ref;
149
150//////////////////////////////////////////////////////////////////////////////
151//  EDGE LIST
152//////////////////////////////////////////////////////////////////////////////
153    private int edgeMinY = Integer.MAX_VALUE;
154    private int edgeMaxY = Integer.MIN_VALUE;
155    private double edgeMinX = Double.POSITIVE_INFINITY;
156    private double edgeMaxX = Double.NEGATIVE_INFINITY;
157
158    // edges [ints] stored in off-heap memory
159    private final OffHeapArray edges;
160
161    private int[] edgeBuckets;
162    private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
163    // used range for edgeBuckets / edgeBucketCounts
164    private int buckets_minY;
165    private int buckets_maxY;
166
167    // edgeBuckets ref (clean)
168    private final IntArrayCache.Reference edgeBuckets_ref;
169    // edgeBucketCounts ref (clean)
170    private final IntArrayCache.Reference edgeBucketCounts_ref;
171
172    // Flattens using adaptive forward differencing. This only carries out
173    // one iteration of the AFD loop. All it does is update AFD variables (i.e.
174    // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
175    private void quadBreakIntoLinesAndAdd(double x0, double y0,
176                                          final DCurve c,
177                                          final double x2, final double y2)
178    {
179        int count = 1; // dt = 1 / count
180
181        // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
182        double maxDD = Math.abs(c.dbx) + Math.abs(c.dby);
183
184        final double _DEC_BND = QUAD_DEC_BND;
185
186        while (maxDD >= _DEC_BND) {
187            // divide step by half:
188            maxDD /= 4.0d; // error divided by 2^2 = 4
189
190            count <<= 1;
191            if (DO_STATS) {
192                rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
193            }
194        }
195
196        int nL = 0; // line count
197        if (count > 1) {
198            final double icount = 1.0d / count; // dt
199            final double icount2 = icount * icount; // dt^2
200
201            final double ddx = c.dbx * icount2;
202            final double ddy = c.dby * icount2;
203            double dx = c.bx * icount2 + c.cx * icount;
204            double dy = c.by * icount2 + c.cy * icount;
205
206            double x1, y1;
207
208            while (--count > 0) {
209                x1 = x0 + dx;
210                dx += ddx;
211                y1 = y0 + dy;
212                dy += ddy;
213
214                addLine(x0, y0, x1, y1);
215
216                if (DO_STATS) { nL++; }
217                x0 = x1;
218                y0 = y1;
219            }
220        }
221        addLine(x0, y0, x2, y2);
222
223        if (DO_STATS) {
224            rdrCtx.stats.stat_rdr_quadBreak.add(nL + 1);
225        }
226    }
227
228    // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
229    // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
230    // numerical errors, and our callers already have the exact values.
231    // Another alternative would be to pass all the control points, and call
232    // c.set here, but then too many numbers are passed around.
233    private void curveBreakIntoLinesAndAdd(double x0, double y0,
234                                           final DCurve c,
235                                           final double x3, final double y3)
236    {
237        int count           = CUB_COUNT;
238        final double icount  = CUB_INV_COUNT;   // dt
239        final double icount2 = CUB_INV_COUNT_2; // dt^2
240        final double icount3 = CUB_INV_COUNT_3; // dt^3
241
242        // the dx and dy refer to forward differencing variables, not the last
243        // coefficients of the "points" polynomial
244        double dddx, dddy, ddx, ddy, dx, dy;
245        dddx = 2.0d * c.dax * icount3;
246        dddy = 2.0d * c.day * icount3;
247        ddx = dddx + c.dbx * icount2;
248        ddy = dddy + c.dby * icount2;
249        dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
250        dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
251
252        // we use x0, y0 to walk the line
253        double x1 = x0, y1 = y0;
254        int nL = 0; // line count
255
256        final double _DEC_BND = CUB_DEC_BND;
257        final double _INC_BND = CUB_INC_BND;
258
259        while (count > 0) {
260            // divide step by half:
261            while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) {
262                dddx /= 8.0d;
263                dddy /= 8.0d;
264                ddx = ddx / 4.0d - dddx;
265                ddy = ddy / 4.0d - dddy;
266                dx = (dx - ddx) / 2.0d;
267                dy = (dy - ddy) / 2.0d;
268
269                count <<= 1;
270                if (DO_STATS) {
271                    rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
272                }
273            }
274
275            // double step:
276            // can only do this on even "count" values, because we must divide count by 2
277            while (count % 2 == 0
278                   && Math.abs(dx) + Math.abs(dy) <= _INC_BND)
279            {
280                dx = 2.0d * dx + ddx;
281                dy = 2.0d * dy + ddy;
282                ddx = 4.0d * (ddx + dddx);
283                ddy = 4.0d * (ddy + dddy);
284                dddx *= 8.0d;
285                dddy *= 8.0d;
286
287                count >>= 1;
288                if (DO_STATS) {
289                    rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
290                }
291            }
292            if (--count > 0) {
293                x1 += dx;
294                dx += ddx;
295                ddx += dddx;
296                y1 += dy;
297                dy += ddy;
298                ddy += dddy;
299            } else {
300                x1 = x3;
301                y1 = y3;
302            }
303
304            addLine(x0, y0, x1, y1);
305
306            if (DO_STATS) { nL++; }
307            x0 = x1;
308            y0 = y1;
309        }
310        if (DO_STATS) {
311            rdrCtx.stats.stat_rdr_curveBreak.add(nL);
312        }
313    }
314
315    private void addLine(double x1, double y1, double x2, double y2) {
316        if (DO_MONITORS) {
317            rdrCtx.stats.mon_rdr_addLine.start();
318        }
319        if (DO_STATS) {
320            rdrCtx.stats.stat_rdr_addLine.add(1);
321        }
322        int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
323        if (y2 < y1) {
324            or = 0;
325            double tmp = y2;
326            y2 = y1;
327            y1 = tmp;
328            tmp = x2;
329            x2 = x1;
330            x1 = tmp;
331        }
332
333        // convert subpixel coordinates [double] into pixel positions [int]
334
335        // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
336        // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
337        // ceil(y1) or ceil(y2)
338        // upper integer (inclusive)
339        final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
340
341        // note: use boundsMaxY (last Y exclusive) to compute correct coverage
342        // upper integer (exclusive)
343        final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
344
345        /* skip horizontal lines in pixel space and clip edges
346           out of y range [boundsMinY; boundsMaxY] */
347        if (firstCrossing >= lastCrossing) {
348            if (DO_MONITORS) {
349                rdrCtx.stats.mon_rdr_addLine.stop();
350            }
351            if (DO_STATS) {
352                rdrCtx.stats.stat_rdr_addLine_skip.add(1);
353            }
354            return;
355        }
356
357        // edge min/max X/Y are in subpixel space (half-open interval):
358        // note: Use integer crossings to ensure consistent range within
359        // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
360        if (firstCrossing < edgeMinY) {
361            edgeMinY = firstCrossing;
362        }
363        if (lastCrossing > edgeMaxY) {
364            edgeMaxY = lastCrossing;
365        }
366
367        final double slope = (x1 - x2) / (y1 - y2);
368
369        if (slope >= 0.0d) { // <==> x1 < x2
370            if (x1 < edgeMinX) {
371                edgeMinX = x1;
372            }
373            if (x2 > edgeMaxX) {
374                edgeMaxX = x2;
375            }
376        } else {
377            if (x2 < edgeMinX) {
378                edgeMinX = x2;
379            }
380            if (x1 > edgeMaxX) {
381                edgeMaxX = x1;
382            }
383        }
384
385        // local variables for performance:
386        final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
387
388        final OffHeapArray _edges = edges;
389
390        // get free pointer (ie length in bytes)
391        final int edgePtr = _edges.used;
392
393        // use substraction to avoid integer overflow:
394        if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
395            // suppose _edges.length > _SIZEOF_EDGE_BYTES
396            // so doubling size is enough to add needed bytes
397            // note: throw IOOB if neededSize > 2Gb:
398            final long edgeNewSize = ArrayCacheConst.getNewLargeSize(
399                                        _edges.length,
400                                        edgePtr + _SIZEOF_EDGE_BYTES);
401
402            if (DO_STATS) {
403                rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
404            }
405            _edges.resize(edgeNewSize);
406        }
407
408
409        final Unsafe _unsafe = OffHeapArray.UNSAFE;
410        final long SIZE_INT = 4L;
411        long addr   = _edges.address + edgePtr;
412
413        // The x value must be bumped up to its position at the next HPC we will evaluate.
414        // "firstcrossing" is the (sub)pixel number where the next crossing occurs
415        // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
416        // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
417        // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
418        // y1 = trueY - 0.5
419        // trueY = y1 + 0.5
420        // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
421        //                             = firstcrossing - y1
422        // The x coordinate at that HPC is then:
423        // x1_intercept = x1 + (firstcrossing - y1) * slope
424        // The next VPC is then given by:
425        // VPC index = ceil(x1_intercept - 0.5), or alternately
426        // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
427        // epsilon is hard to pin down in floating point, but easy in fixed point, so if
428        // we convert to fixed point then these operations get easier:
429        // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
430        // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
431        //                 = fixed_floor(x1_fixed + 2^31 - 1)
432        //                 = fixed_floor(x1_fixed + 0x7FFFFFFF)
433        // and error       = fixed_fract(x1_fixed + 0x7FFFFFFF)
434        final double x1_intercept = x1 + (firstCrossing - y1) * slope;
435
436        // inlined scalb(x1_intercept, 32):
437        final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
438                                     + 0x7FFFFFFFL;
439        // curx:
440        // last bit corresponds to the orientation
441        _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
442        addr += SIZE_INT;
443        _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
444        addr += SIZE_INT;
445
446        // inlined scalb(slope, 32):
447        final long slope_fixed = (long) (POWER_2_TO_32 * slope);
448
449        // last bit set to 0 to keep orientation:
450        _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
451        addr += SIZE_INT;
452        _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
453        addr += SIZE_INT;
454
455        final int[] _edgeBuckets      = edgeBuckets;
456        final int[] _edgeBucketCounts = edgeBucketCounts;
457
458        final int _boundsMinY = boundsMinY;
459
460        // each bucket is a linked list. this method adds ptr to the
461        // start of the "bucket"th linked list.
462        final int bucketIdx = firstCrossing - _boundsMinY;
463
464        // pointer from bucket
465        _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
466        addr += SIZE_INT;
467        // y max (exclusive)
468        _unsafe.putInt(addr,  lastCrossing);
469
470        // Update buckets:
471        // directly the edge struct "pointer"
472        _edgeBuckets[bucketIdx]       = edgePtr;
473        _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
474        // last bit means edge end
475        _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
476
477        // update free pointer (ie length in bytes)
478        _edges.used += _SIZEOF_EDGE_BYTES;
479
480        if (DO_MONITORS) {
481            rdrCtx.stats.mon_rdr_addLine.stop();
482        }
483    }
484
485// END EDGE LIST
486//////////////////////////////////////////////////////////////////////////////
487
488    // Cache to store RLE-encoded coverage mask of the current primitive
489    final MarlinCache cache;
490
491    // Bounds of the drawing region, at subpixel precision.
492    private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
493
494    // Current winding rule
495    private int windingRule;
496
497    // Current drawing position, i.e., final point of last segment
498    private double x0, y0;
499
500    // Position of most recent 'moveTo' command
501    private double sx0, sy0;
502
503    // per-thread renderer context
504    final DRendererContext rdrCtx;
505    // dirty curve
506    private final DCurve curve;
507
508    // clean alpha array (zero filled)
509    private int[] alphaLine;
510
511    // alphaLine ref (clean)
512    private final IntArrayCache.Reference alphaLine_ref;
513
514    private boolean enableBlkFlags = false;
515    private boolean prevUseBlkFlags = false;
516
517    /* block flags (0|1) */
518    private int[] blkFlags;
519
520    // blkFlags ref (clean)
521    private final IntArrayCache.Reference blkFlags_ref;
522
523    DRenderer(final DRendererContext rdrCtx) {
524        this.rdrCtx = rdrCtx;
525
526        this.edges = rdrCtx.newOffHeapArray(INITIAL_EDGES_CAPACITY); // 96K
527
528        this.curve = rdrCtx.curve;
529
530        edgeBuckets_ref      = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
531        edgeBucketCounts_ref = rdrCtx.newCleanIntArrayRef(INITIAL_BUCKET_ARRAY); // 64K
532
533        edgeBuckets      = edgeBuckets_ref.initial;
534        edgeBucketCounts = edgeBucketCounts_ref.initial;
535
536        // 2048 (pixelsize) pixel large
537        alphaLine_ref = rdrCtx.newCleanIntArrayRef(INITIAL_AA_ARRAY); // 8K
538        alphaLine     = alphaLine_ref.initial;
539
540        this.cache = rdrCtx.cache;
541
542        crossings_ref     = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
543        aux_crossings_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
544        edgePtrs_ref      = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
545        aux_edgePtrs_ref  = rdrCtx.newDirtyIntArrayRef(INITIAL_CROSSING_COUNT); // 2K
546
547        crossings     = crossings_ref.initial;
548        aux_crossings = aux_crossings_ref.initial;
549        edgePtrs      = edgePtrs_ref.initial;
550        aux_edgePtrs  = aux_edgePtrs_ref.initial;
551
552        blkFlags_ref = rdrCtx.newCleanIntArrayRef(INITIAL_ARRAY); // 1K = 1 tile line
553        blkFlags     = blkFlags_ref.initial;
554    }
555
556    DRenderer init(final int pix_boundsX, final int pix_boundsY,
557                  final int pix_boundsWidth, final int pix_boundsHeight,
558                  final int windingRule)
559    {
560        this.windingRule = windingRule;
561
562        // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
563        this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
564        this.boundsMaxX =
565            (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
566        this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
567        this.boundsMaxY =
568            (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
569
570        if (DO_LOG_BOUNDS) {
571            MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
572                                + boundsMaxX + "[ [" + boundsMinY + " ... "
573                                + boundsMaxY + "[");
574        }
575
576        // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
577        // +1 for edgeBucketCounts
578        final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
579
580        if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
581            if (DO_STATS) {
582                rdrCtx.stats.stat_array_renderer_edgeBuckets
583                    .add(edgeBucketsLength);
584                rdrCtx.stats.stat_array_renderer_edgeBucketCounts
585                    .add(edgeBucketsLength);
586            }
587            edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
588            edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
589        }
590
591        edgeMinY = Integer.MAX_VALUE;
592        edgeMaxY = Integer.MIN_VALUE;
593        edgeMinX = Double.POSITIVE_INFINITY;
594        edgeMaxX = Double.NEGATIVE_INFINITY;
595
596        // reset used mark:
597        edgeCount = 0;
598        activeEdgeMaxUsed = 0;
599        edges.used = 0;
600
601        return this; // fluent API
602    }
603
604    /**
605     * Disposes this renderer and recycle it clean up before reusing this instance
606     */
607    void dispose() {
608        if (DO_STATS) {
609            rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
610            rdrCtx.stats.stat_rdr_edges.add(edges.used);
611            rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
612            rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
613            rdrCtx.stats.totalOffHeap += edges.length;
614        }
615        // Return arrays:
616        crossings = crossings_ref.putArray(crossings);
617        aux_crossings = aux_crossings_ref.putArray(aux_crossings);
618
619        edgePtrs = edgePtrs_ref.putArray(edgePtrs);
620        aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);
621
622        alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled
623        blkFlags  = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled
624
625        if (edgeMinY != Integer.MAX_VALUE) {
626            // if context is maked as DIRTY:
627            if (rdrCtx.dirty) {
628                // may happen if an exception if thrown in the pipeline processing:
629                // clear completely buckets arrays:
630                buckets_minY = 0;
631                buckets_maxY = boundsMaxY - boundsMinY;
632            }
633            // clear only used part
634            edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY,
635                                                                buckets_maxY);
636            edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts,
637                                                             buckets_minY,
638                                                             buckets_maxY + 1);
639        } else {
640            // unused arrays
641            edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
642            edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
643        }
644
645        // At last: resize back off-heap edges to initial size
646        if (edges.length != INITIAL_EDGES_CAPACITY) {
647            // note: may throw OOME:
648            edges.resize(INITIAL_EDGES_CAPACITY);
649        }
650        if (DO_CLEAN_DIRTY) {
651            // Force zero-fill dirty arrays:
652            edges.fill(BYTE_0);
653        }
654        if (DO_MONITORS) {
655            rdrCtx.stats.mon_rdr_endRendering.stop();
656        }
657        // recycle the RendererContext instance
658        DMarlinRenderingEngine.returnRendererContext(rdrCtx);
659    }
660
661    private static double tosubpixx(final double pix_x) {
662        return SUBPIXEL_SCALE_X * pix_x;
663    }
664
665    private static double tosubpixy(final double pix_y) {
666        // shift y by -0.5 for fast ceil(y - 0.5):
667        return SUBPIXEL_SCALE_Y * pix_y - 0.5d;
668    }
669
670    @Override
671    public void moveTo(double pix_x0, double pix_y0) {
672        closePath();
673        final double sx = tosubpixx(pix_x0);
674        final double sy = tosubpixy(pix_y0);
675        this.sx0 = sx;
676        this.sy0 = sy;
677        this.x0 = sx;
678        this.y0 = sy;
679    }
680
681    @Override
682    public void lineTo(double pix_x1, double pix_y1) {
683        final double x1 = tosubpixx(pix_x1);
684        final double y1 = tosubpixy(pix_y1);
685        addLine(x0, y0, x1, y1);
686        x0 = x1;
687        y0 = y1;
688    }
689
690    @Override
691    public void curveTo(double x1, double y1,
692                        double x2, double y2,
693                        double x3, double y3)
694    {
695        final double xe = tosubpixx(x3);
696        final double ye = tosubpixy(y3);
697        curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
698                          tosubpixx(x2), tosubpixy(y2), xe, ye);
699        curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
700        x0 = xe;
701        y0 = ye;
702    }
703
704    @Override
705    public void quadTo(double x1, double y1, double x2, double y2) {
706        final double xe = tosubpixx(x2);
707        final double ye = tosubpixy(y2);
708        curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
709        quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
710        x0 = xe;
711        y0 = ye;
712    }
713
714    @Override
715    public void closePath() {
716        addLine(x0, y0, sx0, sy0);
717        x0 = sx0;
718        y0 = sy0;
719    }
720
721    @Override
722    public void pathDone() {
723        closePath();
724    }
725
726    @Override
727    public long getNativeConsumer() {
728        throw new InternalError("Renderer does not use a native consumer.");
729    }
730
731    private void _endRendering(final int ymin, final int ymax) {
732        if (DISABLE_RENDER) {
733            return;
734        }
735
736        // Get X bounds as true pixel boundaries to compute correct pixel coverage:
737        final int bboxx0 = bbox_spminX;
738        final int bboxx1 = bbox_spmaxX;
739
740        final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
741
742        // Useful when processing tile line by tile line
743        final int[] _alpha = alphaLine;
744
745        // local vars (performance):
746        final MarlinCache _cache = cache;
747        final OffHeapArray _edges = edges;
748        final int[] _edgeBuckets = edgeBuckets;
749        final int[] _edgeBucketCounts = edgeBucketCounts;
750
751        int[] _crossings = this.crossings;
752        int[] _edgePtrs  = this.edgePtrs;
753
754        // merge sort auxiliary storage:
755        int[] _aux_crossings = this.aux_crossings;
756        int[] _aux_edgePtrs  = this.aux_edgePtrs;
757
758        // copy constants:
759        final long _OFF_ERROR    = OFF_ERROR;
760        final long _OFF_BUMP_X   = OFF_BUMP_X;
761        final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
762
763        final long _OFF_NEXT     = OFF_NEXT;
764        final long _OFF_YMAX     = OFF_YMAX;
765
766        final int _ALL_BUT_LSB   = ALL_BUT_LSB;
767        final int _ERR_STEP_MAX  = ERR_STEP_MAX;
768
769        // unsafe I/O:
770        final Unsafe _unsafe = OffHeapArray.UNSAFE;
771        final long    addr0  = _edges.address;
772        long addr;
773        final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
774        final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
775        final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
776        final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
777        final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
778
779        final int _MIN_VALUE = Integer.MIN_VALUE;
780        final int _MAX_VALUE = Integer.MAX_VALUE;
781
782        // Now we iterate through the scanlines. We must tell emitRow the coord
783        // of the first non-transparent pixel, so we must keep accumulators for
784        // the first and last pixels of the section of the current pixel row
785        // that we will emit.
786        // We also need to accumulate pix_bbox, but the iterator does it
787        // for us. We will just get the values from it once this loop is done
788        int minX = _MAX_VALUE;
789        int maxX = _MIN_VALUE;
790
791        int y = ymin;
792        int bucket = y - boundsMinY;
793
794        int numCrossings = this.edgeCount;
795        int edgePtrsLen = _edgePtrs.length;
796        int crossingsLen = _crossings.length;
797        int _arrayMaxUsed = activeEdgeMaxUsed;
798        int ptrLen = 0, newCount, ptrEnd;
799
800        int bucketcount, i, j, ecur;
801        int cross, lastCross;
802        int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
803        int pix_x, pix_xmaxm1, pix_xmax;
804
805        int low, high, mid, prevNumCrossings;
806        boolean useBinarySearch;
807
808        final int[] _blkFlags = blkFlags;
809        final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
810        final int _BLK_SIZE = BLOCK_SIZE;
811
812        final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
813
814        // Use block flags if large pixel span and few crossings:
815        // ie mean(distance between crossings) is high
816        boolean useBlkFlags = this.prevUseBlkFlags;
817
818        final int stroking = rdrCtx.stroking;
819
820        int lastY = -1; // last emited row
821
822
823        // Iteration on scanlines
824        for (; y < ymax; y++, bucket++) {
825            // --- from former ScanLineIterator.next()
826            bucketcount = _edgeBucketCounts[bucket];
827
828            // marker on previously sorted edges:
829            prevNumCrossings = numCrossings;
830
831            // bucketCount indicates new edge / edge end:
832            if (bucketcount != 0) {
833                if (DO_STATS) {
834                    rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings);
835                }
836
837                // last bit set to 1 means that edges ends
838                if ((bucketcount & 0x1) != 0) {
839                    // eviction in active edge list
840                    // cache edges[] address + offset
841                    addr = addr0 + _OFF_YMAX;
842
843                    for (i = 0, newCount = 0; i < numCrossings; i++) {
844                        // get the pointer to the edge
845                        ecur = _edgePtrs[i];
846                        // random access so use unsafe:
847                        if (_unsafe.getInt(addr + ecur) > y) {
848                            _edgePtrs[newCount++] = ecur;
849                        }
850                    }
851                    // update marker on sorted edges minus removed edges:
852                    prevNumCrossings = numCrossings = newCount;
853                }
854
855                ptrLen = bucketcount >> 1; // number of new edge
856
857                if (ptrLen != 0) {
858                    if (DO_STATS) {
859                        rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen);
860                        if (ptrLen > 10) {
861                            rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen);
862                        }
863                    }
864                    ptrEnd = numCrossings + ptrLen;
865
866                    if (edgePtrsLen < ptrEnd) {
867                        if (DO_STATS) {
868                            rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd);
869                        }
870                        this.edgePtrs = _edgePtrs
871                            = edgePtrs_ref.widenArray(_edgePtrs, numCrossings,
872                                                      ptrEnd);
873
874                        edgePtrsLen = _edgePtrs.length;
875                        // Get larger auxiliary storage:
876                        aux_edgePtrs_ref.putArray(_aux_edgePtrs);
877
878                        // use ArrayCache.getNewSize() to use the same growing
879                        // factor than widenArray():
880                        if (DO_STATS) {
881                            rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd);
882                        }
883                        this.aux_edgePtrs = _aux_edgePtrs
884                            = aux_edgePtrs_ref.getArray(
885                                ArrayCacheConst.getNewSize(numCrossings, ptrEnd)
886                            );
887                    }
888
889                    // cache edges[] address + offset
890                    addr = addr0 + _OFF_NEXT;
891
892                    // add new edges to active edge list:
893                    for (ecur = _edgeBuckets[bucket];
894                         numCrossings < ptrEnd; numCrossings++)
895                    {
896                        // store the pointer to the edge
897                        _edgePtrs[numCrossings] = ecur;
898                        // random access so use unsafe:
899                        ecur = _unsafe.getInt(addr + ecur);
900                    }
901
902                    if (crossingsLen < numCrossings) {
903                        // Get larger array:
904                        crossings_ref.putArray(_crossings);
905
906                        if (DO_STATS) {
907                            rdrCtx.stats.stat_array_renderer_crossings
908                                .add(numCrossings);
909                        }
910                        this.crossings = _crossings
911                            = crossings_ref.getArray(numCrossings);
912
913                        // Get larger auxiliary storage:
914                        aux_crossings_ref.putArray(_aux_crossings);
915
916                        if (DO_STATS) {
917                            rdrCtx.stats.stat_array_renderer_aux_crossings
918                                .add(numCrossings);
919                        }
920                        this.aux_crossings = _aux_crossings
921                            = aux_crossings_ref.getArray(numCrossings);
922
923                        crossingsLen = _crossings.length;
924                    }
925                    if (DO_STATS) {
926                        // update max used mark
927                        if (numCrossings > _arrayMaxUsed) {
928                            _arrayMaxUsed = numCrossings;
929                        }
930                    }
931                } // ptrLen != 0
932            } // bucketCount != 0
933
934
935            if (numCrossings != 0) {
936                /*
937                 * thresholds to switch to optimized merge sort
938                 * for newly added edges + final merge pass.
939                 */
940                if ((ptrLen < 10) || (numCrossings < 40)) {
941                    if (DO_STATS) {
942                        rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
943                        rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
944                    }
945
946                    /*
947                     * threshold to use binary insertion sort instead of
948                     * straight insertion sort (to reduce minimize comparisons).
949                     */
950                    useBinarySearch = (numCrossings >= 20);
951
952                    // if small enough:
953                    lastCross = _MIN_VALUE;
954
955                    for (i = 0; i < numCrossings; i++) {
956                        // get the pointer to the edge
957                        ecur = _edgePtrs[i];
958
959                        /* convert subpixel coordinates into pixel
960                            positions for coming scanline */
961                        /* note: it is faster to always update edges even
962                           if it is removed from AEL for coming or last scanline */
963
964                        // random access so use unsafe:
965                        addr = addr0 + ecur; // ecur + OFF_F_CURX
966
967                        // get current crossing:
968                        curx = _unsafe.getInt(addr);
969
970                        // update crossing with orientation at last bit:
971                        cross = curx;
972
973                        // Increment x using DDA (fixed point):
974                        curx += _unsafe.getInt(addr + _OFF_BUMP_X);
975
976                        // Increment error:
977                        err  =  _unsafe.getInt(addr + _OFF_ERROR)
978                              + _unsafe.getInt(addr + _OFF_BUMP_ERR);
979
980                        // Manual carry handling:
981                        // keep sign and carry bit only and ignore last bit (preserve orientation):
982                        _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
983                        _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
984
985                        if (DO_STATS) {
986                            rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
987                        }
988
989                        // insertion sort of crossings:
990                        if (cross < lastCross) {
991                            if (DO_STATS) {
992                                rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
993                            }
994
995                            /* use binary search for newly added edges
996                               in crossings if arrays are large enough */
997                            if (useBinarySearch && (i >= prevNumCrossings)) {
998                                if (DO_STATS) {
999                                    rdrCtx.stats.stat_rdr_crossings_bsearch.add(i);
1000                                }
1001                                low = 0;
1002                                high = i - 1;
1003
1004                                do {
1005                                    // note: use signed shift (not >>>) for performance
1006                                    // as indices are small enough to exceed Integer.MAX_VALUE
1007                                    mid = (low + high) >> 1;
1008
1009                                    if (_crossings[mid] < cross) {
1010                                        low = mid + 1;
1011                                    } else {
1012                                        high = mid - 1;
1013                                    }
1014                                } while (low <= high);
1015
1016                                for (j = i - 1; j >= low; j--) {
1017                                    _crossings[j + 1] = _crossings[j];
1018                                    _edgePtrs [j + 1] = _edgePtrs[j];
1019                                }
1020                                _crossings[low] = cross;
1021                                _edgePtrs [low] = ecur;
1022
1023                            } else {
1024                                j = i - 1;
1025                                _crossings[i] = _crossings[j];
1026                                _edgePtrs[i] = _edgePtrs[j];
1027
1028                                while ((--j >= 0) && (_crossings[j] > cross)) {
1029                                    _crossings[j + 1] = _crossings[j];
1030                                    _edgePtrs [j + 1] = _edgePtrs[j];
1031                                }
1032                                _crossings[j + 1] = cross;
1033                                _edgePtrs [j + 1] = ecur;
1034                            }
1035
1036                        } else {
1037                            _crossings[i] = lastCross = cross;
1038                        }
1039                    }
1040                } else {
1041                    if (DO_STATS) {
1042                        rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
1043                        rdrCtx.stats.hist_rdr_crossings_ratio
1044                            .add((1000 * ptrLen) / numCrossings);
1045                        rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
1046                        rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
1047                    }
1048
1049                    // Copy sorted data in auxiliary arrays
1050                    // and perform insertion sort on almost sorted data
1051                    // (ie i < prevNumCrossings):
1052
1053                    lastCross = _MIN_VALUE;
1054
1055                    for (i = 0; i < numCrossings; i++) {
1056                        // get the pointer to the edge
1057                        ecur = _edgePtrs[i];
1058
1059                        /* convert subpixel coordinates into pixel
1060                            positions for coming scanline */
1061                        /* note: it is faster to always update edges even
1062                           if it is removed from AEL for coming or last scanline */
1063
1064                        // random access so use unsafe:
1065                        addr = addr0 + ecur; // ecur + OFF_F_CURX
1066
1067                        // get current crossing:
1068                        curx = _unsafe.getInt(addr);
1069
1070                        // update crossing with orientation at last bit:
1071                        cross = curx;
1072
1073                        // Increment x using DDA (fixed point):
1074                        curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1075
1076                        // Increment error:
1077                        err  =  _unsafe.getInt(addr + _OFF_ERROR)
1078                              + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1079
1080                        // Manual carry handling:
1081                        // keep sign and carry bit only and ignore last bit (preserve orientation):
1082                        _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
1083                        _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1084
1085                        if (DO_STATS) {
1086                            rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
1087                        }
1088
1089                        if (i >= prevNumCrossings) {
1090                            // simply store crossing as edgePtrs is in-place:
1091                            // will be copied and sorted efficiently by mergesort later:
1092                            _crossings[i]     = cross;
1093
1094                        } else if (cross < lastCross) {
1095                            if (DO_STATS) {
1096                                rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
1097                            }
1098
1099                            // (straight) insertion sort of crossings:
1100                            j = i - 1;
1101                            _aux_crossings[i] = _aux_crossings[j];
1102                            _aux_edgePtrs[i] = _aux_edgePtrs[j];
1103
1104                            while ((--j >= 0) && (_aux_crossings[j] > cross)) {
1105                                _aux_crossings[j + 1] = _aux_crossings[j];
1106                                _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
1107                            }
1108                            _aux_crossings[j + 1] = cross;
1109                            _aux_edgePtrs [j + 1] = ecur;
1110
1111                        } else {
1112                            // auxiliary storage:
1113                            _aux_crossings[i] = lastCross = cross;
1114                            _aux_edgePtrs [i] = ecur;
1115                        }
1116                    }
1117
1118                    // use Mergesort using auxiliary arrays (sort only right part)
1119                    MergeSort.mergeSortNoCopy(_crossings,     _edgePtrs,
1120                                              _aux_crossings, _aux_edgePtrs,
1121                                              numCrossings,   prevNumCrossings);
1122                }
1123
1124                // reset ptrLen
1125                ptrLen = 0;
1126                // --- from former ScanLineIterator.next()
1127
1128
1129                /* note: bboxx0 and bboxx1 must be pixel boundaries
1130                   to have correct coverage computation */
1131
1132                // right shift on crossings to get the x-coordinate:
1133                curxo = _crossings[0];
1134                x0    = curxo >> 1;
1135                if (x0 < minX) {
1136                    minX = x0; // subpixel coordinate
1137                }
1138
1139                x1 = _crossings[numCrossings - 1] >> 1;
1140                if (x1 > maxX) {
1141                    maxX = x1; // subpixel coordinate
1142                }
1143
1144
1145                // compute pixel coverages
1146                prev = curx = x0;
1147                // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1148                // last bit contains orientation (0 or 1)
1149                crorientation = ((curxo & 0x1) << 1) - 1;
1150
1151                if (windingRuleEvenOdd) {
1152                    sum = crorientation;
1153
1154                    // Even Odd winding rule: take care of mask ie sum(orientations)
1155                    for (i = 1; i < numCrossings; i++) {
1156                        curxo = _crossings[i];
1157                        curx  =  curxo >> 1;
1158                        // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1159                        // last bit contains orientation (0 or 1)
1160                        crorientation = ((curxo & 0x1) << 1) - 1;
1161
1162                        if ((sum & 0x1) != 0) {
1163                            // TODO: perform line clipping on left-right sides
1164                            // to avoid such bound checks:
1165                            x0 = (prev > bboxx0) ? prev : bboxx0;
1166
1167                            if (curx < bboxx1) {
1168                                x1 = curx;
1169                            } else {
1170                                x1 = bboxx1;
1171                                // skip right side (fast exit loop):
1172                                i = numCrossings;
1173                            }
1174
1175                            if (x0 < x1) {
1176                                x0 -= bboxx0; // turn x0, x1 from coords to indices
1177                                x1 -= bboxx0; // in the alpha array.
1178
1179                                pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1180                                pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1181
1182                                if (pix_x == pix_xmaxm1) {
1183                                    // Start and end in same pixel
1184                                    tmp = (x1 - x0); // number of subpixels
1185                                    _alpha[pix_x    ] += tmp;
1186                                    _alpha[pix_x + 1] -= tmp;
1187
1188                                    if (useBlkFlags) {
1189                                        // flag used blocks:
1190                                        // note: block processing handles extra pixel:
1191                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1192                                    }
1193                                } else {
1194                                    tmp = (x0 & _SUBPIXEL_MASK_X);
1195                                    _alpha[pix_x    ]
1196                                        += (_SUBPIXEL_POSITIONS_X - tmp);
1197                                    _alpha[pix_x + 1]
1198                                        += tmp;
1199
1200                                    pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1201
1202                                    tmp = (x1 & _SUBPIXEL_MASK_X);
1203                                    _alpha[pix_xmax    ]
1204                                        -= (_SUBPIXEL_POSITIONS_X - tmp);
1205                                    _alpha[pix_xmax + 1]
1206                                        -= tmp;
1207
1208                                    if (useBlkFlags) {
1209                                        // flag used blocks:
1210                                        // note: block processing handles extra pixel:
1211                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1212                                        _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1213                                    }
1214                                }
1215                            }
1216                        }
1217
1218                        sum += crorientation;
1219                        prev = curx;
1220                    }
1221                } else {
1222                    // Non-zero winding rule: optimize that case (default)
1223                    // and avoid processing intermediate crossings
1224                    for (i = 1, sum = 0;; i++) {
1225                        sum += crorientation;
1226
1227                        if (sum != 0) {
1228                            // prev = min(curx)
1229                            if (prev > curx) {
1230                                prev = curx;
1231                            }
1232                        } else {
1233                            // TODO: perform line clipping on left-right sides
1234                            // to avoid such bound checks:
1235                            x0 = (prev > bboxx0) ? prev : bboxx0;
1236
1237                            if (curx < bboxx1) {
1238                                x1 = curx;
1239                            } else {
1240                                x1 = bboxx1;
1241                                // skip right side (fast exit loop):
1242                                i = numCrossings;
1243                            }
1244
1245                            if (x0 < x1) {
1246                                x0 -= bboxx0; // turn x0, x1 from coords to indices
1247                                x1 -= bboxx0; // in the alpha array.
1248
1249                                pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1250                                pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1251
1252                                if (pix_x == pix_xmaxm1) {
1253                                    // Start and end in same pixel
1254                                    tmp = (x1 - x0); // number of subpixels
1255                                    _alpha[pix_x    ] += tmp;
1256                                    _alpha[pix_x + 1] -= tmp;
1257
1258                                    if (useBlkFlags) {
1259                                        // flag used blocks:
1260                                        // note: block processing handles extra pixel:
1261                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1262                                    }
1263                                } else {
1264                                    tmp = (x0 & _SUBPIXEL_MASK_X);
1265                                    _alpha[pix_x    ]
1266                                        += (_SUBPIXEL_POSITIONS_X - tmp);
1267                                    _alpha[pix_x + 1]
1268                                        += tmp;
1269
1270                                    pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1271
1272                                    tmp = (x1 & _SUBPIXEL_MASK_X);
1273                                    _alpha[pix_xmax    ]
1274                                        -= (_SUBPIXEL_POSITIONS_X - tmp);
1275                                    _alpha[pix_xmax + 1]
1276                                        -= tmp;
1277
1278                                    if (useBlkFlags) {
1279                                        // flag used blocks:
1280                                        // note: block processing handles extra pixel:
1281                                        _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1282                                        _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1283                                    }
1284                                }
1285                            }
1286                            prev = _MAX_VALUE;
1287                        }
1288
1289                        if (i == numCrossings) {
1290                            break;
1291                        }
1292
1293                        curxo = _crossings[i];
1294                        curx  =  curxo >> 1;
1295                        // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1296                        // last bit contains orientation (0 or 1)
1297                        crorientation = ((curxo & 0x1) << 1) - 1;
1298                    }
1299                }
1300            } // numCrossings > 0
1301
1302            // even if this last row had no crossings, alpha will be zeroed
1303            // from the last emitRow call. But this doesn't matter because
1304            // maxX < minX, so no row will be emitted to the MarlinCache.
1305            if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1306                lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1307
1308                // convert subpixel to pixel coordinate within boundaries:
1309                minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1310                maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1311
1312                if (maxX >= minX) {
1313                    // note: alpha array will be zeroed by copyAARow()
1314                    // +1 because alpha [pix_minX; pix_maxX[
1315                    // fix range [x0; x1[
1316                    // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1317                    // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
1318                    // (normally so never cleared below)
1319                    copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags);
1320
1321                    // speculative for next pixel row (scanline coherence):
1322                    if (_enableBlkFlagsHeuristics) {
1323                        // Use block flags if large pixel span and few crossings:
1324                        // ie mean(distance between crossings) is larger than
1325                        // 1 block size;
1326
1327                        // fast check width:
1328                        maxX -= minX;
1329
1330                        // if stroking: numCrossings /= 2
1331                        // => shift numCrossings by 1
1332                        // condition = (width / (numCrossings - 1)) > blockSize
1333                        useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1334                            (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1335
1336                        if (DO_STATS) {
1337                            tmp = FloatMath.max(1,
1338                                    ((numCrossings >> stroking) - 1));
1339                            rdrCtx.stats.hist_tile_generator_encoding_dist
1340                                .add(maxX / tmp);
1341                        }
1342                    }
1343                } else {
1344                    _cache.clearAARow(lastY);
1345                }
1346                minX = _MAX_VALUE;
1347                maxX = _MIN_VALUE;
1348            }
1349        } // scan line iterator
1350
1351        // Emit final row
1352        y--;
1353        y >>= _SUBPIXEL_LG_POSITIONS_Y;
1354
1355        // convert subpixel to pixel coordinate within boundaries:
1356        minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1357        maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1358
1359        if (maxX >= minX) {
1360            // note: alpha array will be zeroed by copyAARow()
1361            // +1 because alpha [pix_minX; pix_maxX[
1362            // fix range [x0; x1[
1363            // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1364            // inclusive: alpha[bboxx1] ignored then cleared and
1365            // alpha[bboxx1+1] == 0 (normally so never cleared after)
1366            copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags);
1367        } else if (y != lastY) {
1368            _cache.clearAARow(y);
1369        }
1370
1371        // update member:
1372        edgeCount = numCrossings;
1373        prevUseBlkFlags = useBlkFlags;
1374
1375        if (DO_STATS) {
1376            // update max used mark
1377            activeEdgeMaxUsed = _arrayMaxUsed;
1378        }
1379    }
1380
1381    boolean endRendering() {
1382        if (DO_MONITORS) {
1383            rdrCtx.stats.mon_rdr_endRendering.start();
1384        }
1385        if (edgeMinY == Integer.MAX_VALUE) {
1386            return false; // undefined edges bounds
1387        }
1388
1389        // bounds as half-open intervals
1390        final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5d), boundsMinX);
1391        final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5d), boundsMaxX);
1392
1393        // edge Min/Max Y are already rounded to subpixels within bounds:
1394        final int spminY = edgeMinY;
1395        final int spmaxY = edgeMaxY;
1396
1397        buckets_minY = spminY - boundsMinY;
1398        buckets_maxY = spmaxY - boundsMinY;
1399
1400        if (DO_LOG_BOUNDS) {
1401            MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1402                                + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
1403            MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1404                                + "[ [" + spminY + " ... " + spmaxY + "[");
1405        }
1406
1407        // test clipping for shapes out of bounds
1408        if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
1409            return false;
1410        }
1411
1412        // half open intervals
1413        // inclusive:
1414        final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1415        // exclusive:
1416        final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1417        // inclusive:
1418        final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1419        // exclusive:
1420        final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1421
1422        // store BBox to answer ptg.getBBox():
1423        this.cache.init(pminX, pminY, pmaxX, pmaxY);
1424
1425        // Heuristics for using block flags:
1426        if (ENABLE_BLOCK_FLAGS) {
1427            enableBlkFlags = this.cache.useRLE;
1428            prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1429
1430            if (enableBlkFlags) {
1431                // ensure blockFlags array is large enough:
1432                // note: +2 to ensure enough space left at end
1433                final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
1434                if (blkLen > INITIAL_ARRAY) {
1435                    blkFlags = blkFlags_ref.getArray(blkLen);
1436                }
1437            }
1438        }
1439
1440        // memorize the rendering bounding box:
1441        /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1442           to have correct coverage computation */
1443        // inclusive:
1444        bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1445        // exclusive:
1446        bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1447        // inclusive:
1448        bbox_spminY = spminY;
1449        // exclusive:
1450        bbox_spmaxY = spmaxY;
1451
1452        if (DO_LOG_BOUNDS) {
1453            MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1454                                + "[ [" + pminY + " ... " + pmaxY + "[");
1455            MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1456                                + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1457                                + bbox_spmaxY + "[");
1458        }
1459
1460        // Prepare alpha line:
1461        // add 2 to better deal with the last pixel in a pixel row.
1462        final int width = (pmaxX - pminX) + 2;
1463
1464        // Useful when processing tile line by tile line
1465        if (width > INITIAL_AA_ARRAY) {
1466            if (DO_STATS) {
1467                rdrCtx.stats.stat_array_renderer_alphaline.add(width);
1468            }
1469            alphaLine = alphaLine_ref.getArray(width);
1470        }
1471
1472        // process first tile line:
1473        endRendering(pminY);
1474
1475        return true;
1476    }
1477
1478    private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
1479
1480    void endRendering(final int pminY) {
1481        if (DO_MONITORS) {
1482            rdrCtx.stats.mon_rdr_endRendering_Y.start();
1483        }
1484
1485        final int spminY       = pminY << SUBPIXEL_LG_POSITIONS_Y;
1486        final int fixed_spminY = FloatMath.max(bbox_spminY, spminY);
1487
1488        // avoid rendering for last call to nextTile()
1489        if (fixed_spminY < bbox_spmaxY) {
1490            // process a complete tile line ie scanlines for 32 rows
1491            final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE);
1492
1493            // process tile line [0 - 32]
1494            cache.resetTileLine(pminY);
1495
1496            // Process only one tile line:
1497            _endRendering(fixed_spminY, spmaxY);
1498        }
1499        if (DO_MONITORS) {
1500            rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1501        }
1502    }
1503
1504    void copyAARow(final int[] alphaRow,
1505                   final int pix_y, final int pix_from, final int pix_to,
1506                   final boolean useBlockFlags)
1507    {
1508        if (DO_MONITORS) {
1509            rdrCtx.stats.mon_rdr_copyAARow.start();
1510        }
1511        if (useBlockFlags) {
1512            if (DO_STATS) {
1513                rdrCtx.stats.hist_tile_generator_encoding.add(1);
1514            }
1515            cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1516        } else {
1517            if (DO_STATS) {
1518                rdrCtx.stats.hist_tile_generator_encoding.add(0);
1519            }
1520            cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);
1521        }
1522        if (DO_MONITORS) {
1523            rdrCtx.stats.mon_rdr_copyAARow.stop();
1524        }
1525    }
1526}
1527