1/*
2 * Copyright (c) 1996, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26
27package sun.security.ssl;
28
29import java.io.ByteArrayInputStream;
30import java.io.IOException;
31import java.util.Hashtable;
32import java.util.Arrays;
33
34import java.security.*;
35import javax.crypto.*;
36import javax.crypto.spec.IvParameterSpec;
37import javax.crypto.spec.GCMParameterSpec;
38
39import java.nio.*;
40
41import sun.security.ssl.CipherSuite.*;
42import static sun.security.ssl.CipherSuite.*;
43import static sun.security.ssl.CipherSuite.CipherType.*;
44
45import sun.security.util.HexDumpEncoder;
46
47
48/**
49 * This class handles bulk data enciphering/deciphering for each SSLv3
50 * message.  This provides data confidentiality.  Stream ciphers (such
51 * as RC4) don't need to do padding; block ciphers (e.g. DES) need it.
52 *
53 * Individual instances are obtained by calling the static method
54 * newCipherBox(), which should only be invoked by BulkCipher.newCipher().
55 *
56 * In RFC 2246, with bock ciphers in CBC mode, the Initialization
57 * Vector (IV) for the first record is generated with the other keys
58 * and secrets when the security parameters are set.  The IV for
59 * subsequent records is the last ciphertext block from the previous
60 * record.
61 *
62 * In RFC 4346, the implicit Initialization Vector (IV) is replaced
63 * with an explicit IV to protect against CBC attacks.  RFC 4346
64 * recommends two algorithms used to generated the per-record IV.
65 * The implementation uses the algorithm (2)(b), as described at
66 * section 6.2.3.2 of RFC 4346.
67 *
68 * The usage of IV in CBC block cipher can be illustrated in
69 * the following diagrams.
70 *
71 *   (random)
72 *        R         P1                    IV        C1
73 *        |          |                     |         |
74 *  SIV---+    |-----+    |-...            |-----    |------
75 *        |    |     |    |                |    |    |     |
76 *     +----+  |  +----+  |             +----+  |  +----+  |
77 *     | Ek |  |  + Ek +  |             | Dk |  |  | Dk |  |
78 *     +----+  |  +----+  |             +----+  |  +----+  |
79 *        |    |     |    |                |    |    |     |
80 *        |----|     |----|           SIV--+    |----|     |-...
81 *        |          |                     |       |
82 *       IV         C1                     R      P1
83 *                                     (discard)
84 *
85 *       CBC Encryption                    CBC Decryption
86 *
87 * NOTE that any ciphering involved in key exchange (e.g. with RSA) is
88 * handled separately.
89 *
90 * @author David Brownell
91 * @author Andreas Sterbenz
92 */
93final class CipherBox {
94
95    // A CipherBox that implements the identity operation
96    static final CipherBox NULL = new CipherBox();
97
98    /* Class and subclass dynamic debugging support */
99    private static final Debug debug = Debug.getInstance("ssl");
100
101    // the protocol version this cipher conforms to
102    private final ProtocolVersion protocolVersion;
103
104    // cipher object
105    private final Cipher cipher;
106
107    /**
108     * secure random
109     */
110    private SecureRandom random;
111
112    /**
113     * fixed IV, the implicit nonce of AEAD cipher suite, only apply to
114     * AEAD cipher suites
115     */
116    private final byte[] fixedIv;
117
118    /**
119     * the key, reserved only for AEAD cipher initialization
120     */
121    private final Key key;
122
123    /**
124     * the operation mode, reserved for AEAD cipher initialization
125     */
126    private final int mode;
127
128    /**
129     * the authentication tag size, only apply to AEAD cipher suites
130     */
131    private final int tagSize;
132
133    /**
134     * the record IV length, only apply to AEAD cipher suites
135     */
136    private final int recordIvSize;
137
138    /**
139     * cipher type
140     */
141    private final CipherType cipherType;
142
143    /**
144     * Fixed masks of various block size, as the initial decryption IVs
145     * for TLS 1.1 or later.
146     *
147     * For performance, we do not use random IVs. As the initial decryption
148     * IVs will be discarded by TLS decryption processes, so the fixed masks
149     * do not hurt cryptographic strength.
150     */
151    private static Hashtable<Integer, IvParameterSpec> masks;
152
153    /**
154     * NULL cipherbox. Identity operation, no encryption.
155     */
156    private CipherBox() {
157        this.protocolVersion = ProtocolVersion.DEFAULT_TLS;
158        this.cipher = null;
159        this.cipherType = NULL_CIPHER;
160        this.fixedIv = new byte[0];
161        this.key = null;
162        this.mode = Cipher.ENCRYPT_MODE;    // choose at random
163        this.random = null;
164        this.tagSize = 0;
165        this.recordIvSize = 0;
166    }
167
168    /**
169     * Construct a new CipherBox using the cipher transformation.
170     *
171     * @exception NoSuchAlgorithmException if no appropriate JCE Cipher
172     * implementation could be found.
173     */
174    private CipherBox(ProtocolVersion protocolVersion, BulkCipher bulkCipher,
175            SecretKey key, IvParameterSpec iv, SecureRandom random,
176            boolean encrypt) throws NoSuchAlgorithmException {
177        try {
178            this.protocolVersion = protocolVersion;
179            this.cipher = JsseJce.getCipher(bulkCipher.transformation);
180            this.mode = encrypt ? Cipher.ENCRYPT_MODE : Cipher.DECRYPT_MODE;
181
182            if (random == null) {
183                random = JsseJce.getSecureRandom();
184            }
185            this.random = random;
186            this.cipherType = bulkCipher.cipherType;
187
188            /*
189             * RFC 4346 recommends two algorithms used to generated the
190             * per-record IV. The implementation uses the algorithm (2)(b),
191             * as described at section 6.2.3.2 of RFC 4346.
192             *
193             * As we don't care about the initial IV value for TLS 1.1 or
194             * later, so if the "iv" parameter is null, we use the default
195             * value generated by Cipher.init() for encryption, and a fixed
196             * mask for decryption.
197             */
198            if (iv == null && bulkCipher.ivSize != 0 &&
199                    mode == Cipher.DECRYPT_MODE &&
200                    protocolVersion.useTLS11PlusSpec()) {
201                iv = getFixedMask(bulkCipher.ivSize);
202            }
203
204            if (cipherType == AEAD_CIPHER) {
205                // AEAD must completely initialize the cipher for each packet,
206                // and so we save initialization parameters for packet
207                // processing time.
208
209                // Set the tag size for AEAD cipher
210                tagSize = bulkCipher.tagSize;
211
212                // Reserve the key for AEAD cipher initialization
213                this.key = key;
214
215                fixedIv = iv.getIV();
216                if (fixedIv == null ||
217                        fixedIv.length != bulkCipher.fixedIvSize) {
218                    throw new RuntimeException("Improper fixed IV for AEAD");
219                }
220
221                // Set the record IV length for AEAD cipher
222                recordIvSize = bulkCipher.ivSize - bulkCipher.fixedIvSize;
223
224                // DON'T initialize the cipher for AEAD!
225            } else {
226                // CBC only requires one initialization during its lifetime
227                // (future packets/IVs set the proper CBC state), so we can
228                // initialize now.
229
230                // Zeroize the variables that only apply to AEAD cipher
231                this.tagSize = 0;
232                this.fixedIv = new byte[0];
233                this.recordIvSize = 0;
234                this.key = null;
235
236                // Initialize the cipher
237                cipher.init(mode, key, iv, random);
238            }
239        } catch (NoSuchAlgorithmException e) {
240            throw e;
241        } catch (Exception e) {
242            throw new NoSuchAlgorithmException
243                    ("Could not create cipher " + bulkCipher, e);
244        } catch (ExceptionInInitializerError e) {
245            throw new NoSuchAlgorithmException
246                    ("Could not create cipher " + bulkCipher, e);
247        }
248    }
249
250    /*
251     * Factory method to obtain a new CipherBox object.
252     */
253    static CipherBox newCipherBox(ProtocolVersion version, BulkCipher cipher,
254            SecretKey key, IvParameterSpec iv, SecureRandom random,
255            boolean encrypt) throws NoSuchAlgorithmException {
256        if (cipher.allowed == false) {
257            throw new NoSuchAlgorithmException("Unsupported cipher " + cipher);
258        }
259
260        if (cipher == BulkCipher.B_NULL) {
261            return NULL;
262        } else {
263            return new CipherBox(version, cipher, key, iv, random, encrypt);
264        }
265    }
266
267    /*
268     * Get a fixed mask, as the initial decryption IVs for TLS 1.1 or later.
269     */
270    private static IvParameterSpec getFixedMask(int ivSize) {
271        if (masks == null) {
272            masks = new Hashtable<Integer, IvParameterSpec>(5);
273        }
274
275        IvParameterSpec iv = masks.get(ivSize);
276        if (iv == null) {
277            iv = new IvParameterSpec(new byte[ivSize]);
278            masks.put(ivSize, iv);
279        }
280
281        return iv;
282    }
283
284    /*
285     * Encrypts a block of data, returning the size of the
286     * resulting block.
287     */
288    int encrypt(byte[] buf, int offset, int len) {
289        if (cipher == null) {
290            return len;
291        }
292
293        try {
294            int blockSize = cipher.getBlockSize();
295            if (cipherType == BLOCK_CIPHER) {
296                len = addPadding(buf, offset, len, blockSize);
297            }
298
299            if (debug != null && Debug.isOn("plaintext")) {
300                try {
301                    HexDumpEncoder hd = new HexDumpEncoder();
302
303                    System.out.println(
304                        "Padded plaintext before ENCRYPTION:  len = "
305                        + len);
306                    hd.encodeBuffer(
307                        new ByteArrayInputStream(buf, offset, len),
308                        System.out);
309                } catch (IOException e) { }
310            }
311
312
313            if (cipherType == AEAD_CIPHER) {
314                try {
315                    return cipher.doFinal(buf, offset, len, buf, offset);
316                } catch (IllegalBlockSizeException | BadPaddingException ibe) {
317                    // unlikely to happen
318                    throw new RuntimeException(
319                        "Cipher error in AEAD mode in JCE provider " +
320                        cipher.getProvider().getName(), ibe);
321                }
322            } else {
323                int newLen = cipher.update(buf, offset, len, buf, offset);
324                if (newLen != len) {
325                    // catch BouncyCastle buffering error
326                    throw new RuntimeException("Cipher buffering error " +
327                        "in JCE provider " + cipher.getProvider().getName());
328                }
329                return newLen;
330            }
331        } catch (ShortBufferException e) {
332            // unlikely to happen, we should have enough buffer space here
333            throw new ArrayIndexOutOfBoundsException(e.toString());
334        }
335    }
336
337    /*
338     * Encrypts a ByteBuffer block of data, returning the size of the
339     * resulting block.
340     *
341     * The byte buffers position and limit initially define the amount
342     * to encrypt.  On return, the position and limit are
343     * set to last position padded/encrypted.  The limit may have changed
344     * because of the added padding bytes.
345     */
346    int encrypt(ByteBuffer bb, int outLimit) {
347
348        int len = bb.remaining();
349
350        if (cipher == null) {
351            bb.position(bb.limit());
352            return len;
353        }
354
355        int pos = bb.position();
356
357        int blockSize = cipher.getBlockSize();
358        if (cipherType == BLOCK_CIPHER) {
359            // addPadding adjusts pos/limit
360            len = addPadding(bb, blockSize);
361            bb.position(pos);
362        }
363
364        if (debug != null && Debug.isOn("plaintext")) {
365            try {
366                HexDumpEncoder hd = new HexDumpEncoder();
367
368                System.out.println(
369                    "Padded plaintext before ENCRYPTION:  len = "
370                    + len);
371                hd.encodeBuffer(bb.duplicate(), System.out);
372
373            } catch (IOException e) { }
374        }
375
376        /*
377         * Encrypt "in-place".  This does not add its own padding.
378         */
379        ByteBuffer dup = bb.duplicate();
380        if (cipherType == AEAD_CIPHER) {
381            try {
382                int outputSize = cipher.getOutputSize(dup.remaining());
383                if (outputSize > bb.remaining()) {
384                    // need to expand the limit of the output buffer for
385                    // the authentication tag.
386                    //
387                    // DON'T worry about the buffer's capacity, we have
388                    // reserved space for the authentication tag.
389                    if (outLimit < pos + outputSize) {
390                        // unlikely to happen
391                        throw new ShortBufferException(
392                                    "need more space in output buffer");
393                    }
394                    bb.limit(pos + outputSize);
395                }
396                int newLen = cipher.doFinal(dup, bb);
397                if (newLen != outputSize) {
398                    throw new RuntimeException(
399                            "Cipher buffering error in JCE provider " +
400                            cipher.getProvider().getName());
401                }
402                return newLen;
403            } catch (IllegalBlockSizeException |
404                           BadPaddingException | ShortBufferException ibse) {
405                // unlikely to happen
406                throw new RuntimeException(
407                        "Cipher error in AEAD mode in JCE provider " +
408                        cipher.getProvider().getName(), ibse);
409            }
410        } else {
411            int newLen;
412            try {
413                newLen = cipher.update(dup, bb);
414            } catch (ShortBufferException sbe) {
415                // unlikely to happen
416                throw new RuntimeException("Cipher buffering error " +
417                    "in JCE provider " + cipher.getProvider().getName());
418            }
419
420            if (bb.position() != dup.position()) {
421                throw new RuntimeException("bytebuffer padding error");
422            }
423
424            if (newLen != len) {
425                // catch BouncyCastle buffering error
426                throw new RuntimeException("Cipher buffering error " +
427                    "in JCE provider " + cipher.getProvider().getName());
428            }
429            return newLen;
430        }
431    }
432
433
434    /*
435     * Decrypts a block of data, returning the size of the
436     * resulting block if padding was required.
437     *
438     * For SSLv3 and TLSv1.0, with block ciphers in CBC mode the
439     * Initialization Vector (IV) for the first record is generated by
440     * the handshake protocol, the IV for subsequent records is the
441     * last ciphertext block from the previous record.
442     *
443     * From TLSv1.1, the implicit IV is replaced with an explicit IV to
444     * protect against CBC attacks.
445     *
446     * Differentiating between bad_record_mac and decryption_failed alerts
447     * may permit certain attacks against CBC mode. It is preferable to
448     * uniformly use the bad_record_mac alert to hide the specific type of
449     * the error.
450     */
451    int decrypt(byte[] buf, int offset, int len,
452            int tagLen) throws BadPaddingException {
453        if (cipher == null) {
454            return len;
455        }
456
457        try {
458            int newLen;
459            if (cipherType == AEAD_CIPHER) {
460                try {
461                    newLen = cipher.doFinal(buf, offset, len, buf, offset);
462                } catch (IllegalBlockSizeException ibse) {
463                    // unlikely to happen
464                    throw new RuntimeException(
465                        "Cipher error in AEAD mode in JCE provider " +
466                        cipher.getProvider().getName(), ibse);
467                }
468            } else {
469                newLen = cipher.update(buf, offset, len, buf, offset);
470                if (newLen != len) {
471                    // catch BouncyCastle buffering error
472                    throw new RuntimeException("Cipher buffering error " +
473                        "in JCE provider " + cipher.getProvider().getName());
474                }
475            }
476            if (debug != null && Debug.isOn("plaintext")) {
477                try {
478                    HexDumpEncoder hd = new HexDumpEncoder();
479
480                    System.out.println(
481                        "Padded plaintext after DECRYPTION:  len = "
482                        + newLen);
483                    hd.encodeBuffer(
484                        new ByteArrayInputStream(buf, offset, newLen),
485                        System.out);
486                } catch (IOException e) { }
487            }
488
489            if (cipherType == BLOCK_CIPHER) {
490                int blockSize = cipher.getBlockSize();
491                newLen = removePadding(
492                    buf, offset, newLen, tagLen, blockSize, protocolVersion);
493
494                if (protocolVersion.useTLS11PlusSpec()) {
495                    if (newLen < blockSize) {
496                        throw new BadPaddingException("The length after " +
497                        "padding removal (" + newLen + ") should be larger " +
498                        "than <" + blockSize + "> since explicit IV used");
499                    }
500                }
501            }
502            return newLen;
503        } catch (ShortBufferException e) {
504            // unlikely to happen, we should have enough buffer space here
505            throw new ArrayIndexOutOfBoundsException(e.toString());
506        }
507    }
508
509    /*
510     * Decrypts a block of data, returning the size of the
511     * resulting block if padding was required.  position and limit
512     * point to the end of the decrypted/depadded data.  The initial
513     * limit and new limit may be different, given we may
514     * have stripped off some padding bytes.
515     *
516     *  @see decrypt(byte[], int, int)
517     */
518    int decrypt(ByteBuffer bb, int tagLen) throws BadPaddingException {
519
520        int len = bb.remaining();
521
522        if (cipher == null) {
523            bb.position(bb.limit());
524            return len;
525        }
526
527        try {
528            /*
529             * Decrypt "in-place".
530             */
531            int pos = bb.position();
532            ByteBuffer dup = bb.duplicate();
533            int newLen;
534            if (cipherType == AEAD_CIPHER) {
535                try {
536                    newLen = cipher.doFinal(dup, bb);
537                } catch (IllegalBlockSizeException ibse) {
538                    // unlikely to happen
539                    throw new RuntimeException(
540                        "Cipher error in AEAD mode \"" + ibse.getMessage() +
541                        " \"in JCE provider " + cipher.getProvider().getName());
542                }
543            } else {
544                newLen = cipher.update(dup, bb);
545                if (newLen != len) {
546                    // catch BouncyCastle buffering error
547                    throw new RuntimeException("Cipher buffering error " +
548                        "in JCE provider " + cipher.getProvider().getName());
549                }
550            }
551
552            // reset the limit to the end of the decryted data
553            bb.limit(pos + newLen);
554
555            if (debug != null && Debug.isOn("plaintext")) {
556                try {
557                    HexDumpEncoder hd = new HexDumpEncoder();
558
559                    System.out.println(
560                        "Padded plaintext after DECRYPTION:  len = "
561                        + newLen);
562
563                    hd.encodeBuffer(
564                        bb.duplicate().position(pos), System.out);
565                } catch (IOException e) { }
566            }
567
568            /*
569             * Remove the block padding.
570             */
571            if (cipherType == BLOCK_CIPHER) {
572                int blockSize = cipher.getBlockSize();
573                bb.position(pos);
574                newLen = removePadding(bb, tagLen, blockSize, protocolVersion);
575
576                // check the explicit IV of TLS v1.1 or later
577                if (protocolVersion.useTLS11PlusSpec()) {
578                    if (newLen < blockSize) {
579                        throw new BadPaddingException("The length after " +
580                        "padding removal (" + newLen + ") should be larger " +
581                        "than <" + blockSize + "> since explicit IV used");
582                    }
583
584                    // reset the position to the end of the decrypted data
585                    bb.position(bb.limit());
586                }
587            }
588            return newLen;
589        } catch (ShortBufferException e) {
590            // unlikely to happen, we should have enough buffer space here
591            throw new ArrayIndexOutOfBoundsException(e.toString());
592        }
593    }
594
595    private static int addPadding(byte[] buf, int offset, int len,
596            int blockSize) {
597        int     newlen = len + 1;
598        byte    pad;
599        int     i;
600
601        if ((newlen % blockSize) != 0) {
602            newlen += blockSize - 1;
603            newlen -= newlen % blockSize;
604        }
605        pad = (byte) (newlen - len);
606
607        if (buf.length < (newlen + offset)) {
608            throw new IllegalArgumentException("no space to pad buffer");
609        }
610
611        /*
612         * TLS version of the padding works for both SSLv3 and TLSv1
613         */
614        for (i = 0, offset += len; i < pad; i++) {
615            buf [offset++] = (byte) (pad - 1);
616        }
617        return newlen;
618    }
619
620    /*
621     * Apply the padding to the buffer.
622     *
623     * Limit is advanced to the new buffer length.
624     * Position is equal to limit.
625     */
626    private static int addPadding(ByteBuffer bb, int blockSize) {
627
628        int     len = bb.remaining();
629        int     offset = bb.position();
630
631        int     newlen = len + 1;
632        byte    pad;
633        int     i;
634
635        if ((newlen % blockSize) != 0) {
636            newlen += blockSize - 1;
637            newlen -= newlen % blockSize;
638        }
639        pad = (byte) (newlen - len);
640
641        /*
642         * Update the limit to what will be padded.
643         */
644        bb.limit(newlen + offset);
645
646        /*
647         * TLS version of the padding works for both SSLv3 and TLSv1
648         */
649        for (i = 0, offset += len; i < pad; i++) {
650            bb.put(offset++, (byte) (pad - 1));
651        }
652
653        bb.position(offset);
654        bb.limit(offset);
655
656        return newlen;
657    }
658
659    /*
660     * A constant-time check of the padding.
661     *
662     * NOTE that we are checking both the padding and the padLen bytes here.
663     *
664     * The caller MUST ensure that the len parameter is a positive number.
665     */
666    private static int[] checkPadding(
667            byte[] buf, int offset, int len, byte pad) {
668
669        if (len <= 0) {
670            throw new RuntimeException("padding len must be positive");
671        }
672
673        // An array of hits is used to prevent Hotspot optimization for
674        // the purpose of a constant-time check.
675        int[] results = {0, 0};    // {missed #, matched #}
676        for (int i = 0; i <= 256;) {
677            for (int j = 0; j < len && i <= 256; j++, i++) {     // j <= i
678                if (buf[offset + j] != pad) {
679                    results[0]++;       // mismatched padding data
680                } else {
681                    results[1]++;       // matched padding data
682                }
683            }
684        }
685
686        return results;
687    }
688
689    /*
690     * A constant-time check of the padding.
691     *
692     * NOTE that we are checking both the padding and the padLen bytes here.
693     *
694     * The caller MUST ensure that the bb parameter has remaining.
695     */
696    private static int[] checkPadding(ByteBuffer bb, byte pad) {
697
698        if (!bb.hasRemaining()) {
699            throw new RuntimeException("hasRemaining() must be positive");
700        }
701
702        // An array of hits is used to prevent Hotspot optimization for
703        // the purpose of a constant-time check.
704        int[] results = {0, 0};    // {missed #, matched #}
705        bb.mark();
706        for (int i = 0; i <= 256; bb.reset()) {
707            for (; bb.hasRemaining() && i <= 256; i++) {
708                if (bb.get() != pad) {
709                    results[0]++;       // mismatched padding data
710                } else {
711                    results[1]++;       // matched padding data
712                }
713            }
714        }
715
716        return results;
717    }
718
719    /*
720     * Typical TLS padding format for a 64 bit block cipher is as follows:
721     *   xx xx xx xx xx xx xx 00
722     *   xx xx xx xx xx xx 01 01
723     *   ...
724     *   xx 06 06 06 06 06 06 06
725     *   07 07 07 07 07 07 07 07
726     * TLS also allows any amount of padding from 1 and 256 bytes as long
727     * as it makes the data a multiple of the block size
728     */
729    private static int removePadding(byte[] buf, int offset, int len,
730            int tagLen, int blockSize,
731            ProtocolVersion protocolVersion) throws BadPaddingException {
732
733        // last byte is length byte (i.e. actual padding length - 1)
734        int padOffset = offset + len - 1;
735        int padLen = buf[padOffset] & 0xFF;
736
737        int newLen = len - (padLen + 1);
738        if ((newLen - tagLen) < 0) {
739            // If the buffer is not long enough to contain the padding plus
740            // a MAC tag, do a dummy constant-time padding check.
741            //
742            // Note that it is a dummy check, so we won't care about what is
743            // the actual padding data.
744            checkPadding(buf, offset, len, (byte)(padLen & 0xFF));
745
746            throw new BadPaddingException("Invalid Padding length: " + padLen);
747        }
748
749        // The padding data should be filled with the padding length value.
750        int[] results = checkPadding(buf, offset + newLen,
751                        padLen + 1, (byte)(padLen & 0xFF));
752        if (protocolVersion.useTLS10PlusSpec()) {
753            if (results[0] != 0) {          // padding data has invalid bytes
754                throw new BadPaddingException("Invalid TLS padding data");
755            }
756        } else { // SSLv3
757            // SSLv3 requires 0 <= length byte < block size
758            // some implementations do 1 <= length byte <= block size,
759            // so accept that as well
760            // v3 does not require any particular value for the other bytes
761            if (padLen > blockSize) {
762                throw new BadPaddingException("Padding length (" +
763                padLen + ") of SSLv3 message should not be bigger " +
764                "than the block size (" + blockSize + ")");
765            }
766        }
767        return newLen;
768    }
769
770    /*
771     * Position/limit is equal the removed padding.
772     */
773    private static int removePadding(ByteBuffer bb,
774            int tagLen, int blockSize,
775            ProtocolVersion protocolVersion) throws BadPaddingException {
776
777        int len = bb.remaining();
778        int offset = bb.position();
779
780        // last byte is length byte (i.e. actual padding length - 1)
781        int padOffset = offset + len - 1;
782        int padLen = bb.get(padOffset) & 0xFF;
783
784        int newLen = len - (padLen + 1);
785        if ((newLen - tagLen) < 0) {
786            // If the buffer is not long enough to contain the padding plus
787            // a MAC tag, do a dummy constant-time padding check.
788            //
789            // Note that it is a dummy check, so we won't care about what is
790            // the actual padding data.
791            checkPadding(bb.duplicate(), (byte)(padLen & 0xFF));
792
793            throw new BadPaddingException("Invalid Padding length: " + padLen);
794        }
795
796        // The padding data should be filled with the padding length value.
797        int[] results = checkPadding(
798                bb.duplicate().position(offset + newLen),
799                (byte)(padLen & 0xFF));
800        if (protocolVersion.useTLS10PlusSpec()) {
801            if (results[0] != 0) {          // padding data has invalid bytes
802                throw new BadPaddingException("Invalid TLS padding data");
803            }
804        } else { // SSLv3
805            // SSLv3 requires 0 <= length byte < block size
806            // some implementations do 1 <= length byte <= block size,
807            // so accept that as well
808            // v3 does not require any particular value for the other bytes
809            if (padLen > blockSize) {
810                throw new BadPaddingException("Padding length (" +
811                padLen + ") of SSLv3 message should not be bigger " +
812                "than the block size (" + blockSize + ")");
813            }
814        }
815
816        /*
817         * Reset buffer limit to remove padding.
818         */
819        bb.position(offset + newLen);
820        bb.limit(offset + newLen);
821
822        return newLen;
823    }
824
825    /*
826     * Dispose of any intermediate state in the underlying cipher.
827     * For PKCS11 ciphers, this will release any attached sessions, and
828     * thus make finalization faster.
829     */
830    void dispose() {
831        try {
832            if (cipher != null) {
833                // ignore return value.
834                cipher.doFinal();
835            }
836        } catch (Exception e) {
837            // swallow all types of exceptions.
838        }
839    }
840
841    /*
842     * Does the cipher use CBC mode?
843     *
844     * @return true if the cipher use CBC mode, false otherwise.
845     */
846    boolean isCBCMode() {
847        return cipherType == BLOCK_CIPHER;
848    }
849
850    /*
851     * Does the cipher use AEAD mode?
852     *
853     * @return true if the cipher use AEAD mode, false otherwise.
854     */
855    boolean isAEADMode() {
856        return cipherType == AEAD_CIPHER;
857    }
858
859    /*
860     * Is the cipher null?
861     *
862     * @return true if the cipher is null, false otherwise.
863     */
864    boolean isNullCipher() {
865        return cipher == null;
866    }
867
868    /*
869     * Gets the explicit nonce/IV size of the cipher.
870     *
871     * The returned value is the SecurityParameters.record_iv_length in
872     * RFC 4346/5246.  It is the size of explicit IV for CBC mode, and the
873     * size of explicit nonce for AEAD mode.
874     *
875     * @return the explicit nonce size of the cipher.
876     */
877    int getExplicitNonceSize() {
878        switch (cipherType) {
879            case BLOCK_CIPHER:
880                // For block ciphers, the explicit IV length is of length
881                // SecurityParameters.record_iv_length, which is equal to
882                // the SecurityParameters.block_size.
883                if (protocolVersion.useTLS11PlusSpec()) {
884                    return cipher.getBlockSize();
885                }
886                break;
887            case AEAD_CIPHER:
888                return recordIvSize;
889                        // It is also the length of sequence number, which is
890                        // used as the nonce_explicit for AEAD cipher suites.
891        }
892
893        return 0;
894    }
895
896    /*
897     * Applies the explicit nonce/IV to this cipher. This method is used to
898     * decrypt an SSL/TLS input record.
899     *
900     * The returned value is the SecurityParameters.record_iv_length in
901     * RFC 4346/5246.  It is the size of explicit IV for CBC mode, and the
902     * size of explicit nonce for AEAD mode.
903     *
904     * @param  authenticator the authenticator to get the additional
905     *         authentication data
906     * @param  contentType the content type of the input record
907     * @param  bb the byte buffer to get the explicit nonce from
908     *
909     * @return the explicit nonce size of the cipher.
910     */
911    int applyExplicitNonce(Authenticator authenticator, byte contentType,
912            ByteBuffer bb, byte[] sequence) throws BadPaddingException {
913        switch (cipherType) {
914            case BLOCK_CIPHER:
915                // sanity check length of the ciphertext
916                int tagLen = (authenticator instanceof MAC) ?
917                                    ((MAC)authenticator).MAClen() : 0;
918                if (tagLen != 0) {
919                    if (!sanityCheck(tagLen, bb.remaining())) {
920                        throw new BadPaddingException(
921                                "ciphertext sanity check failed");
922                    }
923                }
924
925                // For block ciphers, the explicit IV length is of length
926                // SecurityParameters.record_iv_length, which is equal to
927                // the SecurityParameters.block_size.
928                if (protocolVersion.useTLS11PlusSpec()) {
929                    return cipher.getBlockSize();
930                }
931                break;
932            case AEAD_CIPHER:
933                if (bb.remaining() < (recordIvSize + tagSize)) {
934                    throw new BadPaddingException(
935                        "Insufficient buffer remaining for AEAD cipher " +
936                        "fragment (" + bb.remaining() + "). Needs to be " +
937                        "more than or equal to IV size (" + recordIvSize +
938                         ") + tag size (" + tagSize + ")");
939                }
940
941                // initialize the AEAD cipher for the unique IV
942                byte[] iv = Arrays.copyOf(fixedIv,
943                                    fixedIv.length + recordIvSize);
944                bb.get(iv, fixedIv.length, recordIvSize);
945                bb.position(bb.position() - recordIvSize);
946                GCMParameterSpec spec = new GCMParameterSpec(tagSize * 8, iv);
947                try {
948                    cipher.init(mode, key, spec, random);
949                } catch (InvalidKeyException |
950                            InvalidAlgorithmParameterException ikae) {
951                    // unlikely to happen
952                    throw new RuntimeException(
953                                "invalid key or spec in GCM mode", ikae);
954                }
955
956                // update the additional authentication data
957                byte[] aad = authenticator.acquireAuthenticationBytes(
958                        contentType, bb.remaining() - recordIvSize - tagSize,
959                        sequence);
960                cipher.updateAAD(aad);
961
962                return recordIvSize;
963                        // It is also the length of sequence number, which is
964                        // used as the nonce_explicit for AEAD cipher suites.
965        }
966
967       return 0;
968    }
969
970    /*
971     * Creates the explicit nonce/IV to this cipher. This method is used to
972     * encrypt an SSL/TLS output record.
973     *
974     * The size of the returned array is the SecurityParameters.record_iv_length
975     * in RFC 4346/5246.  It is the size of explicit IV for CBC mode, and the
976     * size of explicit nonce for AEAD mode.
977     *
978     * @param  authenticator the authenticator to get the additional
979     *         authentication data
980     * @param  contentType the content type of the input record
981     * @param  fragmentLength the fragment length of the output record, it is
982     *         the TLSCompressed.length in RFC 4346/5246.
983     *
984     * @return the explicit nonce of the cipher.
985     */
986    byte[] createExplicitNonce(Authenticator authenticator,
987            byte contentType, int fragmentLength) {
988
989        byte[] nonce = new byte[0];
990        switch (cipherType) {
991            case BLOCK_CIPHER:
992                if (protocolVersion.useTLS11PlusSpec()) {
993                    // For block ciphers, the explicit IV length is of length
994                    // SecurityParameters.record_iv_length, which is equal to
995                    // the SecurityParameters.block_size.
996                    //
997                    // Generate a random number as the explicit IV parameter.
998                    nonce = new byte[cipher.getBlockSize()];
999                    random.nextBytes(nonce);
1000                }
1001                break;
1002            case AEAD_CIPHER:
1003                // To be unique and aware of overflow-wrap, sequence number
1004                // is used as the nonce_explicit of AEAD cipher suites.
1005                nonce = authenticator.sequenceNumber();
1006
1007                // initialize the AEAD cipher for the unique IV
1008                byte[] iv = Arrays.copyOf(fixedIv,
1009                                            fixedIv.length + nonce.length);
1010                System.arraycopy(nonce, 0, iv, fixedIv.length, nonce.length);
1011                GCMParameterSpec spec = new GCMParameterSpec(tagSize * 8, iv);
1012                try {
1013                    cipher.init(mode, key, spec, random);
1014                } catch (InvalidKeyException |
1015                            InvalidAlgorithmParameterException ikae) {
1016                    // unlikely to happen
1017                    throw new RuntimeException(
1018                                "invalid key or spec in GCM mode", ikae);
1019                }
1020
1021                // Update the additional authentication data, using the
1022                // implicit sequence number of the authenticator.
1023                byte[] aad = authenticator.acquireAuthenticationBytes(
1024                                        contentType, fragmentLength, null);
1025                cipher.updateAAD(aad);
1026                break;
1027        }
1028
1029        return nonce;
1030    }
1031
1032    // See also CipherSuite.calculatePacketSize().
1033    int calculatePacketSize(int fragmentSize, int macLen, int headerSize) {
1034        int packetSize = fragmentSize;
1035        if (cipher != null) {
1036            int blockSize = cipher.getBlockSize();
1037            switch (cipherType) {
1038                case BLOCK_CIPHER:
1039                    packetSize += macLen;
1040                    packetSize += 1;        // 1 byte padding length field
1041                    packetSize +=           // use the minimal padding
1042                            (blockSize - (packetSize % blockSize)) % blockSize;
1043                    if (protocolVersion.useTLS11PlusSpec()) {
1044                        packetSize += blockSize;        // explicit IV
1045                    }
1046
1047                    break;
1048                case AEAD_CIPHER:
1049                    packetSize += recordIvSize;
1050                    packetSize += tagSize;
1051
1052                    break;
1053                default:    // NULL_CIPHER or STREAM_CIPHER
1054                    packetSize += macLen;
1055            }
1056        }
1057
1058        return packetSize + headerSize;
1059    }
1060
1061    // See also CipherSuite.calculateFragSize().
1062    int calculateFragmentSize(int packetLimit, int macLen, int headerSize) {
1063        int fragLen = packetLimit - headerSize;
1064        if (cipher != null) {
1065            int blockSize = cipher.getBlockSize();
1066            switch (cipherType) {
1067                case BLOCK_CIPHER:
1068                    if (protocolVersion.useTLS11PlusSpec()) {
1069                        fragLen -= blockSize;           // explicit IV
1070                    }
1071                    fragLen -= (fragLen % blockSize);   // cannot hold a block
1072                    // No padding for a maximum fragment.
1073                    fragLen -= 1;       // 1 byte padding length field: 0x00
1074                    fragLen -= macLen;
1075
1076                    break;
1077                case AEAD_CIPHER:
1078                    fragLen -= recordIvSize;
1079                    fragLen -= tagSize;
1080
1081                    break;
1082                default:    // NULL_CIPHER or STREAM_CIPHER
1083                    fragLen -= macLen;
1084            }
1085        }
1086
1087        return fragLen;
1088    }
1089
1090    // Estimate the maximum fragment size of a received packet.
1091    int estimateFragmentSize(int packetSize, int macLen, int headerSize) {
1092        int fragLen = packetSize - headerSize;
1093        if (cipher != null) {
1094            int blockSize = cipher.getBlockSize();
1095            switch (cipherType) {
1096                case BLOCK_CIPHER:
1097                    if (protocolVersion.useTLS11PlusSpec()) {
1098                        fragLen -= blockSize;       // explicit IV
1099                    }
1100                    // No padding for a maximum fragment.
1101                    fragLen -= 1;       // 1 byte padding length field: 0x00
1102                    fragLen -= macLen;
1103
1104                    break;
1105                case AEAD_CIPHER:
1106                    fragLen -= recordIvSize;
1107                    fragLen -= tagSize;
1108
1109                    break;
1110                default:    // NULL_CIPHER or STREAM_CIPHER
1111                    fragLen -= macLen;
1112            }
1113        }
1114
1115        return fragLen;
1116    }
1117
1118    /**
1119     * Sanity check the length of a fragment before decryption.
1120     *
1121     * In CBC mode, check that the fragment length is one or multiple times
1122     * of the block size of the cipher suite, and is at least one (one is the
1123     * smallest size of padding in CBC mode) bigger than the tag size of the
1124     * MAC algorithm except the explicit IV size for TLS 1.1 or later.
1125     *
1126     * In non-CBC mode, check that the fragment length is not less than the
1127     * tag size of the MAC algorithm.
1128     *
1129     * @return true if the length of a fragment matches above requirements
1130     */
1131    private boolean sanityCheck(int tagLen, int fragmentLen) {
1132        if (!isCBCMode()) {
1133            return fragmentLen >= tagLen;
1134        }
1135
1136        int blockSize = cipher.getBlockSize();
1137        if ((fragmentLen % blockSize) == 0) {
1138            int minimal = tagLen + 1;
1139            minimal = (minimal >= blockSize) ? minimal : blockSize;
1140            if (protocolVersion.useTLS11PlusSpec()) {
1141                minimal += blockSize;   // plus the size of the explicit IV
1142            }
1143
1144            return (fragmentLen >= minimal);
1145        }
1146
1147        return false;
1148    }
1149
1150}
1151