1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25/* crc32.c -- compute the CRC-32 of a data stream
26 * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
27 * For conditions of distribution and use, see copyright notice in zlib.h
28 *
29 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
30 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
31 * tables for updating the shift register in one step with three exclusive-ors
32 * instead of four steps with four exclusive-ors.  This results in about a
33 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
34 */
35
36/* @(#) $Id$ */
37
38/*
39  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
40  protection on the static variables used to control the first-use generation
41  of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
42  first call get_crc_table() to initialize the tables before allowing more than
43  one thread to use crc32().
44
45  DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
46 */
47
48#ifdef MAKECRCH
49#  include <stdio.h>
50#  ifndef DYNAMIC_CRC_TABLE
51#    define DYNAMIC_CRC_TABLE
52#  endif /* !DYNAMIC_CRC_TABLE */
53#endif /* MAKECRCH */
54
55#include "zutil.h"      /* for STDC and FAR definitions */
56
57/* Definitions for doing the crc four data bytes at a time. */
58#if !defined(NOBYFOUR) && defined(Z_U4)
59#  define BYFOUR
60#endif
61#ifdef BYFOUR
62   local unsigned long crc32_little OF((unsigned long,
63                        const unsigned char FAR *, z_size_t));
64   local unsigned long crc32_big OF((unsigned long,
65                        const unsigned char FAR *, z_size_t));
66#  define TBLS 8
67#else
68#  define TBLS 1
69#endif /* BYFOUR */
70
71/* Local functions for crc concatenation */
72local unsigned long gf2_matrix_times OF((unsigned long *mat,
73                                         unsigned long vec));
74local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
75local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
76
77
78#ifdef DYNAMIC_CRC_TABLE
79
80local volatile int crc_table_empty = 1;
81local z_crc_t FAR crc_table[TBLS][256];
82local void make_crc_table OF((void));
83#ifdef MAKECRCH
84   local void write_table OF((FILE *, const z_crc_t FAR *));
85#endif /* MAKECRCH */
86/*
87  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
88  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
89
90  Polynomials over GF(2) are represented in binary, one bit per coefficient,
91  with the lowest powers in the most significant bit.  Then adding polynomials
92  is just exclusive-or, and multiplying a polynomial by x is a right shift by
93  one.  If we call the above polynomial p, and represent a byte as the
94  polynomial q, also with the lowest power in the most significant bit (so the
95  byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
96  where a mod b means the remainder after dividing a by b.
97
98  This calculation is done using the shift-register method of multiplying and
99  taking the remainder.  The register is initialized to zero, and for each
100  incoming bit, x^32 is added mod p to the register if the bit is a one (where
101  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
102  x (which is shifting right by one and adding x^32 mod p if the bit shifted
103  out is a one).  We start with the highest power (least significant bit) of
104  q and repeat for all eight bits of q.
105
106  The first table is simply the CRC of all possible eight bit values.  This is
107  all the information needed to generate CRCs on data a byte at a time for all
108  combinations of CRC register values and incoming bytes.  The remaining tables
109  allow for word-at-a-time CRC calculation for both big-endian and little-
110  endian machines, where a word is four bytes.
111*/
112local void make_crc_table()
113{
114    z_crc_t c;
115    int n, k;
116    z_crc_t poly;                       /* polynomial exclusive-or pattern */
117    /* terms of polynomial defining this crc (except x^32): */
118    static volatile int first = 1;      /* flag to limit concurrent making */
119    static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
120
121    /* See if another task is already doing this (not thread-safe, but better
122       than nothing -- significantly reduces duration of vulnerability in
123       case the advice about DYNAMIC_CRC_TABLE is ignored) */
124    if (first) {
125        first = 0;
126
127        /* make exclusive-or pattern from polynomial (0xedb88320UL) */
128        poly = 0;
129        for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
130            poly |= (z_crc_t)1 << (31 - p[n]);
131
132        /* generate a crc for every 8-bit value */
133        for (n = 0; n < 256; n++) {
134            c = (z_crc_t)n;
135            for (k = 0; k < 8; k++)
136                c = c & 1 ? poly ^ (c >> 1) : c >> 1;
137            crc_table[0][n] = c;
138        }
139
140#ifdef BYFOUR
141        /* generate crc for each value followed by one, two, and three zeros,
142           and then the byte reversal of those as well as the first table */
143        for (n = 0; n < 256; n++) {
144            c = crc_table[0][n];
145            crc_table[4][n] = ZSWAP32(c);
146            for (k = 1; k < 4; k++) {
147                c = crc_table[0][c & 0xff] ^ (c >> 8);
148                crc_table[k][n] = c;
149                crc_table[k + 4][n] = ZSWAP32(c);
150            }
151        }
152#endif /* BYFOUR */
153
154        crc_table_empty = 0;
155    }
156    else {      /* not first */
157        /* wait for the other guy to finish (not efficient, but rare) */
158        while (crc_table_empty)
159            ;
160    }
161
162#ifdef MAKECRCH
163    /* write out CRC tables to crc32.h */
164    {
165        FILE *out;
166
167        out = fopen("crc32.h", "w");
168        if (out == NULL) return;
169        fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
170        fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
171        fprintf(out, "local const z_crc_t FAR ");
172        fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
173        write_table(out, crc_table[0]);
174#  ifdef BYFOUR
175        fprintf(out, "#ifdef BYFOUR\n");
176        for (k = 1; k < 8; k++) {
177            fprintf(out, "  },\n  {\n");
178            write_table(out, crc_table[k]);
179        }
180        fprintf(out, "#endif\n");
181#  endif /* BYFOUR */
182        fprintf(out, "  }\n};\n");
183        fclose(out);
184    }
185#endif /* MAKECRCH */
186}
187
188#ifdef MAKECRCH
189local void write_table(out, table)
190    FILE *out;
191    const z_crc_t FAR *table;
192{
193    int n;
194
195    for (n = 0; n < 256; n++)
196        fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
197                (unsigned long)(table[n]),
198                n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
199}
200#endif /* MAKECRCH */
201
202#else /* !DYNAMIC_CRC_TABLE */
203/* ========================================================================
204 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
205 */
206#include "crc32.h"
207#endif /* DYNAMIC_CRC_TABLE */
208
209/* =========================================================================
210 * This function can be used by asm versions of crc32()
211 */
212const z_crc_t FAR * ZEXPORT get_crc_table()
213{
214#ifdef DYNAMIC_CRC_TABLE
215    if (crc_table_empty)
216        make_crc_table();
217#endif /* DYNAMIC_CRC_TABLE */
218    return (const z_crc_t FAR *)crc_table;
219}
220
221/* ========================================================================= */
222#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
223#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
224
225/* ========================================================================= */
226uLong ZEXPORT crc32_z(crc, buf, len)
227    uLong crc;
228    const unsigned char FAR *buf;
229    z_size_t len;
230{
231    if (buf == Z_NULL) return 0UL;
232
233#ifdef DYNAMIC_CRC_TABLE
234    if (crc_table_empty)
235        make_crc_table();
236#endif /* DYNAMIC_CRC_TABLE */
237
238#ifdef BYFOUR
239    if (sizeof(void *) == sizeof(ptrdiff_t)) {
240        z_crc_t endian;
241
242        endian = 1;
243        if (*((unsigned char *)(&endian)))
244            return (uLong)crc32_little(crc, buf, len);
245        else
246            return (uLong)crc32_big(crc, buf, len);
247    }
248#endif /* BYFOUR */
249    crc = crc ^ 0xffffffffUL;
250    while (len >= 8) {
251        DO8;
252        len -= 8;
253    }
254    if (len) do {
255        DO1;
256    } while (--len);
257    return crc ^ 0xffffffffUL;
258}
259
260/* ========================================================================= */
261uLong ZEXPORT crc32(crc, buf, len)
262    uLong crc;
263    const unsigned char FAR *buf;
264    uInt len;
265{
266    return crc32_z(crc, buf, len);
267}
268
269#ifdef BYFOUR
270
271/*
272   This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
273   integer pointer type. This violates the strict aliasing rule, where a
274   compiler can assume, for optimization purposes, that two pointers to
275   fundamentally different types won't ever point to the same memory. This can
276   manifest as a problem only if one of the pointers is written to. This code
277   only reads from those pointers. So long as this code remains isolated in
278   this compilation unit, there won't be a problem. For this reason, this code
279   should not be copied and pasted into a compilation unit in which other code
280   writes to the buffer that is passed to these routines.
281 */
282
283/* ========================================================================= */
284#define DOLIT4 c ^= *buf4++; \
285        c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
286            crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
287#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
288
289/* ========================================================================= */
290local unsigned long crc32_little(crc, buf, len)
291    unsigned long crc;
292    const unsigned char FAR *buf;
293    z_size_t len;
294{
295    register z_crc_t c;
296    register const z_crc_t FAR *buf4;
297
298    c = (z_crc_t)crc;
299    c = ~c;
300    while (len && ((ptrdiff_t)buf & 3)) {
301        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
302        len--;
303    }
304
305    buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
306    while (len >= 32) {
307        DOLIT32;
308        len -= 32;
309    }
310    while (len >= 4) {
311        DOLIT4;
312        len -= 4;
313    }
314    buf = (const unsigned char FAR *)buf4;
315
316    if (len) do {
317        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
318    } while (--len);
319    c = ~c;
320    return (unsigned long)c;
321}
322
323/* ========================================================================= */
324#define DOBIG4 c ^= *buf4++; \
325        c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
326            crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
327#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
328
329/* ========================================================================= */
330local unsigned long crc32_big(crc, buf, len)
331    unsigned long crc;
332    const unsigned char FAR *buf;
333    z_size_t len;
334{
335    register z_crc_t c;
336    register const z_crc_t FAR *buf4;
337
338    c = ZSWAP32((z_crc_t)crc);
339    c = ~c;
340    while (len && ((ptrdiff_t)buf & 3)) {
341        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
342        len--;
343    }
344
345    buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
346    while (len >= 32) {
347        DOBIG32;
348        len -= 32;
349    }
350    while (len >= 4) {
351        DOBIG4;
352        len -= 4;
353    }
354    buf = (const unsigned char FAR *)buf4;
355
356    if (len) do {
357        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
358    } while (--len);
359    c = ~c;
360    return (unsigned long)(ZSWAP32(c));
361}
362
363#endif /* BYFOUR */
364
365#define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
366
367/* ========================================================================= */
368local unsigned long gf2_matrix_times(mat, vec)
369    unsigned long *mat;
370    unsigned long vec;
371{
372    unsigned long sum;
373
374    sum = 0;
375    while (vec) {
376        if (vec & 1)
377            sum ^= *mat;
378        vec >>= 1;
379        mat++;
380    }
381    return sum;
382}
383
384/* ========================================================================= */
385local void gf2_matrix_square(square, mat)
386    unsigned long *square;
387    unsigned long *mat;
388{
389    int n;
390
391    for (n = 0; n < GF2_DIM; n++)
392        square[n] = gf2_matrix_times(mat, mat[n]);
393}
394
395/* ========================================================================= */
396local uLong crc32_combine_(crc1, crc2, len2)
397    uLong crc1;
398    uLong crc2;
399    z_off64_t len2;
400{
401    int n;
402    unsigned long row;
403    unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
404    unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
405
406    /* degenerate case (also disallow negative lengths) */
407    if (len2 <= 0)
408        return crc1;
409
410    /* put operator for one zero bit in odd */
411    odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
412    row = 1;
413    for (n = 1; n < GF2_DIM; n++) {
414        odd[n] = row;
415        row <<= 1;
416    }
417
418    /* put operator for two zero bits in even */
419    gf2_matrix_square(even, odd);
420
421    /* put operator for four zero bits in odd */
422    gf2_matrix_square(odd, even);
423
424    /* apply len2 zeros to crc1 (first square will put the operator for one
425       zero byte, eight zero bits, in even) */
426    do {
427        /* apply zeros operator for this bit of len2 */
428        gf2_matrix_square(even, odd);
429        if (len2 & 1)
430            crc1 = gf2_matrix_times(even, crc1);
431        len2 >>= 1;
432
433        /* if no more bits set, then done */
434        if (len2 == 0)
435            break;
436
437        /* another iteration of the loop with odd and even swapped */
438        gf2_matrix_square(odd, even);
439        if (len2 & 1)
440            crc1 = gf2_matrix_times(odd, crc1);
441        len2 >>= 1;
442
443        /* if no more bits set, then done */
444    } while (len2 != 0);
445
446    /* return combined crc */
447    crc1 ^= crc2;
448    return crc1;
449}
450
451/* ========================================================================= */
452uLong ZEXPORT crc32_combine(crc1, crc2, len2)
453    uLong crc1;
454    uLong crc2;
455    z_off_t len2;
456{
457    return crc32_combine_(crc1, crc2, len2);
458}
459
460uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
461    uLong crc1;
462    uLong crc2;
463    z_off64_t len2;
464{
465    return crc32_combine_(crc1, crc2, len2);
466}
467