1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25/*
26 * This file is available under and governed by the GNU General Public
27 * License version 2 only, as published by the Free Software Foundation.
28 * However, the following notice accompanied the original version of this
29 * file:
30 *
31 * Written by Doug Lea with assistance from members of JCP JSR-166
32 * Expert Group and released to the public domain, as explained at
33 * http://creativecommons.org/publicdomain/zero/1.0/
34 */
35
36package java.util.concurrent;
37
38import java.io.ObjectStreamField;
39import java.security.AccessControlContext;
40import java.util.Random;
41import java.util.Spliterator;
42import java.util.concurrent.atomic.AtomicInteger;
43import java.util.concurrent.atomic.AtomicLong;
44import java.util.function.DoubleConsumer;
45import java.util.function.IntConsumer;
46import java.util.function.LongConsumer;
47import java.util.stream.DoubleStream;
48import java.util.stream.IntStream;
49import java.util.stream.LongStream;
50import java.util.stream.StreamSupport;
51import jdk.internal.misc.Unsafe;
52import jdk.internal.misc.VM;
53
54/**
55 * A random number generator isolated to the current thread.  Like the
56 * global {@link java.util.Random} generator used by the {@link
57 * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
58 * with an internally generated seed that may not otherwise be
59 * modified. When applicable, use of {@code ThreadLocalRandom} rather
60 * than shared {@code Random} objects in concurrent programs will
61 * typically encounter much less overhead and contention.  Use of
62 * {@code ThreadLocalRandom} is particularly appropriate when multiple
63 * tasks (for example, each a {@link ForkJoinTask}) use random numbers
64 * in parallel in thread pools.
65 *
66 * <p>Usages of this class should typically be of the form:
67 * {@code ThreadLocalRandom.current().nextX(...)} (where
68 * {@code X} is {@code Int}, {@code Long}, etc).
69 * When all usages are of this form, it is never possible to
70 * accidently share a {@code ThreadLocalRandom} across multiple threads.
71 *
72 * <p>This class also provides additional commonly used bounded random
73 * generation methods.
74 *
75 * <p>Instances of {@code ThreadLocalRandom} are not cryptographically
76 * secure.  Consider instead using {@link java.security.SecureRandom}
77 * in security-sensitive applications. Additionally,
78 * default-constructed instances do not use a cryptographically random
79 * seed unless the {@linkplain System#getProperty system property}
80 * {@code java.util.secureRandomSeed} is set to {@code true}.
81 *
82 * @since 1.7
83 * @author Doug Lea
84 */
85public class ThreadLocalRandom extends Random {
86    /*
87     * This class implements the java.util.Random API (and subclasses
88     * Random) using a single static instance that accesses random
89     * number state held in class Thread (primarily, field
90     * threadLocalRandomSeed). In doing so, it also provides a home
91     * for managing package-private utilities that rely on exactly the
92     * same state as needed to maintain the ThreadLocalRandom
93     * instances. We leverage the need for an initialization flag
94     * field to also use it as a "probe" -- a self-adjusting thread
95     * hash used for contention avoidance, as well as a secondary
96     * simpler (xorShift) random seed that is conservatively used to
97     * avoid otherwise surprising users by hijacking the
98     * ThreadLocalRandom sequence.  The dual use is a marriage of
99     * convenience, but is a simple and efficient way of reducing
100     * application-level overhead and footprint of most concurrent
101     * programs. Even more opportunistically, we also define here
102     * other package-private utilities that access Thread class
103     * fields.
104     *
105     * Even though this class subclasses java.util.Random, it uses the
106     * same basic algorithm as java.util.SplittableRandom.  (See its
107     * internal documentation for explanations, which are not repeated
108     * here.)  Because ThreadLocalRandoms are not splittable
109     * though, we use only a single 64bit gamma.
110     *
111     * Because this class is in a different package than class Thread,
112     * field access methods use Unsafe to bypass access control rules.
113     * To conform to the requirements of the Random superclass
114     * constructor, the common static ThreadLocalRandom maintains an
115     * "initialized" field for the sake of rejecting user calls to
116     * setSeed while still allowing a call from constructor.  Note
117     * that serialization is completely unnecessary because there is
118     * only a static singleton.  But we generate a serial form
119     * containing "rnd" and "initialized" fields to ensure
120     * compatibility across versions.
121     *
122     * Implementations of non-core methods are mostly the same as in
123     * SplittableRandom, that were in part derived from a previous
124     * version of this class.
125     *
126     * The nextLocalGaussian ThreadLocal supports the very rarely used
127     * nextGaussian method by providing a holder for the second of a
128     * pair of them. As is true for the base class version of this
129     * method, this time/space tradeoff is probably never worthwhile,
130     * but we provide identical statistical properties.
131     */
132
133    private static long mix64(long z) {
134        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
135        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
136        return z ^ (z >>> 33);
137    }
138
139    private static int mix32(long z) {
140        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
141        return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
142    }
143
144    /**
145     * Field used only during singleton initialization.
146     * True when constructor completes.
147     */
148    boolean initialized;
149
150    /** Constructor used only for static singleton */
151    private ThreadLocalRandom() {
152        initialized = true; // false during super() call
153    }
154
155    /**
156     * Initialize Thread fields for the current thread.  Called only
157     * when Thread.threadLocalRandomProbe is zero, indicating that a
158     * thread local seed value needs to be generated. Note that even
159     * though the initialization is purely thread-local, we need to
160     * rely on (static) atomic generators to initialize the values.
161     */
162    static final void localInit() {
163        int p = probeGenerator.addAndGet(PROBE_INCREMENT);
164        int probe = (p == 0) ? 1 : p; // skip 0
165        long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
166        Thread t = Thread.currentThread();
167        U.putLong(t, SEED, seed);
168        U.putInt(t, PROBE, probe);
169    }
170
171    /**
172     * Returns the current thread's {@code ThreadLocalRandom}.
173     *
174     * @return the current thread's {@code ThreadLocalRandom}
175     */
176    public static ThreadLocalRandom current() {
177        if (U.getInt(Thread.currentThread(), PROBE) == 0)
178            localInit();
179        return instance;
180    }
181
182    /**
183     * Throws {@code UnsupportedOperationException}.  Setting seeds in
184     * this generator is not supported.
185     *
186     * @throws UnsupportedOperationException always
187     */
188    public void setSeed(long seed) {
189        // only allow call from super() constructor
190        if (initialized)
191            throw new UnsupportedOperationException();
192    }
193
194    final long nextSeed() {
195        Thread t; long r; // read and update per-thread seed
196        U.putLong(t = Thread.currentThread(), SEED,
197                  r = U.getLong(t, SEED) + GAMMA);
198        return r;
199    }
200
201    /**
202     * Generates a pseudorandom number with the indicated number of
203     * low-order bits.  Because this class has no subclasses, this
204     * method cannot be invoked or overridden.
205     *
206     * @param  bits random bits
207     * @return the next pseudorandom value from this random number
208     *         generator's sequence
209     */
210    protected int next(int bits) {
211        return nextInt() >>> (32 - bits);
212    }
213
214    /**
215     * The form of nextLong used by LongStream Spliterators.  If
216     * origin is greater than bound, acts as unbounded form of
217     * nextLong, else as bounded form.
218     *
219     * @param origin the least value, unless greater than bound
220     * @param bound the upper bound (exclusive), must not equal origin
221     * @return a pseudorandom value
222     */
223    final long internalNextLong(long origin, long bound) {
224        long r = mix64(nextSeed());
225        if (origin < bound) {
226            long n = bound - origin, m = n - 1;
227            if ((n & m) == 0L)  // power of two
228                r = (r & m) + origin;
229            else if (n > 0L) {  // reject over-represented candidates
230                for (long u = r >>> 1;            // ensure nonnegative
231                     u + m - (r = u % n) < 0L;    // rejection check
232                     u = mix64(nextSeed()) >>> 1) // retry
233                    ;
234                r += origin;
235            }
236            else {              // range not representable as long
237                while (r < origin || r >= bound)
238                    r = mix64(nextSeed());
239            }
240        }
241        return r;
242    }
243
244    /**
245     * The form of nextInt used by IntStream Spliterators.
246     * Exactly the same as long version, except for types.
247     *
248     * @param origin the least value, unless greater than bound
249     * @param bound the upper bound (exclusive), must not equal origin
250     * @return a pseudorandom value
251     */
252    final int internalNextInt(int origin, int bound) {
253        int r = mix32(nextSeed());
254        if (origin < bound) {
255            int n = bound - origin, m = n - 1;
256            if ((n & m) == 0)
257                r = (r & m) + origin;
258            else if (n > 0) {
259                for (int u = r >>> 1;
260                     u + m - (r = u % n) < 0;
261                     u = mix32(nextSeed()) >>> 1)
262                    ;
263                r += origin;
264            }
265            else {
266                while (r < origin || r >= bound)
267                    r = mix32(nextSeed());
268            }
269        }
270        return r;
271    }
272
273    /**
274     * The form of nextDouble used by DoubleStream Spliterators.
275     *
276     * @param origin the least value, unless greater than bound
277     * @param bound the upper bound (exclusive), must not equal origin
278     * @return a pseudorandom value
279     */
280    final double internalNextDouble(double origin, double bound) {
281        double r = (nextLong() >>> 11) * DOUBLE_UNIT;
282        if (origin < bound) {
283            r = r * (bound - origin) + origin;
284            if (r >= bound) // correct for rounding
285                r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
286        }
287        return r;
288    }
289
290    /**
291     * Returns a pseudorandom {@code int} value.
292     *
293     * @return a pseudorandom {@code int} value
294     */
295    public int nextInt() {
296        return mix32(nextSeed());
297    }
298
299    /**
300     * Returns a pseudorandom {@code int} value between zero (inclusive)
301     * and the specified bound (exclusive).
302     *
303     * @param bound the upper bound (exclusive).  Must be positive.
304     * @return a pseudorandom {@code int} value between zero
305     *         (inclusive) and the bound (exclusive)
306     * @throws IllegalArgumentException if {@code bound} is not positive
307     */
308    public int nextInt(int bound) {
309        if (bound <= 0)
310            throw new IllegalArgumentException(BAD_BOUND);
311        int r = mix32(nextSeed());
312        int m = bound - 1;
313        if ((bound & m) == 0) // power of two
314            r &= m;
315        else { // reject over-represented candidates
316            for (int u = r >>> 1;
317                 u + m - (r = u % bound) < 0;
318                 u = mix32(nextSeed()) >>> 1)
319                ;
320        }
321        return r;
322    }
323
324    /**
325     * Returns a pseudorandom {@code int} value between the specified
326     * origin (inclusive) and the specified bound (exclusive).
327     *
328     * @param origin the least value returned
329     * @param bound the upper bound (exclusive)
330     * @return a pseudorandom {@code int} value between the origin
331     *         (inclusive) and the bound (exclusive)
332     * @throws IllegalArgumentException if {@code origin} is greater than
333     *         or equal to {@code bound}
334     */
335    public int nextInt(int origin, int bound) {
336        if (origin >= bound)
337            throw new IllegalArgumentException(BAD_RANGE);
338        return internalNextInt(origin, bound);
339    }
340
341    /**
342     * Returns a pseudorandom {@code long} value.
343     *
344     * @return a pseudorandom {@code long} value
345     */
346    public long nextLong() {
347        return mix64(nextSeed());
348    }
349
350    /**
351     * Returns a pseudorandom {@code long} value between zero (inclusive)
352     * and the specified bound (exclusive).
353     *
354     * @param bound the upper bound (exclusive).  Must be positive.
355     * @return a pseudorandom {@code long} value between zero
356     *         (inclusive) and the bound (exclusive)
357     * @throws IllegalArgumentException if {@code bound} is not positive
358     */
359    public long nextLong(long bound) {
360        if (bound <= 0)
361            throw new IllegalArgumentException(BAD_BOUND);
362        long r = mix64(nextSeed());
363        long m = bound - 1;
364        if ((bound & m) == 0L) // power of two
365            r &= m;
366        else { // reject over-represented candidates
367            for (long u = r >>> 1;
368                 u + m - (r = u % bound) < 0L;
369                 u = mix64(nextSeed()) >>> 1)
370                ;
371        }
372        return r;
373    }
374
375    /**
376     * Returns a pseudorandom {@code long} value between the specified
377     * origin (inclusive) and the specified bound (exclusive).
378     *
379     * @param origin the least value returned
380     * @param bound the upper bound (exclusive)
381     * @return a pseudorandom {@code long} value between the origin
382     *         (inclusive) and the bound (exclusive)
383     * @throws IllegalArgumentException if {@code origin} is greater than
384     *         or equal to {@code bound}
385     */
386    public long nextLong(long origin, long bound) {
387        if (origin >= bound)
388            throw new IllegalArgumentException(BAD_RANGE);
389        return internalNextLong(origin, bound);
390    }
391
392    /**
393     * Returns a pseudorandom {@code double} value between zero
394     * (inclusive) and one (exclusive).
395     *
396     * @return a pseudorandom {@code double} value between zero
397     *         (inclusive) and one (exclusive)
398     */
399    public double nextDouble() {
400        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
401    }
402
403    /**
404     * Returns a pseudorandom {@code double} value between 0.0
405     * (inclusive) and the specified bound (exclusive).
406     *
407     * @param bound the upper bound (exclusive).  Must be positive.
408     * @return a pseudorandom {@code double} value between zero
409     *         (inclusive) and the bound (exclusive)
410     * @throws IllegalArgumentException if {@code bound} is not positive
411     */
412    public double nextDouble(double bound) {
413        if (!(bound > 0.0))
414            throw new IllegalArgumentException(BAD_BOUND);
415        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
416        return (result < bound) ? result : // correct for rounding
417            Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
418    }
419
420    /**
421     * Returns a pseudorandom {@code double} value between the specified
422     * origin (inclusive) and bound (exclusive).
423     *
424     * @param origin the least value returned
425     * @param bound the upper bound (exclusive)
426     * @return a pseudorandom {@code double} value between the origin
427     *         (inclusive) and the bound (exclusive)
428     * @throws IllegalArgumentException if {@code origin} is greater than
429     *         or equal to {@code bound}
430     */
431    public double nextDouble(double origin, double bound) {
432        if (!(origin < bound))
433            throw new IllegalArgumentException(BAD_RANGE);
434        return internalNextDouble(origin, bound);
435    }
436
437    /**
438     * Returns a pseudorandom {@code boolean} value.
439     *
440     * @return a pseudorandom {@code boolean} value
441     */
442    public boolean nextBoolean() {
443        return mix32(nextSeed()) < 0;
444    }
445
446    /**
447     * Returns a pseudorandom {@code float} value between zero
448     * (inclusive) and one (exclusive).
449     *
450     * @return a pseudorandom {@code float} value between zero
451     *         (inclusive) and one (exclusive)
452     */
453    public float nextFloat() {
454        return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
455    }
456
457    public double nextGaussian() {
458        // Use nextLocalGaussian instead of nextGaussian field
459        Double d = nextLocalGaussian.get();
460        if (d != null) {
461            nextLocalGaussian.set(null);
462            return d.doubleValue();
463        }
464        double v1, v2, s;
465        do {
466            v1 = 2 * nextDouble() - 1; // between -1 and 1
467            v2 = 2 * nextDouble() - 1; // between -1 and 1
468            s = v1 * v1 + v2 * v2;
469        } while (s >= 1 || s == 0);
470        double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
471        nextLocalGaussian.set(Double.valueOf(v2 * multiplier));
472        return v1 * multiplier;
473    }
474
475    // stream methods, coded in a way intended to better isolate for
476    // maintenance purposes the small differences across forms.
477
478    /**
479     * Returns a stream producing the given {@code streamSize} number of
480     * pseudorandom {@code int} values.
481     *
482     * @param streamSize the number of values to generate
483     * @return a stream of pseudorandom {@code int} values
484     * @throws IllegalArgumentException if {@code streamSize} is
485     *         less than zero
486     * @since 1.8
487     */
488    public IntStream ints(long streamSize) {
489        if (streamSize < 0L)
490            throw new IllegalArgumentException(BAD_SIZE);
491        return StreamSupport.intStream
492            (new RandomIntsSpliterator
493             (0L, streamSize, Integer.MAX_VALUE, 0),
494             false);
495    }
496
497    /**
498     * Returns an effectively unlimited stream of pseudorandom {@code int}
499     * values.
500     *
501     * @implNote This method is implemented to be equivalent to {@code
502     * ints(Long.MAX_VALUE)}.
503     *
504     * @return a stream of pseudorandom {@code int} values
505     * @since 1.8
506     */
507    public IntStream ints() {
508        return StreamSupport.intStream
509            (new RandomIntsSpliterator
510             (0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
511             false);
512    }
513
514    /**
515     * Returns a stream producing the given {@code streamSize} number
516     * of pseudorandom {@code int} values, each conforming to the given
517     * origin (inclusive) and bound (exclusive).
518     *
519     * @param streamSize the number of values to generate
520     * @param randomNumberOrigin the origin (inclusive) of each random value
521     * @param randomNumberBound the bound (exclusive) of each random value
522     * @return a stream of pseudorandom {@code int} values,
523     *         each with the given origin (inclusive) and bound (exclusive)
524     * @throws IllegalArgumentException if {@code streamSize} is
525     *         less than zero, or {@code randomNumberOrigin}
526     *         is greater than or equal to {@code randomNumberBound}
527     * @since 1.8
528     */
529    public IntStream ints(long streamSize, int randomNumberOrigin,
530                          int randomNumberBound) {
531        if (streamSize < 0L)
532            throw new IllegalArgumentException(BAD_SIZE);
533        if (randomNumberOrigin >= randomNumberBound)
534            throw new IllegalArgumentException(BAD_RANGE);
535        return StreamSupport.intStream
536            (new RandomIntsSpliterator
537             (0L, streamSize, randomNumberOrigin, randomNumberBound),
538             false);
539    }
540
541    /**
542     * Returns an effectively unlimited stream of pseudorandom {@code
543     * int} values, each conforming to the given origin (inclusive) and bound
544     * (exclusive).
545     *
546     * @implNote This method is implemented to be equivalent to {@code
547     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
548     *
549     * @param randomNumberOrigin the origin (inclusive) of each random value
550     * @param randomNumberBound the bound (exclusive) of each random value
551     * @return a stream of pseudorandom {@code int} values,
552     *         each with the given origin (inclusive) and bound (exclusive)
553     * @throws IllegalArgumentException if {@code randomNumberOrigin}
554     *         is greater than or equal to {@code randomNumberBound}
555     * @since 1.8
556     */
557    public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
558        if (randomNumberOrigin >= randomNumberBound)
559            throw new IllegalArgumentException(BAD_RANGE);
560        return StreamSupport.intStream
561            (new RandomIntsSpliterator
562             (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
563             false);
564    }
565
566    /**
567     * Returns a stream producing the given {@code streamSize} number of
568     * pseudorandom {@code long} values.
569     *
570     * @param streamSize the number of values to generate
571     * @return a stream of pseudorandom {@code long} values
572     * @throws IllegalArgumentException if {@code streamSize} is
573     *         less than zero
574     * @since 1.8
575     */
576    public LongStream longs(long streamSize) {
577        if (streamSize < 0L)
578            throw new IllegalArgumentException(BAD_SIZE);
579        return StreamSupport.longStream
580            (new RandomLongsSpliterator
581             (0L, streamSize, Long.MAX_VALUE, 0L),
582             false);
583    }
584
585    /**
586     * Returns an effectively unlimited stream of pseudorandom {@code long}
587     * values.
588     *
589     * @implNote This method is implemented to be equivalent to {@code
590     * longs(Long.MAX_VALUE)}.
591     *
592     * @return a stream of pseudorandom {@code long} values
593     * @since 1.8
594     */
595    public LongStream longs() {
596        return StreamSupport.longStream
597            (new RandomLongsSpliterator
598             (0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
599             false);
600    }
601
602    /**
603     * Returns a stream producing the given {@code streamSize} number of
604     * pseudorandom {@code long}, each conforming to the given origin
605     * (inclusive) and bound (exclusive).
606     *
607     * @param streamSize the number of values to generate
608     * @param randomNumberOrigin the origin (inclusive) of each random value
609     * @param randomNumberBound the bound (exclusive) of each random value
610     * @return a stream of pseudorandom {@code long} values,
611     *         each with the given origin (inclusive) and bound (exclusive)
612     * @throws IllegalArgumentException if {@code streamSize} is
613     *         less than zero, or {@code randomNumberOrigin}
614     *         is greater than or equal to {@code randomNumberBound}
615     * @since 1.8
616     */
617    public LongStream longs(long streamSize, long randomNumberOrigin,
618                            long randomNumberBound) {
619        if (streamSize < 0L)
620            throw new IllegalArgumentException(BAD_SIZE);
621        if (randomNumberOrigin >= randomNumberBound)
622            throw new IllegalArgumentException(BAD_RANGE);
623        return StreamSupport.longStream
624            (new RandomLongsSpliterator
625             (0L, streamSize, randomNumberOrigin, randomNumberBound),
626             false);
627    }
628
629    /**
630     * Returns an effectively unlimited stream of pseudorandom {@code
631     * long} values, each conforming to the given origin (inclusive) and bound
632     * (exclusive).
633     *
634     * @implNote This method is implemented to be equivalent to {@code
635     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
636     *
637     * @param randomNumberOrigin the origin (inclusive) of each random value
638     * @param randomNumberBound the bound (exclusive) of each random value
639     * @return a stream of pseudorandom {@code long} values,
640     *         each with the given origin (inclusive) and bound (exclusive)
641     * @throws IllegalArgumentException if {@code randomNumberOrigin}
642     *         is greater than or equal to {@code randomNumberBound}
643     * @since 1.8
644     */
645    public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
646        if (randomNumberOrigin >= randomNumberBound)
647            throw new IllegalArgumentException(BAD_RANGE);
648        return StreamSupport.longStream
649            (new RandomLongsSpliterator
650             (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
651             false);
652    }
653
654    /**
655     * Returns a stream producing the given {@code streamSize} number of
656     * pseudorandom {@code double} values, each between zero
657     * (inclusive) and one (exclusive).
658     *
659     * @param streamSize the number of values to generate
660     * @return a stream of {@code double} values
661     * @throws IllegalArgumentException if {@code streamSize} is
662     *         less than zero
663     * @since 1.8
664     */
665    public DoubleStream doubles(long streamSize) {
666        if (streamSize < 0L)
667            throw new IllegalArgumentException(BAD_SIZE);
668        return StreamSupport.doubleStream
669            (new RandomDoublesSpliterator
670             (0L, streamSize, Double.MAX_VALUE, 0.0),
671             false);
672    }
673
674    /**
675     * Returns an effectively unlimited stream of pseudorandom {@code
676     * double} values, each between zero (inclusive) and one
677     * (exclusive).
678     *
679     * @implNote This method is implemented to be equivalent to {@code
680     * doubles(Long.MAX_VALUE)}.
681     *
682     * @return a stream of pseudorandom {@code double} values
683     * @since 1.8
684     */
685    public DoubleStream doubles() {
686        return StreamSupport.doubleStream
687            (new RandomDoublesSpliterator
688             (0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
689             false);
690    }
691
692    /**
693     * Returns a stream producing the given {@code streamSize} number of
694     * pseudorandom {@code double} values, each conforming to the given origin
695     * (inclusive) and bound (exclusive).
696     *
697     * @param streamSize the number of values to generate
698     * @param randomNumberOrigin the origin (inclusive) of each random value
699     * @param randomNumberBound the bound (exclusive) of each random value
700     * @return a stream of pseudorandom {@code double} values,
701     *         each with the given origin (inclusive) and bound (exclusive)
702     * @throws IllegalArgumentException if {@code streamSize} is
703     *         less than zero, or {@code randomNumberOrigin}
704     *         is greater than or equal to {@code randomNumberBound}
705     * @since 1.8
706     */
707    public DoubleStream doubles(long streamSize, double randomNumberOrigin,
708                                double randomNumberBound) {
709        if (streamSize < 0L)
710            throw new IllegalArgumentException(BAD_SIZE);
711        if (!(randomNumberOrigin < randomNumberBound))
712            throw new IllegalArgumentException(BAD_RANGE);
713        return StreamSupport.doubleStream
714            (new RandomDoublesSpliterator
715             (0L, streamSize, randomNumberOrigin, randomNumberBound),
716             false);
717    }
718
719    /**
720     * Returns an effectively unlimited stream of pseudorandom {@code
721     * double} values, each conforming to the given origin (inclusive) and bound
722     * (exclusive).
723     *
724     * @implNote This method is implemented to be equivalent to {@code
725     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
726     *
727     * @param randomNumberOrigin the origin (inclusive) of each random value
728     * @param randomNumberBound the bound (exclusive) of each random value
729     * @return a stream of pseudorandom {@code double} values,
730     *         each with the given origin (inclusive) and bound (exclusive)
731     * @throws IllegalArgumentException if {@code randomNumberOrigin}
732     *         is greater than or equal to {@code randomNumberBound}
733     * @since 1.8
734     */
735    public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
736        if (!(randomNumberOrigin < randomNumberBound))
737            throw new IllegalArgumentException(BAD_RANGE);
738        return StreamSupport.doubleStream
739            (new RandomDoublesSpliterator
740             (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
741             false);
742    }
743
744    /**
745     * Spliterator for int streams.  We multiplex the four int
746     * versions into one class by treating a bound less than origin as
747     * unbounded, and also by treating "infinite" as equivalent to
748     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
749     * approach. The long and double versions of this class are
750     * identical except for types.
751     */
752    private static final class RandomIntsSpliterator
753            implements Spliterator.OfInt {
754        long index;
755        final long fence;
756        final int origin;
757        final int bound;
758        RandomIntsSpliterator(long index, long fence,
759                              int origin, int bound) {
760            this.index = index; this.fence = fence;
761            this.origin = origin; this.bound = bound;
762        }
763
764        public RandomIntsSpliterator trySplit() {
765            long i = index, m = (i + fence) >>> 1;
766            return (m <= i) ? null :
767                new RandomIntsSpliterator(i, index = m, origin, bound);
768        }
769
770        public long estimateSize() {
771            return fence - index;
772        }
773
774        public int characteristics() {
775            return (Spliterator.SIZED | Spliterator.SUBSIZED |
776                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
777        }
778
779        public boolean tryAdvance(IntConsumer consumer) {
780            if (consumer == null) throw new NullPointerException();
781            long i = index, f = fence;
782            if (i < f) {
783                consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
784                index = i + 1;
785                return true;
786            }
787            return false;
788        }
789
790        public void forEachRemaining(IntConsumer consumer) {
791            if (consumer == null) throw new NullPointerException();
792            long i = index, f = fence;
793            if (i < f) {
794                index = f;
795                int o = origin, b = bound;
796                ThreadLocalRandom rng = ThreadLocalRandom.current();
797                do {
798                    consumer.accept(rng.internalNextInt(o, b));
799                } while (++i < f);
800            }
801        }
802    }
803
804    /**
805     * Spliterator for long streams.
806     */
807    private static final class RandomLongsSpliterator
808            implements Spliterator.OfLong {
809        long index;
810        final long fence;
811        final long origin;
812        final long bound;
813        RandomLongsSpliterator(long index, long fence,
814                               long origin, long bound) {
815            this.index = index; this.fence = fence;
816            this.origin = origin; this.bound = bound;
817        }
818
819        public RandomLongsSpliterator trySplit() {
820            long i = index, m = (i + fence) >>> 1;
821            return (m <= i) ? null :
822                new RandomLongsSpliterator(i, index = m, origin, bound);
823        }
824
825        public long estimateSize() {
826            return fence - index;
827        }
828
829        public int characteristics() {
830            return (Spliterator.SIZED | Spliterator.SUBSIZED |
831                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
832        }
833
834        public boolean tryAdvance(LongConsumer consumer) {
835            if (consumer == null) throw new NullPointerException();
836            long i = index, f = fence;
837            if (i < f) {
838                consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
839                index = i + 1;
840                return true;
841            }
842            return false;
843        }
844
845        public void forEachRemaining(LongConsumer consumer) {
846            if (consumer == null) throw new NullPointerException();
847            long i = index, f = fence;
848            if (i < f) {
849                index = f;
850                long o = origin, b = bound;
851                ThreadLocalRandom rng = ThreadLocalRandom.current();
852                do {
853                    consumer.accept(rng.internalNextLong(o, b));
854                } while (++i < f);
855            }
856        }
857
858    }
859
860    /**
861     * Spliterator for double streams.
862     */
863    private static final class RandomDoublesSpliterator
864            implements Spliterator.OfDouble {
865        long index;
866        final long fence;
867        final double origin;
868        final double bound;
869        RandomDoublesSpliterator(long index, long fence,
870                                 double origin, double bound) {
871            this.index = index; this.fence = fence;
872            this.origin = origin; this.bound = bound;
873        }
874
875        public RandomDoublesSpliterator trySplit() {
876            long i = index, m = (i + fence) >>> 1;
877            return (m <= i) ? null :
878                new RandomDoublesSpliterator(i, index = m, origin, bound);
879        }
880
881        public long estimateSize() {
882            return fence - index;
883        }
884
885        public int characteristics() {
886            return (Spliterator.SIZED | Spliterator.SUBSIZED |
887                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
888        }
889
890        public boolean tryAdvance(DoubleConsumer consumer) {
891            if (consumer == null) throw new NullPointerException();
892            long i = index, f = fence;
893            if (i < f) {
894                consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
895                index = i + 1;
896                return true;
897            }
898            return false;
899        }
900
901        public void forEachRemaining(DoubleConsumer consumer) {
902            if (consumer == null) throw new NullPointerException();
903            long i = index, f = fence;
904            if (i < f) {
905                index = f;
906                double o = origin, b = bound;
907                ThreadLocalRandom rng = ThreadLocalRandom.current();
908                do {
909                    consumer.accept(rng.internalNextDouble(o, b));
910                } while (++i < f);
911            }
912        }
913    }
914
915
916    // Within-package utilities
917
918    /*
919     * Descriptions of the usages of the methods below can be found in
920     * the classes that use them. Briefly, a thread's "probe" value is
921     * a non-zero hash code that (probably) does not collide with
922     * other existing threads with respect to any power of two
923     * collision space. When it does collide, it is pseudo-randomly
924     * adjusted (using a Marsaglia XorShift). The nextSecondarySeed
925     * method is used in the same contexts as ThreadLocalRandom, but
926     * only for transient usages such as random adaptive spin/block
927     * sequences for which a cheap RNG suffices and for which it could
928     * in principle disrupt user-visible statistical properties of the
929     * main ThreadLocalRandom if we were to use it.
930     *
931     * Note: Because of package-protection issues, versions of some
932     * these methods also appear in some subpackage classes.
933     */
934
935    /**
936     * Returns the probe value for the current thread without forcing
937     * initialization. Note that invoking ThreadLocalRandom.current()
938     * can be used to force initialization on zero return.
939     */
940    static final int getProbe() {
941        return U.getInt(Thread.currentThread(), PROBE);
942    }
943
944    /**
945     * Pseudo-randomly advances and records the given probe value for the
946     * given thread.
947     */
948    static final int advanceProbe(int probe) {
949        probe ^= probe << 13;   // xorshift
950        probe ^= probe >>> 17;
951        probe ^= probe << 5;
952        U.putInt(Thread.currentThread(), PROBE, probe);
953        return probe;
954    }
955
956    /**
957     * Returns the pseudo-randomly initialized or updated secondary seed.
958     */
959    static final int nextSecondarySeed() {
960        int r;
961        Thread t = Thread.currentThread();
962        if ((r = U.getInt(t, SECONDARY)) != 0) {
963            r ^= r << 13;   // xorshift
964            r ^= r >>> 17;
965            r ^= r << 5;
966        }
967        else if ((r = mix32(seeder.getAndAdd(SEEDER_INCREMENT))) == 0)
968            r = 1; // avoid zero
969        U.putInt(t, SECONDARY, r);
970        return r;
971    }
972
973    // Support for other package-private ThreadLocal access
974
975    /**
976     * Erases ThreadLocals by nulling out Thread maps.
977     */
978    static final void eraseThreadLocals(Thread thread) {
979        U.putObject(thread, THREADLOCALS, null);
980        U.putObject(thread, INHERITABLETHREADLOCALS, null);
981    }
982
983    static final void setInheritedAccessControlContext(Thread thread,
984                                                       AccessControlContext acc) {
985        U.putObjectRelease(thread, INHERITEDACCESSCONTROLCONTEXT, acc);
986    }
987
988    // Serialization support
989
990    private static final long serialVersionUID = -5851777807851030925L;
991
992    /**
993     * @serialField rnd long
994     *              seed for random computations
995     * @serialField initialized boolean
996     *              always true
997     */
998    private static final ObjectStreamField[] serialPersistentFields = {
999        new ObjectStreamField("rnd", long.class),
1000        new ObjectStreamField("initialized", boolean.class),
1001    };
1002
1003    /**
1004     * Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
1005     * @param s the stream
1006     * @throws java.io.IOException if an I/O error occurs
1007     */
1008    private void writeObject(java.io.ObjectOutputStream s)
1009        throws java.io.IOException {
1010
1011        java.io.ObjectOutputStream.PutField fields = s.putFields();
1012        fields.put("rnd", U.getLong(Thread.currentThread(), SEED));
1013        fields.put("initialized", true);
1014        s.writeFields();
1015    }
1016
1017    /**
1018     * Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
1019     * @return the {@link #current() current} thread's {@code ThreadLocalRandom}
1020     */
1021    private Object readResolve() {
1022        return current();
1023    }
1024
1025    // Static initialization
1026
1027    /**
1028     * The seed increment.
1029     */
1030    private static final long GAMMA = 0x9e3779b97f4a7c15L;
1031
1032    /**
1033     * The increment for generating probe values.
1034     */
1035    private static final int PROBE_INCREMENT = 0x9e3779b9;
1036
1037    /**
1038     * The increment of seeder per new instance.
1039     */
1040    private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
1041
1042    // Constants from SplittableRandom
1043    private static final double DOUBLE_UNIT = 0x1.0p-53;  // 1.0  / (1L << 53)
1044    private static final float  FLOAT_UNIT  = 0x1.0p-24f; // 1.0f / (1 << 24)
1045
1046    // IllegalArgumentException messages
1047    static final String BAD_BOUND = "bound must be positive";
1048    static final String BAD_RANGE = "bound must be greater than origin";
1049    static final String BAD_SIZE  = "size must be non-negative";
1050
1051    // Unsafe mechanics
1052    private static final Unsafe U = Unsafe.getUnsafe();
1053    private static final long SEED = U.objectFieldOffset
1054            (Thread.class, "threadLocalRandomSeed");
1055    private static final long PROBE = U.objectFieldOffset
1056            (Thread.class, "threadLocalRandomProbe");
1057    private static final long SECONDARY = U.objectFieldOffset
1058            (Thread.class, "threadLocalRandomSecondarySeed");
1059    private static final long THREADLOCALS = U.objectFieldOffset
1060            (Thread.class, "threadLocals");
1061    private static final long INHERITABLETHREADLOCALS = U.objectFieldOffset
1062            (Thread.class, "inheritableThreadLocals");
1063    private static final long INHERITEDACCESSCONTROLCONTEXT = U.objectFieldOffset
1064            (Thread.class, "inheritedAccessControlContext");
1065
1066    /** Rarely-used holder for the second of a pair of Gaussians */
1067    private static final ThreadLocal<Double> nextLocalGaussian =
1068        new ThreadLocal<>();
1069
1070    /** Generates per-thread initialization/probe field */
1071    private static final AtomicInteger probeGenerator = new AtomicInteger();
1072
1073    /** The common ThreadLocalRandom */
1074    static final ThreadLocalRandom instance = new ThreadLocalRandom();
1075
1076    /**
1077     * The next seed for default constructors.
1078     */
1079    private static final AtomicLong seeder
1080        = new AtomicLong(mix64(System.currentTimeMillis()) ^
1081                         mix64(System.nanoTime()));
1082
1083    // at end of <clinit> to survive static initialization circularity
1084    static {
1085        String sec = VM.getSavedProperty("java.util.secureRandomSeed");
1086        if (Boolean.parseBoolean(sec)) {
1087            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
1088            long s = (long)seedBytes[0] & 0xffL;
1089            for (int i = 1; i < 8; ++i)
1090                s = (s << 8) | ((long)seedBytes[i] & 0xffL);
1091            seeder.set(s);
1092        }
1093    }
1094}
1095