1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28import java.util.function.Consumer;
29import java.util.function.Predicate;
30import java.util.function.UnaryOperator;
31
32/**
33 * Resizable-array implementation of the {@code List} interface.  Implements
34 * all optional list operations, and permits all elements, including
35 * {@code null}.  In addition to implementing the {@code List} interface,
36 * this class provides methods to manipulate the size of the array that is
37 * used internally to store the list.  (This class is roughly equivalent to
38 * {@code Vector}, except that it is unsynchronized.)
39 *
40 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 * {@code iterator}, and {@code listIterator} operations run in constant
42 * time.  The {@code add} operation runs in <i>amortized constant time</i>,
43 * that is, adding n elements requires O(n) time.  All of the other operations
44 * run in linear time (roughly speaking).  The constant factor is low compared
45 * to that for the {@code LinkedList} implementation.
46 *
47 * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
48 * the size of the array used to store the elements in the list.  It is always
49 * at least as large as the list size.  As elements are added to an ArrayList,
50 * its capacity grows automatically.  The details of the growth policy are not
51 * specified beyond the fact that adding an element has constant amortized
52 * time cost.
53 *
54 * <p>An application can increase the capacity of an {@code ArrayList} instance
55 * before adding a large number of elements using the {@code ensureCapacity}
56 * operation.  This may reduce the amount of incremental reallocation.
57 *
58 * <p><strong>Note that this implementation is not synchronized.</strong>
59 * If multiple threads access an {@code ArrayList} instance concurrently,
60 * and at least one of the threads modifies the list structurally, it
61 * <i>must</i> be synchronized externally.  (A structural modification is
62 * any operation that adds or deletes one or more elements, or explicitly
63 * resizes the backing array; merely setting the value of an element is not
64 * a structural modification.)  This is typically accomplished by
65 * synchronizing on some object that naturally encapsulates the list.
66 *
67 * If no such object exists, the list should be "wrapped" using the
68 * {@link Collections#synchronizedList Collections.synchronizedList}
69 * method.  This is best done at creation time, to prevent accidental
70 * unsynchronized access to the list:<pre>
71 *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
72 *
73 * <p id="fail-fast">
74 * The iterators returned by this class's {@link #iterator() iterator} and
75 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 * if the list is structurally modified at any time after the iterator is
77 * created, in any way except through the iterator's own
78 * {@link ListIterator#remove() remove} or
79 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 * {@link ConcurrentModificationException}.  Thus, in the face of
81 * concurrent modification, the iterator fails quickly and cleanly, rather
82 * than risking arbitrary, non-deterministic behavior at an undetermined
83 * time in the future.
84 *
85 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 * as it is, generally speaking, impossible to make any hard guarantees in the
87 * presence of unsynchronized concurrent modification.  Fail-fast iterators
88 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 * Therefore, it would be wrong to write a program that depended on this
90 * exception for its correctness:  <i>the fail-fast behavior of iterators
91 * should be used only to detect bugs.</i>
92 *
93 * <p>This class is a member of the
94 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
95 * Java Collections Framework</a>.
96 *
97 * @param <E> the type of elements in this list
98 *
99 * @author  Josh Bloch
100 * @author  Neal Gafter
101 * @see     Collection
102 * @see     List
103 * @see     LinkedList
104 * @see     Vector
105 * @since   1.2
106 */
107public class ArrayList<E> extends AbstractList<E>
108        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109{
110    private static final long serialVersionUID = 8683452581122892189L;
111
112    /**
113     * Default initial capacity.
114     */
115    private static final int DEFAULT_CAPACITY = 10;
116
117    /**
118     * Shared empty array instance used for empty instances.
119     */
120    private static final Object[] EMPTY_ELEMENTDATA = {};
121
122    /**
123     * Shared empty array instance used for default sized empty instances. We
124     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125     * first element is added.
126     */
127    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128
129    /**
130     * The array buffer into which the elements of the ArrayList are stored.
131     * The capacity of the ArrayList is the length of this array buffer. Any
132     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134     */
135    transient Object[] elementData; // non-private to simplify nested class access
136
137    /**
138     * The size of the ArrayList (the number of elements it contains).
139     *
140     * @serial
141     */
142    private int size;
143
144    /**
145     * Constructs an empty list with the specified initial capacity.
146     *
147     * @param  initialCapacity  the initial capacity of the list
148     * @throws IllegalArgumentException if the specified initial capacity
149     *         is negative
150     */
151    public ArrayList(int initialCapacity) {
152        if (initialCapacity > 0) {
153            this.elementData = new Object[initialCapacity];
154        } else if (initialCapacity == 0) {
155            this.elementData = EMPTY_ELEMENTDATA;
156        } else {
157            throw new IllegalArgumentException("Illegal Capacity: "+
158                                               initialCapacity);
159        }
160    }
161
162    /**
163     * Constructs an empty list with an initial capacity of ten.
164     */
165    public ArrayList() {
166        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167    }
168
169    /**
170     * Constructs a list containing the elements of the specified
171     * collection, in the order they are returned by the collection's
172     * iterator.
173     *
174     * @param c the collection whose elements are to be placed into this list
175     * @throws NullPointerException if the specified collection is null
176     */
177    public ArrayList(Collection<? extends E> c) {
178        elementData = c.toArray();
179        if ((size = elementData.length) != 0) {
180            // defend against c.toArray (incorrectly) not returning Object[]
181            // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182            if (elementData.getClass() != Object[].class)
183                elementData = Arrays.copyOf(elementData, size, Object[].class);
184        } else {
185            // replace with empty array.
186            this.elementData = EMPTY_ELEMENTDATA;
187        }
188    }
189
190    /**
191     * Trims the capacity of this {@code ArrayList} instance to be the
192     * list's current size.  An application can use this operation to minimize
193     * the storage of an {@code ArrayList} instance.
194     */
195    public void trimToSize() {
196        modCount++;
197        if (size < elementData.length) {
198            elementData = (size == 0)
199              ? EMPTY_ELEMENTDATA
200              : Arrays.copyOf(elementData, size);
201        }
202    }
203
204    /**
205     * Increases the capacity of this {@code ArrayList} instance, if
206     * necessary, to ensure that it can hold at least the number of elements
207     * specified by the minimum capacity argument.
208     *
209     * @param minCapacity the desired minimum capacity
210     */
211    public void ensureCapacity(int minCapacity) {
212        if (minCapacity > elementData.length
213            && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214                 && minCapacity <= DEFAULT_CAPACITY)) {
215            modCount++;
216            grow(minCapacity);
217        }
218    }
219
220    /**
221     * The maximum size of array to allocate (unless necessary).
222     * Some VMs reserve some header words in an array.
223     * Attempts to allocate larger arrays may result in
224     * OutOfMemoryError: Requested array size exceeds VM limit
225     */
226    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227
228    /**
229     * Increases the capacity to ensure that it can hold at least the
230     * number of elements specified by the minimum capacity argument.
231     *
232     * @param minCapacity the desired minimum capacity
233     * @throws OutOfMemoryError if minCapacity is less than zero
234     */
235    private Object[] grow(int minCapacity) {
236        return elementData = Arrays.copyOf(elementData,
237                                           newCapacity(minCapacity));
238    }
239
240    private Object[] grow() {
241        return grow(size + 1);
242    }
243
244    /**
245     * Returns a capacity at least as large as the given minimum capacity.
246     * Returns the current capacity increased by 50% if that suffices.
247     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249     *
250     * @param minCapacity the desired minimum capacity
251     * @throws OutOfMemoryError if minCapacity is less than zero
252     */
253    private int newCapacity(int minCapacity) {
254        // overflow-conscious code
255        int oldCapacity = elementData.length;
256        int newCapacity = oldCapacity + (oldCapacity >> 1);
257        if (newCapacity - minCapacity <= 0) {
258            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259                return Math.max(DEFAULT_CAPACITY, minCapacity);
260            if (minCapacity < 0) // overflow
261                throw new OutOfMemoryError();
262            return minCapacity;
263        }
264        return (newCapacity - MAX_ARRAY_SIZE <= 0)
265            ? newCapacity
266            : hugeCapacity(minCapacity);
267    }
268
269    private static int hugeCapacity(int minCapacity) {
270        if (minCapacity < 0) // overflow
271            throw new OutOfMemoryError();
272        return (minCapacity > MAX_ARRAY_SIZE)
273            ? Integer.MAX_VALUE
274            : MAX_ARRAY_SIZE;
275    }
276
277    /**
278     * Returns the number of elements in this list.
279     *
280     * @return the number of elements in this list
281     */
282    public int size() {
283        return size;
284    }
285
286    /**
287     * Returns {@code true} if this list contains no elements.
288     *
289     * @return {@code true} if this list contains no elements
290     */
291    public boolean isEmpty() {
292        return size == 0;
293    }
294
295    /**
296     * Returns {@code true} if this list contains the specified element.
297     * More formally, returns {@code true} if and only if this list contains
298     * at least one element {@code e} such that
299     * {@code Objects.equals(o, e)}.
300     *
301     * @param o element whose presence in this list is to be tested
302     * @return {@code true} if this list contains the specified element
303     */
304    public boolean contains(Object o) {
305        return indexOf(o) >= 0;
306    }
307
308    /**
309     * Returns the index of the first occurrence of the specified element
310     * in this list, or -1 if this list does not contain the element.
311     * More formally, returns the lowest index {@code i} such that
312     * {@code Objects.equals(o, get(i))},
313     * or -1 if there is no such index.
314     */
315    public int indexOf(Object o) {
316        if (o == null) {
317            for (int i = 0; i < size; i++)
318                if (elementData[i]==null)
319                    return i;
320        } else {
321            for (int i = 0; i < size; i++)
322                if (o.equals(elementData[i]))
323                    return i;
324        }
325        return -1;
326    }
327
328    /**
329     * Returns the index of the last occurrence of the specified element
330     * in this list, or -1 if this list does not contain the element.
331     * More formally, returns the highest index {@code i} such that
332     * {@code Objects.equals(o, get(i))},
333     * or -1 if there is no such index.
334     */
335    public int lastIndexOf(Object o) {
336        if (o == null) {
337            for (int i = size-1; i >= 0; i--)
338                if (elementData[i]==null)
339                    return i;
340        } else {
341            for (int i = size-1; i >= 0; i--)
342                if (o.equals(elementData[i]))
343                    return i;
344        }
345        return -1;
346    }
347
348    /**
349     * Returns a shallow copy of this {@code ArrayList} instance.  (The
350     * elements themselves are not copied.)
351     *
352     * @return a clone of this {@code ArrayList} instance
353     */
354    public Object clone() {
355        try {
356            ArrayList<?> v = (ArrayList<?>) super.clone();
357            v.elementData = Arrays.copyOf(elementData, size);
358            v.modCount = 0;
359            return v;
360        } catch (CloneNotSupportedException e) {
361            // this shouldn't happen, since we are Cloneable
362            throw new InternalError(e);
363        }
364    }
365
366    /**
367     * Returns an array containing all of the elements in this list
368     * in proper sequence (from first to last element).
369     *
370     * <p>The returned array will be "safe" in that no references to it are
371     * maintained by this list.  (In other words, this method must allocate
372     * a new array).  The caller is thus free to modify the returned array.
373     *
374     * <p>This method acts as bridge between array-based and collection-based
375     * APIs.
376     *
377     * @return an array containing all of the elements in this list in
378     *         proper sequence
379     */
380    public Object[] toArray() {
381        return Arrays.copyOf(elementData, size);
382    }
383
384    /**
385     * Returns an array containing all of the elements in this list in proper
386     * sequence (from first to last element); the runtime type of the returned
387     * array is that of the specified array.  If the list fits in the
388     * specified array, it is returned therein.  Otherwise, a new array is
389     * allocated with the runtime type of the specified array and the size of
390     * this list.
391     *
392     * <p>If the list fits in the specified array with room to spare
393     * (i.e., the array has more elements than the list), the element in
394     * the array immediately following the end of the collection is set to
395     * {@code null}.  (This is useful in determining the length of the
396     * list <i>only</i> if the caller knows that the list does not contain
397     * any null elements.)
398     *
399     * @param a the array into which the elements of the list are to
400     *          be stored, if it is big enough; otherwise, a new array of the
401     *          same runtime type is allocated for this purpose.
402     * @return an array containing the elements of the list
403     * @throws ArrayStoreException if the runtime type of the specified array
404     *         is not a supertype of the runtime type of every element in
405     *         this list
406     * @throws NullPointerException if the specified array is null
407     */
408    @SuppressWarnings("unchecked")
409    public <T> T[] toArray(T[] a) {
410        if (a.length < size)
411            // Make a new array of a's runtime type, but my contents:
412            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413        System.arraycopy(elementData, 0, a, 0, size);
414        if (a.length > size)
415            a[size] = null;
416        return a;
417    }
418
419    // Positional Access Operations
420
421    @SuppressWarnings("unchecked")
422    E elementData(int index) {
423        return (E) elementData[index];
424    }
425
426    @SuppressWarnings("unchecked")
427    static <E> E elementAt(Object[] es, int index) {
428        return (E) es[index];
429    }
430
431    /**
432     * Returns the element at the specified position in this list.
433     *
434     * @param  index index of the element to return
435     * @return the element at the specified position in this list
436     * @throws IndexOutOfBoundsException {@inheritDoc}
437     */
438    public E get(int index) {
439        Objects.checkIndex(index, size);
440        return elementData(index);
441    }
442
443    /**
444     * Replaces the element at the specified position in this list with
445     * the specified element.
446     *
447     * @param index index of the element to replace
448     * @param element element to be stored at the specified position
449     * @return the element previously at the specified position
450     * @throws IndexOutOfBoundsException {@inheritDoc}
451     */
452    public E set(int index, E element) {
453        Objects.checkIndex(index, size);
454        E oldValue = elementData(index);
455        elementData[index] = element;
456        return oldValue;
457    }
458
459    /**
460     * This helper method split out from add(E) to keep method
461     * bytecode size under 35 (the -XX:MaxInlineSize default value),
462     * which helps when add(E) is called in a C1-compiled loop.
463     */
464    private void add(E e, Object[] elementData, int s) {
465        if (s == elementData.length)
466            elementData = grow();
467        elementData[s] = e;
468        size = s + 1;
469    }
470
471    /**
472     * Appends the specified element to the end of this list.
473     *
474     * @param e element to be appended to this list
475     * @return {@code true} (as specified by {@link Collection#add})
476     */
477    public boolean add(E e) {
478        modCount++;
479        add(e, elementData, size);
480        return true;
481    }
482
483    /**
484     * Inserts the specified element at the specified position in this
485     * list. Shifts the element currently at that position (if any) and
486     * any subsequent elements to the right (adds one to their indices).
487     *
488     * @param index index at which the specified element is to be inserted
489     * @param element element to be inserted
490     * @throws IndexOutOfBoundsException {@inheritDoc}
491     */
492    public void add(int index, E element) {
493        rangeCheckForAdd(index);
494        modCount++;
495        final int s;
496        Object[] elementData;
497        if ((s = size) == (elementData = this.elementData).length)
498            elementData = grow();
499        System.arraycopy(elementData, index,
500                         elementData, index + 1,
501                         s - index);
502        elementData[index] = element;
503        size = s + 1;
504    }
505
506    /**
507     * Removes the element at the specified position in this list.
508     * Shifts any subsequent elements to the left (subtracts one from their
509     * indices).
510     *
511     * @param index the index of the element to be removed
512     * @return the element that was removed from the list
513     * @throws IndexOutOfBoundsException {@inheritDoc}
514     */
515    public E remove(int index) {
516        Objects.checkIndex(index, size);
517        final Object[] es = elementData;
518
519        @SuppressWarnings("unchecked") E oldValue = (E) es[index];
520        fastRemove(es, index);
521
522        return oldValue;
523    }
524
525    /**
526     * Removes the first occurrence of the specified element from this list,
527     * if it is present.  If the list does not contain the element, it is
528     * unchanged.  More formally, removes the element with the lowest index
529     * {@code i} such that
530     * {@code Objects.equals(o, get(i))}
531     * (if such an element exists).  Returns {@code true} if this list
532     * contained the specified element (or equivalently, if this list
533     * changed as a result of the call).
534     *
535     * @param o element to be removed from this list, if present
536     * @return {@code true} if this list contained the specified element
537     */
538    public boolean remove(Object o) {
539        final Object[] es = elementData;
540        final int size = this.size;
541        int i = 0;
542        found: {
543            if (o == null) {
544                for (; i < size; i++)
545                    if (es[i] == null)
546                        break found;
547            } else {
548                for (; i < size; i++)
549                    if (o.equals(es[i]))
550                        break found;
551            }
552            return false;
553        }
554        fastRemove(es, i);
555        return true;
556    }
557
558    /**
559     * Private remove method that skips bounds checking and does not
560     * return the value removed.
561     */
562    private void fastRemove(Object[] es, int i) {
563        modCount++;
564        final int newSize;
565        if ((newSize = size - 1) > i)
566            System.arraycopy(es, i + 1, es, i, newSize - i);
567        es[size = newSize] = null;
568    }
569
570    /**
571     * Removes all of the elements from this list.  The list will
572     * be empty after this call returns.
573     */
574    public void clear() {
575        modCount++;
576        final Object[] es = elementData;
577        for (int to = size, i = size = 0; i < to; i++)
578            es[i] = null;
579    }
580
581    /**
582     * Appends all of the elements in the specified collection to the end of
583     * this list, in the order that they are returned by the
584     * specified collection's Iterator.  The behavior of this operation is
585     * undefined if the specified collection is modified while the operation
586     * is in progress.  (This implies that the behavior of this call is
587     * undefined if the specified collection is this list, and this
588     * list is nonempty.)
589     *
590     * @param c collection containing elements to be added to this list
591     * @return {@code true} if this list changed as a result of the call
592     * @throws NullPointerException if the specified collection is null
593     */
594    public boolean addAll(Collection<? extends E> c) {
595        Object[] a = c.toArray();
596        modCount++;
597        int numNew = a.length;
598        if (numNew == 0)
599            return false;
600        Object[] elementData;
601        final int s;
602        if (numNew > (elementData = this.elementData).length - (s = size))
603            elementData = grow(s + numNew);
604        System.arraycopy(a, 0, elementData, s, numNew);
605        size = s + numNew;
606        return true;
607    }
608
609    /**
610     * Inserts all of the elements in the specified collection into this
611     * list, starting at the specified position.  Shifts the element
612     * currently at that position (if any) and any subsequent elements to
613     * the right (increases their indices).  The new elements will appear
614     * in the list in the order that they are returned by the
615     * specified collection's iterator.
616     *
617     * @param index index at which to insert the first element from the
618     *              specified collection
619     * @param c collection containing elements to be added to this list
620     * @return {@code true} if this list changed as a result of the call
621     * @throws IndexOutOfBoundsException {@inheritDoc}
622     * @throws NullPointerException if the specified collection is null
623     */
624    public boolean addAll(int index, Collection<? extends E> c) {
625        rangeCheckForAdd(index);
626
627        Object[] a = c.toArray();
628        modCount++;
629        int numNew = a.length;
630        if (numNew == 0)
631            return false;
632        Object[] elementData;
633        final int s;
634        if (numNew > (elementData = this.elementData).length - (s = size))
635            elementData = grow(s + numNew);
636
637        int numMoved = s - index;
638        if (numMoved > 0)
639            System.arraycopy(elementData, index,
640                             elementData, index + numNew,
641                             numMoved);
642        System.arraycopy(a, 0, elementData, index, numNew);
643        size = s + numNew;
644        return true;
645    }
646
647    /**
648     * Removes from this list all of the elements whose index is between
649     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
650     * Shifts any succeeding elements to the left (reduces their index).
651     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
652     * (If {@code toIndex==fromIndex}, this operation has no effect.)
653     *
654     * @throws IndexOutOfBoundsException if {@code fromIndex} or
655     *         {@code toIndex} is out of range
656     *         ({@code fromIndex < 0 ||
657     *          toIndex > size() ||
658     *          toIndex < fromIndex})
659     */
660    protected void removeRange(int fromIndex, int toIndex) {
661        if (fromIndex > toIndex) {
662            throw new IndexOutOfBoundsException(
663                    outOfBoundsMsg(fromIndex, toIndex));
664        }
665        modCount++;
666        shiftTailOverGap(elementData, fromIndex, toIndex);
667    }
668
669    /** Erases the gap from lo to hi, by sliding down following elements. */
670    private void shiftTailOverGap(Object[] es, int lo, int hi) {
671        System.arraycopy(es, hi, es, lo, size - hi);
672        for (int to = size, i = (size -= hi - lo); i < to; i++)
673            es[i] = null;
674    }
675
676    /**
677     * A version of rangeCheck used by add and addAll.
678     */
679    private void rangeCheckForAdd(int index) {
680        if (index > size || index < 0)
681            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
682    }
683
684    /**
685     * Constructs an IndexOutOfBoundsException detail message.
686     * Of the many possible refactorings of the error handling code,
687     * this "outlining" performs best with both server and client VMs.
688     */
689    private String outOfBoundsMsg(int index) {
690        return "Index: "+index+", Size: "+size;
691    }
692
693    /**
694     * A version used in checking (fromIndex > toIndex) condition
695     */
696    private static String outOfBoundsMsg(int fromIndex, int toIndex) {
697        return "From Index: " + fromIndex + " > To Index: " + toIndex;
698    }
699
700    /**
701     * Removes from this list all of its elements that are contained in the
702     * specified collection.
703     *
704     * @param c collection containing elements to be removed from this list
705     * @return {@code true} if this list changed as a result of the call
706     * @throws ClassCastException if the class of an element of this list
707     *         is incompatible with the specified collection
708     * (<a href="Collection.html#optional-restrictions">optional</a>)
709     * @throws NullPointerException if this list contains a null element and the
710     *         specified collection does not permit null elements
711     * (<a href="Collection.html#optional-restrictions">optional</a>),
712     *         or if the specified collection is null
713     * @see Collection#contains(Object)
714     */
715    public boolean removeAll(Collection<?> c) {
716        return batchRemove(c, false, 0, size);
717    }
718
719    /**
720     * Retains only the elements in this list that are contained in the
721     * specified collection.  In other words, removes from this list all
722     * of its elements that are not contained in the specified collection.
723     *
724     * @param c collection containing elements to be retained in this list
725     * @return {@code true} if this list changed as a result of the call
726     * @throws ClassCastException if the class of an element of this list
727     *         is incompatible with the specified collection
728     * (<a href="Collection.html#optional-restrictions">optional</a>)
729     * @throws NullPointerException if this list contains a null element and the
730     *         specified collection does not permit null elements
731     * (<a href="Collection.html#optional-restrictions">optional</a>),
732     *         or if the specified collection is null
733     * @see Collection#contains(Object)
734     */
735    public boolean retainAll(Collection<?> c) {
736        return batchRemove(c, true, 0, size);
737    }
738
739    boolean batchRemove(Collection<?> c, boolean complement,
740                        final int from, final int end) {
741        Objects.requireNonNull(c);
742        final Object[] es = elementData;
743        int r;
744        // Optimize for initial run of survivors
745        for (r = from;; r++) {
746            if (r == end)
747                return false;
748            if (c.contains(es[r]) != complement)
749                break;
750        }
751        int w = r++;
752        try {
753            for (Object e; r < end; r++)
754                if (c.contains(e = es[r]) == complement)
755                    es[w++] = e;
756        } catch (Throwable ex) {
757            // Preserve behavioral compatibility with AbstractCollection,
758            // even if c.contains() throws.
759            System.arraycopy(es, r, es, w, end - r);
760            w += end - r;
761            throw ex;
762        } finally {
763            modCount += end - w;
764            shiftTailOverGap(es, w, end);
765        }
766        return true;
767    }
768
769    /**
770     * Saves the state of the {@code ArrayList} instance to a stream
771     * (that is, serializes it).
772     *
773     * @param s the stream
774     * @throws java.io.IOException if an I/O error occurs
775     * @serialData The length of the array backing the {@code ArrayList}
776     *             instance is emitted (int), followed by all of its elements
777     *             (each an {@code Object}) in the proper order.
778     */
779    private void writeObject(java.io.ObjectOutputStream s)
780        throws java.io.IOException {
781        // Write out element count, and any hidden stuff
782        int expectedModCount = modCount;
783        s.defaultWriteObject();
784
785        // Write out size as capacity for behavioral compatibility with clone()
786        s.writeInt(size);
787
788        // Write out all elements in the proper order.
789        for (int i=0; i<size; i++) {
790            s.writeObject(elementData[i]);
791        }
792
793        if (modCount != expectedModCount) {
794            throw new ConcurrentModificationException();
795        }
796    }
797
798    /**
799     * Reconstitutes the {@code ArrayList} instance from a stream (that is,
800     * deserializes it).
801     * @param s the stream
802     * @throws ClassNotFoundException if the class of a serialized object
803     *         could not be found
804     * @throws java.io.IOException if an I/O error occurs
805     */
806    private void readObject(java.io.ObjectInputStream s)
807        throws java.io.IOException, ClassNotFoundException {
808
809        // Read in size, and any hidden stuff
810        s.defaultReadObject();
811
812        // Read in capacity
813        s.readInt(); // ignored
814
815        if (size > 0) {
816            // like clone(), allocate array based upon size not capacity
817            Object[] elements = new Object[size];
818
819            // Read in all elements in the proper order.
820            for (int i = 0; i < size; i++) {
821                elements[i] = s.readObject();
822            }
823
824            elementData = elements;
825        } else if (size == 0) {
826            elementData = EMPTY_ELEMENTDATA;
827        } else {
828            throw new java.io.InvalidObjectException("Invalid size: " + size);
829        }
830    }
831
832    /**
833     * Returns a list iterator over the elements in this list (in proper
834     * sequence), starting at the specified position in the list.
835     * The specified index indicates the first element that would be
836     * returned by an initial call to {@link ListIterator#next next}.
837     * An initial call to {@link ListIterator#previous previous} would
838     * return the element with the specified index minus one.
839     *
840     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
841     *
842     * @throws IndexOutOfBoundsException {@inheritDoc}
843     */
844    public ListIterator<E> listIterator(int index) {
845        rangeCheckForAdd(index);
846        return new ListItr(index);
847    }
848
849    /**
850     * Returns a list iterator over the elements in this list (in proper
851     * sequence).
852     *
853     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
854     *
855     * @see #listIterator(int)
856     */
857    public ListIterator<E> listIterator() {
858        return new ListItr(0);
859    }
860
861    /**
862     * Returns an iterator over the elements in this list in proper sequence.
863     *
864     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
865     *
866     * @return an iterator over the elements in this list in proper sequence
867     */
868    public Iterator<E> iterator() {
869        return new Itr();
870    }
871
872    /**
873     * An optimized version of AbstractList.Itr
874     */
875    private class Itr implements Iterator<E> {
876        int cursor;       // index of next element to return
877        int lastRet = -1; // index of last element returned; -1 if no such
878        int expectedModCount = modCount;
879
880        // prevent creating a synthetic constructor
881        Itr() {}
882
883        public boolean hasNext() {
884            return cursor != size;
885        }
886
887        @SuppressWarnings("unchecked")
888        public E next() {
889            checkForComodification();
890            int i = cursor;
891            if (i >= size)
892                throw new NoSuchElementException();
893            Object[] elementData = ArrayList.this.elementData;
894            if (i >= elementData.length)
895                throw new ConcurrentModificationException();
896            cursor = i + 1;
897            return (E) elementData[lastRet = i];
898        }
899
900        public void remove() {
901            if (lastRet < 0)
902                throw new IllegalStateException();
903            checkForComodification();
904
905            try {
906                ArrayList.this.remove(lastRet);
907                cursor = lastRet;
908                lastRet = -1;
909                expectedModCount = modCount;
910            } catch (IndexOutOfBoundsException ex) {
911                throw new ConcurrentModificationException();
912            }
913        }
914
915        @Override
916        public void forEachRemaining(Consumer<? super E> action) {
917            Objects.requireNonNull(action);
918            final int size = ArrayList.this.size;
919            int i = cursor;
920            if (i < size) {
921                final Object[] es = elementData;
922                if (i >= es.length)
923                    throw new ConcurrentModificationException();
924                for (; i < size && modCount == expectedModCount; i++)
925                    action.accept(elementAt(es, i));
926                // update once at end to reduce heap write traffic
927                cursor = i;
928                lastRet = i - 1;
929                checkForComodification();
930            }
931        }
932
933        final void checkForComodification() {
934            if (modCount != expectedModCount)
935                throw new ConcurrentModificationException();
936        }
937    }
938
939    /**
940     * An optimized version of AbstractList.ListItr
941     */
942    private class ListItr extends Itr implements ListIterator<E> {
943        ListItr(int index) {
944            super();
945            cursor = index;
946        }
947
948        public boolean hasPrevious() {
949            return cursor != 0;
950        }
951
952        public int nextIndex() {
953            return cursor;
954        }
955
956        public int previousIndex() {
957            return cursor - 1;
958        }
959
960        @SuppressWarnings("unchecked")
961        public E previous() {
962            checkForComodification();
963            int i = cursor - 1;
964            if (i < 0)
965                throw new NoSuchElementException();
966            Object[] elementData = ArrayList.this.elementData;
967            if (i >= elementData.length)
968                throw new ConcurrentModificationException();
969            cursor = i;
970            return (E) elementData[lastRet = i];
971        }
972
973        public void set(E e) {
974            if (lastRet < 0)
975                throw new IllegalStateException();
976            checkForComodification();
977
978            try {
979                ArrayList.this.set(lastRet, e);
980            } catch (IndexOutOfBoundsException ex) {
981                throw new ConcurrentModificationException();
982            }
983        }
984
985        public void add(E e) {
986            checkForComodification();
987
988            try {
989                int i = cursor;
990                ArrayList.this.add(i, e);
991                cursor = i + 1;
992                lastRet = -1;
993                expectedModCount = modCount;
994            } catch (IndexOutOfBoundsException ex) {
995                throw new ConcurrentModificationException();
996            }
997        }
998    }
999
1000    /**
1001     * Returns a view of the portion of this list between the specified
1002     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1003     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1004     * empty.)  The returned list is backed by this list, so non-structural
1005     * changes in the returned list are reflected in this list, and vice-versa.
1006     * The returned list supports all of the optional list operations.
1007     *
1008     * <p>This method eliminates the need for explicit range operations (of
1009     * the sort that commonly exist for arrays).  Any operation that expects
1010     * a list can be used as a range operation by passing a subList view
1011     * instead of a whole list.  For example, the following idiom
1012     * removes a range of elements from a list:
1013     * <pre>
1014     *      list.subList(from, to).clear();
1015     * </pre>
1016     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1017     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1018     * {@link Collections} class can be applied to a subList.
1019     *
1020     * <p>The semantics of the list returned by this method become undefined if
1021     * the backing list (i.e., this list) is <i>structurally modified</i> in
1022     * any way other than via the returned list.  (Structural modifications are
1023     * those that change the size of this list, or otherwise perturb it in such
1024     * a fashion that iterations in progress may yield incorrect results.)
1025     *
1026     * @throws IndexOutOfBoundsException {@inheritDoc}
1027     * @throws IllegalArgumentException {@inheritDoc}
1028     */
1029    public List<E> subList(int fromIndex, int toIndex) {
1030        subListRangeCheck(fromIndex, toIndex, size);
1031        return new SubList<>(this, fromIndex, toIndex);
1032    }
1033
1034    private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1035        private final ArrayList<E> root;
1036        private final SubList<E> parent;
1037        private final int offset;
1038        private int size;
1039
1040        /**
1041         * Constructs a sublist of an arbitrary ArrayList.
1042         */
1043        public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1044            this.root = root;
1045            this.parent = null;
1046            this.offset = fromIndex;
1047            this.size = toIndex - fromIndex;
1048            this.modCount = root.modCount;
1049        }
1050
1051        /**
1052         * Constructs a sublist of another SubList.
1053         */
1054        private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1055            this.root = parent.root;
1056            this.parent = parent;
1057            this.offset = parent.offset + fromIndex;
1058            this.size = toIndex - fromIndex;
1059            this.modCount = root.modCount;
1060        }
1061
1062        public E set(int index, E element) {
1063            Objects.checkIndex(index, size);
1064            checkForComodification();
1065            E oldValue = root.elementData(offset + index);
1066            root.elementData[offset + index] = element;
1067            return oldValue;
1068        }
1069
1070        public E get(int index) {
1071            Objects.checkIndex(index, size);
1072            checkForComodification();
1073            return root.elementData(offset + index);
1074        }
1075
1076        public int size() {
1077            checkForComodification();
1078            return size;
1079        }
1080
1081        public void add(int index, E element) {
1082            rangeCheckForAdd(index);
1083            checkForComodification();
1084            root.add(offset + index, element);
1085            updateSizeAndModCount(1);
1086        }
1087
1088        public E remove(int index) {
1089            Objects.checkIndex(index, size);
1090            checkForComodification();
1091            E result = root.remove(offset + index);
1092            updateSizeAndModCount(-1);
1093            return result;
1094        }
1095
1096        protected void removeRange(int fromIndex, int toIndex) {
1097            checkForComodification();
1098            root.removeRange(offset + fromIndex, offset + toIndex);
1099            updateSizeAndModCount(fromIndex - toIndex);
1100        }
1101
1102        public boolean addAll(Collection<? extends E> c) {
1103            return addAll(this.size, c);
1104        }
1105
1106        public boolean addAll(int index, Collection<? extends E> c) {
1107            rangeCheckForAdd(index);
1108            int cSize = c.size();
1109            if (cSize==0)
1110                return false;
1111            checkForComodification();
1112            root.addAll(offset + index, c);
1113            updateSizeAndModCount(cSize);
1114            return true;
1115        }
1116
1117        public boolean removeAll(Collection<?> c) {
1118            return batchRemove(c, false);
1119        }
1120
1121        public boolean retainAll(Collection<?> c) {
1122            return batchRemove(c, true);
1123        }
1124
1125        private boolean batchRemove(Collection<?> c, boolean complement) {
1126            checkForComodification();
1127            int oldSize = root.size;
1128            boolean modified =
1129                root.batchRemove(c, complement, offset, offset + size);
1130            if (modified)
1131                updateSizeAndModCount(root.size - oldSize);
1132            return modified;
1133        }
1134
1135        public boolean removeIf(Predicate<? super E> filter) {
1136            checkForComodification();
1137            int oldSize = root.size;
1138            boolean modified = root.removeIf(filter, offset, offset + size);
1139            if (modified)
1140                updateSizeAndModCount(root.size - oldSize);
1141            return modified;
1142        }
1143
1144        public Iterator<E> iterator() {
1145            return listIterator();
1146        }
1147
1148        public ListIterator<E> listIterator(int index) {
1149            checkForComodification();
1150            rangeCheckForAdd(index);
1151
1152            return new ListIterator<E>() {
1153                int cursor = index;
1154                int lastRet = -1;
1155                int expectedModCount = root.modCount;
1156
1157                public boolean hasNext() {
1158                    return cursor != SubList.this.size;
1159                }
1160
1161                @SuppressWarnings("unchecked")
1162                public E next() {
1163                    checkForComodification();
1164                    int i = cursor;
1165                    if (i >= SubList.this.size)
1166                        throw new NoSuchElementException();
1167                    Object[] elementData = root.elementData;
1168                    if (offset + i >= elementData.length)
1169                        throw new ConcurrentModificationException();
1170                    cursor = i + 1;
1171                    return (E) elementData[offset + (lastRet = i)];
1172                }
1173
1174                public boolean hasPrevious() {
1175                    return cursor != 0;
1176                }
1177
1178                @SuppressWarnings("unchecked")
1179                public E previous() {
1180                    checkForComodification();
1181                    int i = cursor - 1;
1182                    if (i < 0)
1183                        throw new NoSuchElementException();
1184                    Object[] elementData = root.elementData;
1185                    if (offset + i >= elementData.length)
1186                        throw new ConcurrentModificationException();
1187                    cursor = i;
1188                    return (E) elementData[offset + (lastRet = i)];
1189                }
1190
1191                public void forEachRemaining(Consumer<? super E> action) {
1192                    Objects.requireNonNull(action);
1193                    final int size = SubList.this.size;
1194                    int i = cursor;
1195                    if (i < size) {
1196                        final Object[] es = root.elementData;
1197                        if (offset + i >= es.length)
1198                            throw new ConcurrentModificationException();
1199                        for (; i < size && modCount == expectedModCount; i++)
1200                            action.accept(elementAt(es, offset + i));
1201                        // update once at end to reduce heap write traffic
1202                        cursor = i;
1203                        lastRet = i - 1;
1204                        checkForComodification();
1205                    }
1206                }
1207
1208                public int nextIndex() {
1209                    return cursor;
1210                }
1211
1212                public int previousIndex() {
1213                    return cursor - 1;
1214                }
1215
1216                public void remove() {
1217                    if (lastRet < 0)
1218                        throw new IllegalStateException();
1219                    checkForComodification();
1220
1221                    try {
1222                        SubList.this.remove(lastRet);
1223                        cursor = lastRet;
1224                        lastRet = -1;
1225                        expectedModCount = root.modCount;
1226                    } catch (IndexOutOfBoundsException ex) {
1227                        throw new ConcurrentModificationException();
1228                    }
1229                }
1230
1231                public void set(E e) {
1232                    if (lastRet < 0)
1233                        throw new IllegalStateException();
1234                    checkForComodification();
1235
1236                    try {
1237                        root.set(offset + lastRet, e);
1238                    } catch (IndexOutOfBoundsException ex) {
1239                        throw new ConcurrentModificationException();
1240                    }
1241                }
1242
1243                public void add(E e) {
1244                    checkForComodification();
1245
1246                    try {
1247                        int i = cursor;
1248                        SubList.this.add(i, e);
1249                        cursor = i + 1;
1250                        lastRet = -1;
1251                        expectedModCount = root.modCount;
1252                    } catch (IndexOutOfBoundsException ex) {
1253                        throw new ConcurrentModificationException();
1254                    }
1255                }
1256
1257                final void checkForComodification() {
1258                    if (root.modCount != expectedModCount)
1259                        throw new ConcurrentModificationException();
1260                }
1261            };
1262        }
1263
1264        public List<E> subList(int fromIndex, int toIndex) {
1265            subListRangeCheck(fromIndex, toIndex, size);
1266            return new SubList<>(this, fromIndex, toIndex);
1267        }
1268
1269        private void rangeCheckForAdd(int index) {
1270            if (index < 0 || index > this.size)
1271                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1272        }
1273
1274        private String outOfBoundsMsg(int index) {
1275            return "Index: "+index+", Size: "+this.size;
1276        }
1277
1278        private void checkForComodification() {
1279            if (root.modCount != modCount)
1280                throw new ConcurrentModificationException();
1281        }
1282
1283        private void updateSizeAndModCount(int sizeChange) {
1284            SubList<E> slist = this;
1285            do {
1286                slist.size += sizeChange;
1287                slist.modCount = root.modCount;
1288                slist = slist.parent;
1289            } while (slist != null);
1290        }
1291
1292        public Spliterator<E> spliterator() {
1293            checkForComodification();
1294
1295            // ArrayListSpliterator not used here due to late-binding
1296            return new Spliterator<E>() {
1297                private int index = offset; // current index, modified on advance/split
1298                private int fence = -1; // -1 until used; then one past last index
1299                private int expectedModCount; // initialized when fence set
1300
1301                private int getFence() { // initialize fence to size on first use
1302                    int hi; // (a specialized variant appears in method forEach)
1303                    if ((hi = fence) < 0) {
1304                        expectedModCount = modCount;
1305                        hi = fence = offset + size;
1306                    }
1307                    return hi;
1308                }
1309
1310                public ArrayList<E>.ArrayListSpliterator trySplit() {
1311                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1312                    // ArrayListSpliterator can be used here as the source is already bound
1313                    return (lo >= mid) ? null : // divide range in half unless too small
1314                        root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1315                }
1316
1317                public boolean tryAdvance(Consumer<? super E> action) {
1318                    Objects.requireNonNull(action);
1319                    int hi = getFence(), i = index;
1320                    if (i < hi) {
1321                        index = i + 1;
1322                        @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1323                        action.accept(e);
1324                        if (root.modCount != expectedModCount)
1325                            throw new ConcurrentModificationException();
1326                        return true;
1327                    }
1328                    return false;
1329                }
1330
1331                public void forEachRemaining(Consumer<? super E> action) {
1332                    Objects.requireNonNull(action);
1333                    int i, hi, mc; // hoist accesses and checks from loop
1334                    ArrayList<E> lst = root;
1335                    Object[] a;
1336                    if ((a = lst.elementData) != null) {
1337                        if ((hi = fence) < 0) {
1338                            mc = modCount;
1339                            hi = offset + size;
1340                        }
1341                        else
1342                            mc = expectedModCount;
1343                        if ((i = index) >= 0 && (index = hi) <= a.length) {
1344                            for (; i < hi; ++i) {
1345                                @SuppressWarnings("unchecked") E e = (E) a[i];
1346                                action.accept(e);
1347                            }
1348                            if (lst.modCount == mc)
1349                                return;
1350                        }
1351                    }
1352                    throw new ConcurrentModificationException();
1353                }
1354
1355                public long estimateSize() {
1356                    return getFence() - index;
1357                }
1358
1359                public int characteristics() {
1360                    return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1361                }
1362            };
1363        }
1364    }
1365
1366    /**
1367     * @throws NullPointerException {@inheritDoc}
1368     */
1369    @Override
1370    public void forEach(Consumer<? super E> action) {
1371        Objects.requireNonNull(action);
1372        final int expectedModCount = modCount;
1373        final Object[] es = elementData;
1374        final int size = this.size;
1375        for (int i = 0; modCount == expectedModCount && i < size; i++)
1376            action.accept(elementAt(es, i));
1377        if (modCount != expectedModCount)
1378            throw new ConcurrentModificationException();
1379    }
1380
1381    /**
1382     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1383     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1384     * list.
1385     *
1386     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1387     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1388     * Overriding implementations should document the reporting of additional
1389     * characteristic values.
1390     *
1391     * @return a {@code Spliterator} over the elements in this list
1392     * @since 1.8
1393     */
1394    @Override
1395    public Spliterator<E> spliterator() {
1396        return new ArrayListSpliterator(0, -1, 0);
1397    }
1398
1399    /** Index-based split-by-two, lazily initialized Spliterator */
1400    final class ArrayListSpliterator implements Spliterator<E> {
1401
1402        /*
1403         * If ArrayLists were immutable, or structurally immutable (no
1404         * adds, removes, etc), we could implement their spliterators
1405         * with Arrays.spliterator. Instead we detect as much
1406         * interference during traversal as practical without
1407         * sacrificing much performance. We rely primarily on
1408         * modCounts. These are not guaranteed to detect concurrency
1409         * violations, and are sometimes overly conservative about
1410         * within-thread interference, but detect enough problems to
1411         * be worthwhile in practice. To carry this out, we (1) lazily
1412         * initialize fence and expectedModCount until the latest
1413         * point that we need to commit to the state we are checking
1414         * against; thus improving precision.  (This doesn't apply to
1415         * SubLists, that create spliterators with current non-lazy
1416         * values).  (2) We perform only a single
1417         * ConcurrentModificationException check at the end of forEach
1418         * (the most performance-sensitive method). When using forEach
1419         * (as opposed to iterators), we can normally only detect
1420         * interference after actions, not before. Further
1421         * CME-triggering checks apply to all other possible
1422         * violations of assumptions for example null or too-small
1423         * elementData array given its size(), that could only have
1424         * occurred due to interference.  This allows the inner loop
1425         * of forEach to run without any further checks, and
1426         * simplifies lambda-resolution. While this does entail a
1427         * number of checks, note that in the common case of
1428         * list.stream().forEach(a), no checks or other computation
1429         * occur anywhere other than inside forEach itself.  The other
1430         * less-often-used methods cannot take advantage of most of
1431         * these streamlinings.
1432         */
1433
1434        private int index; // current index, modified on advance/split
1435        private int fence; // -1 until used; then one past last index
1436        private int expectedModCount; // initialized when fence set
1437
1438        /** Creates new spliterator covering the given range. */
1439        ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1440            this.index = origin;
1441            this.fence = fence;
1442            this.expectedModCount = expectedModCount;
1443        }
1444
1445        private int getFence() { // initialize fence to size on first use
1446            int hi; // (a specialized variant appears in method forEach)
1447            if ((hi = fence) < 0) {
1448                expectedModCount = modCount;
1449                hi = fence = size;
1450            }
1451            return hi;
1452        }
1453
1454        public ArrayListSpliterator trySplit() {
1455            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1456            return (lo >= mid) ? null : // divide range in half unless too small
1457                new ArrayListSpliterator(lo, index = mid, expectedModCount);
1458        }
1459
1460        public boolean tryAdvance(Consumer<? super E> action) {
1461            if (action == null)
1462                throw new NullPointerException();
1463            int hi = getFence(), i = index;
1464            if (i < hi) {
1465                index = i + 1;
1466                @SuppressWarnings("unchecked") E e = (E)elementData[i];
1467                action.accept(e);
1468                if (modCount != expectedModCount)
1469                    throw new ConcurrentModificationException();
1470                return true;
1471            }
1472            return false;
1473        }
1474
1475        public void forEachRemaining(Consumer<? super E> action) {
1476            int i, hi, mc; // hoist accesses and checks from loop
1477            Object[] a;
1478            if (action == null)
1479                throw new NullPointerException();
1480            if ((a = elementData) != null) {
1481                if ((hi = fence) < 0) {
1482                    mc = modCount;
1483                    hi = size;
1484                }
1485                else
1486                    mc = expectedModCount;
1487                if ((i = index) >= 0 && (index = hi) <= a.length) {
1488                    for (; i < hi; ++i) {
1489                        @SuppressWarnings("unchecked") E e = (E) a[i];
1490                        action.accept(e);
1491                    }
1492                    if (modCount == mc)
1493                        return;
1494                }
1495            }
1496            throw new ConcurrentModificationException();
1497        }
1498
1499        public long estimateSize() {
1500            return getFence() - index;
1501        }
1502
1503        public int characteristics() {
1504            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1505        }
1506    }
1507
1508    // A tiny bit set implementation
1509
1510    private static long[] nBits(int n) {
1511        return new long[((n - 1) >> 6) + 1];
1512    }
1513    private static void setBit(long[] bits, int i) {
1514        bits[i >> 6] |= 1L << i;
1515    }
1516    private static boolean isClear(long[] bits, int i) {
1517        return (bits[i >> 6] & (1L << i)) == 0;
1518    }
1519
1520    /**
1521     * @throws NullPointerException {@inheritDoc}
1522     */
1523    @Override
1524    public boolean removeIf(Predicate<? super E> filter) {
1525        return removeIf(filter, 0, size);
1526    }
1527
1528    /**
1529     * Removes all elements satisfying the given predicate, from index
1530     * i (inclusive) to index end (exclusive).
1531     */
1532    boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1533        Objects.requireNonNull(filter);
1534        int expectedModCount = modCount;
1535        final Object[] es = elementData;
1536        // Optimize for initial run of survivors
1537        for (; i < end && !filter.test(elementAt(es, i)); i++)
1538            ;
1539        // Tolerate predicates that reentrantly access the collection for
1540        // read (but writers still get CME), so traverse once to find
1541        // elements to delete, a second pass to physically expunge.
1542        if (i < end) {
1543            final int beg = i;
1544            final long[] deathRow = nBits(end - beg);
1545            deathRow[0] = 1L;   // set bit 0
1546            for (i = beg + 1; i < end; i++)
1547                if (filter.test(elementAt(es, i)))
1548                    setBit(deathRow, i - beg);
1549            if (modCount != expectedModCount)
1550                throw new ConcurrentModificationException();
1551            expectedModCount++;
1552            modCount++;
1553            int w = beg;
1554            for (i = beg; i < end; i++)
1555                if (isClear(deathRow, i - beg))
1556                    es[w++] = es[i];
1557            shiftTailOverGap(es, w, end);
1558            return true;
1559        } else {
1560            if (modCount != expectedModCount)
1561                throw new ConcurrentModificationException();
1562            return false;
1563        }
1564    }
1565
1566    @Override
1567    public void replaceAll(UnaryOperator<E> operator) {
1568        Objects.requireNonNull(operator);
1569        final int expectedModCount = modCount;
1570        final Object[] es = elementData;
1571        final int size = this.size;
1572        for (int i = 0; modCount == expectedModCount && i < size; i++)
1573            es[i] = operator.apply(elementAt(es, i));
1574        if (modCount != expectedModCount)
1575            throw new ConcurrentModificationException();
1576        modCount++;
1577    }
1578
1579    @Override
1580    @SuppressWarnings("unchecked")
1581    public void sort(Comparator<? super E> c) {
1582        final int expectedModCount = modCount;
1583        Arrays.sort((E[]) elementData, 0, size, c);
1584        if (modCount != expectedModCount)
1585            throw new ConcurrentModificationException();
1586        modCount++;
1587    }
1588
1589    void checkInvariants() {
1590        // assert size >= 0;
1591        // assert size == elementData.length || elementData[size] == null;
1592    }
1593}
1594