1/*
2 * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang.invoke;
27
28
29import jdk.internal.HotSpotIntrinsicCandidate;
30
31import java.util.Arrays;
32import java.util.Objects;
33
34import static java.lang.invoke.MethodHandleStatics.*;
35
36/**
37 * A method handle is a typed, directly executable reference to an underlying method,
38 * constructor, field, or similar low-level operation, with optional
39 * transformations of arguments or return values.
40 * These transformations are quite general, and include such patterns as
41 * {@linkplain #asType conversion},
42 * {@linkplain #bindTo insertion},
43 * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
44 * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
45 *
46 * <h1>Method handle contents</h1>
47 * Method handles are dynamically and strongly typed according to their parameter and return types.
48 * They are not distinguished by the name or the defining class of their underlying methods.
49 * A method handle must be invoked using a symbolic type descriptor which matches
50 * the method handle's own {@linkplain #type() type descriptor}.
51 * <p>
52 * Every method handle reports its type descriptor via the {@link #type() type} accessor.
53 * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
54 * whose structure is a series of classes, one of which is
55 * the return type of the method (or {@code void.class} if none).
56 * <p>
57 * A method handle's type controls the types of invocations it accepts,
58 * and the kinds of transformations that apply to it.
59 * <p>
60 * A method handle contains a pair of special invoker methods
61 * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
62 * Both invoker methods provide direct access to the method handle's
63 * underlying method, constructor, field, or other operation,
64 * as modified by transformations of arguments and return values.
65 * Both invokers accept calls which exactly match the method handle's own type.
66 * The plain, inexact invoker also accepts a range of other call types.
67 * <p>
68 * Method handles are immutable and have no visible state.
69 * Of course, they can be bound to underlying methods or data which exhibit state.
70 * With respect to the Java Memory Model, any method handle will behave
71 * as if all of its (internal) fields are final variables.  This means that any method
72 * handle made visible to the application will always be fully formed.
73 * This is true even if the method handle is published through a shared
74 * variable in a data race.
75 * <p>
76 * Method handles cannot be subclassed by the user.
77 * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
78 * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
79 * operation.  The programmer should not draw conclusions about a method handle
80 * from its specific class, as the method handle class hierarchy (if any)
81 * may change from time to time or across implementations from different vendors.
82 *
83 * <h1>Method handle compilation</h1>
84 * A Java method call expression naming {@code invokeExact} or {@code invoke}
85 * can invoke a method handle from Java source code.
86 * From the viewpoint of source code, these methods can take any arguments
87 * and their result can be cast to any return type.
88 * Formally this is accomplished by giving the invoker methods
89 * {@code Object} return types and variable arity {@code Object} arguments,
90 * but they have an additional quality called <em>signature polymorphism</em>
91 * which connects this freedom of invocation directly to the JVM execution stack.
92 * <p>
93 * As is usual with virtual methods, source-level calls to {@code invokeExact}
94 * and {@code invoke} compile to an {@code invokevirtual} instruction.
95 * More unusually, the compiler must record the actual argument types,
96 * and may not perform method invocation conversions on the arguments.
97 * Instead, it must generate instructions that push them on the stack according
98 * to their own unconverted types.  The method handle object itself is pushed on
99 * the stack before the arguments.
100 * The compiler then generates an {@code invokevirtual} instruction that invokes
101 * the method handle with a symbolic type descriptor which describes the argument
102 * and return types.
103 * <p>
104 * To issue a complete symbolic type descriptor, the compiler must also determine
105 * the return type.  This is based on a cast on the method invocation expression,
106 * if there is one, or else {@code Object} if the invocation is an expression,
107 * or else {@code void} if the invocation is a statement.
108 * The cast may be to a primitive type (but not {@code void}).
109 * <p>
110 * As a corner case, an uncasted {@code null} argument is given
111 * a symbolic type descriptor of {@code java.lang.Void}.
112 * The ambiguity with the type {@code Void} is harmless, since there are no references of type
113 * {@code Void} except the null reference.
114 *
115 * <h1>Method handle invocation</h1>
116 * The first time an {@code invokevirtual} instruction is executed
117 * it is linked by symbolically resolving the names in the instruction
118 * and verifying that the method call is statically legal.
119 * This also holds for calls to {@code invokeExact} and {@code invoke}.
120 * In this case, the symbolic type descriptor emitted by the compiler is checked for
121 * correct syntax, and names it contains are resolved.
122 * Thus, an {@code invokevirtual} instruction which invokes
123 * a method handle will always link, as long
124 * as the symbolic type descriptor is syntactically well-formed
125 * and the types exist.
126 * <p>
127 * When the {@code invokevirtual} is executed after linking,
128 * the receiving method handle's type is first checked by the JVM
129 * to ensure that it matches the symbolic type descriptor.
130 * If the type match fails, it means that the method which the
131 * caller is invoking is not present on the individual
132 * method handle being invoked.
133 * <p>
134 * In the case of {@code invokeExact}, the type descriptor of the invocation
135 * (after resolving symbolic type names) must exactly match the method type
136 * of the receiving method handle.
137 * In the case of plain, inexact {@code invoke}, the resolved type descriptor
138 * must be a valid argument to the receiver's {@link #asType asType} method.
139 * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
140 * <p>
141 * After type matching, a call to {@code invokeExact} directly
142 * and immediately invoke the method handle's underlying method
143 * (or other behavior, as the case may be).
144 * <p>
145 * A call to plain {@code invoke} works the same as a call to
146 * {@code invokeExact}, if the symbolic type descriptor specified by the caller
147 * exactly matches the method handle's own type.
148 * If there is a type mismatch, {@code invoke} attempts
149 * to adjust the type of the receiving method handle,
150 * as if by a call to {@link #asType asType},
151 * to obtain an exactly invokable method handle {@code M2}.
152 * This allows a more powerful negotiation of method type
153 * between caller and callee.
154 * <p>
155 * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
156 * and implementations are therefore not required to materialize it.)
157 *
158 * <h1>Invocation checking</h1>
159 * In typical programs, method handle type matching will usually succeed.
160 * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
161 * either directly (in the case of {@code invokeExact}) or indirectly as if
162 * by a failed call to {@code asType} (in the case of {@code invoke}).
163 * <p>
164 * Thus, a method type mismatch which might show up as a linkage error
165 * in a statically typed program can show up as
166 * a dynamic {@code WrongMethodTypeException}
167 * in a program which uses method handles.
168 * <p>
169 * Because method types contain "live" {@code Class} objects,
170 * method type matching takes into account both type names and class loaders.
171 * Thus, even if a method handle {@code M} is created in one
172 * class loader {@code L1} and used in another {@code L2},
173 * method handle calls are type-safe, because the caller's symbolic type
174 * descriptor, as resolved in {@code L2},
175 * is matched against the original callee method's symbolic type descriptor,
176 * as resolved in {@code L1}.
177 * The resolution in {@code L1} happens when {@code M} is created
178 * and its type is assigned, while the resolution in {@code L2} happens
179 * when the {@code invokevirtual} instruction is linked.
180 * <p>
181 * Apart from type descriptor checks,
182 * a method handle's capability to call its underlying method is unrestricted.
183 * If a method handle is formed on a non-public method by a class
184 * that has access to that method, the resulting handle can be used
185 * in any place by any caller who receives a reference to it.
186 * <p>
187 * Unlike with the Core Reflection API, where access is checked every time
188 * a reflective method is invoked,
189 * method handle access checking is performed
190 * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
191 * In the case of {@code ldc} (see below), access checking is performed as part of linking
192 * the constant pool entry underlying the constant method handle.
193 * <p>
194 * Thus, handles to non-public methods, or to methods in non-public classes,
195 * should generally be kept secret.
196 * They should not be passed to untrusted code unless their use from
197 * the untrusted code would be harmless.
198 *
199 * <h1>Method handle creation</h1>
200 * Java code can create a method handle that directly accesses
201 * any method, constructor, or field that is accessible to that code.
202 * This is done via a reflective, capability-based API called
203 * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}.
204 * For example, a static method handle can be obtained
205 * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
206 * There are also conversion methods from Core Reflection API objects,
207 * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
208 * <p>
209 * Like classes and strings, method handles that correspond to accessible
210 * fields, methods, and constructors can also be represented directly
211 * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
212 * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
213 * refers directly to an associated {@code CONSTANT_Methodref},
214 * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
215 * constant pool entry.
216 * (For full details on method handle constants,
217 * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
218 * <p>
219 * Method handles produced by lookups or constant loads from methods or
220 * constructors with the variable arity modifier bit ({@code 0x0080})
221 * have a corresponding variable arity, as if they were defined with
222 * the help of {@link #asVarargsCollector asVarargsCollector}
223 * or {@link #withVarargs withVarargs}.
224 * <p>
225 * A method reference may refer either to a static or non-static method.
226 * In the non-static case, the method handle type includes an explicit
227 * receiver argument, prepended before any other arguments.
228 * In the method handle's type, the initial receiver argument is typed
229 * according to the class under which the method was initially requested.
230 * (E.g., if a non-static method handle is obtained via {@code ldc},
231 * the type of the receiver is the class named in the constant pool entry.)
232 * <p>
233 * Method handle constants are subject to the same link-time access checks
234 * their corresponding bytecode instructions, and the {@code ldc} instruction
235 * will throw corresponding linkage errors if the bytecode behaviors would
236 * throw such errors.
237 * <p>
238 * As a corollary of this, access to protected members is restricted
239 * to receivers only of the accessing class, or one of its subclasses,
240 * and the accessing class must in turn be a subclass (or package sibling)
241 * of the protected member's defining class.
242 * If a method reference refers to a protected non-static method or field
243 * of a class outside the current package, the receiver argument will
244 * be narrowed to the type of the accessing class.
245 * <p>
246 * When a method handle to a virtual method is invoked, the method is
247 * always looked up in the receiver (that is, the first argument).
248 * <p>
249 * A non-virtual method handle to a specific virtual method implementation
250 * can also be created.  These do not perform virtual lookup based on
251 * receiver type.  Such a method handle simulates the effect of
252 * an {@code invokespecial} instruction to the same method.
253 *
254 * <h1>Usage examples</h1>
255 * Here are some examples of usage:
256 * <blockquote><pre>{@code
257Object x, y; String s; int i;
258MethodType mt; MethodHandle mh;
259MethodHandles.Lookup lookup = MethodHandles.lookup();
260// mt is (char,char)String
261mt = MethodType.methodType(String.class, char.class, char.class);
262mh = lookup.findVirtual(String.class, "replace", mt);
263s = (String) mh.invokeExact("daddy",'d','n');
264// invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
265assertEquals(s, "nanny");
266// weakly typed invocation (using MHs.invoke)
267s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
268assertEquals(s, "savvy");
269// mt is (Object[])List
270mt = MethodType.methodType(java.util.List.class, Object[].class);
271mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
272assert(mh.isVarargsCollector());
273x = mh.invoke("one", "two");
274// invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
275assertEquals(x, java.util.Arrays.asList("one","two"));
276// mt is (Object,Object,Object)Object
277mt = MethodType.genericMethodType(3);
278mh = mh.asType(mt);
279x = mh.invokeExact((Object)1, (Object)2, (Object)3);
280// invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
281assertEquals(x, java.util.Arrays.asList(1,2,3));
282// mt is ()int
283mt = MethodType.methodType(int.class);
284mh = lookup.findVirtual(java.util.List.class, "size", mt);
285i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
286// invokeExact(Ljava/util/List;)I
287assert(i == 3);
288mt = MethodType.methodType(void.class, String.class);
289mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
290mh.invokeExact(System.out, "Hello, world.");
291// invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
292 * }</pre></blockquote>
293 * Each of the above calls to {@code invokeExact} or plain {@code invoke}
294 * generates a single invokevirtual instruction with
295 * the symbolic type descriptor indicated in the following comment.
296 * In these examples, the helper method {@code assertEquals} is assumed to
297 * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
298 * on its arguments, and asserts that the result is true.
299 *
300 * <h1>Exceptions</h1>
301 * The methods {@code invokeExact} and {@code invoke} are declared
302 * to throw {@link java.lang.Throwable Throwable},
303 * which is to say that there is no static restriction on what a method handle
304 * can throw.  Since the JVM does not distinguish between checked
305 * and unchecked exceptions (other than by their class, of course),
306 * there is no particular effect on bytecode shape from ascribing
307 * checked exceptions to method handle invocations.  But in Java source
308 * code, methods which perform method handle calls must either explicitly
309 * throw {@code Throwable}, or else must catch all
310 * throwables locally, rethrowing only those which are legal in the context,
311 * and wrapping ones which are illegal.
312 *
313 * <h1><a id="sigpoly"></a>Signature polymorphism</h1>
314 * The unusual compilation and linkage behavior of
315 * {@code invokeExact} and plain {@code invoke}
316 * is referenced by the term <em>signature polymorphism</em>.
317 * As defined in the Java Language Specification,
318 * a signature polymorphic method is one which can operate with
319 * any of a wide range of call signatures and return types.
320 * <p>
321 * In source code, a call to a signature polymorphic method will
322 * compile, regardless of the requested symbolic type descriptor.
323 * As usual, the Java compiler emits an {@code invokevirtual}
324 * instruction with the given symbolic type descriptor against the named method.
325 * The unusual part is that the symbolic type descriptor is derived from
326 * the actual argument and return types, not from the method declaration.
327 * <p>
328 * When the JVM processes bytecode containing signature polymorphic calls,
329 * it will successfully link any such call, regardless of its symbolic type descriptor.
330 * (In order to retain type safety, the JVM will guard such calls with suitable
331 * dynamic type checks, as described elsewhere.)
332 * <p>
333 * Bytecode generators, including the compiler back end, are required to emit
334 * untransformed symbolic type descriptors for these methods.
335 * Tools which determine symbolic linkage are required to accept such
336 * untransformed descriptors, without reporting linkage errors.
337 *
338 * <h1>Interoperation between method handles and the Core Reflection API</h1>
339 * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
340 * any class member represented by a Core Reflection API object
341 * can be converted to a behaviorally equivalent method handle.
342 * For example, a reflective {@link java.lang.reflect.Method Method} can
343 * be converted to a method handle using
344 * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
345 * The resulting method handles generally provide more direct and efficient
346 * access to the underlying class members.
347 * <p>
348 * As a special case,
349 * when the Core Reflection API is used to view the signature polymorphic
350 * methods {@code invokeExact} or plain {@code invoke} in this class,
351 * they appear as ordinary non-polymorphic methods.
352 * Their reflective appearance, as viewed by
353 * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
354 * is unaffected by their special status in this API.
355 * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
356 * will report exactly those modifier bits required for any similarly
357 * declared method, including in this case {@code native} and {@code varargs} bits.
358 * <p>
359 * As with any reflected method, these methods (when reflected) may be
360 * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
361 * However, such reflective calls do not result in method handle invocations.
362 * Such a call, if passed the required argument
363 * (a single one, of type {@code Object[]}), will ignore the argument and
364 * will throw an {@code UnsupportedOperationException}.
365 * <p>
366 * Since {@code invokevirtual} instructions can natively
367 * invoke method handles under any symbolic type descriptor, this reflective view conflicts
368 * with the normal presentation of these methods via bytecodes.
369 * Thus, these two native methods, when reflectively viewed by
370 * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
371 * <p>
372 * In order to obtain an invoker method for a particular type descriptor,
373 * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
374 * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
375 * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
376 * API is also able to return a method handle
377 * to call {@code invokeExact} or plain {@code invoke},
378 * for any specified type descriptor .
379 *
380 * <h1>Interoperation between method handles and Java generics</h1>
381 * A method handle can be obtained on a method, constructor, or field
382 * which is declared with Java generic types.
383 * As with the Core Reflection API, the type of the method handle
384 * will constructed from the erasure of the source-level type.
385 * When a method handle is invoked, the types of its arguments
386 * or the return value cast type may be generic types or type instances.
387 * If this occurs, the compiler will replace those
388 * types by their erasures when it constructs the symbolic type descriptor
389 * for the {@code invokevirtual} instruction.
390 * <p>
391 * Method handles do not represent
392 * their function-like types in terms of Java parameterized (generic) types,
393 * because there are three mismatches between function-like types and parameterized
394 * Java types.
395 * <ul>
396 * <li>Method types range over all possible arities,
397 * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
398 * Generics are not variadic, and so cannot represent this.</li>
399 * <li>Method types can specify arguments of primitive types,
400 * which Java generic types cannot range over.</li>
401 * <li>Higher order functions over method handles (combinators) are
402 * often generic across a wide range of function types, including
403 * those of multiple arities.  It is impossible to represent such
404 * genericity with a Java type parameter.</li>
405 * </ul>
406 *
407 * <h1><a id="maxarity"></a>Arity limits</h1>
408 * The JVM imposes on all methods and constructors of any kind an absolute
409 * limit of 255 stacked arguments.  This limit can appear more restrictive
410 * in certain cases:
411 * <ul>
412 * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
413 * <li>A non-static method consumes an extra argument for the object on which the method is called.
414 * <li>A constructor consumes an extra argument for the object which is being constructed.
415 * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
416 *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
417 * </ul>
418 * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
419 * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
420 * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
421 * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
422 *
423 * @see MethodType
424 * @see MethodHandles
425 * @author John Rose, JSR 292 EG
426 * @since 1.7
427 */
428public abstract class MethodHandle {
429
430    /**
431     * Internal marker interface which distinguishes (to the Java compiler)
432     * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
433     */
434    @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
435    @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
436    @interface PolymorphicSignature { }
437
438    private final MethodType type;
439    /*private*/ final LambdaForm form;
440    // form is not private so that invokers can easily fetch it
441    /*private*/ MethodHandle asTypeCache;
442    // asTypeCache is not private so that invokers can easily fetch it
443    /*non-public*/ byte customizationCount;
444    // customizationCount should be accessible from invokers
445
446    /**
447     * Reports the type of this method handle.
448     * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
449     * @return the method handle type
450     */
451    public MethodType type() {
452        return type;
453    }
454
455    /**
456     * Package-private constructor for the method handle implementation hierarchy.
457     * Method handle inheritance will be contained completely within
458     * the {@code java.lang.invoke} package.
459     */
460    // @param type type (permanently assigned) of the new method handle
461    /*non-public*/ MethodHandle(MethodType type, LambdaForm form) {
462        this.type = Objects.requireNonNull(type);
463        this.form = Objects.requireNonNull(form).uncustomize();
464
465        this.form.prepare();  // TO DO:  Try to delay this step until just before invocation.
466    }
467
468    /**
469     * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
470     * The symbolic type descriptor at the call site of {@code invokeExact} must
471     * exactly match this method handle's {@link #type() type}.
472     * No conversions are allowed on arguments or return values.
473     * <p>
474     * When this method is observed via the Core Reflection API,
475     * it will appear as a single native method, taking an object array and returning an object.
476     * If this native method is invoked directly via
477     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
478     * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
479     * it will throw an {@code UnsupportedOperationException}.
480     * @param args the signature-polymorphic parameter list, statically represented using varargs
481     * @return the signature-polymorphic result, statically represented using {@code Object}
482     * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
483     * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
484     */
485    @HotSpotIntrinsicCandidate
486    public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
487
488    /**
489     * Invokes the method handle, allowing any caller type descriptor,
490     * and optionally performing conversions on arguments and return values.
491     * <p>
492     * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type() type},
493     * the call proceeds as if by {@link #invokeExact invokeExact}.
494     * <p>
495     * Otherwise, the call proceeds as if this method handle were first
496     * adjusted by calling {@link #asType asType} to adjust this method handle
497     * to the required type, and then the call proceeds as if by
498     * {@link #invokeExact invokeExact} on the adjusted method handle.
499     * <p>
500     * There is no guarantee that the {@code asType} call is actually made.
501     * If the JVM can predict the results of making the call, it may perform
502     * adaptations directly on the caller's arguments,
503     * and call the target method handle according to its own exact type.
504     * <p>
505     * The resolved type descriptor at the call site of {@code invoke} must
506     * be a valid argument to the receivers {@code asType} method.
507     * In particular, the caller must specify the same argument arity
508     * as the callee's type,
509     * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
510     * <p>
511     * When this method is observed via the Core Reflection API,
512     * it will appear as a single native method, taking an object array and returning an object.
513     * If this native method is invoked directly via
514     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
515     * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
516     * it will throw an {@code UnsupportedOperationException}.
517     * @param args the signature-polymorphic parameter list, statically represented using varargs
518     * @return the signature-polymorphic result, statically represented using {@code Object}
519     * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
520     * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
521     * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
522     */
523    @HotSpotIntrinsicCandidate
524    public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
525
526    /**
527     * Private method for trusted invocation of a method handle respecting simplified signatures.
528     * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
529     * <p>
530     * The caller signature is restricted to the following basic types:
531     * Object, int, long, float, double, and void return.
532     * <p>
533     * The caller is responsible for maintaining type correctness by ensuring
534     * that the each outgoing argument value is a member of the range of the corresponding
535     * callee argument type.
536     * (The caller should therefore issue appropriate casts and integer narrowing
537     * operations on outgoing argument values.)
538     * The caller can assume that the incoming result value is part of the range
539     * of the callee's return type.
540     * @param args the signature-polymorphic parameter list, statically represented using varargs
541     * @return the signature-polymorphic result, statically represented using {@code Object}
542     */
543    @HotSpotIntrinsicCandidate
544    /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;
545
546    /**
547     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
548     * The caller signature is restricted to basic types as with {@code invokeBasic}.
549     * The trailing (not leading) argument must be a MemberName.
550     * @param args the signature-polymorphic parameter list, statically represented using varargs
551     * @return the signature-polymorphic result, statically represented using {@code Object}
552     */
553    @HotSpotIntrinsicCandidate
554    /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;
555
556    /**
557     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
558     * The caller signature is restricted to basic types as with {@code invokeBasic}.
559     * The trailing (not leading) argument must be a MemberName.
560     * @param args the signature-polymorphic parameter list, statically represented using varargs
561     * @return the signature-polymorphic result, statically represented using {@code Object}
562     */
563    @HotSpotIntrinsicCandidate
564    /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;
565
566    /**
567     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
568     * The caller signature is restricted to basic types as with {@code invokeBasic}.
569     * The trailing (not leading) argument must be a MemberName.
570     * @param args the signature-polymorphic parameter list, statically represented using varargs
571     * @return the signature-polymorphic result, statically represented using {@code Object}
572     */
573    @HotSpotIntrinsicCandidate
574    /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;
575
576    /**
577     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
578     * The caller signature is restricted to basic types as with {@code invokeBasic}.
579     * The trailing (not leading) argument must be a MemberName.
580     * @param args the signature-polymorphic parameter list, statically represented using varargs
581     * @return the signature-polymorphic result, statically represented using {@code Object}
582     */
583    @HotSpotIntrinsicCandidate
584    /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;
585
586    /**
587     * Performs a variable arity invocation, passing the arguments in the given list
588     * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
589     * which mentions only the type {@code Object}, and whose arity is the length
590     * of the argument list.
591     * <p>
592     * Specifically, execution proceeds as if by the following steps,
593     * although the methods are not guaranteed to be called if the JVM
594     * can predict their effects.
595     * <ul>
596     * <li>Determine the length of the argument array as {@code N}.
597     *     For a null reference, {@code N=0}. </li>
598     * <li>Determine the general type {@code TN} of {@code N} arguments as
599     *     as {@code TN=MethodType.genericMethodType(N)}.</li>
600     * <li>Force the original target method handle {@code MH0} to the
601     *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
602     * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
603     * <li>Invoke the type-adjusted method handle on the unpacked arguments:
604     *     MH1.invokeExact(A0, ...). </li>
605     * <li>Take the return value as an {@code Object} reference. </li>
606     * </ul>
607     * <p>
608     * Because of the action of the {@code asType} step, the following argument
609     * conversions are applied as necessary:
610     * <ul>
611     * <li>reference casting
612     * <li>unboxing
613     * <li>widening primitive conversions
614     * </ul>
615     * <p>
616     * The result returned by the call is boxed if it is a primitive,
617     * or forced to null if the return type is void.
618     * <p>
619     * This call is equivalent to the following code:
620     * <blockquote><pre>{@code
621     * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
622     * Object result = invoker.invokeExact(this, arguments);
623     * }</pre></blockquote>
624     * <p>
625     * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
626     * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
627     * It can therefore be used as a bridge between native or reflective code and method handles.
628     *
629     * @param arguments the arguments to pass to the target
630     * @return the result returned by the target
631     * @throws ClassCastException if an argument cannot be converted by reference casting
632     * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
633     * @throws Throwable anything thrown by the target method invocation
634     * @see MethodHandles#spreadInvoker
635     */
636    public Object invokeWithArguments(Object... arguments) throws Throwable {
637        MethodType invocationType = MethodType.genericMethodType(arguments == null ? 0 : arguments.length);
638        return invocationType.invokers().spreadInvoker(0).invokeExact(asType(invocationType), arguments);
639    }
640
641    /**
642     * Performs a variable arity invocation, passing the arguments in the given array
643     * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
644     * which mentions only the type {@code Object}, and whose arity is the length
645     * of the argument array.
646     * <p>
647     * This method is also equivalent to the following code:
648     * <blockquote><pre>{@code
649     *   invokeWithArguments(arguments.toArray())
650     * }</pre></blockquote>
651     *
652     * @param arguments the arguments to pass to the target
653     * @return the result returned by the target
654     * @throws NullPointerException if {@code arguments} is a null reference
655     * @throws ClassCastException if an argument cannot be converted by reference casting
656     * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
657     * @throws Throwable anything thrown by the target method invocation
658     */
659    public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
660        return invokeWithArguments(arguments.toArray());
661    }
662
663    /**
664     * Produces an adapter method handle which adapts the type of the
665     * current method handle to a new type.
666     * The resulting method handle is guaranteed to report a type
667     * which is equal to the desired new type.
668     * <p>
669     * If the original type and new type are equal, returns {@code this}.
670     * <p>
671     * The new method handle, when invoked, will perform the following
672     * steps:
673     * <ul>
674     * <li>Convert the incoming argument list to match the original
675     *     method handle's argument list.
676     * <li>Invoke the original method handle on the converted argument list.
677     * <li>Convert any result returned by the original method handle
678     *     to the return type of new method handle.
679     * </ul>
680     * <p>
681     * This method provides the crucial behavioral difference between
682     * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
683     * The two methods
684     * perform the same steps when the caller's type descriptor exactly matches
685     * the callee's, but when the types differ, plain {@link #invoke invoke}
686     * also calls {@code asType} (or some internal equivalent) in order
687     * to match up the caller's and callee's types.
688     * <p>
689     * If the current method is a variable arity method handle
690     * argument list conversion may involve the conversion and collection
691     * of several arguments into an array, as
692     * {@linkplain #asVarargsCollector described elsewhere}.
693     * In every other case, all conversions are applied <em>pairwise</em>,
694     * which means that each argument or return value is converted to
695     * exactly one argument or return value (or no return value).
696     * The applied conversions are defined by consulting the
697     * the corresponding component types of the old and new
698     * method handle types.
699     * <p>
700     * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
701     * or old and new return types.  Specifically, for some valid index {@code i}, let
702     * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
703     * Or else, going the other way for return values, let
704     * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
705     * If the types are the same, the new method handle makes no change
706     * to the corresponding argument or return value (if any).
707     * Otherwise, one of the following conversions is applied
708     * if possible:
709     * <ul>
710     * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
711     *     (The types do not need to be related in any particular way.
712     *     This is because a dynamic value of null can convert to any reference type.)
713     * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
714     *     conversion (JLS 5.3) is applied, if one exists.
715     *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
716     * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
717     *     a Java casting conversion (JLS 5.5) is applied if one exists.
718     *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
719     *     which is then widened as needed to <em>T1</em>.)
720     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
721     *     conversion will be applied at runtime, possibly followed
722     *     by a Java method invocation conversion (JLS 5.3)
723     *     on the primitive value.  (These are the primitive widening conversions.)
724     *     <em>T0</em> must be a wrapper class or a supertype of one.
725     *     (In the case where <em>T0</em> is Object, these are the conversions
726     *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
727     *     The unboxing conversion must have a possibility of success, which means that
728     *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
729     *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
730     *     primitive value can be widened to <em>T1</em>.
731     * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
732     * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
733     * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
734     *     a zero value is introduced.
735     * </ul>
736     * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
737     * because neither corresponds specifically to the <em>dynamic type</em> of any
738     * actual argument or return value.)
739     * <p>
740     * The method handle conversion cannot be made if any one of the required
741     * pairwise conversions cannot be made.
742     * <p>
743     * At runtime, the conversions applied to reference arguments
744     * or return values may require additional runtime checks which can fail.
745     * An unboxing operation may fail because the original reference is null,
746     * causing a {@link java.lang.NullPointerException NullPointerException}.
747     * An unboxing operation or a reference cast may also fail on a reference
748     * to an object of the wrong type,
749     * causing a {@link java.lang.ClassCastException ClassCastException}.
750     * Although an unboxing operation may accept several kinds of wrappers,
751     * if none are available, a {@code ClassCastException} will be thrown.
752     *
753     * @param newType the expected type of the new method handle
754     * @return a method handle which delegates to {@code this} after performing
755     *           any necessary argument conversions, and arranges for any
756     *           necessary return value conversions
757     * @throws NullPointerException if {@code newType} is a null reference
758     * @throws WrongMethodTypeException if the conversion cannot be made
759     * @see MethodHandles#explicitCastArguments
760     */
761    public MethodHandle asType(MethodType newType) {
762        // Fast path alternative to a heavyweight {@code asType} call.
763        // Return 'this' if the conversion will be a no-op.
764        if (newType == type) {
765            return this;
766        }
767        // Return 'this.asTypeCache' if the conversion is already memoized.
768        MethodHandle atc = asTypeCached(newType);
769        if (atc != null) {
770            return atc;
771        }
772        return asTypeUncached(newType);
773    }
774
775    private MethodHandle asTypeCached(MethodType newType) {
776        MethodHandle atc = asTypeCache;
777        if (atc != null && newType == atc.type) {
778            return atc;
779        }
780        return null;
781    }
782
783    /** Override this to change asType behavior. */
784    /*non-public*/ MethodHandle asTypeUncached(MethodType newType) {
785        if (!type.isConvertibleTo(newType))
786            throw new WrongMethodTypeException("cannot convert "+this+" to "+newType);
787        return asTypeCache = MethodHandleImpl.makePairwiseConvert(this, newType, true);
788    }
789
790    /**
791     * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
792     * and spreads its elements as positional arguments.
793     * The new method handle adapts, as its <i>target</i>,
794     * the current method handle.  The type of the adapter will be
795     * the same as the type of the target, except that the final
796     * {@code arrayLength} parameters of the target's type are replaced
797     * by a single array parameter of type {@code arrayType}.
798     * <p>
799     * If the array element type differs from any of the corresponding
800     * argument types on the original target,
801     * the original target is adapted to take the array elements directly,
802     * as if by a call to {@link #asType asType}.
803     * <p>
804     * When called, the adapter replaces a trailing array argument
805     * by the array's elements, each as its own argument to the target.
806     * (The order of the arguments is preserved.)
807     * They are converted pairwise by casting and/or unboxing
808     * to the types of the trailing parameters of the target.
809     * Finally the target is called.
810     * What the target eventually returns is returned unchanged by the adapter.
811     * <p>
812     * Before calling the target, the adapter verifies that the array
813     * contains exactly enough elements to provide a correct argument count
814     * to the target method handle.
815     * (The array may also be null when zero elements are required.)
816     * <p>
817     * If, when the adapter is called, the supplied array argument does
818     * not have the correct number of elements, the adapter will throw
819     * an {@link IllegalArgumentException} instead of invoking the target.
820     * <p>
821     * Here are some simple examples of array-spreading method handles:
822     * <blockquote><pre>{@code
823MethodHandle equals = publicLookup()
824  .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
825assert( (boolean) equals.invokeExact("me", (Object)"me"));
826assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
827// spread both arguments from a 2-array:
828MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
829assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
830assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
831// try to spread from anything but a 2-array:
832for (int n = 0; n <= 10; n++) {
833  Object[] badArityArgs = (n == 2 ? null : new Object[n]);
834  try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
835  catch (IllegalArgumentException ex) { } // OK
836}
837// spread both arguments from a String array:
838MethodHandle eq2s = equals.asSpreader(String[].class, 2);
839assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
840assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
841// spread second arguments from a 1-array:
842MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
843assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
844assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
845// spread no arguments from a 0-array or null:
846MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
847assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
848assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
849// asSpreader and asCollector are approximate inverses:
850for (int n = 0; n <= 2; n++) {
851    for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
852        MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
853        assert( (boolean) equals2.invokeWithArguments("me", "me"));
854        assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
855    }
856}
857MethodHandle caToString = publicLookup()
858  .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
859assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
860MethodHandle caString3 = caToString.asCollector(char[].class, 3);
861assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
862MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
863assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
864     * }</pre></blockquote>
865     * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
866     * @param arrayLength the number of arguments to spread from an incoming array argument
867     * @return a new method handle which spreads its final array argument,
868     *         before calling the original method handle
869     * @throws NullPointerException if {@code arrayType} is a null reference
870     * @throws IllegalArgumentException if {@code arrayType} is not an array type,
871     *         or if target does not have at least
872     *         {@code arrayLength} parameter types,
873     *         or if {@code arrayLength} is negative,
874     *         or if the resulting method handle's type would have
875     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
876     * @throws WrongMethodTypeException if the implied {@code asType} call fails
877     * @see #asCollector
878     */
879    public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
880        return asSpreader(type().parameterCount() - arrayLength, arrayType, arrayLength);
881    }
882
883    /**
884     * Makes an <em>array-spreading</em> method handle, which accepts an array argument at a given position and spreads
885     * its elements as positional arguments in place of the array. The new method handle adapts, as its <i>target</i>,
886     * the current method handle. The type of the adapter will be the same as the type of the target, except that the
887     * {@code arrayLength} parameters of the target's type, starting at the zero-based position {@code spreadArgPos},
888     * are replaced by a single array parameter of type {@code arrayType}.
889     * <p>
890     * This method behaves very much like {@link #asSpreader(Class, int)}, but accepts an additional {@code spreadArgPos}
891     * argument to indicate at which position in the parameter list the spreading should take place.
892     *
893     * @apiNote Example:
894     * <blockquote><pre>{@code
895    MethodHandle compare = LOOKUP.findStatic(Objects.class, "compare", methodType(int.class, Object.class, Object.class, Comparator.class));
896    MethodHandle compare2FromArray = compare.asSpreader(0, Object[].class, 2);
897    Object[] ints = new Object[]{3, 9, 7, 7};
898    Comparator<Integer> cmp = (a, b) -> a - b;
899    assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 0, 2), cmp) < 0);
900    assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 1, 3), cmp) > 0);
901    assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 2, 4), cmp) == 0);
902     * }</pre></blockquote>
903     * @param spreadArgPos the position (zero-based index) in the argument list at which spreading should start.
904     * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
905     * @param arrayLength the number of arguments to spread from an incoming array argument
906     * @return a new method handle which spreads an array argument at a given position,
907     *         before calling the original method handle
908     * @throws NullPointerException if {@code arrayType} is a null reference
909     * @throws IllegalArgumentException if {@code arrayType} is not an array type,
910     *         or if target does not have at least
911     *         {@code arrayLength} parameter types,
912     *         or if {@code arrayLength} is negative,
913     *         or if {@code spreadArgPos} has an illegal value (negative, or together with arrayLength exceeding the
914     *         number of arguments),
915     *         or if the resulting method handle's type would have
916     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
917     * @throws WrongMethodTypeException if the implied {@code asType} call fails
918     *
919     * @see #asSpreader(Class, int)
920     * @since 9
921     */
922    public MethodHandle asSpreader(int spreadArgPos, Class<?> arrayType, int arrayLength) {
923        MethodType postSpreadType = asSpreaderChecks(arrayType, spreadArgPos, arrayLength);
924        MethodHandle afterSpread = this.asType(postSpreadType);
925        BoundMethodHandle mh = afterSpread.rebind();
926        LambdaForm lform = mh.editor().spreadArgumentsForm(1 + spreadArgPos, arrayType, arrayLength);
927        MethodType preSpreadType = postSpreadType.replaceParameterTypes(spreadArgPos, spreadArgPos + arrayLength, arrayType);
928        return mh.copyWith(preSpreadType, lform);
929    }
930
931    /**
932     * See if {@code asSpreader} can be validly called with the given arguments.
933     * Return the type of the method handle call after spreading but before conversions.
934     */
935    private MethodType asSpreaderChecks(Class<?> arrayType, int pos, int arrayLength) {
936        spreadArrayChecks(arrayType, arrayLength);
937        int nargs = type().parameterCount();
938        if (nargs < arrayLength || arrayLength < 0)
939            throw newIllegalArgumentException("bad spread array length");
940        if (pos < 0 || pos + arrayLength > nargs) {
941            throw newIllegalArgumentException("bad spread position");
942        }
943        Class<?> arrayElement = arrayType.getComponentType();
944        MethodType mtype = type();
945        boolean match = true, fail = false;
946        for (int i = pos; i < pos + arrayLength; i++) {
947            Class<?> ptype = mtype.parameterType(i);
948            if (ptype != arrayElement) {
949                match = false;
950                if (!MethodType.canConvert(arrayElement, ptype)) {
951                    fail = true;
952                    break;
953                }
954            }
955        }
956        if (match)  return mtype;
957        MethodType needType = mtype.asSpreaderType(arrayType, pos, arrayLength);
958        if (!fail)  return needType;
959        // elicit an error:
960        this.asType(needType);
961        throw newInternalError("should not return");
962    }
963
964    private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
965        Class<?> arrayElement = arrayType.getComponentType();
966        if (arrayElement == null)
967            throw newIllegalArgumentException("not an array type", arrayType);
968        if ((arrayLength & 0x7F) != arrayLength) {
969            if ((arrayLength & 0xFF) != arrayLength)
970                throw newIllegalArgumentException("array length is not legal", arrayLength);
971            assert(arrayLength >= 128);
972            if (arrayElement == long.class ||
973                arrayElement == double.class)
974                throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
975        }
976    }
977    /**
978      * Adapts this method handle to be {@linkplain #asVarargsCollector variable arity}
979      * if the boolean flag is true, else {@linkplain #asFixedArity fixed arity}.
980      * If the method handle is already of the proper arity mode, it is returned
981      * unchanged.
982      * @apiNote
983      * <p>This method is sometimes useful when adapting a method handle that
984      * may be variable arity, to ensure that the resulting adapter is also
985      * variable arity if and only if the original handle was.  For example,
986      * this code changes the first argument of a handle {@code mh} to {@code int} without
987      * disturbing its variable arity property:
988      * {@code mh.asType(mh.type().changeParameterType(0,int.class))
989      *     .withVarargs(mh.isVarargsCollector())}
990      * @param makeVarargs true if the return method handle should have variable arity behavior
991      * @return a method handle of the same type, with possibly adjusted variable arity behavior
992      * @throws IllegalArgumentException if {@code makeVarargs} is true and
993      *         this method handle does not have a trailing array parameter
994      * @since 9
995      * @see #asVarargsCollector
996      * @see #asFixedArity
997     */
998     public MethodHandle withVarargs(boolean makeVarargs) {
999        if (!makeVarargs) {
1000            return asFixedArity();
1001        } else if (!isVarargsCollector()) {
1002            return asVarargsCollector(type().lastParameterType());
1003        } else {
1004            return this;
1005        }
1006    }
1007
1008    /**
1009     * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
1010     * positional arguments and collects them into an array argument.
1011     * The new method handle adapts, as its <i>target</i>,
1012     * the current method handle.  The type of the adapter will be
1013     * the same as the type of the target, except that a single trailing
1014     * parameter (usually of type {@code arrayType}) is replaced by
1015     * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
1016     * <p>
1017     * If the array type differs from the final argument type on the original target,
1018     * the original target is adapted to take the array type directly,
1019     * as if by a call to {@link #asType asType}.
1020     * <p>
1021     * When called, the adapter replaces its trailing {@code arrayLength}
1022     * arguments by a single new array of type {@code arrayType}, whose elements
1023     * comprise (in order) the replaced arguments.
1024     * Finally the target is called.
1025     * What the target eventually returns is returned unchanged by the adapter.
1026     * <p>
1027     * (The array may also be a shared constant when {@code arrayLength} is zero.)
1028     * <p>
1029     * (<em>Note:</em> The {@code arrayType} is often identical to the last
1030     * parameter type of the original target.
1031     * It is an explicit argument for symmetry with {@code asSpreader}, and also
1032     * to allow the target to use a simple {@code Object} as its last parameter type.)
1033     * <p>
1034     * In order to create a collecting adapter which is not restricted to a particular
1035     * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector}
1036     * or {@link #withVarargs withVarargs} instead.
1037     * <p>
1038     * Here are some examples of array-collecting method handles:
1039     * <blockquote><pre>{@code
1040MethodHandle deepToString = publicLookup()
1041  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
1042assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
1043MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
1044assertEquals(methodType(String.class, Object.class), ts1.type());
1045//assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
1046assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
1047// arrayType can be a subtype of Object[]
1048MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
1049assertEquals(methodType(String.class, String.class, String.class), ts2.type());
1050assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
1051MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
1052assertEquals("[]", (String) ts0.invokeExact());
1053// collectors can be nested, Lisp-style
1054MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
1055assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
1056// arrayType can be any primitive array type
1057MethodHandle bytesToString = publicLookup()
1058  .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
1059  .asCollector(byte[].class, 3);
1060assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
1061MethodHandle longsToString = publicLookup()
1062  .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
1063  .asCollector(long[].class, 1);
1064assertEquals("[123]", (String) longsToString.invokeExact((long)123));
1065     * }</pre></blockquote>
1066     * <p>
1067     * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
1068     * variable-arity method handle}, even if the original target method handle was.
1069     * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1070     * @param arrayLength the number of arguments to collect into a new array argument
1071     * @return a new method handle which collects some trailing argument
1072     *         into an array, before calling the original method handle
1073     * @throws NullPointerException if {@code arrayType} is a null reference
1074     * @throws IllegalArgumentException if {@code arrayType} is not an array type
1075     *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
1076     *         or {@code arrayLength} is not a legal array size,
1077     *         or the resulting method handle's type would have
1078     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
1079     * @throws WrongMethodTypeException if the implied {@code asType} call fails
1080     * @see #asSpreader
1081     * @see #asVarargsCollector
1082     */
1083    public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1084        return asCollector(type().parameterCount() - 1, arrayType, arrayLength);
1085    }
1086
1087    /**
1088     * Makes an <em>array-collecting</em> method handle, which accepts a given number of positional arguments starting
1089     * at a given position, and collects them into an array argument. The new method handle adapts, as its
1090     * <i>target</i>, the current method handle. The type of the adapter will be the same as the type of the target,
1091     * except that the parameter at the position indicated by {@code collectArgPos} (usually of type {@code arrayType})
1092     * is replaced by {@code arrayLength} parameters whose type is element type of {@code arrayType}.
1093     * <p>
1094     * This method behaves very much like {@link #asCollector(Class, int)}, but differs in that its {@code
1095     * collectArgPos} argument indicates at which position in the parameter list arguments should be collected. This
1096     * index is zero-based.
1097     *
1098     * @apiNote Examples:
1099     * <blockquote><pre>{@code
1100    StringWriter swr = new StringWriter();
1101    MethodHandle swWrite = LOOKUP.findVirtual(StringWriter.class, "write", methodType(void.class, char[].class, int.class, int.class)).bindTo(swr);
1102    MethodHandle swWrite4 = swWrite.asCollector(0, char[].class, 4);
1103    swWrite4.invoke('A', 'B', 'C', 'D', 1, 2);
1104    assertEquals("BC", swr.toString());
1105    swWrite4.invoke('P', 'Q', 'R', 'S', 0, 4);
1106    assertEquals("BCPQRS", swr.toString());
1107    swWrite4.invoke('W', 'X', 'Y', 'Z', 3, 1);
1108    assertEquals("BCPQRSZ", swr.toString());
1109     * }</pre></blockquote>
1110     * <p>
1111     * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
1112     * variable-arity method handle}, even if the original target method handle was.
1113     * @param collectArgPos the zero-based position in the parameter list at which to start collecting.
1114     * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1115     * @param arrayLength the number of arguments to collect into a new array argument
1116     * @return a new method handle which collects some arguments
1117     *         into an array, before calling the original method handle
1118     * @throws NullPointerException if {@code arrayType} is a null reference
1119     * @throws IllegalArgumentException if {@code arrayType} is not an array type
1120     *         or {@code arrayType} is not assignable to this method handle's array parameter type,
1121     *         or {@code arrayLength} is not a legal array size,
1122     *         or {@code collectArgPos} has an illegal value (negative, or greater than the number of arguments),
1123     *         or the resulting method handle's type would have
1124     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
1125     * @throws WrongMethodTypeException if the implied {@code asType} call fails
1126     *
1127     * @see #asCollector(Class, int)
1128     * @since 9
1129     */
1130    public MethodHandle asCollector(int collectArgPos, Class<?> arrayType, int arrayLength) {
1131        asCollectorChecks(arrayType, collectArgPos, arrayLength);
1132        BoundMethodHandle mh = rebind();
1133        MethodType resultType = type().asCollectorType(arrayType, collectArgPos, arrayLength);
1134        MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1135        LambdaForm lform = mh.editor().collectArgumentArrayForm(1 + collectArgPos, newArray);
1136        if (lform != null) {
1137            return mh.copyWith(resultType, lform);
1138        }
1139        lform = mh.editor().collectArgumentsForm(1 + collectArgPos, newArray.type().basicType());
1140        return mh.copyWithExtendL(resultType, lform, newArray);
1141    }
1142
1143    /**
1144     * See if {@code asCollector} can be validly called with the given arguments.
1145     * Return false if the last parameter is not an exact match to arrayType.
1146     */
1147    /*non-public*/ boolean asCollectorChecks(Class<?> arrayType, int pos, int arrayLength) {
1148        spreadArrayChecks(arrayType, arrayLength);
1149        int nargs = type().parameterCount();
1150        if (pos < 0 || pos >= nargs) {
1151            throw newIllegalArgumentException("bad collect position");
1152        }
1153        if (nargs != 0) {
1154            Class<?> param = type().parameterType(pos);
1155            if (param == arrayType)  return true;
1156            if (param.isAssignableFrom(arrayType))  return false;
1157        }
1158        throw newIllegalArgumentException("array type not assignable to argument", this, arrayType);
1159    }
1160
1161    /**
1162     * Makes a <em>variable arity</em> adapter which is able to accept
1163     * any number of trailing positional arguments and collect them
1164     * into an array argument.
1165     * <p>
1166     * The type and behavior of the adapter will be the same as
1167     * the type and behavior of the target, except that certain
1168     * {@code invoke} and {@code asType} requests can lead to
1169     * trailing positional arguments being collected into target's
1170     * trailing parameter.
1171     * Also, the last parameter type of the adapter will be
1172     * {@code arrayType}, even if the target has a different
1173     * last parameter type.
1174     * <p>
1175     * This transformation may return {@code this} if the method handle is
1176     * already of variable arity and its trailing parameter type
1177     * is identical to {@code arrayType}.
1178     * <p>
1179     * When called with {@link #invokeExact invokeExact}, the adapter invokes
1180     * the target with no argument changes.
1181     * (<em>Note:</em> This behavior is different from a
1182     * {@linkplain #asCollector fixed arity collector},
1183     * since it accepts a whole array of indeterminate length,
1184     * rather than a fixed number of arguments.)
1185     * <p>
1186     * When called with plain, inexact {@link #invoke invoke}, if the caller
1187     * type is the same as the adapter, the adapter invokes the target as with
1188     * {@code invokeExact}.
1189     * (This is the normal behavior for {@code invoke} when types match.)
1190     * <p>
1191     * Otherwise, if the caller and adapter arity are the same, and the
1192     * trailing parameter type of the caller is a reference type identical to
1193     * or assignable to the trailing parameter type of the adapter,
1194     * the arguments and return values are converted pairwise,
1195     * as if by {@link #asType asType} on a fixed arity
1196     * method handle.
1197     * <p>
1198     * Otherwise, the arities differ, or the adapter's trailing parameter
1199     * type is not assignable from the corresponding caller type.
1200     * In this case, the adapter replaces all trailing arguments from
1201     * the original trailing argument position onward, by
1202     * a new array of type {@code arrayType}, whose elements
1203     * comprise (in order) the replaced arguments.
1204     * <p>
1205     * The caller type must provides as least enough arguments,
1206     * and of the correct type, to satisfy the target's requirement for
1207     * positional arguments before the trailing array argument.
1208     * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
1209     * where {@code N} is the arity of the target.
1210     * Also, there must exist conversions from the incoming arguments
1211     * to the target's arguments.
1212     * As with other uses of plain {@code invoke}, if these basic
1213     * requirements are not fulfilled, a {@code WrongMethodTypeException}
1214     * may be thrown.
1215     * <p>
1216     * In all cases, what the target eventually returns is returned unchanged by the adapter.
1217     * <p>
1218     * In the final case, it is exactly as if the target method handle were
1219     * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
1220     * to the arity required by the caller type.
1221     * (As with {@code asCollector}, if the array length is zero,
1222     * a shared constant may be used instead of a new array.
1223     * If the implied call to {@code asCollector} would throw
1224     * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
1225     * the call to the variable arity adapter must throw
1226     * {@code WrongMethodTypeException}.)
1227     * <p>
1228     * The behavior of {@link #asType asType} is also specialized for
1229     * variable arity adapters, to maintain the invariant that
1230     * plain, inexact {@code invoke} is always equivalent to an {@code asType}
1231     * call to adjust the target type, followed by {@code invokeExact}.
1232     * Therefore, a variable arity adapter responds
1233     * to an {@code asType} request by building a fixed arity collector,
1234     * if and only if the adapter and requested type differ either
1235     * in arity or trailing argument type.
1236     * The resulting fixed arity collector has its type further adjusted
1237     * (if necessary) to the requested type by pairwise conversion,
1238     * as if by another application of {@code asType}.
1239     * <p>
1240     * When a method handle is obtained by executing an {@code ldc} instruction
1241     * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
1242     * as a variable arity method (with the modifier bit {@code 0x0080}),
1243     * the method handle will accept multiple arities, as if the method handle
1244     * constant were created by means of a call to {@code asVarargsCollector}.
1245     * <p>
1246     * In order to create a collecting adapter which collects a predetermined
1247     * number of arguments, and whose type reflects this predetermined number,
1248     * use {@link #asCollector asCollector} instead.
1249     * <p>
1250     * No method handle transformations produce new method handles with
1251     * variable arity, unless they are documented as doing so.
1252     * Therefore, besides {@code asVarargsCollector} and {@code withVarargs},
1253     * all methods in {@code MethodHandle} and {@code MethodHandles}
1254     * will return a method handle with fixed arity,
1255     * except in the cases where they are specified to return their original
1256     * operand (e.g., {@code asType} of the method handle's own type).
1257     * <p>
1258     * Calling {@code asVarargsCollector} on a method handle which is already
1259     * of variable arity will produce a method handle with the same type and behavior.
1260     * It may (or may not) return the original variable arity method handle.
1261     * <p>
1262     * Here is an example, of a list-making variable arity method handle:
1263     * <blockquote><pre>{@code
1264MethodHandle deepToString = publicLookup()
1265  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
1266MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
1267assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
1268assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
1269assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
1270assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
1271// findStatic of Arrays.asList(...) produces a variable arity method handle:
1272MethodHandle asList = publicLookup()
1273  .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
1274assertEquals(methodType(List.class, Object[].class), asList.type());
1275assert(asList.isVarargsCollector());
1276assertEquals("[]", asList.invoke().toString());
1277assertEquals("[1]", asList.invoke(1).toString());
1278assertEquals("[two, too]", asList.invoke("two", "too").toString());
1279String[] argv = { "three", "thee", "tee" };
1280assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
1281assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
1282List ls = (List) asList.invoke((Object)argv);
1283assertEquals(1, ls.size());
1284assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
1285     * }</pre></blockquote>
1286     * <p style="font-size:smaller;">
1287     * <em>Discussion:</em>
1288     * These rules are designed as a dynamically-typed variation
1289     * of the Java rules for variable arity methods.
1290     * In both cases, callers to a variable arity method or method handle
1291     * can either pass zero or more positional arguments, or else pass
1292     * pre-collected arrays of any length.  Users should be aware of the
1293     * special role of the final argument, and of the effect of a
1294     * type match on that final argument, which determines whether
1295     * or not a single trailing argument is interpreted as a whole
1296     * array or a single element of an array to be collected.
1297     * Note that the dynamic type of the trailing argument has no
1298     * effect on this decision, only a comparison between the symbolic
1299     * type descriptor of the call site and the type descriptor of the method handle.)
1300     *
1301     * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1302     * @return a new method handle which can collect any number of trailing arguments
1303     *         into an array, before calling the original method handle
1304     * @throws NullPointerException if {@code arrayType} is a null reference
1305     * @throws IllegalArgumentException if {@code arrayType} is not an array type
1306     *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
1307     * @see #asCollector
1308     * @see #isVarargsCollector
1309     * @see #withVarargs
1310     * @see #asFixedArity
1311     */
1312    public MethodHandle asVarargsCollector(Class<?> arrayType) {
1313        Objects.requireNonNull(arrayType);
1314        boolean lastMatch = asCollectorChecks(arrayType, type().parameterCount() - 1, 0);
1315        if (isVarargsCollector() && lastMatch)
1316            return this;
1317        return MethodHandleImpl.makeVarargsCollector(this, arrayType);
1318    }
1319
1320    /**
1321     * Determines if this method handle
1322     * supports {@linkplain #asVarargsCollector variable arity} calls.
1323     * Such method handles arise from the following sources:
1324     * <ul>
1325     * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
1326     * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
1327     *     which resolves to a variable arity Java method or constructor
1328     * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
1329     *     which resolves to a variable arity Java method or constructor
1330     * </ul>
1331     * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
1332     * @see #asVarargsCollector
1333     * @see #asFixedArity
1334     */
1335    public boolean isVarargsCollector() {
1336        return false;
1337    }
1338
1339    /**
1340     * Makes a <em>fixed arity</em> method handle which is otherwise
1341     * equivalent to the current method handle.
1342     * <p>
1343     * If the current method handle is not of
1344     * {@linkplain #asVarargsCollector variable arity},
1345     * the current method handle is returned.
1346     * This is true even if the current method handle
1347     * could not be a valid input to {@code asVarargsCollector}.
1348     * <p>
1349     * Otherwise, the resulting fixed-arity method handle has the same
1350     * type and behavior of the current method handle,
1351     * except that {@link #isVarargsCollector isVarargsCollector}
1352     * will be false.
1353     * The fixed-arity method handle may (or may not) be the
1354     * a previous argument to {@code asVarargsCollector}.
1355     * <p>
1356     * Here is an example, of a list-making variable arity method handle:
1357     * <blockquote><pre>{@code
1358MethodHandle asListVar = publicLookup()
1359  .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
1360  .asVarargsCollector(Object[].class);
1361MethodHandle asListFix = asListVar.asFixedArity();
1362assertEquals("[1]", asListVar.invoke(1).toString());
1363Exception caught = null;
1364try { asListFix.invoke((Object)1); }
1365catch (Exception ex) { caught = ex; }
1366assert(caught instanceof ClassCastException);
1367assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
1368try { asListFix.invoke("two", "too"); }
1369catch (Exception ex) { caught = ex; }
1370assert(caught instanceof WrongMethodTypeException);
1371Object[] argv = { "three", "thee", "tee" };
1372assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
1373assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
1374assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
1375assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
1376     * }</pre></blockquote>
1377     *
1378     * @return a new method handle which accepts only a fixed number of arguments
1379     * @see #asVarargsCollector
1380     * @see #isVarargsCollector
1381     * @see #withVarargs
1382     */
1383    public MethodHandle asFixedArity() {
1384        assert(!isVarargsCollector());
1385        return this;
1386    }
1387
1388    /**
1389     * Binds a value {@code x} to the first argument of a method handle, without invoking it.
1390     * The new method handle adapts, as its <i>target</i>,
1391     * the current method handle by binding it to the given argument.
1392     * The type of the bound handle will be
1393     * the same as the type of the target, except that a single leading
1394     * reference parameter will be omitted.
1395     * <p>
1396     * When called, the bound handle inserts the given value {@code x}
1397     * as a new leading argument to the target.  The other arguments are
1398     * also passed unchanged.
1399     * What the target eventually returns is returned unchanged by the bound handle.
1400     * <p>
1401     * The reference {@code x} must be convertible to the first parameter
1402     * type of the target.
1403     * <p>
1404     * <em>Note:</em>  Because method handles are immutable, the target method handle
1405     * retains its original type and behavior.
1406     * <p>
1407     * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
1408     * variable-arity method handle}, even if the original target method handle was.
1409     * @param x  the value to bind to the first argument of the target
1410     * @return a new method handle which prepends the given value to the incoming
1411     *         argument list, before calling the original method handle
1412     * @throws IllegalArgumentException if the target does not have a
1413     *         leading parameter type that is a reference type
1414     * @throws ClassCastException if {@code x} cannot be converted
1415     *         to the leading parameter type of the target
1416     * @see MethodHandles#insertArguments
1417     */
1418    public MethodHandle bindTo(Object x) {
1419        x = type.leadingReferenceParameter().cast(x);  // throw CCE if needed
1420        return bindArgumentL(0, x);
1421    }
1422
1423    /**
1424     * Returns a string representation of the method handle,
1425     * starting with the string {@code "MethodHandle"} and
1426     * ending with the string representation of the method handle's type.
1427     * In other words, this method returns a string equal to the value of:
1428     * <blockquote><pre>{@code
1429     * "MethodHandle" + type().toString()
1430     * }</pre></blockquote>
1431     * <p>
1432     * (<em>Note:</em>  Future releases of this API may add further information
1433     * to the string representation.
1434     * Therefore, the present syntax should not be parsed by applications.)
1435     *
1436     * @return a string representation of the method handle
1437     */
1438    @Override
1439    public String toString() {
1440        if (DEBUG_METHOD_HANDLE_NAMES)  return "MethodHandle"+debugString();
1441        return standardString();
1442    }
1443    String standardString() {
1444        return "MethodHandle"+type;
1445    }
1446    /** Return a string with a several lines describing the method handle structure.
1447     *  This string would be suitable for display in an IDE debugger.
1448     */
1449    String debugString() {
1450        return type+" : "+internalForm()+internalProperties();
1451    }
1452
1453    //// Implementation methods.
1454    //// Sub-classes can override these default implementations.
1455    //// All these methods assume arguments are already validated.
1456
1457    // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
1458
1459    BoundMethodHandle bindArgumentL(int pos, Object value) {
1460        return rebind().bindArgumentL(pos, value);
1461    }
1462
1463    /*non-public*/
1464    MethodHandle setVarargs(MemberName member) throws IllegalAccessException {
1465        if (!member.isVarargs())  return this;
1466        try {
1467            return this.withVarargs(true);
1468        } catch (IllegalArgumentException ex) {
1469            throw member.makeAccessException("cannot make variable arity", null);
1470        }
1471    }
1472
1473    /*non-public*/
1474    MethodHandle viewAsType(MethodType newType, boolean strict) {
1475        // No actual conversions, just a new view of the same method.
1476        // Note that this operation must not produce a DirectMethodHandle,
1477        // because retyped DMHs, like any transformed MHs,
1478        // cannot be cracked into MethodHandleInfo.
1479        assert viewAsTypeChecks(newType, strict);
1480        BoundMethodHandle mh = rebind();
1481        return mh.copyWith(newType, mh.form);
1482    }
1483
1484    /*non-public*/
1485    boolean viewAsTypeChecks(MethodType newType, boolean strict) {
1486        if (strict) {
1487            assert(type().isViewableAs(newType, true))
1488                : Arrays.asList(this, newType);
1489        } else {
1490            assert(type().basicType().isViewableAs(newType.basicType(), true))
1491                : Arrays.asList(this, newType);
1492        }
1493        return true;
1494    }
1495
1496    // Decoding
1497
1498    /*non-public*/
1499    LambdaForm internalForm() {
1500        return form;
1501    }
1502
1503    /*non-public*/
1504    MemberName internalMemberName() {
1505        return null;  // DMH returns DMH.member
1506    }
1507
1508    /*non-public*/
1509    Class<?> internalCallerClass() {
1510        return null;  // caller-bound MH for @CallerSensitive method returns caller
1511    }
1512
1513    /*non-public*/
1514    MethodHandleImpl.Intrinsic intrinsicName() {
1515        // no special intrinsic meaning to most MHs
1516        return MethodHandleImpl.Intrinsic.NONE;
1517    }
1518
1519    /*non-public*/
1520    MethodHandle withInternalMemberName(MemberName member, boolean isInvokeSpecial) {
1521        if (member != null) {
1522            return MethodHandleImpl.makeWrappedMember(this, member, isInvokeSpecial);
1523        } else if (internalMemberName() == null) {
1524            // The required internaMemberName is null, and this MH (like most) doesn't have one.
1525            return this;
1526        } else {
1527            // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH.
1528            MethodHandle result = rebind();
1529            assert (result.internalMemberName() == null);
1530            return result;
1531        }
1532    }
1533
1534    /*non-public*/
1535    boolean isInvokeSpecial() {
1536        return false;  // DMH.Special returns true
1537    }
1538
1539    /*non-public*/
1540    Object internalValues() {
1541        return null;
1542    }
1543
1544    /*non-public*/
1545    Object internalProperties() {
1546        // Override to something to follow this.form, like "\n& FOO=bar"
1547        return "";
1548    }
1549
1550    //// Method handle implementation methods.
1551    //// Sub-classes can override these default implementations.
1552    //// All these methods assume arguments are already validated.
1553
1554    /*non-public*/
1555    abstract MethodHandle copyWith(MethodType mt, LambdaForm lf);
1556
1557    /** Require this method handle to be a BMH, or else replace it with a "wrapper" BMH.
1558     *  Many transforms are implemented only for BMHs.
1559     *  @return a behaviorally equivalent BMH
1560     */
1561    abstract BoundMethodHandle rebind();
1562
1563    /**
1564     * Replace the old lambda form of this method handle with a new one.
1565     * The new one must be functionally equivalent to the old one.
1566     * Threads may continue running the old form indefinitely,
1567     * but it is likely that the new one will be preferred for new executions.
1568     * Use with discretion.
1569     */
1570    /*non-public*/
1571    void updateForm(LambdaForm newForm) {
1572        assert(newForm.customized == null || newForm.customized == this);
1573        if (form == newForm)  return;
1574        newForm.prepare();  // as in MethodHandle.<init>
1575        UNSAFE.putObject(this, FORM_OFFSET, newForm);
1576        UNSAFE.fullFence();
1577    }
1578
1579    /** Craft a LambdaForm customized for this particular MethodHandle */
1580    /*non-public*/
1581    void customize() {
1582        if (form.customized == null) {
1583            LambdaForm newForm = form.customize(this);
1584            updateForm(newForm);
1585        } else {
1586            assert(form.customized == this);
1587        }
1588    }
1589
1590    private static final long FORM_OFFSET
1591            = UNSAFE.objectFieldOffset(MethodHandle.class, "form");
1592}
1593