1/*
2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package sun.java2d.marlin;
27
28import java.awt.BasicStroke;
29import java.awt.Shape;
30import java.awt.geom.AffineTransform;
31import java.awt.geom.Path2D;
32import java.awt.geom.PathIterator;
33import java.security.AccessController;
34import static sun.java2d.marlin.MarlinUtils.logInfo;
35import sun.java2d.ReentrantContextProvider;
36import sun.java2d.ReentrantContextProviderCLQ;
37import sun.java2d.ReentrantContextProviderTL;
38import sun.java2d.pipe.AATileGenerator;
39import sun.java2d.pipe.Region;
40import sun.java2d.pipe.RenderingEngine;
41import sun.security.action.GetPropertyAction;
42
43/**
44 * Marlin RendererEngine implementation (derived from Pisces)
45 */
46public final class DMarlinRenderingEngine extends RenderingEngine
47                                          implements MarlinConst
48{
49    private static enum NormMode {
50        ON_WITH_AA {
51            @Override
52            PathIterator getNormalizingPathIterator(final DRendererContext rdrCtx,
53                                                    final PathIterator src)
54            {
55                // NormalizingPathIterator NearestPixelCenter:
56                return rdrCtx.nPCPathIterator.init(src);
57            }
58        },
59        ON_NO_AA{
60            @Override
61            PathIterator getNormalizingPathIterator(final DRendererContext rdrCtx,
62                                                    final PathIterator src)
63            {
64                // NearestPixel NormalizingPathIterator:
65                return rdrCtx.nPQPathIterator.init(src);
66            }
67        },
68        OFF{
69            @Override
70            PathIterator getNormalizingPathIterator(final DRendererContext rdrCtx,
71                                                    final PathIterator src)
72            {
73                // return original path iterator if normalization is disabled:
74                return src;
75            }
76        };
77
78        abstract PathIterator getNormalizingPathIterator(DRendererContext rdrCtx,
79                                                         PathIterator src);
80    }
81
82    private static final float MIN_PEN_SIZE = 1.0f / NORM_SUBPIXELS;
83
84    static final double UPPER_BND = Float.MAX_VALUE / 2.0d;
85    static final double LOWER_BND = -UPPER_BND;
86
87    /**
88     * Public constructor
89     */
90    public DMarlinRenderingEngine() {
91        super();
92        logSettings(DMarlinRenderingEngine.class.getName());
93    }
94
95    /**
96     * Create a widened path as specified by the parameters.
97     * <p>
98     * The specified {@code src} {@link Shape} is widened according
99     * to the specified attribute parameters as per the
100     * {@link BasicStroke} specification.
101     *
102     * @param src the source path to be widened
103     * @param width the width of the widened path as per {@code BasicStroke}
104     * @param caps the end cap decorations as per {@code BasicStroke}
105     * @param join the segment join decorations as per {@code BasicStroke}
106     * @param miterlimit the miter limit as per {@code BasicStroke}
107     * @param dashes the dash length array as per {@code BasicStroke}
108     * @param dashphase the initial dash phase as per {@code BasicStroke}
109     * @return the widened path stored in a new {@code Shape} object
110     * @since 1.7
111     */
112    @Override
113    public Shape createStrokedShape(Shape src,
114                                    float width,
115                                    int caps,
116                                    int join,
117                                    float miterlimit,
118                                    float[] dashes,
119                                    float dashphase)
120    {
121        final DRendererContext rdrCtx = getRendererContext();
122        try {
123            // initialize a large copyable Path2D to avoid a lot of array growing:
124            final Path2D.Double p2d = rdrCtx.getPath2D();
125
126            strokeTo(rdrCtx,
127                     src,
128                     null,
129                     width,
130                     NormMode.OFF,
131                     caps,
132                     join,
133                     miterlimit,
134                     dashes,
135                     dashphase,
136                     rdrCtx.transformerPC2D.wrapPath2d(p2d)
137                    );
138
139            // Use Path2D copy constructor (trim)
140            return new Path2D.Double(p2d);
141
142        } finally {
143            // recycle the DRendererContext instance
144            returnRendererContext(rdrCtx);
145        }
146    }
147
148    /**
149     * Sends the geometry for a widened path as specified by the parameters
150     * to the specified consumer.
151     * <p>
152     * The specified {@code src} {@link Shape} is widened according
153     * to the parameters specified by the {@link BasicStroke} object.
154     * Adjustments are made to the path as appropriate for the
155     * {@link java.awt.RenderingHints#VALUE_STROKE_NORMALIZE} hint if the
156     * {@code normalize} boolean parameter is true.
157     * Adjustments are made to the path as appropriate for the
158     * {@link java.awt.RenderingHints#VALUE_ANTIALIAS_ON} hint if the
159     * {@code antialias} boolean parameter is true.
160     * <p>
161     * The geometry of the widened path is forwarded to the indicated
162     * {@link DPathConsumer2D} object as it is calculated.
163     *
164     * @param src the source path to be widened
165     * @param bs the {@code BasicSroke} object specifying the
166     *           decorations to be applied to the widened path
167     * @param normalize indicates whether stroke normalization should
168     *                  be applied
169     * @param antialias indicates whether or not adjustments appropriate
170     *                  to antialiased rendering should be applied
171     * @param consumer the {@code DPathConsumer2D} instance to forward
172     *                 the widened geometry to
173     * @since 1.7
174     */
175    @Override
176    public void strokeTo(Shape src,
177                         AffineTransform at,
178                         BasicStroke bs,
179                         boolean thin,
180                         boolean normalize,
181                         boolean antialias,
182                         final sun.awt.geom.PathConsumer2D consumer)
183    {
184        final NormMode norm = (normalize) ?
185                ((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA)
186                : NormMode.OFF;
187
188        final DRendererContext rdrCtx = getRendererContext();
189        try {
190            strokeTo(rdrCtx, src, at, bs, thin, norm, antialias,
191                     rdrCtx.p2dAdapter.init(consumer));
192        } finally {
193            // recycle the DRendererContext instance
194            returnRendererContext(rdrCtx);
195        }
196    }
197
198    final void strokeTo(final DRendererContext rdrCtx,
199                        Shape src,
200                        AffineTransform at,
201                        BasicStroke bs,
202                        boolean thin,
203                        NormMode normalize,
204                        boolean antialias,
205                        DPathConsumer2D pc2d)
206    {
207        double lw;
208        if (thin) {
209            if (antialias) {
210                lw = userSpaceLineWidth(at, MIN_PEN_SIZE);
211            } else {
212                lw = userSpaceLineWidth(at, 1.0d);
213            }
214        } else {
215            lw = bs.getLineWidth();
216        }
217        strokeTo(rdrCtx,
218                 src,
219                 at,
220                 lw,
221                 normalize,
222                 bs.getEndCap(),
223                 bs.getLineJoin(),
224                 bs.getMiterLimit(),
225                 bs.getDashArray(),
226                 bs.getDashPhase(),
227                 pc2d);
228    }
229
230    private final double userSpaceLineWidth(AffineTransform at, double lw) {
231
232        double widthScale;
233
234        if (at == null) {
235            widthScale = 1.0d;
236        } else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM  |
237                                    AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
238            widthScale = Math.sqrt(at.getDeterminant());
239        } else {
240            // First calculate the "maximum scale" of this transform.
241            double A = at.getScaleX();       // m00
242            double C = at.getShearX();       // m01
243            double B = at.getShearY();       // m10
244            double D = at.getScaleY();       // m11
245
246            /*
247             * Given a 2 x 2 affine matrix [ A B ] such that
248             *                             [ C D ]
249             * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
250             * find the maximum magnitude (norm) of the vector v'
251             * with the constraint (x^2 + y^2 = 1).
252             * The equation to maximize is
253             *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
254             * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
255             * Since sqrt is monotonic we can maximize |v'|^2
256             * instead and plug in the substitution y = sqrt(1 - x^2).
257             * Trigonometric equalities can then be used to get
258             * rid of most of the sqrt terms.
259             */
260
261            double EA = A*A + B*B;          // x^2 coefficient
262            double EB = 2.0d * (A*C + B*D); // xy coefficient
263            double EC = C*C + D*D;          // y^2 coefficient
264
265            /*
266             * There is a lot of calculus omitted here.
267             *
268             * Conceptually, in the interests of understanding the
269             * terms that the calculus produced we can consider
270             * that EA and EC end up providing the lengths along
271             * the major axes and the hypot term ends up being an
272             * adjustment for the additional length along the off-axis
273             * angle of rotated or sheared ellipses as well as an
274             * adjustment for the fact that the equation below
275             * averages the two major axis lengths.  (Notice that
276             * the hypot term contains a part which resolves to the
277             * difference of these two axis lengths in the absence
278             * of rotation.)
279             *
280             * In the calculus, the ratio of the EB and (EA-EC) terms
281             * ends up being the tangent of 2*theta where theta is
282             * the angle that the long axis of the ellipse makes
283             * with the horizontal axis.  Thus, this equation is
284             * calculating the length of the hypotenuse of a triangle
285             * along that axis.
286             */
287
288            double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
289            // sqrt omitted, compare to squared limits below.
290            double widthsquared = ((EA + EC + hypot) / 2.0d);
291
292            widthScale = Math.sqrt(widthsquared);
293        }
294
295        return (lw / widthScale);
296    }
297
298    final void strokeTo(final DRendererContext rdrCtx,
299                        Shape src,
300                        AffineTransform at,
301                        double width,
302                        NormMode norm,
303                        int caps,
304                        int join,
305                        float miterlimit,
306                        float[] dashes,
307                        float dashphase,
308                        DPathConsumer2D pc2d)
309    {
310        // We use strokerat so that in Stroker and Dasher we can work only
311        // with the pre-transformation coordinates. This will repeat a lot of
312        // computations done in the path iterator, but the alternative is to
313        // work with transformed paths and compute untransformed coordinates
314        // as needed. This would be faster but I do not think the complexity
315        // of working with both untransformed and transformed coordinates in
316        // the same code is worth it.
317        // However, if a path's width is constant after a transformation,
318        // we can skip all this untransforming.
319
320        // As pathTo() will check transformed coordinates for invalid values
321        // (NaN / Infinity) to ignore such points, it is necessary to apply the
322        // transformation before the path processing.
323        AffineTransform strokerat = null;
324
325        int dashLen = -1;
326        boolean recycleDashes = false;
327        double[] dashesD = null;
328
329        // Ensure converting dashes to double precision:
330        if (dashes != null) {
331            recycleDashes = true;
332            dashLen = dashes.length;
333            dashesD = rdrCtx.dasher.copyDashArray(dashes);
334        }
335
336        if (at != null && !at.isIdentity()) {
337            final double a = at.getScaleX();
338            final double b = at.getShearX();
339            final double c = at.getShearY();
340            final double d = at.getScaleY();
341            final double det = a * d - c * b;
342
343            if (Math.abs(det) <= (2.0d * Double.MIN_VALUE)) {
344                // this rendering engine takes one dimensional curves and turns
345                // them into 2D shapes by giving them width.
346                // However, if everything is to be passed through a singular
347                // transformation, these 2D shapes will be squashed down to 1D
348                // again so, nothing can be drawn.
349
350                // Every path needs an initial moveTo and a pathDone. If these
351                // are not there this causes a SIGSEGV in libawt.so (at the time
352                // of writing of this comment (September 16, 2010)). Actually,
353                // I am not sure if the moveTo is necessary to avoid the SIGSEGV
354                // but the pathDone is definitely needed.
355                pc2d.moveTo(0.0d, 0.0d);
356                pc2d.pathDone();
357                return;
358            }
359
360            // If the transform is a constant multiple of an orthogonal transformation
361            // then every length is just multiplied by a constant, so we just
362            // need to transform input paths to stroker and tell stroker
363            // the scaled width. This condition is satisfied if
364            // a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we
365            // leave a bit of room for error.
366            if (nearZero(a*b + c*d) && nearZero(a*a + c*c - (b*b + d*d))) {
367                final double scale =  Math.sqrt(a*a + c*c);
368
369                if (dashesD != null) {
370                    for (int i = 0; i < dashLen; i++) {
371                        dashesD[i] *= scale;
372                    }
373                    dashphase *= scale;
374                }
375                width *= scale;
376
377                // by now strokerat == null. Input paths to
378                // stroker (and maybe dasher) will have the full transform at
379                // applied to them and nothing will happen to the output paths.
380            } else {
381                strokerat = at;
382
383                // by now strokerat == at. Input paths to
384                // stroker (and maybe dasher) will have the full transform at
385                // applied to them, then they will be normalized, and then
386                // the inverse of *only the non translation part of at* will
387                // be applied to the normalized paths. This won't cause problems
388                // in stroker, because, suppose at = T*A, where T is just the
389                // translation part of at, and A is the rest. T*A has already
390                // been applied to Stroker/Dasher's input. Then Ainv will be
391                // applied. Ainv*T*A is not equal to T, but it is a translation,
392                // which means that none of stroker's assumptions about its
393                // input will be violated. After all this, A will be applied
394                // to stroker's output.
395            }
396        } else {
397            // either at is null or it's the identity. In either case
398            // we don't transform the path.
399            at = null;
400        }
401
402        if (USE_SIMPLIFIER) {
403            // Use simplifier after stroker before Renderer
404            // to remove collinear segments (notably due to cap square)
405            pc2d = rdrCtx.simplifier.init(pc2d);
406        }
407
408        final DTransformingPathConsumer2D transformerPC2D = rdrCtx.transformerPC2D;
409        pc2d = transformerPC2D.deltaTransformConsumer(pc2d, strokerat);
410
411        pc2d = rdrCtx.stroker.init(pc2d, width, caps, join, miterlimit);
412
413        if (dashesD != null) {
414            pc2d = rdrCtx.dasher.init(pc2d, dashesD, dashLen, dashphase,
415                                      recycleDashes);
416        }
417        pc2d = transformerPC2D.inverseDeltaTransformConsumer(pc2d, strokerat);
418
419        final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx,
420                                         src.getPathIterator(at));
421
422        pathTo(rdrCtx, pi, pc2d);
423
424        /*
425         * Pipeline seems to be:
426         * shape.getPathIterator(at)
427         * -> (NormalizingPathIterator)
428         * -> (inverseDeltaTransformConsumer)
429         * -> (Dasher)
430         * -> Stroker
431         * -> (deltaTransformConsumer)
432         *
433         * -> (CollinearSimplifier) to remove redundant segments
434         *
435         * -> pc2d = Renderer (bounding box)
436         */
437    }
438
439    private static boolean nearZero(final double num) {
440        return Math.abs(num) < 2.0d * Math.ulp(num);
441    }
442
443    abstract static class NormalizingPathIterator implements PathIterator {
444
445        private PathIterator src;
446
447        // the adjustment applied to the current position.
448        private double curx_adjust, cury_adjust;
449        // the adjustment applied to the last moveTo position.
450        private double movx_adjust, movy_adjust;
451
452        private final double[] tmp;
453
454        NormalizingPathIterator(final double[] tmp) {
455            this.tmp = tmp;
456        }
457
458        final NormalizingPathIterator init(final PathIterator src) {
459            this.src = src;
460            return this; // fluent API
461        }
462
463        /**
464         * Disposes this path iterator:
465         * clean up before reusing this instance
466         */
467        final void dispose() {
468            // free source PathIterator:
469            this.src = null;
470        }
471
472        @Override
473        public final int currentSegment(final double[] coords) {
474            int lastCoord;
475            final int type = src.currentSegment(coords);
476
477            switch(type) {
478                case PathIterator.SEG_MOVETO:
479                case PathIterator.SEG_LINETO:
480                    lastCoord = 0;
481                    break;
482                case PathIterator.SEG_QUADTO:
483                    lastCoord = 2;
484                    break;
485                case PathIterator.SEG_CUBICTO:
486                    lastCoord = 4;
487                    break;
488                case PathIterator.SEG_CLOSE:
489                    // we don't want to deal with this case later. We just exit now
490                    curx_adjust = movx_adjust;
491                    cury_adjust = movy_adjust;
492                    return type;
493                default:
494                    throw new InternalError("Unrecognized curve type");
495            }
496
497            // normalize endpoint
498            double coord, x_adjust, y_adjust;
499
500            coord = coords[lastCoord];
501            x_adjust = normCoord(coord); // new coord
502            coords[lastCoord] = x_adjust;
503            x_adjust -= coord;
504
505            coord = coords[lastCoord + 1];
506            y_adjust = normCoord(coord); // new coord
507            coords[lastCoord + 1] = y_adjust;
508            y_adjust -= coord;
509
510            // now that the end points are done, normalize the control points
511            switch(type) {
512                case PathIterator.SEG_MOVETO:
513                    movx_adjust = x_adjust;
514                    movy_adjust = y_adjust;
515                    break;
516                case PathIterator.SEG_LINETO:
517                    break;
518                case PathIterator.SEG_QUADTO:
519                    coords[0] += (curx_adjust + x_adjust) / 2.0d;
520                    coords[1] += (cury_adjust + y_adjust) / 2.0d;
521                    break;
522                case PathIterator.SEG_CUBICTO:
523                    coords[0] += curx_adjust;
524                    coords[1] += cury_adjust;
525                    coords[2] += x_adjust;
526                    coords[3] += y_adjust;
527                    break;
528                case PathIterator.SEG_CLOSE:
529                    // handled earlier
530                default:
531            }
532            curx_adjust = x_adjust;
533            cury_adjust = y_adjust;
534            return type;
535        }
536
537        abstract double normCoord(final double coord);
538
539        @Override
540        public final int currentSegment(final float[] coords) {
541            final double[] _tmp = tmp; // dirty
542            int type = this.currentSegment(_tmp);
543            for (int i = 0; i < 6; i++) {
544                coords[i] = (float)_tmp[i];
545            }
546            return type;
547        }
548
549        @Override
550        public final int getWindingRule() {
551            return src.getWindingRule();
552        }
553
554        @Override
555        public final boolean isDone() {
556            if (src.isDone()) {
557                // Dispose this instance:
558                dispose();
559                return true;
560            }
561            return false;
562        }
563
564        @Override
565        public final void next() {
566            src.next();
567        }
568
569        static final class NearestPixelCenter
570                                extends NormalizingPathIterator
571        {
572            NearestPixelCenter(final double[] tmp) {
573                super(tmp);
574            }
575
576            @Override
577            double normCoord(final double coord) {
578                // round to nearest pixel center
579                return Math.floor(coord) + 0.5d;
580            }
581        }
582
583        static final class NearestPixelQuarter
584                                extends NormalizingPathIterator
585        {
586            NearestPixelQuarter(final double[] tmp) {
587                super(tmp);
588            }
589
590            @Override
591            double normCoord(final double coord) {
592                // round to nearest (0.25, 0.25) pixel quarter
593                return Math.floor(coord + 0.25d) + 0.25d;
594            }
595        }
596    }
597
598    private static void pathTo(final DRendererContext rdrCtx, final PathIterator pi,
599                               final DPathConsumer2D pc2d)
600    {
601        // mark context as DIRTY:
602        rdrCtx.dirty = true;
603
604        final double[] coords = rdrCtx.double6;
605
606        pathToLoop(coords, pi, pc2d);
607
608        // mark context as CLEAN:
609        rdrCtx.dirty = false;
610    }
611
612    private static void pathToLoop(final double[] coords, final PathIterator pi,
613                                   final DPathConsumer2D pc2d)
614    {
615        // ported from DuctusRenderingEngine.feedConsumer() but simplified:
616        // - removed skip flag = !subpathStarted
617        // - removed pathClosed (ie subpathStarted not set to false)
618        boolean subpathStarted = false;
619
620        for (; !pi.isDone(); pi.next()) {
621            switch (pi.currentSegment(coords)) {
622            case PathIterator.SEG_MOVETO:
623                /* Checking SEG_MOVETO coordinates if they are out of the
624                 * [LOWER_BND, UPPER_BND] range. This check also handles NaN
625                 * and Infinity values. Skipping next path segment in case of
626                 * invalid data.
627                 */
628                if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
629                    coords[1] < UPPER_BND && coords[1] > LOWER_BND)
630                {
631                    pc2d.moveTo(coords[0], coords[1]);
632                    subpathStarted = true;
633                }
634                break;
635            case PathIterator.SEG_LINETO:
636                /* Checking SEG_LINETO coordinates if they are out of the
637                 * [LOWER_BND, UPPER_BND] range. This check also handles NaN
638                 * and Infinity values. Ignoring current path segment in case
639                 * of invalid data. If segment is skipped its endpoint
640                 * (if valid) is used to begin new subpath.
641                 */
642                if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
643                    coords[1] < UPPER_BND && coords[1] > LOWER_BND)
644                {
645                    if (subpathStarted) {
646                        pc2d.lineTo(coords[0], coords[1]);
647                    } else {
648                        pc2d.moveTo(coords[0], coords[1]);
649                        subpathStarted = true;
650                    }
651                }
652                break;
653            case PathIterator.SEG_QUADTO:
654                // Quadratic curves take two points
655                /* Checking SEG_QUADTO coordinates if they are out of the
656                 * [LOWER_BND, UPPER_BND] range. This check also handles NaN
657                 * and Infinity values. Ignoring current path segment in case
658                 * of invalid endpoints's data. Equivalent to the SEG_LINETO
659                 * if endpoint coordinates are valid but there are invalid data
660                 * among other coordinates
661                 */
662                if (coords[2] < UPPER_BND && coords[2] > LOWER_BND &&
663                    coords[3] < UPPER_BND && coords[3] > LOWER_BND)
664                {
665                    if (subpathStarted) {
666                        if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
667                            coords[1] < UPPER_BND && coords[1] > LOWER_BND)
668                        {
669                            pc2d.quadTo(coords[0], coords[1],
670                                        coords[2], coords[3]);
671                        } else {
672                            pc2d.lineTo(coords[2], coords[3]);
673                        }
674                    } else {
675                        pc2d.moveTo(coords[2], coords[3]);
676                        subpathStarted = true;
677                    }
678                }
679                break;
680            case PathIterator.SEG_CUBICTO:
681                // Cubic curves take three points
682                /* Checking SEG_CUBICTO coordinates if they are out of the
683                 * [LOWER_BND, UPPER_BND] range. This check also handles NaN
684                 * and Infinity values. Ignoring current path segment in case
685                 * of invalid endpoints's data. Equivalent to the SEG_LINETO
686                 * if endpoint coordinates are valid but there are invalid data
687                 * among other coordinates
688                 */
689                if (coords[4] < UPPER_BND && coords[4] > LOWER_BND &&
690                    coords[5] < UPPER_BND && coords[5] > LOWER_BND)
691                {
692                    if (subpathStarted) {
693                        if (coords[0] < UPPER_BND && coords[0] > LOWER_BND &&
694                            coords[1] < UPPER_BND && coords[1] > LOWER_BND &&
695                            coords[2] < UPPER_BND && coords[2] > LOWER_BND &&
696                            coords[3] < UPPER_BND && coords[3] > LOWER_BND)
697                        {
698                            pc2d.curveTo(coords[0], coords[1],
699                                         coords[2], coords[3],
700                                         coords[4], coords[5]);
701                        } else {
702                            pc2d.lineTo(coords[4], coords[5]);
703                        }
704                    } else {
705                        pc2d.moveTo(coords[4], coords[5]);
706                        subpathStarted = true;
707                    }
708                }
709                break;
710            case PathIterator.SEG_CLOSE:
711                if (subpathStarted) {
712                    pc2d.closePath();
713                    // do not set subpathStarted to false
714                    // in case of missing moveTo() after close()
715                }
716                break;
717            default:
718            }
719        }
720        pc2d.pathDone();
721    }
722
723    /**
724     * Construct an antialiased tile generator for the given shape with
725     * the given rendering attributes and store the bounds of the tile
726     * iteration in the bbox parameter.
727     * The {@code at} parameter specifies a transform that should affect
728     * both the shape and the {@code BasicStroke} attributes.
729     * The {@code clip} parameter specifies the current clip in effect
730     * in device coordinates and can be used to prune the data for the
731     * operation, but the renderer is not required to perform any
732     * clipping.
733     * If the {@code BasicStroke} parameter is null then the shape
734     * should be filled as is, otherwise the attributes of the
735     * {@code BasicStroke} should be used to specify a draw operation.
736     * The {@code thin} parameter indicates whether or not the
737     * transformed {@code BasicStroke} represents coordinates smaller
738     * than the minimum resolution of the antialiasing rasterizer as
739     * specified by the {@code getMinimumAAPenWidth()} method.
740     * <p>
741     * Upon returning, this method will fill the {@code bbox} parameter
742     * with 4 values indicating the bounds of the iteration of the
743     * tile generator.
744     * The iteration order of the tiles will be as specified by the
745     * pseudo-code:
746     * <pre>
747     *     for (y = bbox[1]; y < bbox[3]; y += tileheight) {
748     *         for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
749     *         }
750     *     }
751     * </pre>
752     * If there is no output to be rendered, this method may return
753     * null.
754     *
755     * @param s the shape to be rendered (fill or draw)
756     * @param at the transform to be applied to the shape and the
757     *           stroke attributes
758     * @param clip the current clip in effect in device coordinates
759     * @param bs if non-null, a {@code BasicStroke} whose attributes
760     *           should be applied to this operation
761     * @param thin true if the transformed stroke attributes are smaller
762     *             than the minimum dropout pen width
763     * @param normalize true if the {@code VALUE_STROKE_NORMALIZE}
764     *                  {@code RenderingHint} is in effect
765     * @param bbox returns the bounds of the iteration
766     * @return the {@code AATileGenerator} instance to be consulted
767     *         for tile coverages, or null if there is no output to render
768     * @since 1.7
769     */
770    @Override
771    public AATileGenerator getAATileGenerator(Shape s,
772                                              AffineTransform at,
773                                              Region clip,
774                                              BasicStroke bs,
775                                              boolean thin,
776                                              boolean normalize,
777                                              int[] bbox)
778    {
779        MarlinTileGenerator ptg = null;
780        DRenderer r = null;
781
782        final DRendererContext rdrCtx = getRendererContext();
783        try {
784            // Test if at is identity:
785            final AffineTransform _at = (at != null && !at.isIdentity()) ? at
786                                        : null;
787
788            final NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF;
789
790            if (bs == null) {
791                // fill shape:
792                final PathIterator pi = norm.getNormalizingPathIterator(rdrCtx,
793                                                 s.getPathIterator(_at));
794
795                // note: Winding rule may be EvenOdd ONLY for fill operations !
796                r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
797                                         clip.getWidth(), clip.getHeight(),
798                                         pi.getWindingRule());
799
800                // TODO: subdivide quad/cubic curves into monotonic curves ?
801                pathTo(rdrCtx, pi, r);
802            } else {
803                // draw shape with given stroke:
804                r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
805                                         clip.getWidth(), clip.getHeight(),
806                                         PathIterator.WIND_NON_ZERO);
807
808                strokeTo(rdrCtx, s, _at, bs, thin, norm, true, r);
809            }
810            if (r.endRendering()) {
811                ptg = rdrCtx.ptg.init();
812                ptg.getBbox(bbox);
813                // note: do not returnRendererContext(rdrCtx)
814                // as it will be called later by MarlinTileGenerator.dispose()
815                r = null;
816            }
817        } finally {
818            if (r != null) {
819                // dispose renderer and recycle the RendererContext instance:
820                r.dispose();
821            }
822        }
823
824        // Return null to cancel AA tile generation (nothing to render)
825        return ptg;
826    }
827
828    @Override
829    public final AATileGenerator getAATileGenerator(double x, double y,
830                                                    double dx1, double dy1,
831                                                    double dx2, double dy2,
832                                                    double lw1, double lw2,
833                                                    Region clip,
834                                                    int[] bbox)
835    {
836        // REMIND: Deal with large coordinates!
837        double ldx1, ldy1, ldx2, ldy2;
838        boolean innerpgram = (lw1 > 0.0d && lw2 > 0.0d);
839
840        if (innerpgram) {
841            ldx1 = dx1 * lw1;
842            ldy1 = dy1 * lw1;
843            ldx2 = dx2 * lw2;
844            ldy2 = dy2 * lw2;
845            x -= (ldx1 + ldx2) / 2.0d;
846            y -= (ldy1 + ldy2) / 2.0d;
847            dx1 += ldx1;
848            dy1 += ldy1;
849            dx2 += ldx2;
850            dy2 += ldy2;
851            if (lw1 > 1.0d && lw2 > 1.0d) {
852                // Inner parallelogram was entirely consumed by stroke...
853                innerpgram = false;
854            }
855        } else {
856            ldx1 = ldy1 = ldx2 = ldy2 = 0.0d;
857        }
858
859        MarlinTileGenerator ptg = null;
860        DRenderer r = null;
861
862        final DRendererContext rdrCtx = getRendererContext();
863        try {
864            r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
865                                         clip.getWidth(), clip.getHeight(),
866                                         DRenderer.WIND_EVEN_ODD);
867
868            r.moveTo( x,  y);
869            r.lineTo( (x+dx1),  (y+dy1));
870            r.lineTo( (x+dx1+dx2),  (y+dy1+dy2));
871            r.lineTo( (x+dx2),  (y+dy2));
872            r.closePath();
873
874            if (innerpgram) {
875                x += ldx1 + ldx2;
876                y += ldy1 + ldy2;
877                dx1 -= 2.0d * ldx1;
878                dy1 -= 2.0d * ldy1;
879                dx2 -= 2.0d * ldx2;
880                dy2 -= 2.0d * ldy2;
881                r.moveTo( x,  y);
882                r.lineTo( (x+dx1),  (y+dy1));
883                r.lineTo( (x+dx1+dx2),  (y+dy1+dy2));
884                r.lineTo( (x+dx2),  (y+dy2));
885                r.closePath();
886            }
887            r.pathDone();
888
889            if (r.endRendering()) {
890                ptg = rdrCtx.ptg.init();
891                ptg.getBbox(bbox);
892                // note: do not returnRendererContext(rdrCtx)
893                // as it will be called later by MarlinTileGenerator.dispose()
894                r = null;
895            }
896        } finally {
897            if (r != null) {
898                // dispose renderer and recycle the RendererContext instance:
899                r.dispose();
900            }
901        }
902
903        // Return null to cancel AA tile generation (nothing to render)
904        return ptg;
905    }
906
907    /**
908     * Returns the minimum pen width that the antialiasing rasterizer
909     * can represent without dropouts occuring.
910     * @since 1.7
911     */
912    @Override
913    public float getMinimumAAPenSize() {
914        return MIN_PEN_SIZE;
915    }
916
917    static {
918        if (PathIterator.WIND_NON_ZERO != DRenderer.WIND_NON_ZERO ||
919            PathIterator.WIND_EVEN_ODD != DRenderer.WIND_EVEN_ODD ||
920            BasicStroke.JOIN_MITER != DStroker.JOIN_MITER ||
921            BasicStroke.JOIN_ROUND != DStroker.JOIN_ROUND ||
922            BasicStroke.JOIN_BEVEL != DStroker.JOIN_BEVEL ||
923            BasicStroke.CAP_BUTT != DStroker.CAP_BUTT ||
924            BasicStroke.CAP_ROUND != DStroker.CAP_ROUND ||
925            BasicStroke.CAP_SQUARE != DStroker.CAP_SQUARE)
926        {
927            throw new InternalError("mismatched renderer constants");
928        }
929    }
930
931    // --- DRendererContext handling ---
932    // use ThreadLocal or ConcurrentLinkedQueue to get one DRendererContext
933    private static final boolean USE_THREAD_LOCAL;
934
935    // reference type stored in either TL or CLQ
936    static final int REF_TYPE;
937
938    // Per-thread DRendererContext
939    private static final ReentrantContextProvider<DRendererContext> RDR_CTX_PROVIDER;
940
941    // Static initializer to use TL or CLQ mode
942    static {
943        USE_THREAD_LOCAL = MarlinProperties.isUseThreadLocal();
944
945        // Soft reference by default:
946        final String refType = AccessController.doPrivileged(
947                            new GetPropertyAction("sun.java2d.renderer.useRef",
948                            "soft"));
949
950        // Java 1.6 does not support strings in switch:
951        if ("hard".equalsIgnoreCase(refType)) {
952            REF_TYPE = ReentrantContextProvider.REF_HARD;
953        } else if ("weak".equalsIgnoreCase(refType)) {
954            REF_TYPE = ReentrantContextProvider.REF_WEAK;
955        } else {
956            REF_TYPE = ReentrantContextProvider.REF_SOFT;
957        }
958
959        if (USE_THREAD_LOCAL) {
960            RDR_CTX_PROVIDER = new ReentrantContextProviderTL<DRendererContext>(REF_TYPE)
961                {
962                    @Override
963                    protected DRendererContext newContext() {
964                        return DRendererContext.createContext();
965                    }
966                };
967        } else {
968            RDR_CTX_PROVIDER = new ReentrantContextProviderCLQ<DRendererContext>(REF_TYPE)
969                {
970                    @Override
971                    protected DRendererContext newContext() {
972                        return DRendererContext.createContext();
973                    }
974                };
975        }
976    }
977
978    private static boolean SETTINGS_LOGGED = !ENABLE_LOGS;
979
980    private static void logSettings(final String reClass) {
981        // log information at startup
982        if (SETTINGS_LOGGED) {
983            return;
984        }
985        SETTINGS_LOGGED = true;
986
987        String refType;
988        switch (REF_TYPE) {
989            default:
990            case ReentrantContextProvider.REF_HARD:
991                refType = "hard";
992                break;
993            case ReentrantContextProvider.REF_SOFT:
994                refType = "soft";
995                break;
996            case ReentrantContextProvider.REF_WEAK:
997                refType = "weak";
998                break;
999        }
1000
1001        logInfo("=========================================================="
1002                + "=====================");
1003
1004        logInfo("Marlin software rasterizer           = ENABLED");
1005        logInfo("Version                              = ["
1006                + Version.getVersion() + "]");
1007        logInfo("sun.java2d.renderer                  = "
1008                + reClass);
1009        logInfo("sun.java2d.renderer.useThreadLocal   = "
1010                + USE_THREAD_LOCAL);
1011        logInfo("sun.java2d.renderer.useRef           = "
1012                + refType);
1013
1014        logInfo("sun.java2d.renderer.edges            = "
1015                + MarlinConst.INITIAL_EDGES_COUNT);
1016        logInfo("sun.java2d.renderer.pixelsize        = "
1017                + MarlinConst.INITIAL_PIXEL_DIM);
1018
1019        logInfo("sun.java2d.renderer.subPixel_log2_X  = "
1020                + MarlinConst.SUBPIXEL_LG_POSITIONS_X);
1021        logInfo("sun.java2d.renderer.subPixel_log2_Y  = "
1022                + MarlinConst.SUBPIXEL_LG_POSITIONS_Y);
1023
1024        logInfo("sun.java2d.renderer.tileSize_log2    = "
1025                + MarlinConst.TILE_H_LG);
1026        logInfo("sun.java2d.renderer.tileWidth_log2   = "
1027                + MarlinConst.TILE_W_LG);
1028        logInfo("sun.java2d.renderer.blockSize_log2   = "
1029                + MarlinConst.BLOCK_SIZE_LG);
1030
1031        // RLE / blockFlags settings
1032
1033        logInfo("sun.java2d.renderer.forceRLE         = "
1034                + MarlinProperties.isForceRLE());
1035        logInfo("sun.java2d.renderer.forceNoRLE       = "
1036                + MarlinProperties.isForceNoRLE());
1037        logInfo("sun.java2d.renderer.useTileFlags     = "
1038                + MarlinProperties.isUseTileFlags());
1039        logInfo("sun.java2d.renderer.useTileFlags.useHeuristics = "
1040                + MarlinProperties.isUseTileFlagsWithHeuristics());
1041        logInfo("sun.java2d.renderer.rleMinWidth      = "
1042                + MarlinCache.RLE_MIN_WIDTH);
1043
1044        // optimisation parameters
1045        logInfo("sun.java2d.renderer.useSimplifier    = "
1046                + MarlinConst.USE_SIMPLIFIER);
1047
1048        // debugging parameters
1049        logInfo("sun.java2d.renderer.doStats          = "
1050                + MarlinConst.DO_STATS);
1051        logInfo("sun.java2d.renderer.doMonitors       = "
1052                + MarlinConst.DO_MONITORS);
1053        logInfo("sun.java2d.renderer.doChecks         = "
1054                + MarlinConst.DO_CHECKS);
1055
1056        // logging parameters
1057        logInfo("sun.java2d.renderer.useLogger        = "
1058                + MarlinConst.USE_LOGGER);
1059        logInfo("sun.java2d.renderer.logCreateContext = "
1060                + MarlinConst.LOG_CREATE_CONTEXT);
1061        logInfo("sun.java2d.renderer.logUnsafeMalloc  = "
1062                + MarlinConst.LOG_UNSAFE_MALLOC);
1063
1064        // quality settings
1065        logInfo("sun.java2d.renderer.cubic_dec_d2     = "
1066                + MarlinProperties.getCubicDecD2());
1067        logInfo("sun.java2d.renderer.cubic_inc_d1     = "
1068                + MarlinProperties.getCubicIncD1());
1069        logInfo("sun.java2d.renderer.quad_dec_d2      = "
1070                + MarlinProperties.getQuadDecD2());
1071
1072        logInfo("Renderer settings:");
1073        logInfo("CUB_DEC_BND  = " + DRenderer.CUB_DEC_BND);
1074        logInfo("CUB_INC_BND  = " + DRenderer.CUB_INC_BND);
1075        logInfo("QUAD_DEC_BND = " + DRenderer.QUAD_DEC_BND);
1076
1077        logInfo("INITIAL_EDGES_CAPACITY               = "
1078                + MarlinConst.INITIAL_EDGES_CAPACITY);
1079        logInfo("INITIAL_CROSSING_COUNT               = "
1080                + DRenderer.INITIAL_CROSSING_COUNT);
1081
1082        logInfo("=========================================================="
1083                + "=====================");
1084    }
1085
1086    /**
1087     * Get the DRendererContext instance dedicated to the current thread
1088     * @return DRendererContext instance
1089     */
1090    @SuppressWarnings({"unchecked"})
1091    static DRendererContext getRendererContext() {
1092        final DRendererContext rdrCtx = RDR_CTX_PROVIDER.acquire();
1093        if (DO_MONITORS) {
1094            rdrCtx.stats.mon_pre_getAATileGenerator.start();
1095        }
1096        return rdrCtx;
1097    }
1098
1099    /**
1100     * Reset and return the given DRendererContext instance for reuse
1101     * @param rdrCtx DRendererContext instance
1102     */
1103    static void returnRendererContext(final DRendererContext rdrCtx) {
1104        rdrCtx.dispose();
1105
1106        if (DO_MONITORS) {
1107            rdrCtx.stats.mon_pre_getAATileGenerator.stop();
1108        }
1109        RDR_CTX_PROVIDER.release(rdrCtx);
1110    }
1111}
1112