1/*
2 * Copyright (c) 1996, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26/*
27 * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
28 * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
29 *
30 *   The original version of this source code and documentation is copyrighted
31 * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
32 * materials are provided under terms of a License Agreement between Taligent
33 * and Sun. This technology is protected by multiple US and International
34 * patents. This notice and attribution to Taligent may not be removed.
35 *   Taligent is a registered trademark of Taligent, Inc.
36 *
37 */
38
39package java.text;
40
41import java.math.BigDecimal;
42import java.math.BigInteger;
43import java.math.RoundingMode;
44import jdk.internal.math.FloatingDecimal;
45
46/**
47 * Digit List. Private to DecimalFormat.
48 * Handles the transcoding
49 * between numeric values and strings of characters.  Only handles
50 * non-negative numbers.  The division of labor between DigitList and
51 * DecimalFormat is that DigitList handles the radix 10 representation
52 * issues; DecimalFormat handles the locale-specific issues such as
53 * positive/negative, grouping, decimal point, currency, and so on.
54 *
55 * A DigitList is really a representation of a floating point value.
56 * It may be an integer value; we assume that a double has sufficient
57 * precision to represent all digits of a long.
58 *
59 * The DigitList representation consists of a string of characters,
60 * which are the digits radix 10, from '0' to '9'.  It also has a radix
61 * 10 exponent associated with it.  The value represented by a DigitList
62 * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
63 * derived by placing all the digits of the list to the right of the
64 * decimal point, by 10^exponent.
65 *
66 * @see  Locale
67 * @see  Format
68 * @see  NumberFormat
69 * @see  DecimalFormat
70 * @see  ChoiceFormat
71 * @see  MessageFormat
72 * @author       Mark Davis, Alan Liu
73 */
74final class DigitList implements Cloneable {
75    /**
76     * The maximum number of significant digits in an IEEE 754 double, that
77     * is, in a Java double.  This must not be increased, or garbage digits
78     * will be generated, and should not be decreased, or accuracy will be lost.
79     */
80    public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
81
82    /**
83     * These data members are intentionally public and can be set directly.
84     *
85     * The value represented is given by placing the decimal point before
86     * digits[decimalAt].  If decimalAt is < 0, then leading zeros between
87     * the decimal point and the first nonzero digit are implied.  If decimalAt
88     * is > count, then trailing zeros between the digits[count-1] and the
89     * decimal point are implied.
90     *
91     * Equivalently, the represented value is given by f * 10^decimalAt.  Here
92     * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
93     * the right of the decimal.
94     *
95     * DigitList is normalized, so if it is non-zero, figits[0] is non-zero.  We
96     * don't allow denormalized numbers because our exponent is effectively of
97     * unlimited magnitude.  The count value contains the number of significant
98     * digits present in digits[].
99     *
100     * Zero is represented by any DigitList with count == 0 or with each digits[i]
101     * for all i <= count == '0'.
102     */
103    public int decimalAt = 0;
104    public int count = 0;
105    public char[] digits = new char[MAX_COUNT];
106
107    private char[] data;
108    private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
109    private boolean isNegative = false;
110
111    /**
112     * Return true if the represented number is zero.
113     */
114    boolean isZero() {
115        for (int i=0; i < count; ++i) {
116            if (digits[i] != '0') {
117                return false;
118            }
119        }
120        return true;
121    }
122
123    /**
124     * Set the rounding mode
125     */
126    void setRoundingMode(RoundingMode r) {
127        roundingMode = r;
128    }
129
130    /**
131     * Clears out the digits.
132     * Use before appending them.
133     * Typically, you set a series of digits with append, then at the point
134     * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
135     * then go on appending digits.
136     */
137    public void clear () {
138        decimalAt = 0;
139        count = 0;
140    }
141
142    /**
143     * Appends a digit to the list, extending the list when necessary.
144     */
145    public void append(char digit) {
146        if (count == digits.length) {
147            char[] data = new char[count + 100];
148            System.arraycopy(digits, 0, data, 0, count);
149            digits = data;
150        }
151        digits[count++] = digit;
152    }
153
154    /**
155     * Utility routine to get the value of the digit list
156     * If (count == 0) this throws a NumberFormatException, which
157     * mimics Long.parseLong().
158     */
159    public final double getDouble() {
160        if (count == 0) {
161            return 0.0;
162        }
163
164        StringBuffer temp = getStringBuffer();
165        temp.append('.');
166        temp.append(digits, 0, count);
167        temp.append('E');
168        temp.append(decimalAt);
169        return Double.parseDouble(temp.toString());
170    }
171
172    /**
173     * Utility routine to get the value of the digit list.
174     * If (count == 0) this returns 0, unlike Long.parseLong().
175     */
176    public final long getLong() {
177        // for now, simple implementation; later, do proper IEEE native stuff
178
179        if (count == 0) {
180            return 0;
181        }
182
183        // We have to check for this, because this is the one NEGATIVE value
184        // we represent.  If we tried to just pass the digits off to parseLong,
185        // we'd get a parse failure.
186        if (isLongMIN_VALUE()) {
187            return Long.MIN_VALUE;
188        }
189
190        StringBuffer temp = getStringBuffer();
191        temp.append(digits, 0, count);
192        for (int i = count; i < decimalAt; ++i) {
193            temp.append('0');
194        }
195        return Long.parseLong(temp.toString());
196    }
197
198    public final BigDecimal getBigDecimal() {
199        if (count == 0) {
200            if (decimalAt == 0) {
201                return BigDecimal.ZERO;
202            } else {
203                return new BigDecimal("0E" + decimalAt);
204            }
205        }
206
207       if (decimalAt == count) {
208           return new BigDecimal(digits, 0, count);
209       } else {
210           return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
211       }
212    }
213
214    /**
215     * Return true if the number represented by this object can fit into
216     * a long.
217     * @param isPositive true if this number should be regarded as positive
218     * @param ignoreNegativeZero true if -0 should be regarded as identical to
219     * +0; otherwise they are considered distinct
220     * @return true if this number fits into a Java long
221     */
222    boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
223        // Figure out if the result will fit in a long.  We have to
224        // first look for nonzero digits after the decimal point;
225        // then check the size.  If the digit count is 18 or less, then
226        // the value can definitely be represented as a long.  If it is 19
227        // then it may be too large.
228
229        // Trim trailing zeros.  This does not change the represented value.
230        while (count > 0 && digits[count - 1] == '0') {
231            --count;
232        }
233
234        if (count == 0) {
235            // Positive zero fits into a long, but negative zero can only
236            // be represented as a double. - bug 4162852
237            return isPositive || ignoreNegativeZero;
238        }
239
240        if (decimalAt < count || decimalAt > MAX_COUNT) {
241            return false;
242        }
243
244        if (decimalAt < MAX_COUNT) return true;
245
246        // At this point we have decimalAt == count, and count == MAX_COUNT.
247        // The number will overflow if it is larger than 9223372036854775807
248        // or smaller than -9223372036854775808.
249        for (int i=0; i<count; ++i) {
250            char dig = digits[i], max = LONG_MIN_REP[i];
251            if (dig > max) return false;
252            if (dig < max) return true;
253        }
254
255        // At this point the first count digits match.  If decimalAt is less
256        // than count, then the remaining digits are zero, and we return true.
257        if (count < decimalAt) return true;
258
259        // Now we have a representation of Long.MIN_VALUE, without the leading
260        // negative sign.  If this represents a positive value, then it does
261        // not fit; otherwise it fits.
262        return !isPositive;
263    }
264
265    /**
266     * Set the digit list to a representation of the given double value.
267     * This method supports fixed-point notation.
268     * @param isNegative Boolean value indicating whether the number is negative.
269     * @param source Value to be converted; must not be Inf, -Inf, Nan,
270     * or a value <= 0.
271     * @param maximumFractionDigits The most fractional digits which should
272     * be converted.
273     */
274    final void set(boolean isNegative, double source, int maximumFractionDigits) {
275        set(isNegative, source, maximumFractionDigits, true);
276    }
277
278    /**
279     * Set the digit list to a representation of the given double value.
280     * This method supports both fixed-point and exponential notation.
281     * @param isNegative Boolean value indicating whether the number is negative.
282     * @param source Value to be converted; must not be Inf, -Inf, Nan,
283     * or a value <= 0.
284     * @param maximumDigits The most fractional or total digits which should
285     * be converted.
286     * @param fixedPoint If true, then maximumDigits is the maximum
287     * fractional digits to be converted.  If false, total digits.
288     */
289    final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
290
291        FloatingDecimal.BinaryToASCIIConverter fdConverter  = FloatingDecimal.getBinaryToASCIIConverter(source);
292        boolean hasBeenRoundedUp = fdConverter.digitsRoundedUp();
293        boolean valueExactAsDecimal = fdConverter.decimalDigitsExact();
294        assert !fdConverter.isExceptional();
295        String digitsString = fdConverter.toJavaFormatString();
296
297        set(isNegative, digitsString,
298            hasBeenRoundedUp, valueExactAsDecimal,
299            maximumDigits, fixedPoint);
300    }
301
302    /**
303     * Generate a representation of the form DDDDD, DDDDD.DDDDD, or
304     * DDDDDE+/-DDDDD.
305     * @param roundedUp whether or not rounding up has already happened.
306     * @param valueExactAsDecimal whether or not collected digits provide
307     * an exact decimal representation of the value.
308     */
309    private void set(boolean isNegative, String s,
310                     boolean roundedUp, boolean valueExactAsDecimal,
311                     int maximumDigits, boolean fixedPoint) {
312
313        this.isNegative = isNegative;
314        int len = s.length();
315        char[] source = getDataChars(len);
316        s.getChars(0, len, source, 0);
317
318        decimalAt = -1;
319        count = 0;
320        int exponent = 0;
321        // Number of zeros between decimal point and first non-zero digit after
322        // decimal point, for numbers < 1.
323        int leadingZerosAfterDecimal = 0;
324        boolean nonZeroDigitSeen = false;
325
326        for (int i = 0; i < len; ) {
327            char c = source[i++];
328            if (c == '.') {
329                decimalAt = count;
330            } else if (c == 'e' || c == 'E') {
331                exponent = parseInt(source, i, len);
332                break;
333            } else {
334                if (!nonZeroDigitSeen) {
335                    nonZeroDigitSeen = (c != '0');
336                    if (!nonZeroDigitSeen && decimalAt != -1)
337                        ++leadingZerosAfterDecimal;
338                }
339                if (nonZeroDigitSeen) {
340                    digits[count++] = c;
341                }
342            }
343        }
344        if (decimalAt == -1) {
345            decimalAt = count;
346        }
347        if (nonZeroDigitSeen) {
348            decimalAt += exponent - leadingZerosAfterDecimal;
349        }
350
351        if (fixedPoint) {
352            // The negative of the exponent represents the number of leading
353            // zeros between the decimal and the first non-zero digit, for
354            // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
355            // is more than the maximum fraction digits, then we have an underflow
356            // for the printed representation.
357            if (-decimalAt > maximumDigits) {
358                // Handle an underflow to zero when we round something like
359                // 0.0009 to 2 fractional digits.
360                count = 0;
361                return;
362            } else if (-decimalAt == maximumDigits) {
363                // If we round 0.0009 to 3 fractional digits, then we have to
364                // create a new one digit in the least significant location.
365                if (shouldRoundUp(0, roundedUp, valueExactAsDecimal)) {
366                    count = 1;
367                    ++decimalAt;
368                    digits[0] = '1';
369                } else {
370                    count = 0;
371                }
372                return;
373            }
374            // else fall through
375        }
376
377        // Eliminate trailing zeros.
378        while (count > 1 && digits[count - 1] == '0') {
379            --count;
380        }
381
382        // Eliminate digits beyond maximum digits to be displayed.
383        // Round up if appropriate.
384        round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits,
385              roundedUp, valueExactAsDecimal);
386
387     }
388
389    /**
390     * Round the representation to the given number of digits.
391     * @param maximumDigits The maximum number of digits to be shown.
392     * @param alreadyRounded whether or not rounding up has already happened.
393     * @param valueExactAsDecimal whether or not collected digits provide
394     * an exact decimal representation of the value.
395     *
396     * Upon return, count will be less than or equal to maximumDigits.
397     */
398    private final void round(int maximumDigits,
399                             boolean alreadyRounded,
400                             boolean valueExactAsDecimal) {
401        // Eliminate digits beyond maximum digits to be displayed.
402        // Round up if appropriate.
403        if (maximumDigits >= 0 && maximumDigits < count) {
404            if (shouldRoundUp(maximumDigits, alreadyRounded, valueExactAsDecimal)) {
405                // Rounding up involved incrementing digits from LSD to MSD.
406                // In most cases this is simple, but in a worst case situation
407                // (9999..99) we have to adjust the decimalAt value.
408                for (;;) {
409                    --maximumDigits;
410                    if (maximumDigits < 0) {
411                        // We have all 9's, so we increment to a single digit
412                        // of one and adjust the exponent.
413                        digits[0] = '1';
414                        ++decimalAt;
415                        maximumDigits = 0; // Adjust the count
416                        break;
417                    }
418
419                    ++digits[maximumDigits];
420                    if (digits[maximumDigits] <= '9') break;
421                    // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
422                }
423                ++maximumDigits; // Increment for use as count
424            }
425            count = maximumDigits;
426
427            // Eliminate trailing zeros.
428            while (count > 1 && digits[count-1] == '0') {
429                --count;
430            }
431        }
432    }
433
434
435    /**
436     * Return true if truncating the representation to the given number
437     * of digits will result in an increment to the last digit.  This
438     * method implements the rounding modes defined in the
439     * java.math.RoundingMode class.
440     * [bnf]
441     * @param maximumDigits the number of digits to keep, from 0 to
442     * <code>count-1</code>.  If 0, then all digits are rounded away, and
443     * this method returns true if a one should be generated (e.g., formatting
444     * 0.09 with "#.#").
445     * @param alreadyRounded whether or not rounding up has already happened.
446     * @param valueExactAsDecimal whether or not collected digits provide
447     * an exact decimal representation of the value.
448     * @exception ArithmeticException if rounding is needed with rounding
449     *            mode being set to RoundingMode.UNNECESSARY
450     * @return true if digit <code>maximumDigits-1</code> should be
451     * incremented
452     */
453    private boolean shouldRoundUp(int maximumDigits,
454                                  boolean alreadyRounded,
455                                  boolean valueExactAsDecimal) {
456        if (maximumDigits < count) {
457            /*
458             * To avoid erroneous double-rounding or truncation when converting
459             * a binary double value to text, information about the exactness
460             * of the conversion result in FloatingDecimal, as well as any
461             * rounding done, is needed in this class.
462             *
463             * - For the  HALF_DOWN, HALF_EVEN, HALF_UP rounding rules below:
464             *   In the case of formating float or double, We must take into
465             *   account what FloatingDecimal has done in the binary to decimal
466             *   conversion.
467             *
468             *   Considering the tie cases, FloatingDecimal may round up the
469             *   value (returning decimal digits equal to tie when it is below),
470             *   or "truncate" the value to the tie while value is above it,
471             *   or provide the exact decimal digits when the binary value can be
472             *   converted exactly to its decimal representation given formating
473             *   rules of FloatingDecimal ( we have thus an exact decimal
474             *   representation of the binary value).
475             *
476             *   - If the double binary value was converted exactly as a decimal
477             *     value, then DigitList code must apply the expected rounding
478             *     rule.
479             *
480             *   - If FloatingDecimal already rounded up the decimal value,
481             *     DigitList should neither round up the value again in any of
482             *     the three rounding modes above.
483             *
484             *   - If FloatingDecimal has truncated the decimal value to
485             *     an ending '5' digit, DigitList should round up the value in
486             *     all of the three rounding modes above.
487             *
488             *
489             *   This has to be considered only if digit at maximumDigits index
490             *   is exactly the last one in the set of digits, otherwise there are
491             *   remaining digits after that position and we don't have to consider
492             *   what FloatingDecimal did.
493             *
494             * - Other rounding modes are not impacted by these tie cases.
495             *
496             * - For other numbers that are always converted to exact digits
497             *   (like BigInteger, Long, ...), the passed alreadyRounded boolean
498             *   have to be  set to false, and valueExactAsDecimal has to be set to
499             *   true in the upper DigitList call stack, providing the right state
500             *   for those situations..
501             */
502
503            switch(roundingMode) {
504            case UP:
505                for (int i=maximumDigits; i<count; ++i) {
506                    if (digits[i] != '0') {
507                        return true;
508                    }
509                }
510                break;
511            case DOWN:
512                break;
513            case CEILING:
514                for (int i=maximumDigits; i<count; ++i) {
515                    if (digits[i] != '0') {
516                        return !isNegative;
517                    }
518                }
519                break;
520            case FLOOR:
521                for (int i=maximumDigits; i<count; ++i) {
522                    if (digits[i] != '0') {
523                        return isNegative;
524                    }
525                }
526                break;
527            case HALF_UP:
528            case HALF_DOWN:
529                if (digits[maximumDigits] > '5') {
530                    // Value is above tie ==> must round up
531                    return true;
532                } else if (digits[maximumDigits] == '5') {
533                    // Digit at rounding position is a '5'. Tie cases.
534                    if (maximumDigits != (count - 1)) {
535                        // There are remaining digits. Above tie => must round up
536                        return true;
537                    } else {
538                        // Digit at rounding position is the last one !
539                        if (valueExactAsDecimal) {
540                            // Exact binary representation. On the tie.
541                            // Apply rounding given by roundingMode.
542                            return roundingMode == RoundingMode.HALF_UP;
543                        } else {
544                            // Not an exact binary representation.
545                            // Digit sequence either rounded up or truncated.
546                            // Round up only if it was truncated.
547                            return !alreadyRounded;
548                        }
549                    }
550                }
551                // Digit at rounding position is < '5' ==> no round up.
552                // Just let do the default, which is no round up (thus break).
553                break;
554            case HALF_EVEN:
555                // Implement IEEE half-even rounding
556                if (digits[maximumDigits] > '5') {
557                    return true;
558                } else if (digits[maximumDigits] == '5' ) {
559                    if (maximumDigits == (count - 1)) {
560                        // the rounding position is exactly the last index :
561                        if (alreadyRounded)
562                            // If FloatingDecimal rounded up (value was below tie),
563                            // then we should not round up again.
564                            return false;
565
566                        if (!valueExactAsDecimal)
567                            // Otherwise if the digits don't represent exact value,
568                            // value was above tie and FloatingDecimal truncated
569                            // digits to tie. We must round up.
570                            return true;
571                        else {
572                            // This is an exact tie value, and FloatingDecimal
573                            // provided all of the exact digits. We thus apply
574                            // HALF_EVEN rounding rule.
575                            return ((maximumDigits > 0) &&
576                                    (digits[maximumDigits-1] % 2 != 0));
577                        }
578                    } else {
579                        // Rounds up if it gives a non null digit after '5'
580                        for (int i=maximumDigits+1; i<count; ++i) {
581                            if (digits[i] != '0')
582                                return true;
583                        }
584                    }
585                }
586                break;
587            case UNNECESSARY:
588                for (int i=maximumDigits; i<count; ++i) {
589                    if (digits[i] != '0') {
590                        throw new ArithmeticException(
591                            "Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
592                    }
593                }
594                break;
595            default:
596                assert false;
597            }
598        }
599        return false;
600    }
601
602    /**
603     * Utility routine to set the value of the digit list from a long
604     */
605    final void set(boolean isNegative, long source) {
606        set(isNegative, source, 0);
607    }
608
609    /**
610     * Set the digit list to a representation of the given long value.
611     * @param isNegative Boolean value indicating whether the number is negative.
612     * @param source Value to be converted; must be >= 0 or ==
613     * Long.MIN_VALUE.
614     * @param maximumDigits The most digits which should be converted.
615     * If maximumDigits is lower than the number of significant digits
616     * in source, the representation will be rounded.  Ignored if <= 0.
617     */
618    final void set(boolean isNegative, long source, int maximumDigits) {
619        this.isNegative = isNegative;
620
621        // This method does not expect a negative number. However,
622        // "source" can be a Long.MIN_VALUE (-9223372036854775808),
623        // if the number being formatted is a Long.MIN_VALUE.  In that
624        // case, it will be formatted as -Long.MIN_VALUE, a number
625        // which is outside the legal range of a long, but which can
626        // be represented by DigitList.
627        if (source <= 0) {
628            if (source == Long.MIN_VALUE) {
629                decimalAt = count = MAX_COUNT;
630                System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
631            } else {
632                decimalAt = count = 0; // Values <= 0 format as zero
633            }
634        } else {
635            // Rewritten to improve performance.  I used to call
636            // Long.toString(), which was about 4x slower than this code.
637            int left = MAX_COUNT;
638            int right;
639            while (source > 0) {
640                digits[--left] = (char)('0' + (source % 10));
641                source /= 10;
642            }
643            decimalAt = MAX_COUNT - left;
644            // Don't copy trailing zeros.  We are guaranteed that there is at
645            // least one non-zero digit, so we don't have to check lower bounds.
646            for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
647                ;
648            count = right - left + 1;
649            System.arraycopy(digits, left, digits, 0, count);
650        }
651        if (maximumDigits > 0) round(maximumDigits, false, true);
652    }
653
654    /**
655     * Set the digit list to a representation of the given BigDecimal value.
656     * This method supports both fixed-point and exponential notation.
657     * @param isNegative Boolean value indicating whether the number is negative.
658     * @param source Value to be converted; must not be a value <= 0.
659     * @param maximumDigits The most fractional or total digits which should
660     * be converted.
661     * @param fixedPoint If true, then maximumDigits is the maximum
662     * fractional digits to be converted.  If false, total digits.
663     */
664    final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
665        String s = source.toString();
666        extendDigits(s.length());
667
668        set(isNegative, s,
669            false, true,
670            maximumDigits, fixedPoint);
671    }
672
673    /**
674     * Set the digit list to a representation of the given BigInteger value.
675     * @param isNegative Boolean value indicating whether the number is negative.
676     * @param source Value to be converted; must be >= 0.
677     * @param maximumDigits The most digits which should be converted.
678     * If maximumDigits is lower than the number of significant digits
679     * in source, the representation will be rounded.  Ignored if <= 0.
680     */
681    final void set(boolean isNegative, BigInteger source, int maximumDigits) {
682        this.isNegative = isNegative;
683        String s = source.toString();
684        int len = s.length();
685        extendDigits(len);
686        s.getChars(0, len, digits, 0);
687
688        decimalAt = len;
689        int right;
690        for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
691            ;
692        count = right + 1;
693
694        if (maximumDigits > 0) {
695            round(maximumDigits, false, true);
696        }
697    }
698
699    /**
700     * equality test between two digit lists.
701     */
702    public boolean equals(Object obj) {
703        if (this == obj)                      // quick check
704            return true;
705        if (!(obj instanceof DigitList))         // (1) same object?
706            return false;
707        DigitList other = (DigitList) obj;
708        if (count != other.count ||
709        decimalAt != other.decimalAt)
710            return false;
711        for (int i = 0; i < count; i++)
712            if (digits[i] != other.digits[i])
713                return false;
714        return true;
715    }
716
717    /**
718     * Generates the hash code for the digit list.
719     */
720    public int hashCode() {
721        int hashcode = decimalAt;
722
723        for (int i = 0; i < count; i++) {
724            hashcode = hashcode * 37 + digits[i];
725        }
726
727        return hashcode;
728    }
729
730    /**
731     * Creates a copy of this object.
732     * @return a clone of this instance.
733     */
734    public Object clone() {
735        try {
736            DigitList other = (DigitList) super.clone();
737            char[] newDigits = new char[digits.length];
738            System.arraycopy(digits, 0, newDigits, 0, digits.length);
739            other.digits = newDigits;
740            other.tempBuffer = null;
741            return other;
742        } catch (CloneNotSupportedException e) {
743            throw new InternalError(e);
744        }
745    }
746
747    /**
748     * Returns true if this DigitList represents Long.MIN_VALUE;
749     * false, otherwise.  This is required so that getLong() works.
750     */
751    private boolean isLongMIN_VALUE() {
752        if (decimalAt != count || count != MAX_COUNT) {
753            return false;
754        }
755
756        for (int i = 0; i < count; ++i) {
757            if (digits[i] != LONG_MIN_REP[i]) return false;
758        }
759
760        return true;
761    }
762
763    private static final int parseInt(char[] str, int offset, int strLen) {
764        char c;
765        boolean positive = true;
766        if ((c = str[offset]) == '-') {
767            positive = false;
768            offset++;
769        } else if (c == '+') {
770            offset++;
771        }
772
773        int value = 0;
774        while (offset < strLen) {
775            c = str[offset++];
776            if (c >= '0' && c <= '9') {
777                value = value * 10 + (c - '0');
778            } else {
779                break;
780            }
781        }
782        return positive ? value : -value;
783    }
784
785    // The digit part of -9223372036854775808L
786    private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
787
788    public String toString() {
789        if (isZero()) {
790            return "0";
791        }
792        StringBuffer buf = getStringBuffer();
793        buf.append("0.");
794        buf.append(digits, 0, count);
795        buf.append("x10^");
796        buf.append(decimalAt);
797        return buf.toString();
798    }
799
800    private StringBuffer tempBuffer;
801
802    private StringBuffer getStringBuffer() {
803        if (tempBuffer == null) {
804            tempBuffer = new StringBuffer(MAX_COUNT);
805        } else {
806            tempBuffer.setLength(0);
807        }
808        return tempBuffer;
809    }
810
811    private void extendDigits(int len) {
812        if (len > digits.length) {
813            digits = new char[len];
814        }
815    }
816
817    private final char[] getDataChars(int length) {
818        if (data == null || data.length < length) {
819            data = new char[length];
820        }
821        return data;
822    }
823}
824