1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25/*
26 * This file is available under and governed by the GNU General Public
27 * License version 2 only, as published by the Free Software Foundation.
28 * However, the following notice accompanied the original version of this
29 * file:
30 *
31 * Written by Doug Lea and Martin Buchholz with assistance from members of
32 * JCP JSR-166 Expert Group and released to the public domain, as explained
33 * at http://creativecommons.org/publicdomain/zero/1.0/
34 */
35
36package java.util.concurrent;
37
38import java.lang.invoke.MethodHandles;
39import java.lang.invoke.VarHandle;
40import java.util.AbstractQueue;
41import java.util.Arrays;
42import java.util.Collection;
43import java.util.Iterator;
44import java.util.NoSuchElementException;
45import java.util.Objects;
46import java.util.Queue;
47import java.util.Spliterator;
48import java.util.Spliterators;
49import java.util.function.Consumer;
50import java.util.function.Predicate;
51
52/**
53 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
54 * This queue orders elements FIFO (first-in-first-out).
55 * The <em>head</em> of the queue is that element that has been on the
56 * queue the longest time.
57 * The <em>tail</em> of the queue is that element that has been on the
58 * queue the shortest time. New elements
59 * are inserted at the tail of the queue, and the queue retrieval
60 * operations obtain elements at the head of the queue.
61 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
62 * many threads will share access to a common collection.
63 * Like most other concurrent collection implementations, this class
64 * does not permit the use of {@code null} elements.
65 *
66 * <p>This implementation employs an efficient <em>non-blocking</em>
67 * algorithm based on one described in
68 * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
69 * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
70 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
71 *
72 * <p>Iterators are <i>weakly consistent</i>, returning elements
73 * reflecting the state of the queue at some point at or since the
74 * creation of the iterator.  They do <em>not</em> throw {@link
75 * java.util.ConcurrentModificationException}, and may proceed concurrently
76 * with other operations.  Elements contained in the queue since the creation
77 * of the iterator will be returned exactly once.
78 *
79 * <p>Beware that, unlike in most collections, the {@code size} method
80 * is <em>NOT</em> a constant-time operation. Because of the
81 * asynchronous nature of these queues, determining the current number
82 * of elements requires a traversal of the elements, and so may report
83 * inaccurate results if this collection is modified during traversal.
84 *
85 * <p>Bulk operations that add, remove, or examine multiple elements,
86 * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
87 * are <em>not</em> guaranteed to be performed atomically.
88 * For example, a {@code forEach} traversal concurrent with an {@code
89 * addAll} operation might observe only some of the added elements.
90 *
91 * <p>This class and its iterator implement all of the <em>optional</em>
92 * methods of the {@link Queue} and {@link Iterator} interfaces.
93 *
94 * <p>Memory consistency effects: As with other concurrent
95 * collections, actions in a thread prior to placing an object into a
96 * {@code ConcurrentLinkedQueue}
97 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
98 * actions subsequent to the access or removal of that element from
99 * the {@code ConcurrentLinkedQueue} in another thread.
100 *
101 * <p>This class is a member of the
102 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
103 * Java Collections Framework</a>.
104 *
105 * @since 1.5
106 * @author Doug Lea
107 * @param <E> the type of elements held in this queue
108 */
109public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
110        implements Queue<E>, java.io.Serializable {
111    private static final long serialVersionUID = 196745693267521676L;
112
113    /*
114     * This is a modification of the Michael & Scott algorithm,
115     * adapted for a garbage-collected environment, with support for
116     * interior node deletion (to support e.g. remove(Object)).  For
117     * explanation, read the paper.
118     *
119     * Note that like most non-blocking algorithms in this package,
120     * this implementation relies on the fact that in garbage
121     * collected systems, there is no possibility of ABA problems due
122     * to recycled nodes, so there is no need to use "counted
123     * pointers" or related techniques seen in versions used in
124     * non-GC'ed settings.
125     *
126     * The fundamental invariants are:
127     * - There is exactly one (last) Node with a null next reference,
128     *   which is CASed when enqueueing.  This last Node can be
129     *   reached in O(1) time from tail, but tail is merely an
130     *   optimization - it can always be reached in O(N) time from
131     *   head as well.
132     * - The elements contained in the queue are the non-null items in
133     *   Nodes that are reachable from head.  CASing the item
134     *   reference of a Node to null atomically removes it from the
135     *   queue.  Reachability of all elements from head must remain
136     *   true even in the case of concurrent modifications that cause
137     *   head to advance.  A dequeued Node may remain in use
138     *   indefinitely due to creation of an Iterator or simply a
139     *   poll() that has lost its time slice.
140     *
141     * The above might appear to imply that all Nodes are GC-reachable
142     * from a predecessor dequeued Node.  That would cause two problems:
143     * - allow a rogue Iterator to cause unbounded memory retention
144     * - cause cross-generational linking of old Nodes to new Nodes if
145     *   a Node was tenured while live, which generational GCs have a
146     *   hard time dealing with, causing repeated major collections.
147     * However, only non-deleted Nodes need to be reachable from
148     * dequeued Nodes, and reachability does not necessarily have to
149     * be of the kind understood by the GC.  We use the trick of
150     * linking a Node that has just been dequeued to itself.  Such a
151     * self-link implicitly means to advance to head.
152     *
153     * Both head and tail are permitted to lag.  In fact, failing to
154     * update them every time one could is a significant optimization
155     * (fewer CASes). As with LinkedTransferQueue (see the internal
156     * documentation for that class), we use a slack threshold of two;
157     * that is, we update head/tail when the current pointer appears
158     * to be two or more steps away from the first/last node.
159     *
160     * Since head and tail are updated concurrently and independently,
161     * it is possible for tail to lag behind head (why not)?
162     *
163     * CASing a Node's item reference to null atomically removes the
164     * element from the queue, leaving a "dead" node that should later
165     * be unlinked (but unlinking is merely an optimization).
166     * Interior element removal methods (other than Iterator.remove())
167     * keep track of the predecessor node during traversal so that the
168     * node can be CAS-unlinked.  Some traversal methods try to unlink
169     * any deleted nodes encountered during traversal.  See comments
170     * in bulkRemove.
171     *
172     * When constructing a Node (before enqueuing it) we avoid paying
173     * for a volatile write to item.  This allows the cost of enqueue
174     * to be "one-and-a-half" CASes.
175     *
176     * Both head and tail may or may not point to a Node with a
177     * non-null item.  If the queue is empty, all items must of course
178     * be null.  Upon creation, both head and tail refer to a dummy
179     * Node with null item.  Both head and tail are only updated using
180     * CAS, so they never regress, although again this is merely an
181     * optimization.
182     */
183
184    static final class Node<E> {
185        volatile E item;
186        volatile Node<E> next;
187
188        /**
189         * Constructs a node holding item.  Uses relaxed write because
190         * item can only be seen after piggy-backing publication via CAS.
191         */
192        Node(E item) {
193            ITEM.set(this, item);
194        }
195
196        /** Constructs a dead dummy node. */
197        Node() {}
198
199        void appendRelaxed(Node<E> next) {
200            // assert next != null;
201            // assert this.next == null;
202            NEXT.set(this, next);
203        }
204
205        boolean casItem(E cmp, E val) {
206            // assert item == cmp || item == null;
207            // assert cmp != null;
208            // assert val == null;
209            return ITEM.compareAndSet(this, cmp, val);
210        }
211    }
212
213    /**
214     * A node from which the first live (non-deleted) node (if any)
215     * can be reached in O(1) time.
216     * Invariants:
217     * - all live nodes are reachable from head via succ()
218     * - head != null
219     * - (tmp = head).next != tmp || tmp != head
220     * Non-invariants:
221     * - head.item may or may not be null.
222     * - it is permitted for tail to lag behind head, that is, for tail
223     *   to not be reachable from head!
224     */
225    transient volatile Node<E> head;
226
227    /**
228     * A node from which the last node on list (that is, the unique
229     * node with node.next == null) can be reached in O(1) time.
230     * Invariants:
231     * - the last node is always reachable from tail via succ()
232     * - tail != null
233     * Non-invariants:
234     * - tail.item may or may not be null.
235     * - it is permitted for tail to lag behind head, that is, for tail
236     *   to not be reachable from head!
237     * - tail.next may or may not be self-linked.
238     */
239    private transient volatile Node<E> tail;
240
241    /**
242     * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
243     */
244    public ConcurrentLinkedQueue() {
245        head = tail = new Node<E>();
246    }
247
248    /**
249     * Creates a {@code ConcurrentLinkedQueue}
250     * initially containing the elements of the given collection,
251     * added in traversal order of the collection's iterator.
252     *
253     * @param c the collection of elements to initially contain
254     * @throws NullPointerException if the specified collection or any
255     *         of its elements are null
256     */
257    public ConcurrentLinkedQueue(Collection<? extends E> c) {
258        Node<E> h = null, t = null;
259        for (E e : c) {
260            Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
261            if (h == null)
262                h = t = newNode;
263            else
264                t.appendRelaxed(t = newNode);
265        }
266        if (h == null)
267            h = t = new Node<E>();
268        head = h;
269        tail = t;
270    }
271
272    // Have to override just to update the javadoc
273
274    /**
275     * Inserts the specified element at the tail of this queue.
276     * As the queue is unbounded, this method will never throw
277     * {@link IllegalStateException} or return {@code false}.
278     *
279     * @return {@code true} (as specified by {@link Collection#add})
280     * @throws NullPointerException if the specified element is null
281     */
282    public boolean add(E e) {
283        return offer(e);
284    }
285
286    /**
287     * Tries to CAS head to p. If successful, repoint old head to itself
288     * as sentinel for succ(), below.
289     */
290    final void updateHead(Node<E> h, Node<E> p) {
291        // assert h != null && p != null && (h == p || h.item == null);
292        if (h != p && HEAD.compareAndSet(this, h, p))
293            NEXT.setRelease(h, h);
294    }
295
296    /**
297     * Returns the successor of p, or the head node if p.next has been
298     * linked to self, which will only be true if traversing with a
299     * stale pointer that is now off the list.
300     */
301    final Node<E> succ(Node<E> p) {
302        if (p == (p = p.next))
303            p = head;
304        return p;
305    }
306
307    /**
308     * Tries to CAS pred.next (or head, if pred is null) from c to p.
309     * Caller must ensure that we're not unlinking the trailing node.
310     */
311    private boolean tryCasSuccessor(Node<E> pred, Node<E> c, Node<E> p) {
312        // assert p != null;
313        // assert c.item == null;
314        // assert c != p;
315        if (pred != null)
316            return NEXT.compareAndSet(pred, c, p);
317        if (HEAD.compareAndSet(this, c, p)) {
318            NEXT.setRelease(c, c);
319            return true;
320        }
321        return false;
322    }
323
324    /**
325     * Collapse dead nodes between pred and q.
326     * @param pred the last known live node, or null if none
327     * @param c the first dead node
328     * @param p the last dead node
329     * @param q p.next: the next live node, or null if at end
330     * @return either old pred or p if pred dead or CAS failed
331     */
332    private Node<E> skipDeadNodes(Node<E> pred, Node<E> c, Node<E> p, Node<E> q) {
333        // assert pred != c;
334        // assert p != q;
335        // assert c.item == null;
336        // assert p.item == null;
337        if (q == null) {
338            // Never unlink trailing node.
339            if (c == p) return pred;
340            q = p;
341        }
342        return (tryCasSuccessor(pred, c, q)
343                && (pred == null || ITEM.get(pred) != null))
344            ? pred : p;
345    }
346
347    /**
348     * Inserts the specified element at the tail of this queue.
349     * As the queue is unbounded, this method will never return {@code false}.
350     *
351     * @return {@code true} (as specified by {@link Queue#offer})
352     * @throws NullPointerException if the specified element is null
353     */
354    public boolean offer(E e) {
355        final Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
356
357        for (Node<E> t = tail, p = t;;) {
358            Node<E> q = p.next;
359            if (q == null) {
360                // p is last node
361                if (NEXT.compareAndSet(p, null, newNode)) {
362                    // Successful CAS is the linearization point
363                    // for e to become an element of this queue,
364                    // and for newNode to become "live".
365                    if (p != t) // hop two nodes at a time; failure is OK
366                        TAIL.weakCompareAndSet(this, t, newNode);
367                    return true;
368                }
369                // Lost CAS race to another thread; re-read next
370            }
371            else if (p == q)
372                // We have fallen off list.  If tail is unchanged, it
373                // will also be off-list, in which case we need to
374                // jump to head, from which all live nodes are always
375                // reachable.  Else the new tail is a better bet.
376                p = (t != (t = tail)) ? t : head;
377            else
378                // Check for tail updates after two hops.
379                p = (p != t && t != (t = tail)) ? t : q;
380        }
381    }
382
383    public E poll() {
384        restartFromHead: for (;;) {
385            for (Node<E> h = head, p = h, q;; p = q) {
386                final E item;
387                if ((item = p.item) != null && p.casItem(item, null)) {
388                    // Successful CAS is the linearization point
389                    // for item to be removed from this queue.
390                    if (p != h) // hop two nodes at a time
391                        updateHead(h, ((q = p.next) != null) ? q : p);
392                    return item;
393                }
394                else if ((q = p.next) == null) {
395                    updateHead(h, p);
396                    return null;
397                }
398                else if (p == q)
399                    continue restartFromHead;
400            }
401        }
402    }
403
404    public E peek() {
405        restartFromHead: for (;;) {
406            for (Node<E> h = head, p = h, q;; p = q) {
407                final E item;
408                if ((item = p.item) != null
409                    || (q = p.next) == null) {
410                    updateHead(h, p);
411                    return item;
412                }
413                else if (p == q)
414                    continue restartFromHead;
415            }
416        }
417    }
418
419    /**
420     * Returns the first live (non-deleted) node on list, or null if none.
421     * This is yet another variant of poll/peek; here returning the
422     * first node, not element.  We could make peek() a wrapper around
423     * first(), but that would cost an extra volatile read of item,
424     * and the need to add a retry loop to deal with the possibility
425     * of losing a race to a concurrent poll().
426     */
427    Node<E> first() {
428        restartFromHead: for (;;) {
429            for (Node<E> h = head, p = h, q;; p = q) {
430                boolean hasItem = (p.item != null);
431                if (hasItem || (q = p.next) == null) {
432                    updateHead(h, p);
433                    return hasItem ? p : null;
434                }
435                else if (p == q)
436                    continue restartFromHead;
437            }
438        }
439    }
440
441    /**
442     * Returns {@code true} if this queue contains no elements.
443     *
444     * @return {@code true} if this queue contains no elements
445     */
446    public boolean isEmpty() {
447        return first() == null;
448    }
449
450    /**
451     * Returns the number of elements in this queue.  If this queue
452     * contains more than {@code Integer.MAX_VALUE} elements, returns
453     * {@code Integer.MAX_VALUE}.
454     *
455     * <p>Beware that, unlike in most collections, this method is
456     * <em>NOT</em> a constant-time operation. Because of the
457     * asynchronous nature of these queues, determining the current
458     * number of elements requires an O(n) traversal.
459     * Additionally, if elements are added or removed during execution
460     * of this method, the returned result may be inaccurate.  Thus,
461     * this method is typically not very useful in concurrent
462     * applications.
463     *
464     * @return the number of elements in this queue
465     */
466    public int size() {
467        restartFromHead: for (;;) {
468            int count = 0;
469            for (Node<E> p = first(); p != null;) {
470                if (p.item != null)
471                    if (++count == Integer.MAX_VALUE)
472                        break;  // @see Collection.size()
473                if (p == (p = p.next))
474                    continue restartFromHead;
475            }
476            return count;
477        }
478    }
479
480    /**
481     * Returns {@code true} if this queue contains the specified element.
482     * More formally, returns {@code true} if and only if this queue contains
483     * at least one element {@code e} such that {@code o.equals(e)}.
484     *
485     * @param o object to be checked for containment in this queue
486     * @return {@code true} if this queue contains the specified element
487     */
488    public boolean contains(Object o) {
489        if (o == null) return false;
490        restartFromHead: for (;;) {
491            for (Node<E> p = head, pred = null; p != null; ) {
492                Node<E> q = p.next;
493                final E item;
494                if ((item = p.item) != null) {
495                    if (o.equals(item))
496                        return true;
497                    pred = p; p = q; continue;
498                }
499                for (Node<E> c = p;; q = p.next) {
500                    if (q == null || q.item != null) {
501                        pred = skipDeadNodes(pred, c, p, q); p = q; break;
502                    }
503                    if (p == (p = q)) continue restartFromHead;
504                }
505            }
506            return false;
507        }
508    }
509
510    /**
511     * Removes a single instance of the specified element from this queue,
512     * if it is present.  More formally, removes an element {@code e} such
513     * that {@code o.equals(e)}, if this queue contains one or more such
514     * elements.
515     * Returns {@code true} if this queue contained the specified element
516     * (or equivalently, if this queue changed as a result of the call).
517     *
518     * @param o element to be removed from this queue, if present
519     * @return {@code true} if this queue changed as a result of the call
520     */
521    public boolean remove(Object o) {
522        if (o == null) return false;
523        restartFromHead: for (;;) {
524            for (Node<E> p = head, pred = null; p != null; ) {
525                Node<E> q = p.next;
526                final E item;
527                if ((item = p.item) != null) {
528                    if (o.equals(item) && p.casItem(item, null)) {
529                        skipDeadNodes(pred, p, p, q);
530                        return true;
531                    }
532                    pred = p; p = q; continue;
533                }
534                for (Node<E> c = p;; q = p.next) {
535                    if (q == null || q.item != null) {
536                        pred = skipDeadNodes(pred, c, p, q); p = q; break;
537                    }
538                    if (p == (p = q)) continue restartFromHead;
539                }
540            }
541            return false;
542        }
543    }
544
545    /**
546     * Appends all of the elements in the specified collection to the end of
547     * this queue, in the order that they are returned by the specified
548     * collection's iterator.  Attempts to {@code addAll} of a queue to
549     * itself result in {@code IllegalArgumentException}.
550     *
551     * @param c the elements to be inserted into this queue
552     * @return {@code true} if this queue changed as a result of the call
553     * @throws NullPointerException if the specified collection or any
554     *         of its elements are null
555     * @throws IllegalArgumentException if the collection is this queue
556     */
557    public boolean addAll(Collection<? extends E> c) {
558        if (c == this)
559            // As historically specified in AbstractQueue#addAll
560            throw new IllegalArgumentException();
561
562        // Copy c into a private chain of Nodes
563        Node<E> beginningOfTheEnd = null, last = null;
564        for (E e : c) {
565            Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
566            if (beginningOfTheEnd == null)
567                beginningOfTheEnd = last = newNode;
568            else
569                last.appendRelaxed(last = newNode);
570        }
571        if (beginningOfTheEnd == null)
572            return false;
573
574        // Atomically append the chain at the tail of this collection
575        for (Node<E> t = tail, p = t;;) {
576            Node<E> q = p.next;
577            if (q == null) {
578                // p is last node
579                if (NEXT.compareAndSet(p, null, beginningOfTheEnd)) {
580                    // Successful CAS is the linearization point
581                    // for all elements to be added to this queue.
582                    if (!TAIL.weakCompareAndSet(this, t, last)) {
583                        // Try a little harder to update tail,
584                        // since we may be adding many elements.
585                        t = tail;
586                        if (last.next == null)
587                            TAIL.weakCompareAndSet(this, t, last);
588                    }
589                    return true;
590                }
591                // Lost CAS race to another thread; re-read next
592            }
593            else if (p == q)
594                // We have fallen off list.  If tail is unchanged, it
595                // will also be off-list, in which case we need to
596                // jump to head, from which all live nodes are always
597                // reachable.  Else the new tail is a better bet.
598                p = (t != (t = tail)) ? t : head;
599            else
600                // Check for tail updates after two hops.
601                p = (p != t && t != (t = tail)) ? t : q;
602        }
603    }
604
605    public String toString() {
606        String[] a = null;
607        restartFromHead: for (;;) {
608            int charLength = 0;
609            int size = 0;
610            for (Node<E> p = first(); p != null;) {
611                final E item;
612                if ((item = p.item) != null) {
613                    if (a == null)
614                        a = new String[4];
615                    else if (size == a.length)
616                        a = Arrays.copyOf(a, 2 * size);
617                    String s = item.toString();
618                    a[size++] = s;
619                    charLength += s.length();
620                }
621                if (p == (p = p.next))
622                    continue restartFromHead;
623            }
624
625            if (size == 0)
626                return "[]";
627
628            return Helpers.toString(a, size, charLength);
629        }
630    }
631
632    private Object[] toArrayInternal(Object[] a) {
633        Object[] x = a;
634        restartFromHead: for (;;) {
635            int size = 0;
636            for (Node<E> p = first(); p != null;) {
637                final E item;
638                if ((item = p.item) != null) {
639                    if (x == null)
640                        x = new Object[4];
641                    else if (size == x.length)
642                        x = Arrays.copyOf(x, 2 * (size + 4));
643                    x[size++] = item;
644                }
645                if (p == (p = p.next))
646                    continue restartFromHead;
647            }
648            if (x == null)
649                return new Object[0];
650            else if (a != null && size <= a.length) {
651                if (a != x)
652                    System.arraycopy(x, 0, a, 0, size);
653                if (size < a.length)
654                    a[size] = null;
655                return a;
656            }
657            return (size == x.length) ? x : Arrays.copyOf(x, size);
658        }
659    }
660
661    /**
662     * Returns an array containing all of the elements in this queue, in
663     * proper sequence.
664     *
665     * <p>The returned array will be "safe" in that no references to it are
666     * maintained by this queue.  (In other words, this method must allocate
667     * a new array).  The caller is thus free to modify the returned array.
668     *
669     * <p>This method acts as bridge between array-based and collection-based
670     * APIs.
671     *
672     * @return an array containing all of the elements in this queue
673     */
674    public Object[] toArray() {
675        return toArrayInternal(null);
676    }
677
678    /**
679     * Returns an array containing all of the elements in this queue, in
680     * proper sequence; the runtime type of the returned array is that of
681     * the specified array.  If the queue fits in the specified array, it
682     * is returned therein.  Otherwise, a new array is allocated with the
683     * runtime type of the specified array and the size of this queue.
684     *
685     * <p>If this queue fits in the specified array with room to spare
686     * (i.e., the array has more elements than this queue), the element in
687     * the array immediately following the end of the queue is set to
688     * {@code null}.
689     *
690     * <p>Like the {@link #toArray()} method, this method acts as bridge between
691     * array-based and collection-based APIs.  Further, this method allows
692     * precise control over the runtime type of the output array, and may,
693     * under certain circumstances, be used to save allocation costs.
694     *
695     * <p>Suppose {@code x} is a queue known to contain only strings.
696     * The following code can be used to dump the queue into a newly
697     * allocated array of {@code String}:
698     *
699     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
700     *
701     * Note that {@code toArray(new Object[0])} is identical in function to
702     * {@code toArray()}.
703     *
704     * @param a the array into which the elements of the queue are to
705     *          be stored, if it is big enough; otherwise, a new array of the
706     *          same runtime type is allocated for this purpose
707     * @return an array containing all of the elements in this queue
708     * @throws ArrayStoreException if the runtime type of the specified array
709     *         is not a supertype of the runtime type of every element in
710     *         this queue
711     * @throws NullPointerException if the specified array is null
712     */
713    @SuppressWarnings("unchecked")
714    public <T> T[] toArray(T[] a) {
715        Objects.requireNonNull(a);
716        return (T[]) toArrayInternal(a);
717    }
718
719    /**
720     * Returns an iterator over the elements in this queue in proper sequence.
721     * The elements will be returned in order from first (head) to last (tail).
722     *
723     * <p>The returned iterator is
724     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
725     *
726     * @return an iterator over the elements in this queue in proper sequence
727     */
728    public Iterator<E> iterator() {
729        return new Itr();
730    }
731
732    private class Itr implements Iterator<E> {
733        /**
734         * Next node to return item for.
735         */
736        private Node<E> nextNode;
737
738        /**
739         * nextItem holds on to item fields because once we claim
740         * that an element exists in hasNext(), we must return it in
741         * the following next() call even if it was in the process of
742         * being removed when hasNext() was called.
743         */
744        private E nextItem;
745
746        /**
747         * Node of the last returned item, to support remove.
748         */
749        private Node<E> lastRet;
750
751        Itr() {
752            restartFromHead: for (;;) {
753                Node<E> h, p, q;
754                for (p = h = head;; p = q) {
755                    final E item;
756                    if ((item = p.item) != null) {
757                        nextNode = p;
758                        nextItem = item;
759                        break;
760                    }
761                    else if ((q = p.next) == null)
762                        break;
763                    else if (p == q)
764                        continue restartFromHead;
765                }
766                updateHead(h, p);
767                return;
768            }
769        }
770
771        public boolean hasNext() {
772            return nextItem != null;
773        }
774
775        public E next() {
776            final Node<E> pred = nextNode;
777            if (pred == null) throw new NoSuchElementException();
778            // assert nextItem != null;
779            lastRet = pred;
780            E item = null;
781
782            for (Node<E> p = succ(pred), q;; p = q) {
783                if (p == null || (item = p.item) != null) {
784                    nextNode = p;
785                    E x = nextItem;
786                    nextItem = item;
787                    return x;
788                }
789                // unlink deleted nodes
790                if ((q = succ(p)) != null)
791                    NEXT.compareAndSet(pred, p, q);
792            }
793        }
794
795        // Default implementation of forEachRemaining is "good enough".
796
797        public void remove() {
798            Node<E> l = lastRet;
799            if (l == null) throw new IllegalStateException();
800            // rely on a future traversal to relink.
801            l.item = null;
802            lastRet = null;
803        }
804    }
805
806    /**
807     * Saves this queue to a stream (that is, serializes it).
808     *
809     * @param s the stream
810     * @throws java.io.IOException if an I/O error occurs
811     * @serialData All of the elements (each an {@code E}) in
812     * the proper order, followed by a null
813     */
814    private void writeObject(java.io.ObjectOutputStream s)
815        throws java.io.IOException {
816
817        // Write out any hidden stuff
818        s.defaultWriteObject();
819
820        // Write out all elements in the proper order.
821        for (Node<E> p = first(); p != null; p = succ(p)) {
822            final E item;
823            if ((item = p.item) != null)
824                s.writeObject(item);
825        }
826
827        // Use trailing null as sentinel
828        s.writeObject(null);
829    }
830
831    /**
832     * Reconstitutes this queue from a stream (that is, deserializes it).
833     * @param s the stream
834     * @throws ClassNotFoundException if the class of a serialized object
835     *         could not be found
836     * @throws java.io.IOException if an I/O error occurs
837     */
838    private void readObject(java.io.ObjectInputStream s)
839        throws java.io.IOException, ClassNotFoundException {
840        s.defaultReadObject();
841
842        // Read in elements until trailing null sentinel found
843        Node<E> h = null, t = null;
844        for (Object item; (item = s.readObject()) != null; ) {
845            @SuppressWarnings("unchecked")
846            Node<E> newNode = new Node<E>((E) item);
847            if (h == null)
848                h = t = newNode;
849            else
850                t.appendRelaxed(t = newNode);
851        }
852        if (h == null)
853            h = t = new Node<E>();
854        head = h;
855        tail = t;
856    }
857
858    /** A customized variant of Spliterators.IteratorSpliterator */
859    final class CLQSpliterator implements Spliterator<E> {
860        static final int MAX_BATCH = 1 << 25;  // max batch array size;
861        Node<E> current;    // current node; null until initialized
862        int batch;          // batch size for splits
863        boolean exhausted;  // true when no more nodes
864
865        public Spliterator<E> trySplit() {
866            Node<E> p, q;
867            if ((p = current()) == null || (q = p.next) == null)
868                return null;
869            int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
870            Object[] a = null;
871            do {
872                final E e;
873                if ((e = p.item) != null) {
874                    if (a == null)
875                        a = new Object[n];
876                    a[i++] = e;
877                }
878                if (p == (p = q))
879                    p = first();
880            } while (p != null && (q = p.next) != null && i < n);
881            setCurrent(p);
882            return (i == 0) ? null :
883                Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
884                                                   Spliterator.NONNULL |
885                                                   Spliterator.CONCURRENT));
886        }
887
888        public void forEachRemaining(Consumer<? super E> action) {
889            Objects.requireNonNull(action);
890            final Node<E> p;
891            if ((p = current()) != null) {
892                current = null;
893                exhausted = true;
894                forEachFrom(action, p);
895            }
896        }
897
898        public boolean tryAdvance(Consumer<? super E> action) {
899            Objects.requireNonNull(action);
900            Node<E> p;
901            if ((p = current()) != null) {
902                E e;
903                do {
904                    e = p.item;
905                    if (p == (p = p.next))
906                        p = first();
907                } while (e == null && p != null);
908                setCurrent(p);
909                if (e != null) {
910                    action.accept(e);
911                    return true;
912                }
913            }
914            return false;
915        }
916
917        private void setCurrent(Node<E> p) {
918            if ((current = p) == null)
919                exhausted = true;
920        }
921
922        private Node<E> current() {
923            Node<E> p;
924            if ((p = current) == null && !exhausted)
925                setCurrent(p = first());
926            return p;
927        }
928
929        public long estimateSize() { return Long.MAX_VALUE; }
930
931        public int characteristics() {
932            return (Spliterator.ORDERED |
933                    Spliterator.NONNULL |
934                    Spliterator.CONCURRENT);
935        }
936    }
937
938    /**
939     * Returns a {@link Spliterator} over the elements in this queue.
940     *
941     * <p>The returned spliterator is
942     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
943     *
944     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
945     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
946     *
947     * @implNote
948     * The {@code Spliterator} implements {@code trySplit} to permit limited
949     * parallelism.
950     *
951     * @return a {@code Spliterator} over the elements in this queue
952     * @since 1.8
953     */
954    @Override
955    public Spliterator<E> spliterator() {
956        return new CLQSpliterator();
957    }
958
959    /**
960     * @throws NullPointerException {@inheritDoc}
961     */
962    public boolean removeIf(Predicate<? super E> filter) {
963        Objects.requireNonNull(filter);
964        return bulkRemove(filter);
965    }
966
967    /**
968     * @throws NullPointerException {@inheritDoc}
969     */
970    public boolean removeAll(Collection<?> c) {
971        Objects.requireNonNull(c);
972        return bulkRemove(e -> c.contains(e));
973    }
974
975    /**
976     * @throws NullPointerException {@inheritDoc}
977     */
978    public boolean retainAll(Collection<?> c) {
979        Objects.requireNonNull(c);
980        return bulkRemove(e -> !c.contains(e));
981    }
982
983    public void clear() {
984        bulkRemove(e -> true);
985    }
986
987    /**
988     * Tolerate this many consecutive dead nodes before CAS-collapsing.
989     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
990     */
991    private static final int MAX_HOPS = 8;
992
993    /** Implementation of bulk remove methods. */
994    private boolean bulkRemove(Predicate<? super E> filter) {
995        boolean removed = false;
996        restartFromHead: for (;;) {
997            int hops = MAX_HOPS;
998            // c will be CASed to collapse intervening dead nodes between
999            // pred (or head if null) and p.
1000            for (Node<E> p = head, c = p, pred = null, q; p != null; p = q) {
1001                q = p.next;
1002                final E item; boolean pAlive;
1003                if (pAlive = ((item = p.item) != null)) {
1004                    if (filter.test(item)) {
1005                        if (p.casItem(item, null))
1006                            removed = true;
1007                        pAlive = false;
1008                    }
1009                }
1010                if (pAlive || q == null || --hops == 0) {
1011                    // p might already be self-linked here, but if so:
1012                    // - CASing head will surely fail
1013                    // - CASing pred's next will be useless but harmless.
1014                    if ((c != p && !tryCasSuccessor(pred, c, c = p))
1015                        || pAlive) {
1016                        // if CAS failed or alive, abandon old pred
1017                        hops = MAX_HOPS;
1018                        pred = p;
1019                        c = q;
1020                    }
1021                } else if (p == q)
1022                    continue restartFromHead;
1023            }
1024            return removed;
1025        }
1026    }
1027
1028    /**
1029     * Runs action on each element found during a traversal starting at p.
1030     * If p is null, the action is not run.
1031     */
1032    void forEachFrom(Consumer<? super E> action, Node<E> p) {
1033        for (Node<E> pred = null; p != null; ) {
1034            Node<E> q = p.next;
1035            final E item;
1036            if ((item = p.item) != null) {
1037                action.accept(item);
1038                pred = p; p = q; continue;
1039            }
1040            for (Node<E> c = p;; q = p.next) {
1041                if (q == null || q.item != null) {
1042                    pred = skipDeadNodes(pred, c, p, q); p = q; break;
1043                }
1044                if (p == (p = q)) { pred = null; p = head; break; }
1045            }
1046        }
1047    }
1048
1049    /**
1050     * @throws NullPointerException {@inheritDoc}
1051     */
1052    public void forEach(Consumer<? super E> action) {
1053        Objects.requireNonNull(action);
1054        forEachFrom(action, head);
1055    }
1056
1057    // VarHandle mechanics
1058    private static final VarHandle HEAD;
1059    private static final VarHandle TAIL;
1060    static final VarHandle ITEM;
1061    static final VarHandle NEXT;
1062    static {
1063        try {
1064            MethodHandles.Lookup l = MethodHandles.lookup();
1065            HEAD = l.findVarHandle(ConcurrentLinkedQueue.class, "head",
1066                                   Node.class);
1067            TAIL = l.findVarHandle(ConcurrentLinkedQueue.class, "tail",
1068                                   Node.class);
1069            ITEM = l.findVarHandle(Node.class, "item", Object.class);
1070            NEXT = l.findVarHandle(Node.class, "next", Node.class);
1071        } catch (ReflectiveOperationException e) {
1072            throw new Error(e);
1073        }
1074    }
1075}
1076