1/*
2 * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang;
27
28import java.io.ObjectStreamField;
29import java.io.UnsupportedEncodingException;
30import java.lang.annotation.Native;
31import java.nio.charset.Charset;
32import java.util.ArrayList;
33import java.util.Arrays;
34import java.util.Comparator;
35import java.util.Formatter;
36import java.util.Locale;
37import java.util.Objects;
38import java.util.Spliterator;
39import java.util.StringJoiner;
40import java.util.regex.Matcher;
41import java.util.regex.Pattern;
42import java.util.regex.PatternSyntaxException;
43import java.util.stream.IntStream;
44import java.util.stream.StreamSupport;
45import jdk.internal.HotSpotIntrinsicCandidate;
46import jdk.internal.vm.annotation.Stable;
47
48/**
49 * The {@code String} class represents character strings. All
50 * string literals in Java programs, such as {@code "abc"}, are
51 * implemented as instances of this class.
52 * <p>
53 * Strings are constant; their values cannot be changed after they
54 * are created. String buffers support mutable strings.
55 * Because String objects are immutable they can be shared. For example:
56 * <blockquote><pre>
57 *     String str = "abc";
58 * </pre></blockquote><p>
59 * is equivalent to:
60 * <blockquote><pre>
61 *     char data[] = {'a', 'b', 'c'};
62 *     String str = new String(data);
63 * </pre></blockquote><p>
64 * Here are some more examples of how strings can be used:
65 * <blockquote><pre>
66 *     System.out.println("abc");
67 *     String cde = "cde";
68 *     System.out.println("abc" + cde);
69 *     String c = "abc".substring(2,3);
70 *     String d = cde.substring(1, 2);
71 * </pre></blockquote>
72 * <p>
73 * The class {@code String} includes methods for examining
74 * individual characters of the sequence, for comparing strings, for
75 * searching strings, for extracting substrings, and for creating a
76 * copy of a string with all characters translated to uppercase or to
77 * lowercase. Case mapping is based on the Unicode Standard version
78 * specified by the {@link java.lang.Character Character} class.
79 * <p>
80 * The Java language provides special support for the string
81 * concatenation operator (&nbsp;+&nbsp;), and for conversion of
82 * other objects to strings. For additional information on string
83 * concatenation and conversion, see <i>The Java&trade; Language Specification</i>.
84 *
85 * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
86 * or method in this class will cause a {@link NullPointerException} to be
87 * thrown.
88 *
89 * <p>A {@code String} represents a string in the UTF-16 format
90 * in which <em>supplementary characters</em> are represented by <em>surrogate
91 * pairs</em> (see the section <a href="Character.html#unicode">Unicode
92 * Character Representations</a> in the {@code Character} class for
93 * more information).
94 * Index values refer to {@code char} code units, so a supplementary
95 * character uses two positions in a {@code String}.
96 * <p>The {@code String} class provides methods for dealing with
97 * Unicode code points (i.e., characters), in addition to those for
98 * dealing with Unicode code units (i.e., {@code char} values).
99 *
100 * <p>Unless otherwise noted, methods for comparing Strings do not take locale
101 * into account.  The {@link java.text.Collator} class provides methods for
102 * finer-grain, locale-sensitive String comparison.
103 *
104 * @implNote The implementation of the string concatenation operator is left to
105 * the discretion of a Java compiler, as long as the compiler ultimately conforms
106 * to <i>The Java&trade; Language Specification</i>. For example, the {@code javac} compiler
107 * may implement the operator with {@code StringBuffer}, {@code StringBuilder},
108 * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
109 * implementation of string conversion is typically through the method {@code toString},
110 * defined by {@code Object} and inherited by all classes in Java.
111 *
112 * @author  Lee Boynton
113 * @author  Arthur van Hoff
114 * @author  Martin Buchholz
115 * @author  Ulf Zibis
116 * @see     java.lang.Object#toString()
117 * @see     java.lang.StringBuffer
118 * @see     java.lang.StringBuilder
119 * @see     java.nio.charset.Charset
120 * @since   1.0
121 * @jls     15.18.1 String Concatenation Operator +
122 */
123
124public final class String
125    implements java.io.Serializable, Comparable<String>, CharSequence {
126
127    /**
128     * The value is used for character storage.
129     *
130     * @implNote This field is trusted by the VM, and is a subject to
131     * constant folding if String instance is constant. Overwriting this
132     * field after construction will cause problems.
133     *
134     * Additionally, it is marked with {@link Stable} to trust the contents
135     * of the array. No other facility in JDK provides this functionality (yet).
136     * {@link Stable} is safe here, because value is never null.
137     */
138    @Stable
139    private final byte[] value;
140
141    /**
142     * The identifier of the encoding used to encode the bytes in
143     * {@code value}. The supported values in this implementation are
144     *
145     * LATIN1
146     * UTF16
147     *
148     * @implNote This field is trusted by the VM, and is a subject to
149     * constant folding if String instance is constant. Overwriting this
150     * field after construction will cause problems.
151     */
152    private final byte coder;
153
154    /** Cache the hash code for the string */
155    private int hash; // Default to 0
156
157    /** use serialVersionUID from JDK 1.0.2 for interoperability */
158    private static final long serialVersionUID = -6849794470754667710L;
159
160    /**
161     * If String compaction is disabled, the bytes in {@code value} are
162     * always encoded in UTF16.
163     *
164     * For methods with several possible implementation paths, when String
165     * compaction is disabled, only one code path is taken.
166     *
167     * The instance field value is generally opaque to optimizing JIT
168     * compilers. Therefore, in performance-sensitive place, an explicit
169     * check of the static boolean {@code COMPACT_STRINGS} is done first
170     * before checking the {@code coder} field since the static boolean
171     * {@code COMPACT_STRINGS} would be constant folded away by an
172     * optimizing JIT compiler. The idioms for these cases are as follows.
173     *
174     * For code such as:
175     *
176     *    if (coder == LATIN1) { ... }
177     *
178     * can be written more optimally as
179     *
180     *    if (coder() == LATIN1) { ... }
181     *
182     * or:
183     *
184     *    if (COMPACT_STRINGS && coder == LATIN1) { ... }
185     *
186     * An optimizing JIT compiler can fold the above conditional as:
187     *
188     *    COMPACT_STRINGS == true  => if (coder == LATIN1) { ... }
189     *    COMPACT_STRINGS == false => if (false)           { ... }
190     *
191     * @implNote
192     * The actual value for this field is injected by JVM. The static
193     * initialization block is used to set the value here to communicate
194     * that this static final field is not statically foldable, and to
195     * avoid any possible circular dependency during vm initialization.
196     */
197    static final boolean COMPACT_STRINGS;
198
199    static {
200        COMPACT_STRINGS = true;
201    }
202
203    /**
204     * Class String is special cased within the Serialization Stream Protocol.
205     *
206     * A String instance is written into an ObjectOutputStream according to
207     * <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements">
208     * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
209     */
210    private static final ObjectStreamField[] serialPersistentFields =
211        new ObjectStreamField[0];
212
213    /**
214     * Initializes a newly created {@code String} object so that it represents
215     * an empty character sequence.  Note that use of this constructor is
216     * unnecessary since Strings are immutable.
217     */
218    public String() {
219        this.value = "".value;
220        this.coder = "".coder;
221    }
222
223    /**
224     * Initializes a newly created {@code String} object so that it represents
225     * the same sequence of characters as the argument; in other words, the
226     * newly created string is a copy of the argument string. Unless an
227     * explicit copy of {@code original} is needed, use of this constructor is
228     * unnecessary since Strings are immutable.
229     *
230     * @param  original
231     *         A {@code String}
232     */
233    @HotSpotIntrinsicCandidate
234    public String(String original) {
235        this.value = original.value;
236        this.coder = original.coder;
237        this.hash = original.hash;
238    }
239
240    /**
241     * Allocates a new {@code String} so that it represents the sequence of
242     * characters currently contained in the character array argument. The
243     * contents of the character array are copied; subsequent modification of
244     * the character array does not affect the newly created string.
245     *
246     * @param  value
247     *         The initial value of the string
248     */
249    public String(char value[]) {
250        this(value, 0, value.length, null);
251    }
252
253    /**
254     * Allocates a new {@code String} that contains characters from a subarray
255     * of the character array argument. The {@code offset} argument is the
256     * index of the first character of the subarray and the {@code count}
257     * argument specifies the length of the subarray. The contents of the
258     * subarray are copied; subsequent modification of the character array does
259     * not affect the newly created string.
260     *
261     * @param  value
262     *         Array that is the source of characters
263     *
264     * @param  offset
265     *         The initial offset
266     *
267     * @param  count
268     *         The length
269     *
270     * @throws  IndexOutOfBoundsException
271     *          If {@code offset} is negative, {@code count} is negative, or
272     *          {@code offset} is greater than {@code value.length - count}
273     */
274    public String(char value[], int offset, int count) {
275        this(value, offset, count, rangeCheck(value, offset, count));
276    }
277
278    private static Void rangeCheck(char[] value, int offset, int count) {
279        checkBoundsOffCount(offset, count, value.length);
280        return null;
281    }
282
283    /**
284     * Allocates a new {@code String} that contains characters from a subarray
285     * of the <a href="Character.html#unicode">Unicode code point</a> array
286     * argument.  The {@code offset} argument is the index of the first code
287     * point of the subarray and the {@code count} argument specifies the
288     * length of the subarray.  The contents of the subarray are converted to
289     * {@code char}s; subsequent modification of the {@code int} array does not
290     * affect the newly created string.
291     *
292     * @param  codePoints
293     *         Array that is the source of Unicode code points
294     *
295     * @param  offset
296     *         The initial offset
297     *
298     * @param  count
299     *         The length
300     *
301     * @throws  IllegalArgumentException
302     *          If any invalid Unicode code point is found in {@code
303     *          codePoints}
304     *
305     * @throws  IndexOutOfBoundsException
306     *          If {@code offset} is negative, {@code count} is negative, or
307     *          {@code offset} is greater than {@code codePoints.length - count}
308     *
309     * @since  1.5
310     */
311    public String(int[] codePoints, int offset, int count) {
312        checkBoundsOffCount(offset, count, codePoints.length);
313        if (count == 0) {
314            this.value = "".value;
315            this.coder = "".coder;
316            return;
317        }
318        if (COMPACT_STRINGS) {
319            byte[] val = StringLatin1.toBytes(codePoints, offset, count);
320            if (val != null) {
321                this.coder = LATIN1;
322                this.value = val;
323                return;
324            }
325        }
326        this.coder = UTF16;
327        this.value = StringUTF16.toBytes(codePoints, offset, count);
328    }
329
330    /**
331     * Allocates a new {@code String} constructed from a subarray of an array
332     * of 8-bit integer values.
333     *
334     * <p> The {@code offset} argument is the index of the first byte of the
335     * subarray, and the {@code count} argument specifies the length of the
336     * subarray.
337     *
338     * <p> Each {@code byte} in the subarray is converted to a {@code char} as
339     * specified in the {@link #String(byte[],int) String(byte[],int)} constructor.
340     *
341     * @deprecated This method does not properly convert bytes into characters.
342     * As of JDK&nbsp;1.1, the preferred way to do this is via the
343     * {@code String} constructors that take a {@link
344     * java.nio.charset.Charset}, charset name, or that use the platform's
345     * default charset.
346     *
347     * @param  ascii
348     *         The bytes to be converted to characters
349     *
350     * @param  hibyte
351     *         The top 8 bits of each 16-bit Unicode code unit
352     *
353     * @param  offset
354     *         The initial offset
355     * @param  count
356     *         The length
357     *
358     * @throws  IndexOutOfBoundsException
359     *          If {@code offset} is negative, {@code count} is negative, or
360     *          {@code offset} is greater than {@code ascii.length - count}
361     *
362     * @see  #String(byte[], int)
363     * @see  #String(byte[], int, int, java.lang.String)
364     * @see  #String(byte[], int, int, java.nio.charset.Charset)
365     * @see  #String(byte[], int, int)
366     * @see  #String(byte[], java.lang.String)
367     * @see  #String(byte[], java.nio.charset.Charset)
368     * @see  #String(byte[])
369     */
370    @Deprecated(since="1.1")
371    public String(byte ascii[], int hibyte, int offset, int count) {
372        checkBoundsOffCount(offset, count, ascii.length);
373        if (count == 0) {
374            this.value = "".value;
375            this.coder = "".coder;
376            return;
377        }
378        if (COMPACT_STRINGS && (byte)hibyte == 0) {
379            this.value = Arrays.copyOfRange(ascii, offset, offset + count);
380            this.coder = LATIN1;
381        } else {
382            hibyte <<= 8;
383            byte[] val = StringUTF16.newBytesFor(count);
384            for (int i = 0; i < count; i++) {
385                StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
386            }
387            this.value = val;
388            this.coder = UTF16;
389        }
390    }
391
392    /**
393     * Allocates a new {@code String} containing characters constructed from
394     * an array of 8-bit integer values. Each character <i>c</i> in the
395     * resulting string is constructed from the corresponding component
396     * <i>b</i> in the byte array such that:
397     *
398     * <blockquote><pre>
399     *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
400     *                         | (<b><i>b</i></b> &amp; 0xff))
401     * </pre></blockquote>
402     *
403     * @deprecated  This method does not properly convert bytes into
404     * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
405     * {@code String} constructors that take a {@link
406     * java.nio.charset.Charset}, charset name, or that use the platform's
407     * default charset.
408     *
409     * @param  ascii
410     *         The bytes to be converted to characters
411     *
412     * @param  hibyte
413     *         The top 8 bits of each 16-bit Unicode code unit
414     *
415     * @see  #String(byte[], int, int, java.lang.String)
416     * @see  #String(byte[], int, int, java.nio.charset.Charset)
417     * @see  #String(byte[], int, int)
418     * @see  #String(byte[], java.lang.String)
419     * @see  #String(byte[], java.nio.charset.Charset)
420     * @see  #String(byte[])
421     */
422    @Deprecated(since="1.1")
423    public String(byte ascii[], int hibyte) {
424        this(ascii, hibyte, 0, ascii.length);
425    }
426
427    /**
428     * Constructs a new {@code String} by decoding the specified subarray of
429     * bytes using the specified charset.  The length of the new {@code String}
430     * is a function of the charset, and hence may not be equal to the length
431     * of the subarray.
432     *
433     * <p> The behavior of this constructor when the given bytes are not valid
434     * in the given charset is unspecified.  The {@link
435     * java.nio.charset.CharsetDecoder} class should be used when more control
436     * over the decoding process is required.
437     *
438     * @param  bytes
439     *         The bytes to be decoded into characters
440     *
441     * @param  offset
442     *         The index of the first byte to decode
443     *
444     * @param  length
445     *         The number of bytes to decode
446
447     * @param  charsetName
448     *         The name of a supported {@linkplain java.nio.charset.Charset
449     *         charset}
450     *
451     * @throws  UnsupportedEncodingException
452     *          If the named charset is not supported
453     *
454     * @throws  IndexOutOfBoundsException
455     *          If {@code offset} is negative, {@code length} is negative, or
456     *          {@code offset} is greater than {@code bytes.length - length}
457     *
458     * @since  1.1
459     */
460    public String(byte bytes[], int offset, int length, String charsetName)
461            throws UnsupportedEncodingException {
462        if (charsetName == null)
463            throw new NullPointerException("charsetName");
464        checkBoundsOffCount(offset, length, bytes.length);
465        StringCoding.Result ret =
466            StringCoding.decode(charsetName, bytes, offset, length);
467        this.value = ret.value;
468        this.coder = ret.coder;
469    }
470
471    /**
472     * Constructs a new {@code String} by decoding the specified subarray of
473     * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
474     * The length of the new {@code String} is a function of the charset, and
475     * hence may not be equal to the length of the subarray.
476     *
477     * <p> This method always replaces malformed-input and unmappable-character
478     * sequences with this charset's default replacement string.  The {@link
479     * java.nio.charset.CharsetDecoder} class should be used when more control
480     * over the decoding process is required.
481     *
482     * @param  bytes
483     *         The bytes to be decoded into characters
484     *
485     * @param  offset
486     *         The index of the first byte to decode
487     *
488     * @param  length
489     *         The number of bytes to decode
490     *
491     * @param  charset
492     *         The {@linkplain java.nio.charset.Charset charset} to be used to
493     *         decode the {@code bytes}
494     *
495     * @throws  IndexOutOfBoundsException
496     *          If {@code offset} is negative, {@code length} is negative, or
497     *          {@code offset} is greater than {@code bytes.length - length}
498     *
499     * @since  1.6
500     */
501    public String(byte bytes[], int offset, int length, Charset charset) {
502        if (charset == null)
503            throw new NullPointerException("charset");
504        checkBoundsOffCount(offset, length, bytes.length);
505        StringCoding.Result ret =
506            StringCoding.decode(charset, bytes, offset, length);
507        this.value = ret.value;
508        this.coder = ret.coder;
509    }
510
511    /**
512     * Constructs a new {@code String} by decoding the specified array of bytes
513     * using the specified {@linkplain java.nio.charset.Charset charset}.  The
514     * length of the new {@code String} is a function of the charset, and hence
515     * may not be equal to the length of the byte array.
516     *
517     * <p> The behavior of this constructor when the given bytes are not valid
518     * in the given charset is unspecified.  The {@link
519     * java.nio.charset.CharsetDecoder} class should be used when more control
520     * over the decoding process is required.
521     *
522     * @param  bytes
523     *         The bytes to be decoded into characters
524     *
525     * @param  charsetName
526     *         The name of a supported {@linkplain java.nio.charset.Charset
527     *         charset}
528     *
529     * @throws  UnsupportedEncodingException
530     *          If the named charset is not supported
531     *
532     * @since  1.1
533     */
534    public String(byte bytes[], String charsetName)
535            throws UnsupportedEncodingException {
536        this(bytes, 0, bytes.length, charsetName);
537    }
538
539    /**
540     * Constructs a new {@code String} by decoding the specified array of
541     * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
542     * The length of the new {@code String} is a function of the charset, and
543     * hence may not be equal to the length of the byte array.
544     *
545     * <p> This method always replaces malformed-input and unmappable-character
546     * sequences with this charset's default replacement string.  The {@link
547     * java.nio.charset.CharsetDecoder} class should be used when more control
548     * over the decoding process is required.
549     *
550     * @param  bytes
551     *         The bytes to be decoded into characters
552     *
553     * @param  charset
554     *         The {@linkplain java.nio.charset.Charset charset} to be used to
555     *         decode the {@code bytes}
556     *
557     * @since  1.6
558     */
559    public String(byte bytes[], Charset charset) {
560        this(bytes, 0, bytes.length, charset);
561    }
562
563    /**
564     * Constructs a new {@code String} by decoding the specified subarray of
565     * bytes using the platform's default charset.  The length of the new
566     * {@code String} is a function of the charset, and hence may not be equal
567     * to the length of the subarray.
568     *
569     * <p> The behavior of this constructor when the given bytes are not valid
570     * in the default charset is unspecified.  The {@link
571     * java.nio.charset.CharsetDecoder} class should be used when more control
572     * over the decoding process is required.
573     *
574     * @param  bytes
575     *         The bytes to be decoded into characters
576     *
577     * @param  offset
578     *         The index of the first byte to decode
579     *
580     * @param  length
581     *         The number of bytes to decode
582     *
583     * @throws  IndexOutOfBoundsException
584     *          If {@code offset} is negative, {@code length} is negative, or
585     *          {@code offset} is greater than {@code bytes.length - length}
586     *
587     * @since  1.1
588     */
589    public String(byte bytes[], int offset, int length) {
590        checkBoundsOffCount(offset, length, bytes.length);
591        StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
592        this.value = ret.value;
593        this.coder = ret.coder;
594    }
595
596    /**
597     * Constructs a new {@code String} by decoding the specified array of bytes
598     * using the platform's default charset.  The length of the new {@code
599     * String} is a function of the charset, and hence may not be equal to the
600     * length of the byte array.
601     *
602     * <p> The behavior of this constructor when the given bytes are not valid
603     * in the default charset is unspecified.  The {@link
604     * java.nio.charset.CharsetDecoder} class should be used when more control
605     * over the decoding process is required.
606     *
607     * @param  bytes
608     *         The bytes to be decoded into characters
609     *
610     * @since  1.1
611     */
612    public String(byte[] bytes) {
613        this(bytes, 0, bytes.length);
614    }
615
616    /**
617     * Allocates a new string that contains the sequence of characters
618     * currently contained in the string buffer argument. The contents of the
619     * string buffer are copied; subsequent modification of the string buffer
620     * does not affect the newly created string.
621     *
622     * @param  buffer
623     *         A {@code StringBuffer}
624     */
625    public String(StringBuffer buffer) {
626        this(buffer.toString());
627    }
628
629    /**
630     * Allocates a new string that contains the sequence of characters
631     * currently contained in the string builder argument. The contents of the
632     * string builder are copied; subsequent modification of the string builder
633     * does not affect the newly created string.
634     *
635     * <p> This constructor is provided to ease migration to {@code
636     * StringBuilder}. Obtaining a string from a string builder via the {@code
637     * toString} method is likely to run faster and is generally preferred.
638     *
639     * @param   builder
640     *          A {@code StringBuilder}
641     *
642     * @since  1.5
643     */
644    public String(StringBuilder builder) {
645        this(builder, null);
646    }
647
648   /*
649    * Package private constructor which shares value array for speed.
650    * this constructor is always expected to be called with share==true.
651    * a separate constructor is needed because we already have a public
652    * String(char[]) constructor that makes a copy of the given char[].
653    */
654    // TBD: this is kept for package internal use (Thread/System),
655    // should be removed if they all have a byte[] version
656    String(char[] val, boolean share) {
657        // assert share : "unshared not supported";
658        this(val, 0, val.length, null);
659    }
660
661    /**
662     * Returns the length of this string.
663     * The length is equal to the number of <a href="Character.html#unicode">Unicode
664     * code units</a> in the string.
665     *
666     * @return  the length of the sequence of characters represented by this
667     *          object.
668     */
669    public int length() {
670        return value.length >> coder();
671    }
672
673    /**
674     * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
675     *
676     * @return {@code true} if {@link #length()} is {@code 0}, otherwise
677     * {@code false}
678     *
679     * @since 1.6
680     */
681    public boolean isEmpty() {
682        return value.length == 0;
683    }
684
685    /**
686     * Returns the {@code char} value at the
687     * specified index. An index ranges from {@code 0} to
688     * {@code length() - 1}. The first {@code char} value of the sequence
689     * is at index {@code 0}, the next at index {@code 1},
690     * and so on, as for array indexing.
691     *
692     * <p>If the {@code char} value specified by the index is a
693     * <a href="Character.html#unicode">surrogate</a>, the surrogate
694     * value is returned.
695     *
696     * @param      index   the index of the {@code char} value.
697     * @return     the {@code char} value at the specified index of this string.
698     *             The first {@code char} value is at index {@code 0}.
699     * @exception  IndexOutOfBoundsException  if the {@code index}
700     *             argument is negative or not less than the length of this
701     *             string.
702     */
703    public char charAt(int index) {
704        if (isLatin1()) {
705            return StringLatin1.charAt(value, index);
706        } else {
707            return StringUTF16.charAt(value, index);
708        }
709    }
710
711    /**
712     * Returns the character (Unicode code point) at the specified
713     * index. The index refers to {@code char} values
714     * (Unicode code units) and ranges from {@code 0} to
715     * {@link #length()}{@code  - 1}.
716     *
717     * <p> If the {@code char} value specified at the given index
718     * is in the high-surrogate range, the following index is less
719     * than the length of this {@code String}, and the
720     * {@code char} value at the following index is in the
721     * low-surrogate range, then the supplementary code point
722     * corresponding to this surrogate pair is returned. Otherwise,
723     * the {@code char} value at the given index is returned.
724     *
725     * @param      index the index to the {@code char} values
726     * @return     the code point value of the character at the
727     *             {@code index}
728     * @exception  IndexOutOfBoundsException  if the {@code index}
729     *             argument is negative or not less than the length of this
730     *             string.
731     * @since      1.5
732     */
733    public int codePointAt(int index) {
734        if (isLatin1()) {
735            checkIndex(index, value.length);
736            return value[index] & 0xff;
737        }
738        int length = value.length >> 1;
739        checkIndex(index, length);
740        return StringUTF16.codePointAt(value, index, length);
741    }
742
743    /**
744     * Returns the character (Unicode code point) before the specified
745     * index. The index refers to {@code char} values
746     * (Unicode code units) and ranges from {@code 1} to {@link
747     * CharSequence#length() length}.
748     *
749     * <p> If the {@code char} value at {@code (index - 1)}
750     * is in the low-surrogate range, {@code (index - 2)} is not
751     * negative, and the {@code char} value at {@code (index -
752     * 2)} is in the high-surrogate range, then the
753     * supplementary code point value of the surrogate pair is
754     * returned. If the {@code char} value at {@code index -
755     * 1} is an unpaired low-surrogate or a high-surrogate, the
756     * surrogate value is returned.
757     *
758     * @param     index the index following the code point that should be returned
759     * @return    the Unicode code point value before the given index.
760     * @exception IndexOutOfBoundsException if the {@code index}
761     *            argument is less than 1 or greater than the length
762     *            of this string.
763     * @since     1.5
764     */
765    public int codePointBefore(int index) {
766        int i = index - 1;
767        if (i < 0 || i >= length()) {
768            throw new StringIndexOutOfBoundsException(index);
769        }
770        if (isLatin1()) {
771            return (value[i] & 0xff);
772        }
773        return StringUTF16.codePointBefore(value, index);
774    }
775
776    /**
777     * Returns the number of Unicode code points in the specified text
778     * range of this {@code String}. The text range begins at the
779     * specified {@code beginIndex} and extends to the
780     * {@code char} at index {@code endIndex - 1}. Thus the
781     * length (in {@code char}s) of the text range is
782     * {@code endIndex-beginIndex}. Unpaired surrogates within
783     * the text range count as one code point each.
784     *
785     * @param beginIndex the index to the first {@code char} of
786     * the text range.
787     * @param endIndex the index after the last {@code char} of
788     * the text range.
789     * @return the number of Unicode code points in the specified text
790     * range
791     * @exception IndexOutOfBoundsException if the
792     * {@code beginIndex} is negative, or {@code endIndex}
793     * is larger than the length of this {@code String}, or
794     * {@code beginIndex} is larger than {@code endIndex}.
795     * @since  1.5
796     */
797    public int codePointCount(int beginIndex, int endIndex) {
798        if (beginIndex < 0 || beginIndex > endIndex ||
799            endIndex > length()) {
800            throw new IndexOutOfBoundsException();
801        }
802        if (isLatin1()) {
803            return endIndex - beginIndex;
804        }
805        return StringUTF16.codePointCount(value, beginIndex, endIndex);
806    }
807
808    /**
809     * Returns the index within this {@code String} that is
810     * offset from the given {@code index} by
811     * {@code codePointOffset} code points. Unpaired surrogates
812     * within the text range given by {@code index} and
813     * {@code codePointOffset} count as one code point each.
814     *
815     * @param index the index to be offset
816     * @param codePointOffset the offset in code points
817     * @return the index within this {@code String}
818     * @exception IndexOutOfBoundsException if {@code index}
819     *   is negative or larger then the length of this
820     *   {@code String}, or if {@code codePointOffset} is positive
821     *   and the substring starting with {@code index} has fewer
822     *   than {@code codePointOffset} code points,
823     *   or if {@code codePointOffset} is negative and the substring
824     *   before {@code index} has fewer than the absolute value
825     *   of {@code codePointOffset} code points.
826     * @since 1.5
827     */
828    public int offsetByCodePoints(int index, int codePointOffset) {
829        if (index < 0 || index > length()) {
830            throw new IndexOutOfBoundsException();
831        }
832        return Character.offsetByCodePoints(this, index, codePointOffset);
833    }
834
835    /**
836     * Copies characters from this string into the destination character
837     * array.
838     * <p>
839     * The first character to be copied is at index {@code srcBegin};
840     * the last character to be copied is at index {@code srcEnd-1}
841     * (thus the total number of characters to be copied is
842     * {@code srcEnd-srcBegin}). The characters are copied into the
843     * subarray of {@code dst} starting at index {@code dstBegin}
844     * and ending at index:
845     * <blockquote><pre>
846     *     dstBegin + (srcEnd-srcBegin) - 1
847     * </pre></blockquote>
848     *
849     * @param      srcBegin   index of the first character in the string
850     *                        to copy.
851     * @param      srcEnd     index after the last character in the string
852     *                        to copy.
853     * @param      dst        the destination array.
854     * @param      dstBegin   the start offset in the destination array.
855     * @exception IndexOutOfBoundsException If any of the following
856     *            is true:
857     *            <ul><li>{@code srcBegin} is negative.
858     *            <li>{@code srcBegin} is greater than {@code srcEnd}
859     *            <li>{@code srcEnd} is greater than the length of this
860     *                string
861     *            <li>{@code dstBegin} is negative
862     *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
863     *                {@code dst.length}</ul>
864     */
865    public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
866        checkBoundsBeginEnd(srcBegin, srcEnd, length());
867        checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
868        if (isLatin1()) {
869            StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
870        } else {
871            StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
872        }
873    }
874
875    /**
876     * Copies characters from this string into the destination byte array. Each
877     * byte receives the 8 low-order bits of the corresponding character. The
878     * eight high-order bits of each character are not copied and do not
879     * participate in the transfer in any way.
880     *
881     * <p> The first character to be copied is at index {@code srcBegin}; the
882     * last character to be copied is at index {@code srcEnd-1}.  The total
883     * number of characters to be copied is {@code srcEnd-srcBegin}. The
884     * characters, converted to bytes, are copied into the subarray of {@code
885     * dst} starting at index {@code dstBegin} and ending at index:
886     *
887     * <blockquote><pre>
888     *     dstBegin + (srcEnd-srcBegin) - 1
889     * </pre></blockquote>
890     *
891     * @deprecated  This method does not properly convert characters into
892     * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
893     * {@link #getBytes()} method, which uses the platform's default charset.
894     *
895     * @param  srcBegin
896     *         Index of the first character in the string to copy
897     *
898     * @param  srcEnd
899     *         Index after the last character in the string to copy
900     *
901     * @param  dst
902     *         The destination array
903     *
904     * @param  dstBegin
905     *         The start offset in the destination array
906     *
907     * @throws  IndexOutOfBoundsException
908     *          If any of the following is true:
909     *          <ul>
910     *            <li> {@code srcBegin} is negative
911     *            <li> {@code srcBegin} is greater than {@code srcEnd}
912     *            <li> {@code srcEnd} is greater than the length of this String
913     *            <li> {@code dstBegin} is negative
914     *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
915     *                 dst.length}
916     *          </ul>
917     */
918    @Deprecated(since="1.1")
919    public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
920        checkBoundsBeginEnd(srcBegin, srcEnd, length());
921        Objects.requireNonNull(dst);
922        checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
923        if (isLatin1()) {
924            StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
925        } else {
926            StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
927        }
928    }
929
930    /**
931     * Encodes this {@code String} into a sequence of bytes using the named
932     * charset, storing the result into a new byte array.
933     *
934     * <p> The behavior of this method when this string cannot be encoded in
935     * the given charset is unspecified.  The {@link
936     * java.nio.charset.CharsetEncoder} class should be used when more control
937     * over the encoding process is required.
938     *
939     * @param  charsetName
940     *         The name of a supported {@linkplain java.nio.charset.Charset
941     *         charset}
942     *
943     * @return  The resultant byte array
944     *
945     * @throws  UnsupportedEncodingException
946     *          If the named charset is not supported
947     *
948     * @since  1.1
949     */
950    public byte[] getBytes(String charsetName)
951            throws UnsupportedEncodingException {
952        if (charsetName == null) throw new NullPointerException();
953        return StringCoding.encode(charsetName, coder(), value);
954    }
955
956    /**
957     * Encodes this {@code String} into a sequence of bytes using the given
958     * {@linkplain java.nio.charset.Charset charset}, storing the result into a
959     * new byte array.
960     *
961     * <p> This method always replaces malformed-input and unmappable-character
962     * sequences with this charset's default replacement byte array.  The
963     * {@link java.nio.charset.CharsetEncoder} class should be used when more
964     * control over the encoding process is required.
965     *
966     * @param  charset
967     *         The {@linkplain java.nio.charset.Charset} to be used to encode
968     *         the {@code String}
969     *
970     * @return  The resultant byte array
971     *
972     * @since  1.6
973     */
974    public byte[] getBytes(Charset charset) {
975        if (charset == null) throw new NullPointerException();
976        return StringCoding.encode(charset, coder(), value);
977     }
978
979    /**
980     * Encodes this {@code String} into a sequence of bytes using the
981     * platform's default charset, storing the result into a new byte array.
982     *
983     * <p> The behavior of this method when this string cannot be encoded in
984     * the default charset is unspecified.  The {@link
985     * java.nio.charset.CharsetEncoder} class should be used when more control
986     * over the encoding process is required.
987     *
988     * @return  The resultant byte array
989     *
990     * @since      1.1
991     */
992    public byte[] getBytes() {
993        return StringCoding.encode(coder(), value);
994    }
995
996    /**
997     * Compares this string to the specified object.  The result is {@code
998     * true} if and only if the argument is not {@code null} and is a {@code
999     * String} object that represents the same sequence of characters as this
1000     * object.
1001     *
1002     * <p>For finer-grained String comparison, refer to
1003     * {@link java.text.Collator}.
1004     *
1005     * @param  anObject
1006     *         The object to compare this {@code String} against
1007     *
1008     * @return  {@code true} if the given object represents a {@code String}
1009     *          equivalent to this string, {@code false} otherwise
1010     *
1011     * @see  #compareTo(String)
1012     * @see  #equalsIgnoreCase(String)
1013     */
1014    public boolean equals(Object anObject) {
1015        if (this == anObject) {
1016            return true;
1017        }
1018        if (anObject instanceof String) {
1019            String aString = (String)anObject;
1020            if (coder() == aString.coder()) {
1021                return isLatin1() ? StringLatin1.equals(value, aString.value)
1022                                  : StringUTF16.equals(value, aString.value);
1023            }
1024        }
1025        return false;
1026    }
1027
1028    /**
1029     * Compares this string to the specified {@code StringBuffer}.  The result
1030     * is {@code true} if and only if this {@code String} represents the same
1031     * sequence of characters as the specified {@code StringBuffer}. This method
1032     * synchronizes on the {@code StringBuffer}.
1033     *
1034     * <p>For finer-grained String comparison, refer to
1035     * {@link java.text.Collator}.
1036     *
1037     * @param  sb
1038     *         The {@code StringBuffer} to compare this {@code String} against
1039     *
1040     * @return  {@code true} if this {@code String} represents the same
1041     *          sequence of characters as the specified {@code StringBuffer},
1042     *          {@code false} otherwise
1043     *
1044     * @since  1.4
1045     */
1046    public boolean contentEquals(StringBuffer sb) {
1047        return contentEquals((CharSequence)sb);
1048    }
1049
1050    private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1051        int len = length();
1052        if (len != sb.length()) {
1053            return false;
1054        }
1055        byte v1[] = value;
1056        byte v2[] = sb.getValue();
1057        if (coder() == sb.getCoder()) {
1058            int n = v1.length;
1059            for (int i = 0; i < n; i++) {
1060                if (v1[i] != v2[i]) {
1061                    return false;
1062                }
1063            }
1064        } else {
1065            if (!isLatin1()) {  // utf16 str and latin1 abs can never be "equal"
1066                return false;
1067            }
1068            return StringUTF16.contentEquals(v1, v2, len);
1069        }
1070        return true;
1071    }
1072
1073    /**
1074     * Compares this string to the specified {@code CharSequence}.  The
1075     * result is {@code true} if and only if this {@code String} represents the
1076     * same sequence of char values as the specified sequence. Note that if the
1077     * {@code CharSequence} is a {@code StringBuffer} then the method
1078     * synchronizes on it.
1079     *
1080     * <p>For finer-grained String comparison, refer to
1081     * {@link java.text.Collator}.
1082     *
1083     * @param  cs
1084     *         The sequence to compare this {@code String} against
1085     *
1086     * @return  {@code true} if this {@code String} represents the same
1087     *          sequence of char values as the specified sequence, {@code
1088     *          false} otherwise
1089     *
1090     * @since  1.5
1091     */
1092    public boolean contentEquals(CharSequence cs) {
1093        // Argument is a StringBuffer, StringBuilder
1094        if (cs instanceof AbstractStringBuilder) {
1095            if (cs instanceof StringBuffer) {
1096                synchronized(cs) {
1097                   return nonSyncContentEquals((AbstractStringBuilder)cs);
1098                }
1099            } else {
1100                return nonSyncContentEquals((AbstractStringBuilder)cs);
1101            }
1102        }
1103        // Argument is a String
1104        if (cs instanceof String) {
1105            return equals(cs);
1106        }
1107        // Argument is a generic CharSequence
1108        int n = cs.length();
1109        if (n != length()) {
1110            return false;
1111        }
1112        byte[] val = this.value;
1113        if (isLatin1()) {
1114            for (int i = 0; i < n; i++) {
1115                if ((val[i] & 0xff) != cs.charAt(i)) {
1116                    return false;
1117                }
1118            }
1119        } else {
1120            if (!StringUTF16.contentEquals(val, cs, n)) {
1121                return false;
1122            }
1123        }
1124        return true;
1125    }
1126
1127    /**
1128     * Compares this {@code String} to another {@code String}, ignoring case
1129     * considerations.  Two strings are considered equal ignoring case if they
1130     * are of the same length and corresponding characters in the two strings
1131     * are equal ignoring case.
1132     *
1133     * <p> Two characters {@code c1} and {@code c2} are considered the same
1134     * ignoring case if at least one of the following is true:
1135     * <ul>
1136     *   <li> The two characters are the same (as compared by the
1137     *        {@code ==} operator)
1138     *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1139     *        on each character produces the same result
1140     * </ul>
1141     *
1142     * <p>Note that this method does <em>not</em> take locale into account, and
1143     * will result in unsatisfactory results for certain locales.  The
1144     * {@link java.text.Collator} class provides locale-sensitive comparison.
1145     *
1146     * @param  anotherString
1147     *         The {@code String} to compare this {@code String} against
1148     *
1149     * @return  {@code true} if the argument is not {@code null} and it
1150     *          represents an equivalent {@code String} ignoring case; {@code
1151     *          false} otherwise
1152     *
1153     * @see  #equals(Object)
1154     */
1155    public boolean equalsIgnoreCase(String anotherString) {
1156        return (this == anotherString) ? true
1157                : (anotherString != null)
1158                && (anotherString.length() == length())
1159                && regionMatches(true, 0, anotherString, 0, length());
1160    }
1161
1162    /**
1163     * Compares two strings lexicographically.
1164     * The comparison is based on the Unicode value of each character in
1165     * the strings. The character sequence represented by this
1166     * {@code String} object is compared lexicographically to the
1167     * character sequence represented by the argument string. The result is
1168     * a negative integer if this {@code String} object
1169     * lexicographically precedes the argument string. The result is a
1170     * positive integer if this {@code String} object lexicographically
1171     * follows the argument string. The result is zero if the strings
1172     * are equal; {@code compareTo} returns {@code 0} exactly when
1173     * the {@link #equals(Object)} method would return {@code true}.
1174     * <p>
1175     * This is the definition of lexicographic ordering. If two strings are
1176     * different, then either they have different characters at some index
1177     * that is a valid index for both strings, or their lengths are different,
1178     * or both. If they have different characters at one or more index
1179     * positions, let <i>k</i> be the smallest such index; then the string
1180     * whose character at position <i>k</i> has the smaller value, as
1181     * determined by using the {@code <} operator, lexicographically precedes the
1182     * other string. In this case, {@code compareTo} returns the
1183     * difference of the two character values at position {@code k} in
1184     * the two string -- that is, the value:
1185     * <blockquote><pre>
1186     * this.charAt(k)-anotherString.charAt(k)
1187     * </pre></blockquote>
1188     * If there is no index position at which they differ, then the shorter
1189     * string lexicographically precedes the longer string. In this case,
1190     * {@code compareTo} returns the difference of the lengths of the
1191     * strings -- that is, the value:
1192     * <blockquote><pre>
1193     * this.length()-anotherString.length()
1194     * </pre></blockquote>
1195     *
1196     * <p>For finer-grained String comparison, refer to
1197     * {@link java.text.Collator}.
1198     *
1199     * @param   anotherString   the {@code String} to be compared.
1200     * @return  the value {@code 0} if the argument string is equal to
1201     *          this string; a value less than {@code 0} if this string
1202     *          is lexicographically less than the string argument; and a
1203     *          value greater than {@code 0} if this string is
1204     *          lexicographically greater than the string argument.
1205     */
1206    public int compareTo(String anotherString) {
1207        byte v1[] = value;
1208        byte v2[] = anotherString.value;
1209        if (coder() == anotherString.coder()) {
1210            return isLatin1() ? StringLatin1.compareTo(v1, v2)
1211                              : StringUTF16.compareTo(v1, v2);
1212        }
1213        return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
1214                          : StringUTF16.compareToLatin1(v1, v2);
1215     }
1216
1217    /**
1218     * A Comparator that orders {@code String} objects as by
1219     * {@code compareToIgnoreCase}. This comparator is serializable.
1220     * <p>
1221     * Note that this Comparator does <em>not</em> take locale into account,
1222     * and will result in an unsatisfactory ordering for certain locales.
1223     * The {@link java.text.Collator} class provides locale-sensitive comparison.
1224     *
1225     * @see     java.text.Collator
1226     * @since   1.2
1227     */
1228    public static final Comparator<String> CASE_INSENSITIVE_ORDER
1229                                         = new CaseInsensitiveComparator();
1230    private static class CaseInsensitiveComparator
1231            implements Comparator<String>, java.io.Serializable {
1232        // use serialVersionUID from JDK 1.2.2 for interoperability
1233        private static final long serialVersionUID = 8575799808933029326L;
1234
1235        public int compare(String s1, String s2) {
1236            byte v1[] = s1.value;
1237            byte v2[] = s2.value;
1238            if (s1.coder() == s2.coder()) {
1239                return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2)
1240                                     : StringUTF16.compareToCI(v1, v2);
1241            }
1242            return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2)
1243                                 : StringUTF16.compareToCI_Latin1(v1, v2);
1244        }
1245
1246        /** Replaces the de-serialized object. */
1247        private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1248    }
1249
1250    /**
1251     * Compares two strings lexicographically, ignoring case
1252     * differences. This method returns an integer whose sign is that of
1253     * calling {@code compareTo} with normalized versions of the strings
1254     * where case differences have been eliminated by calling
1255     * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1256     * each character.
1257     * <p>
1258     * Note that this method does <em>not</em> take locale into account,
1259     * and will result in an unsatisfactory ordering for certain locales.
1260     * The {@link java.text.Collator} class provides locale-sensitive comparison.
1261     *
1262     * @param   str   the {@code String} to be compared.
1263     * @return  a negative integer, zero, or a positive integer as the
1264     *          specified String is greater than, equal to, or less
1265     *          than this String, ignoring case considerations.
1266     * @see     java.text.Collator
1267     * @since   1.2
1268     */
1269    public int compareToIgnoreCase(String str) {
1270        return CASE_INSENSITIVE_ORDER.compare(this, str);
1271    }
1272
1273    /**
1274     * Tests if two string regions are equal.
1275     * <p>
1276     * A substring of this {@code String} object is compared to a substring
1277     * of the argument other. The result is true if these substrings
1278     * represent identical character sequences. The substring of this
1279     * {@code String} object to be compared begins at index {@code toffset}
1280     * and has length {@code len}. The substring of other to be compared
1281     * begins at index {@code ooffset} and has length {@code len}. The
1282     * result is {@code false} if and only if at least one of the following
1283     * is true:
1284     * <ul><li>{@code toffset} is negative.
1285     * <li>{@code ooffset} is negative.
1286     * <li>{@code toffset+len} is greater than the length of this
1287     * {@code String} object.
1288     * <li>{@code ooffset+len} is greater than the length of the other
1289     * argument.
1290     * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1291     * such that:
1292     * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1293     * <i>k</i>{@code )}
1294     * </ul>
1295     *
1296     * <p>Note that this method does <em>not</em> take locale into account.  The
1297     * {@link java.text.Collator} class provides locale-sensitive comparison.
1298     *
1299     * @param   toffset   the starting offset of the subregion in this string.
1300     * @param   other     the string argument.
1301     * @param   ooffset   the starting offset of the subregion in the string
1302     *                    argument.
1303     * @param   len       the number of characters to compare.
1304     * @return  {@code true} if the specified subregion of this string
1305     *          exactly matches the specified subregion of the string argument;
1306     *          {@code false} otherwise.
1307     */
1308    public boolean regionMatches(int toffset, String other, int ooffset, int len) {
1309        byte tv[] = value;
1310        byte ov[] = other.value;
1311        // Note: toffset, ooffset, or len might be near -1>>>1.
1312        if ((ooffset < 0) || (toffset < 0) ||
1313             (toffset > (long)length() - len) ||
1314             (ooffset > (long)other.length() - len)) {
1315            return false;
1316        }
1317        if (coder() == other.coder()) {
1318            if (!isLatin1() && (len > 0)) {
1319                toffset = toffset << 1;
1320                ooffset = ooffset << 1;
1321                len = len << 1;
1322            }
1323            while (len-- > 0) {
1324                if (tv[toffset++] != ov[ooffset++]) {
1325                    return false;
1326                }
1327            }
1328        } else {
1329            if (coder() == LATIN1) {
1330                while (len-- > 0) {
1331                    if (StringLatin1.getChar(tv, toffset++) !=
1332                        StringUTF16.getChar(ov, ooffset++)) {
1333                        return false;
1334                    }
1335                }
1336            } else {
1337                while (len-- > 0) {
1338                    if (StringUTF16.getChar(tv, toffset++) !=
1339                        StringLatin1.getChar(ov, ooffset++)) {
1340                        return false;
1341                    }
1342                }
1343            }
1344        }
1345        return true;
1346    }
1347
1348    /**
1349     * Tests if two string regions are equal.
1350     * <p>
1351     * A substring of this {@code String} object is compared to a substring
1352     * of the argument {@code other}. The result is {@code true} if these
1353     * substrings represent character sequences that are the same, ignoring
1354     * case if and only if {@code ignoreCase} is true. The substring of
1355     * this {@code String} object to be compared begins at index
1356     * {@code toffset} and has length {@code len}. The substring of
1357     * {@code other} to be compared begins at index {@code ooffset} and
1358     * has length {@code len}. The result is {@code false} if and only if
1359     * at least one of the following is true:
1360     * <ul><li>{@code toffset} is negative.
1361     * <li>{@code ooffset} is negative.
1362     * <li>{@code toffset+len} is greater than the length of this
1363     * {@code String} object.
1364     * <li>{@code ooffset+len} is greater than the length of the other
1365     * argument.
1366     * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1367     * integer <i>k</i> less than {@code len} such that:
1368     * <blockquote><pre>
1369     * this.charAt(toffset+k) != other.charAt(ooffset+k)
1370     * </pre></blockquote>
1371     * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1372     * integer <i>k</i> less than {@code len} such that:
1373     * <blockquote><pre>
1374     * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1375     Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1376     * </pre></blockquote>
1377     * </ul>
1378     *
1379     * <p>Note that this method does <em>not</em> take locale into account,
1380     * and will result in unsatisfactory results for certain locales when
1381     * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1382     * provides locale-sensitive comparison.
1383     *
1384     * @param   ignoreCase   if {@code true}, ignore case when comparing
1385     *                       characters.
1386     * @param   toffset      the starting offset of the subregion in this
1387     *                       string.
1388     * @param   other        the string argument.
1389     * @param   ooffset      the starting offset of the subregion in the string
1390     *                       argument.
1391     * @param   len          the number of characters to compare.
1392     * @return  {@code true} if the specified subregion of this string
1393     *          matches the specified subregion of the string argument;
1394     *          {@code false} otherwise. Whether the matching is exact
1395     *          or case insensitive depends on the {@code ignoreCase}
1396     *          argument.
1397     */
1398    public boolean regionMatches(boolean ignoreCase, int toffset,
1399            String other, int ooffset, int len) {
1400        if (!ignoreCase) {
1401            return regionMatches(toffset, other, ooffset, len);
1402        }
1403        // Note: toffset, ooffset, or len might be near -1>>>1.
1404        if ((ooffset < 0) || (toffset < 0)
1405                || (toffset > (long)length() - len)
1406                || (ooffset > (long)other.length() - len)) {
1407            return false;
1408        }
1409        byte tv[] = value;
1410        byte ov[] = other.value;
1411        if (coder() == other.coder()) {
1412            return isLatin1()
1413              ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
1414              : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
1415        }
1416        return isLatin1()
1417              ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
1418              : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
1419    }
1420
1421    /**
1422     * Tests if the substring of this string beginning at the
1423     * specified index starts with the specified prefix.
1424     *
1425     * @param   prefix    the prefix.
1426     * @param   toffset   where to begin looking in this string.
1427     * @return  {@code true} if the character sequence represented by the
1428     *          argument is a prefix of the substring of this object starting
1429     *          at index {@code toffset}; {@code false} otherwise.
1430     *          The result is {@code false} if {@code toffset} is
1431     *          negative or greater than the length of this
1432     *          {@code String} object; otherwise the result is the same
1433     *          as the result of the expression
1434     *          <pre>
1435     *          this.substring(toffset).startsWith(prefix)
1436     *          </pre>
1437     */
1438    public boolean startsWith(String prefix, int toffset) {
1439        // Note: toffset might be near -1>>>1.
1440        if (toffset < 0 || toffset > length() - prefix.length()) {
1441            return false;
1442        }
1443        byte ta[] = value;
1444        byte pa[] = prefix.value;
1445        int po = 0;
1446        int pc = pa.length;
1447        if (coder() == prefix.coder()) {
1448            int to = isLatin1() ? toffset : toffset << 1;
1449            while (po < pc) {
1450                if (ta[to++] != pa[po++]) {
1451                    return false;
1452                }
1453            }
1454        } else {
1455            if (isLatin1()) {  // && pcoder == UTF16
1456                return false;
1457            }
1458            // coder == UTF16 && pcoder == LATIN1)
1459            while (po < pc) {
1460                if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
1461                    return false;
1462               }
1463            }
1464        }
1465        return true;
1466    }
1467
1468    /**
1469     * Tests if this string starts with the specified prefix.
1470     *
1471     * @param   prefix   the prefix.
1472     * @return  {@code true} if the character sequence represented by the
1473     *          argument is a prefix of the character sequence represented by
1474     *          this string; {@code false} otherwise.
1475     *          Note also that {@code true} will be returned if the
1476     *          argument is an empty string or is equal to this
1477     *          {@code String} object as determined by the
1478     *          {@link #equals(Object)} method.
1479     * @since   1.0
1480     */
1481    public boolean startsWith(String prefix) {
1482        return startsWith(prefix, 0);
1483    }
1484
1485    /**
1486     * Tests if this string ends with the specified suffix.
1487     *
1488     * @param   suffix   the suffix.
1489     * @return  {@code true} if the character sequence represented by the
1490     *          argument is a suffix of the character sequence represented by
1491     *          this object; {@code false} otherwise. Note that the
1492     *          result will be {@code true} if the argument is the
1493     *          empty string or is equal to this {@code String} object
1494     *          as determined by the {@link #equals(Object)} method.
1495     */
1496    public boolean endsWith(String suffix) {
1497        return startsWith(suffix, length() - suffix.length());
1498    }
1499
1500    /**
1501     * Returns a hash code for this string. The hash code for a
1502     * {@code String} object is computed as
1503     * <blockquote><pre>
1504     * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1505     * </pre></blockquote>
1506     * using {@code int} arithmetic, where {@code s[i]} is the
1507     * <i>i</i>th character of the string, {@code n} is the length of
1508     * the string, and {@code ^} indicates exponentiation.
1509     * (The hash value of the empty string is zero.)
1510     *
1511     * @return  a hash code value for this object.
1512     */
1513    public int hashCode() {
1514        int h = hash;
1515        if (h == 0 && value.length > 0) {
1516            hash = h = isLatin1() ? StringLatin1.hashCode(value)
1517                                  : StringUTF16.hashCode(value);
1518        }
1519        return h;
1520    }
1521
1522    /**
1523     * Returns the index within this string of the first occurrence of
1524     * the specified character. If a character with value
1525     * {@code ch} occurs in the character sequence represented by
1526     * this {@code String} object, then the index (in Unicode
1527     * code units) of the first such occurrence is returned. For
1528     * values of {@code ch} in the range from 0 to 0xFFFF
1529     * (inclusive), this is the smallest value <i>k</i> such that:
1530     * <blockquote><pre>
1531     * this.charAt(<i>k</i>) == ch
1532     * </pre></blockquote>
1533     * is true. For other values of {@code ch}, it is the
1534     * smallest value <i>k</i> such that:
1535     * <blockquote><pre>
1536     * this.codePointAt(<i>k</i>) == ch
1537     * </pre></blockquote>
1538     * is true. In either case, if no such character occurs in this
1539     * string, then {@code -1} is returned.
1540     *
1541     * @param   ch   a character (Unicode code point).
1542     * @return  the index of the first occurrence of the character in the
1543     *          character sequence represented by this object, or
1544     *          {@code -1} if the character does not occur.
1545     */
1546    public int indexOf(int ch) {
1547        return indexOf(ch, 0);
1548    }
1549
1550    /**
1551     * Returns the index within this string of the first occurrence of the
1552     * specified character, starting the search at the specified index.
1553     * <p>
1554     * If a character with value {@code ch} occurs in the
1555     * character sequence represented by this {@code String}
1556     * object at an index no smaller than {@code fromIndex}, then
1557     * the index of the first such occurrence is returned. For values
1558     * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1559     * this is the smallest value <i>k</i> such that:
1560     * <blockquote><pre>
1561     * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1562     * </pre></blockquote>
1563     * is true. For other values of {@code ch}, it is the
1564     * smallest value <i>k</i> such that:
1565     * <blockquote><pre>
1566     * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1567     * </pre></blockquote>
1568     * is true. In either case, if no such character occurs in this
1569     * string at or after position {@code fromIndex}, then
1570     * {@code -1} is returned.
1571     *
1572     * <p>
1573     * There is no restriction on the value of {@code fromIndex}. If it
1574     * is negative, it has the same effect as if it were zero: this entire
1575     * string may be searched. If it is greater than the length of this
1576     * string, it has the same effect as if it were equal to the length of
1577     * this string: {@code -1} is returned.
1578     *
1579     * <p>All indices are specified in {@code char} values
1580     * (Unicode code units).
1581     *
1582     * @param   ch          a character (Unicode code point).
1583     * @param   fromIndex   the index to start the search from.
1584     * @return  the index of the first occurrence of the character in the
1585     *          character sequence represented by this object that is greater
1586     *          than or equal to {@code fromIndex}, or {@code -1}
1587     *          if the character does not occur.
1588     */
1589    public int indexOf(int ch, int fromIndex) {
1590        return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
1591                          : StringUTF16.indexOf(value, ch, fromIndex);
1592    }
1593
1594    /**
1595     * Returns the index within this string of the last occurrence of
1596     * the specified character. For values of {@code ch} in the
1597     * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1598     * units) returned is the largest value <i>k</i> such that:
1599     * <blockquote><pre>
1600     * this.charAt(<i>k</i>) == ch
1601     * </pre></blockquote>
1602     * is true. For other values of {@code ch}, it is the
1603     * largest value <i>k</i> such that:
1604     * <blockquote><pre>
1605     * this.codePointAt(<i>k</i>) == ch
1606     * </pre></blockquote>
1607     * is true.  In either case, if no such character occurs in this
1608     * string, then {@code -1} is returned.  The
1609     * {@code String} is searched backwards starting at the last
1610     * character.
1611     *
1612     * @param   ch   a character (Unicode code point).
1613     * @return  the index of the last occurrence of the character in the
1614     *          character sequence represented by this object, or
1615     *          {@code -1} if the character does not occur.
1616     */
1617    public int lastIndexOf(int ch) {
1618        return lastIndexOf(ch, length() - 1);
1619    }
1620
1621    /**
1622     * Returns the index within this string of the last occurrence of
1623     * the specified character, searching backward starting at the
1624     * specified index. For values of {@code ch} in the range
1625     * from 0 to 0xFFFF (inclusive), the index returned is the largest
1626     * value <i>k</i> such that:
1627     * <blockquote><pre>
1628     * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1629     * </pre></blockquote>
1630     * is true. For other values of {@code ch}, it is the
1631     * largest value <i>k</i> such that:
1632     * <blockquote><pre>
1633     * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1634     * </pre></blockquote>
1635     * is true. In either case, if no such character occurs in this
1636     * string at or before position {@code fromIndex}, then
1637     * {@code -1} is returned.
1638     *
1639     * <p>All indices are specified in {@code char} values
1640     * (Unicode code units).
1641     *
1642     * @param   ch          a character (Unicode code point).
1643     * @param   fromIndex   the index to start the search from. There is no
1644     *          restriction on the value of {@code fromIndex}. If it is
1645     *          greater than or equal to the length of this string, it has
1646     *          the same effect as if it were equal to one less than the
1647     *          length of this string: this entire string may be searched.
1648     *          If it is negative, it has the same effect as if it were -1:
1649     *          -1 is returned.
1650     * @return  the index of the last occurrence of the character in the
1651     *          character sequence represented by this object that is less
1652     *          than or equal to {@code fromIndex}, or {@code -1}
1653     *          if the character does not occur before that point.
1654     */
1655    public int lastIndexOf(int ch, int fromIndex) {
1656        return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
1657                          : StringUTF16.lastIndexOf(value, ch, fromIndex);
1658    }
1659
1660    /**
1661     * Returns the index within this string of the first occurrence of the
1662     * specified substring.
1663     *
1664     * <p>The returned index is the smallest value {@code k} for which:
1665     * <pre>{@code
1666     * this.startsWith(str, k)
1667     * }</pre>
1668     * If no such value of {@code k} exists, then {@code -1} is returned.
1669     *
1670     * @param   str   the substring to search for.
1671     * @return  the index of the first occurrence of the specified substring,
1672     *          or {@code -1} if there is no such occurrence.
1673     */
1674    public int indexOf(String str) {
1675        if (coder() == str.coder()) {
1676            return isLatin1() ? StringLatin1.indexOf(value, str.value)
1677                              : StringUTF16.indexOf(value, str.value);
1678        }
1679        if (coder() == LATIN1) {  // str.coder == UTF16
1680            return -1;
1681        }
1682        return StringUTF16.indexOfLatin1(value, str.value);
1683    }
1684
1685    /**
1686     * Returns the index within this string of the first occurrence of the
1687     * specified substring, starting at the specified index.
1688     *
1689     * <p>The returned index is the smallest value {@code k} for which:
1690     * <pre>{@code
1691     *     k >= Math.min(fromIndex, this.length()) &&
1692     *                   this.startsWith(str, k)
1693     * }</pre>
1694     * If no such value of {@code k} exists, then {@code -1} is returned.
1695     *
1696     * @param   str         the substring to search for.
1697     * @param   fromIndex   the index from which to start the search.
1698     * @return  the index of the first occurrence of the specified substring,
1699     *          starting at the specified index,
1700     *          or {@code -1} if there is no such occurrence.
1701     */
1702    public int indexOf(String str, int fromIndex) {
1703        return indexOf(value, coder(), length(), str, fromIndex);
1704    }
1705
1706    /**
1707     * Code shared by String and AbstractStringBuilder to do searches. The
1708     * source is the character array being searched, and the target
1709     * is the string being searched for.
1710     *
1711     * @param   src       the characters being searched.
1712     * @param   srcCoder  the coder of the source string.
1713     * @param   srcCount  length of the source string.
1714     * @param   tgtStr    the characters being searched for.
1715     * @param   fromIndex the index to begin searching from.
1716     */
1717    static int indexOf(byte[] src, byte srcCoder, int srcCount,
1718                       String tgtStr, int fromIndex) {
1719        byte[] tgt    = tgtStr.value;
1720        byte tgtCoder = tgtStr.coder();
1721        int tgtCount  = tgtStr.length();
1722
1723        if (fromIndex >= srcCount) {
1724            return (tgtCount == 0 ? srcCount : -1);
1725        }
1726        if (fromIndex < 0) {
1727            fromIndex = 0;
1728        }
1729        if (tgtCount == 0) {
1730            return fromIndex;
1731        }
1732        if (tgtCount > srcCount) {
1733            return -1;
1734        }
1735        if (srcCoder == tgtCoder) {
1736            return srcCoder == LATIN1
1737                ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
1738                : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
1739        }
1740        if (srcCoder == LATIN1) {    //  && tgtCoder == UTF16
1741            return -1;
1742        }
1743        // srcCoder == UTF16 && tgtCoder == LATIN1) {
1744        return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1745    }
1746
1747    /**
1748     * Returns the index within this string of the last occurrence of the
1749     * specified substring.  The last occurrence of the empty string ""
1750     * is considered to occur at the index value {@code this.length()}.
1751     *
1752     * <p>The returned index is the largest value {@code k} for which:
1753     * <pre>{@code
1754     * this.startsWith(str, k)
1755     * }</pre>
1756     * If no such value of {@code k} exists, then {@code -1} is returned.
1757     *
1758     * @param   str   the substring to search for.
1759     * @return  the index of the last occurrence of the specified substring,
1760     *          or {@code -1} if there is no such occurrence.
1761     */
1762    public int lastIndexOf(String str) {
1763        return lastIndexOf(str, length());
1764    }
1765
1766    /**
1767     * Returns the index within this string of the last occurrence of the
1768     * specified substring, searching backward starting at the specified index.
1769     *
1770     * <p>The returned index is the largest value {@code k} for which:
1771     * <pre>{@code
1772     *     k <= Math.min(fromIndex, this.length()) &&
1773     *                   this.startsWith(str, k)
1774     * }</pre>
1775     * If no such value of {@code k} exists, then {@code -1} is returned.
1776     *
1777     * @param   str         the substring to search for.
1778     * @param   fromIndex   the index to start the search from.
1779     * @return  the index of the last occurrence of the specified substring,
1780     *          searching backward from the specified index,
1781     *          or {@code -1} if there is no such occurrence.
1782     */
1783    public int lastIndexOf(String str, int fromIndex) {
1784        return lastIndexOf(value, coder(), length(), str, fromIndex);
1785    }
1786
1787    /**
1788     * Code shared by String and AbstractStringBuilder to do searches. The
1789     * source is the character array being searched, and the target
1790     * is the string being searched for.
1791     *
1792     * @param   src         the characters being searched.
1793     * @param   srcCoder    coder handles the mapping between bytes/chars
1794     * @param   srcCount    count of the source string.
1795     * @param   tgt         the characters being searched for.
1796     * @param   fromIndex   the index to begin searching from.
1797     */
1798    static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
1799                           String tgtStr, int fromIndex) {
1800        byte[] tgt = tgtStr.value;
1801        byte tgtCoder = tgtStr.coder();
1802        int tgtCount = tgtStr.length();
1803        /*
1804         * Check arguments; return immediately where possible. For
1805         * consistency, don't check for null str.
1806         */
1807        int rightIndex = srcCount - tgtCount;
1808        if (fromIndex > rightIndex) {
1809            fromIndex = rightIndex;
1810        }
1811        if (fromIndex < 0) {
1812            return -1;
1813        }
1814        /* Empty string always matches. */
1815        if (tgtCount == 0) {
1816            return fromIndex;
1817        }
1818        if (srcCoder == tgtCoder) {
1819            return srcCoder == LATIN1
1820                ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
1821                : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
1822        }
1823        if (srcCoder == LATIN1) {    // && tgtCoder == UTF16
1824            return -1;
1825        }
1826        // srcCoder == UTF16 && tgtCoder == LATIN1
1827        return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1828    }
1829
1830    /**
1831     * Returns a string that is a substring of this string. The
1832     * substring begins with the character at the specified index and
1833     * extends to the end of this string. <p>
1834     * Examples:
1835     * <blockquote><pre>
1836     * "unhappy".substring(2) returns "happy"
1837     * "Harbison".substring(3) returns "bison"
1838     * "emptiness".substring(9) returns "" (an empty string)
1839     * </pre></blockquote>
1840     *
1841     * @param      beginIndex   the beginning index, inclusive.
1842     * @return     the specified substring.
1843     * @exception  IndexOutOfBoundsException  if
1844     *             {@code beginIndex} is negative or larger than the
1845     *             length of this {@code String} object.
1846     */
1847    public String substring(int beginIndex) {
1848        if (beginIndex < 0) {
1849            throw new StringIndexOutOfBoundsException(beginIndex);
1850        }
1851        int subLen = length() - beginIndex;
1852        if (subLen < 0) {
1853            throw new StringIndexOutOfBoundsException(subLen);
1854        }
1855        if (beginIndex == 0) {
1856            return this;
1857        }
1858        return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1859                          : StringUTF16.newString(value, beginIndex, subLen);
1860    }
1861
1862    /**
1863     * Returns a string that is a substring of this string. The
1864     * substring begins at the specified {@code beginIndex} and
1865     * extends to the character at index {@code endIndex - 1}.
1866     * Thus the length of the substring is {@code endIndex-beginIndex}.
1867     * <p>
1868     * Examples:
1869     * <blockquote><pre>
1870     * "hamburger".substring(4, 8) returns "urge"
1871     * "smiles".substring(1, 5) returns "mile"
1872     * </pre></blockquote>
1873     *
1874     * @param      beginIndex   the beginning index, inclusive.
1875     * @param      endIndex     the ending index, exclusive.
1876     * @return     the specified substring.
1877     * @exception  IndexOutOfBoundsException  if the
1878     *             {@code beginIndex} is negative, or
1879     *             {@code endIndex} is larger than the length of
1880     *             this {@code String} object, or
1881     *             {@code beginIndex} is larger than
1882     *             {@code endIndex}.
1883     */
1884    public String substring(int beginIndex, int endIndex) {
1885        int length = length();
1886        checkBoundsBeginEnd(beginIndex, endIndex, length);
1887        int subLen = endIndex - beginIndex;
1888        if (beginIndex == 0 && endIndex == length) {
1889            return this;
1890        }
1891        return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1892                          : StringUTF16.newString(value, beginIndex, subLen);
1893    }
1894
1895    /**
1896     * Returns a character sequence that is a subsequence of this sequence.
1897     *
1898     * <p> An invocation of this method of the form
1899     *
1900     * <blockquote><pre>
1901     * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1902     *
1903     * behaves in exactly the same way as the invocation
1904     *
1905     * <blockquote><pre>
1906     * str.substring(begin,&nbsp;end)</pre></blockquote>
1907     *
1908     * @apiNote
1909     * This method is defined so that the {@code String} class can implement
1910     * the {@link CharSequence} interface.
1911     *
1912     * @param   beginIndex   the begin index, inclusive.
1913     * @param   endIndex     the end index, exclusive.
1914     * @return  the specified subsequence.
1915     *
1916     * @throws  IndexOutOfBoundsException
1917     *          if {@code beginIndex} or {@code endIndex} is negative,
1918     *          if {@code endIndex} is greater than {@code length()},
1919     *          or if {@code beginIndex} is greater than {@code endIndex}
1920     *
1921     * @since 1.4
1922     * @spec JSR-51
1923     */
1924    public CharSequence subSequence(int beginIndex, int endIndex) {
1925        return this.substring(beginIndex, endIndex);
1926    }
1927
1928    /**
1929     * Concatenates the specified string to the end of this string.
1930     * <p>
1931     * If the length of the argument string is {@code 0}, then this
1932     * {@code String} object is returned. Otherwise, a
1933     * {@code String} object is returned that represents a character
1934     * sequence that is the concatenation of the character sequence
1935     * represented by this {@code String} object and the character
1936     * sequence represented by the argument string.<p>
1937     * Examples:
1938     * <blockquote><pre>
1939     * "cares".concat("s") returns "caress"
1940     * "to".concat("get").concat("her") returns "together"
1941     * </pre></blockquote>
1942     *
1943     * @param   str   the {@code String} that is concatenated to the end
1944     *                of this {@code String}.
1945     * @return  a string that represents the concatenation of this object's
1946     *          characters followed by the string argument's characters.
1947     */
1948    public String concat(String str) {
1949        int olen = str.length();
1950        if (olen == 0) {
1951            return this;
1952        }
1953        if (coder() == str.coder()) {
1954            byte[] val = this.value;
1955            byte[] oval = str.value;
1956            int len = val.length + oval.length;
1957            byte[] buf = Arrays.copyOf(val, len);
1958            System.arraycopy(oval, 0, buf, val.length, oval.length);
1959            return new String(buf, coder);
1960        }
1961        int len = length();
1962        byte[] buf = StringUTF16.newBytesFor(len + olen);
1963        getBytes(buf, 0, UTF16);
1964        str.getBytes(buf, len, UTF16);
1965        return new String(buf, UTF16);
1966    }
1967
1968    /**
1969     * Returns a string resulting from replacing all occurrences of
1970     * {@code oldChar} in this string with {@code newChar}.
1971     * <p>
1972     * If the character {@code oldChar} does not occur in the
1973     * character sequence represented by this {@code String} object,
1974     * then a reference to this {@code String} object is returned.
1975     * Otherwise, a {@code String} object is returned that
1976     * represents a character sequence identical to the character sequence
1977     * represented by this {@code String} object, except that every
1978     * occurrence of {@code oldChar} is replaced by an occurrence
1979     * of {@code newChar}.
1980     * <p>
1981     * Examples:
1982     * <blockquote><pre>
1983     * "mesquite in your cellar".replace('e', 'o')
1984     *         returns "mosquito in your collar"
1985     * "the war of baronets".replace('r', 'y')
1986     *         returns "the way of bayonets"
1987     * "sparring with a purple porpoise".replace('p', 't')
1988     *         returns "starring with a turtle tortoise"
1989     * "JonL".replace('q', 'x') returns "JonL" (no change)
1990     * </pre></blockquote>
1991     *
1992     * @param   oldChar   the old character.
1993     * @param   newChar   the new character.
1994     * @return  a string derived from this string by replacing every
1995     *          occurrence of {@code oldChar} with {@code newChar}.
1996     */
1997    public String replace(char oldChar, char newChar) {
1998        if (oldChar != newChar) {
1999            String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
2000                                    : StringUTF16.replace(value, oldChar, newChar);
2001            if (ret != null) {
2002                return ret;
2003            }
2004        }
2005        return this;
2006    }
2007
2008    /**
2009     * Tells whether or not this string matches the given <a
2010     * href="../util/regex/Pattern.html#sum">regular expression</a>.
2011     *
2012     * <p> An invocation of this method of the form
2013     * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2014     * same result as the expression
2015     *
2016     * <blockquote>
2017     * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2018     * matches(<i>regex</i>, <i>str</i>)}
2019     * </blockquote>
2020     *
2021     * @param   regex
2022     *          the regular expression to which this string is to be matched
2023     *
2024     * @return  {@code true} if, and only if, this string matches the
2025     *          given regular expression
2026     *
2027     * @throws  PatternSyntaxException
2028     *          if the regular expression's syntax is invalid
2029     *
2030     * @see java.util.regex.Pattern
2031     *
2032     * @since 1.4
2033     * @spec JSR-51
2034     */
2035    public boolean matches(String regex) {
2036        return Pattern.matches(regex, this);
2037    }
2038
2039    /**
2040     * Returns true if and only if this string contains the specified
2041     * sequence of char values.
2042     *
2043     * @param s the sequence to search for
2044     * @return true if this string contains {@code s}, false otherwise
2045     * @since 1.5
2046     */
2047    public boolean contains(CharSequence s) {
2048        return indexOf(s.toString()) >= 0;
2049    }
2050
2051    /**
2052     * Replaces the first substring of this string that matches the given <a
2053     * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2054     * given replacement.
2055     *
2056     * <p> An invocation of this method of the form
2057     * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2058     * yields exactly the same result as the expression
2059     *
2060     * <blockquote>
2061     * <code>
2062     * {@link java.util.regex.Pattern}.{@link
2063     * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2064     * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2065     * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2066     * </code>
2067     * </blockquote>
2068     *
2069     *<p>
2070     * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2071     * replacement string may cause the results to be different than if it were
2072     * being treated as a literal replacement string; see
2073     * {@link java.util.regex.Matcher#replaceFirst}.
2074     * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2075     * meaning of these characters, if desired.
2076     *
2077     * @param   regex
2078     *          the regular expression to which this string is to be matched
2079     * @param   replacement
2080     *          the string to be substituted for the first match
2081     *
2082     * @return  The resulting {@code String}
2083     *
2084     * @throws  PatternSyntaxException
2085     *          if the regular expression's syntax is invalid
2086     *
2087     * @see java.util.regex.Pattern
2088     *
2089     * @since 1.4
2090     * @spec JSR-51
2091     */
2092    public String replaceFirst(String regex, String replacement) {
2093        return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2094    }
2095
2096    /**
2097     * Replaces each substring of this string that matches the given <a
2098     * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2099     * given replacement.
2100     *
2101     * <p> An invocation of this method of the form
2102     * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2103     * yields exactly the same result as the expression
2104     *
2105     * <blockquote>
2106     * <code>
2107     * {@link java.util.regex.Pattern}.{@link
2108     * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2109     * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2110     * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2111     * </code>
2112     * </blockquote>
2113     *
2114     *<p>
2115     * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2116     * replacement string may cause the results to be different than if it were
2117     * being treated as a literal replacement string; see
2118     * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2119     * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2120     * meaning of these characters, if desired.
2121     *
2122     * @param   regex
2123     *          the regular expression to which this string is to be matched
2124     * @param   replacement
2125     *          the string to be substituted for each match
2126     *
2127     * @return  The resulting {@code String}
2128     *
2129     * @throws  PatternSyntaxException
2130     *          if the regular expression's syntax is invalid
2131     *
2132     * @see java.util.regex.Pattern
2133     *
2134     * @since 1.4
2135     * @spec JSR-51
2136     */
2137    public String replaceAll(String regex, String replacement) {
2138        return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2139    }
2140
2141    /**
2142     * Replaces each substring of this string that matches the literal target
2143     * sequence with the specified literal replacement sequence. The
2144     * replacement proceeds from the beginning of the string to the end, for
2145     * example, replacing "aa" with "b" in the string "aaa" will result in
2146     * "ba" rather than "ab".
2147     *
2148     * @param  target The sequence of char values to be replaced
2149     * @param  replacement The replacement sequence of char values
2150     * @return  The resulting string
2151     * @since 1.5
2152     */
2153    public String replace(CharSequence target, CharSequence replacement) {
2154        String tgtStr = target.toString();
2155        String replStr = replacement.toString();
2156        int j = indexOf(tgtStr);
2157        if (j < 0) {
2158            return this;
2159        }
2160        int tgtLen = tgtStr.length();
2161        int tgtLen1 = Math.max(tgtLen, 1);
2162        int thisLen = length();
2163
2164        int newLenHint = thisLen - tgtLen + replStr.length();
2165        if (newLenHint < 0) {
2166            throw new OutOfMemoryError();
2167        }
2168        StringBuilder sb = new StringBuilder(newLenHint);
2169        int i = 0;
2170        do {
2171            sb.append(this, i, j).append(replStr);
2172            i = j + tgtLen;
2173        } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
2174        return sb.append(this, i, thisLen).toString();
2175    }
2176
2177    /**
2178     * Splits this string around matches of the given
2179     * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2180     *
2181     * <p> The array returned by this method contains each substring of this
2182     * string that is terminated by another substring that matches the given
2183     * expression or is terminated by the end of the string.  The substrings in
2184     * the array are in the order in which they occur in this string.  If the
2185     * expression does not match any part of the input then the resulting array
2186     * has just one element, namely this string.
2187     *
2188     * <p> When there is a positive-width match at the beginning of this
2189     * string then an empty leading substring is included at the beginning
2190     * of the resulting array. A zero-width match at the beginning however
2191     * never produces such empty leading substring.
2192     *
2193     * <p> The {@code limit} parameter controls the number of times the
2194     * pattern is applied and therefore affects the length of the resulting
2195     * array.  If the limit <i>n</i> is greater than zero then the pattern
2196     * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2197     * length will be no greater than <i>n</i>, and the array's last entry
2198     * will contain all input beyond the last matched delimiter.  If <i>n</i>
2199     * is non-positive then the pattern will be applied as many times as
2200     * possible and the array can have any length.  If <i>n</i> is zero then
2201     * the pattern will be applied as many times as possible, the array can
2202     * have any length, and trailing empty strings will be discarded.
2203     *
2204     * <p> The string {@code "boo:and:foo"}, for example, yields the
2205     * following results with these parameters:
2206     *
2207     * <blockquote><table class="plain">
2208     * <caption style="display:none">Split example showing regex, limit, and result</caption>
2209     * <thead>
2210     * <tr>
2211     *     <th scope="col">Regex</th>
2212     *     <th scope="col">Limit</th>
2213     *     <th scope="col">Result</th>
2214     * </tr>
2215     * </thead>
2216     * <tbody>
2217     * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
2218     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
2219     *     <td>{@code { "boo", "and:foo" }}</td></tr>
2220     * <tr><!-- : -->
2221     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2222     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2223     * <tr><!-- : -->
2224     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2225     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2226     * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
2227     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2228     *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2229     * <tr><!-- o -->
2230     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2231     *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2232     * <tr><!-- o -->
2233     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
2234     *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2235     * </tbody>
2236     * </table></blockquote>
2237     *
2238     * <p> An invocation of this method of the form
2239     * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2240     * yields the same result as the expression
2241     *
2242     * <blockquote>
2243     * <code>
2244     * {@link java.util.regex.Pattern}.{@link
2245     * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2246     * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2247     * </code>
2248     * </blockquote>
2249     *
2250     *
2251     * @param  regex
2252     *         the delimiting regular expression
2253     *
2254     * @param  limit
2255     *         the result threshold, as described above
2256     *
2257     * @return  the array of strings computed by splitting this string
2258     *          around matches of the given regular expression
2259     *
2260     * @throws  PatternSyntaxException
2261     *          if the regular expression's syntax is invalid
2262     *
2263     * @see java.util.regex.Pattern
2264     *
2265     * @since 1.4
2266     * @spec JSR-51
2267     */
2268    public String[] split(String regex, int limit) {
2269        /* fastpath if the regex is a
2270         (1)one-char String and this character is not one of the
2271            RegEx's meta characters ".$|()[{^?*+\\", or
2272         (2)two-char String and the first char is the backslash and
2273            the second is not the ascii digit or ascii letter.
2274         */
2275        char ch = 0;
2276        if (((regex.length() == 1 &&
2277             ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2278             (regex.length() == 2 &&
2279              regex.charAt(0) == '\\' &&
2280              (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2281              ((ch-'a')|('z'-ch)) < 0 &&
2282              ((ch-'A')|('Z'-ch)) < 0)) &&
2283            (ch < Character.MIN_HIGH_SURROGATE ||
2284             ch > Character.MAX_LOW_SURROGATE))
2285        {
2286            int off = 0;
2287            int next = 0;
2288            boolean limited = limit > 0;
2289            ArrayList<String> list = new ArrayList<>();
2290            while ((next = indexOf(ch, off)) != -1) {
2291                if (!limited || list.size() < limit - 1) {
2292                    list.add(substring(off, next));
2293                    off = next + 1;
2294                } else {    // last one
2295                    //assert (list.size() == limit - 1);
2296                    int last = length();
2297                    list.add(substring(off, last));
2298                    off = last;
2299                    break;
2300                }
2301            }
2302            // If no match was found, return this
2303            if (off == 0)
2304                return new String[]{this};
2305
2306            // Add remaining segment
2307            if (!limited || list.size() < limit)
2308                list.add(substring(off, length()));
2309
2310            // Construct result
2311            int resultSize = list.size();
2312            if (limit == 0) {
2313                while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2314                    resultSize--;
2315                }
2316            }
2317            String[] result = new String[resultSize];
2318            return list.subList(0, resultSize).toArray(result);
2319        }
2320        return Pattern.compile(regex).split(this, limit);
2321    }
2322
2323    /**
2324     * Splits this string around matches of the given <a
2325     * href="../util/regex/Pattern.html#sum">regular expression</a>.
2326     *
2327     * <p> This method works as if by invoking the two-argument {@link
2328     * #split(String, int) split} method with the given expression and a limit
2329     * argument of zero.  Trailing empty strings are therefore not included in
2330     * the resulting array.
2331     *
2332     * <p> The string {@code "boo:and:foo"}, for example, yields the following
2333     * results with these expressions:
2334     *
2335     * <blockquote><table class="plain">
2336     * <caption style="display:none">Split examples showing regex and result</caption>
2337     * <thead>
2338     * <tr>
2339     *  <th scope="col">Regex</th>
2340     *  <th scope="col">Result</th>
2341     * </tr>
2342     * </thead>
2343     * <tbody>
2344     * <tr><th scope="row" style="text-weight:normal">:</th>
2345     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2346     * <tr><th scope="row" style="text-weight:normal">o</th>
2347     *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2348     * </tbody>
2349     * </table></blockquote>
2350     *
2351     *
2352     * @param  regex
2353     *         the delimiting regular expression
2354     *
2355     * @return  the array of strings computed by splitting this string
2356     *          around matches of the given regular expression
2357     *
2358     * @throws  PatternSyntaxException
2359     *          if the regular expression's syntax is invalid
2360     *
2361     * @see java.util.regex.Pattern
2362     *
2363     * @since 1.4
2364     * @spec JSR-51
2365     */
2366    public String[] split(String regex) {
2367        return split(regex, 0);
2368    }
2369
2370    /**
2371     * Returns a new String composed of copies of the
2372     * {@code CharSequence elements} joined together with a copy of
2373     * the specified {@code delimiter}.
2374     *
2375     * <blockquote>For example,
2376     * <pre>{@code
2377     *     String message = String.join("-", "Java", "is", "cool");
2378     *     // message returned is: "Java-is-cool"
2379     * }</pre></blockquote>
2380     *
2381     * Note that if an element is null, then {@code "null"} is added.
2382     *
2383     * @param  delimiter the delimiter that separates each element
2384     * @param  elements the elements to join together.
2385     *
2386     * @return a new {@code String} that is composed of the {@code elements}
2387     *         separated by the {@code delimiter}
2388     *
2389     * @throws NullPointerException If {@code delimiter} or {@code elements}
2390     *         is {@code null}
2391     *
2392     * @see java.util.StringJoiner
2393     * @since 1.8
2394     */
2395    public static String join(CharSequence delimiter, CharSequence... elements) {
2396        Objects.requireNonNull(delimiter);
2397        Objects.requireNonNull(elements);
2398        // Number of elements not likely worth Arrays.stream overhead.
2399        StringJoiner joiner = new StringJoiner(delimiter);
2400        for (CharSequence cs: elements) {
2401            joiner.add(cs);
2402        }
2403        return joiner.toString();
2404    }
2405
2406    /**
2407     * Returns a new {@code String} composed of copies of the
2408     * {@code CharSequence elements} joined together with a copy of the
2409     * specified {@code delimiter}.
2410     *
2411     * <blockquote>For example,
2412     * <pre>{@code
2413     *     List<String> strings = List.of("Java", "is", "cool");
2414     *     String message = String.join(" ", strings);
2415     *     //message returned is: "Java is cool"
2416     *
2417     *     Set<String> strings =
2418     *         new LinkedHashSet<>(List.of("Java", "is", "very", "cool"));
2419     *     String message = String.join("-", strings);
2420     *     //message returned is: "Java-is-very-cool"
2421     * }</pre></blockquote>
2422     *
2423     * Note that if an individual element is {@code null}, then {@code "null"} is added.
2424     *
2425     * @param  delimiter a sequence of characters that is used to separate each
2426     *         of the {@code elements} in the resulting {@code String}
2427     * @param  elements an {@code Iterable} that will have its {@code elements}
2428     *         joined together.
2429     *
2430     * @return a new {@code String} that is composed from the {@code elements}
2431     *         argument
2432     *
2433     * @throws NullPointerException If {@code delimiter} or {@code elements}
2434     *         is {@code null}
2435     *
2436     * @see    #join(CharSequence,CharSequence...)
2437     * @see    java.util.StringJoiner
2438     * @since 1.8
2439     */
2440    public static String join(CharSequence delimiter,
2441            Iterable<? extends CharSequence> elements) {
2442        Objects.requireNonNull(delimiter);
2443        Objects.requireNonNull(elements);
2444        StringJoiner joiner = new StringJoiner(delimiter);
2445        for (CharSequence cs: elements) {
2446            joiner.add(cs);
2447        }
2448        return joiner.toString();
2449    }
2450
2451    /**
2452     * Converts all of the characters in this {@code String} to lower
2453     * case using the rules of the given {@code Locale}.  Case mapping is based
2454     * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2455     * class. Since case mappings are not always 1:1 char mappings, the resulting
2456     * {@code String} may be a different length than the original {@code String}.
2457     * <p>
2458     * Examples of lowercase  mappings are in the following table:
2459     * <table class="plain">
2460     * <caption style="display:none">Lowercase mapping examples showing language code of locale, upper case, lower case, and description</caption>
2461     * <thead>
2462     * <tr>
2463     *   <th scope="col">Language Code of Locale</th>
2464     *   <th scope="col">Upper Case</th>
2465     *   <th scope="col">Lower Case</th>
2466     *   <th scope="col">Description</th>
2467     * </tr>
2468     * </thead>
2469     * <tbody>
2470     * <tr>
2471     *   <td>tr (Turkish)</td>
2472     *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0130</th>
2473     *   <td>&#92;u0069</td>
2474     *   <td>capital letter I with dot above -&gt; small letter i</td>
2475     * </tr>
2476     * <tr>
2477     *   <td>tr (Turkish)</td>
2478     *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0049</th>
2479     *   <td>&#92;u0131</td>
2480     *   <td>capital letter I -&gt; small letter dotless i </td>
2481     * </tr>
2482     * <tr>
2483     *   <td>(all)</td>
2484     *   <th scope="row" style="font-weight:normal; text-align:left">French Fries</th>
2485     *   <td>french fries</td>
2486     *   <td>lowercased all chars in String</td>
2487     * </tr>
2488     * <tr>
2489     *   <td>(all)</td>
2490     *   <th scope="row" style="font-weight:normal; text-align:left">
2491     *       &Iota;&Chi;&Theta;&Upsilon;&Sigma;</th>
2492     *   <td>&iota;&chi;&theta;&upsilon;&sigma;</td>
2493     *   <td>lowercased all chars in String</td>
2494     * </tr>
2495     * </tbody>
2496     * </table>
2497     *
2498     * @param locale use the case transformation rules for this locale
2499     * @return the {@code String}, converted to lowercase.
2500     * @see     java.lang.String#toLowerCase()
2501     * @see     java.lang.String#toUpperCase()
2502     * @see     java.lang.String#toUpperCase(Locale)
2503     * @since   1.1
2504     */
2505    public String toLowerCase(Locale locale) {
2506        return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
2507                          : StringUTF16.toLowerCase(this, value, locale);
2508    }
2509
2510    /**
2511     * Converts all of the characters in this {@code String} to lower
2512     * case using the rules of the default locale. This is equivalent to calling
2513     * {@code toLowerCase(Locale.getDefault())}.
2514     * <p>
2515     * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2516     * results if used for strings that are intended to be interpreted locale
2517     * independently.
2518     * Examples are programming language identifiers, protocol keys, and HTML
2519     * tags.
2520     * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2521     * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2522     * LATIN SMALL LETTER DOTLESS I character.
2523     * To obtain correct results for locale insensitive strings, use
2524     * {@code toLowerCase(Locale.ROOT)}.
2525     *
2526     * @return  the {@code String}, converted to lowercase.
2527     * @see     java.lang.String#toLowerCase(Locale)
2528     */
2529    public String toLowerCase() {
2530        return toLowerCase(Locale.getDefault());
2531    }
2532
2533    /**
2534     * Converts all of the characters in this {@code String} to upper
2535     * case using the rules of the given {@code Locale}. Case mapping is based
2536     * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2537     * class. Since case mappings are not always 1:1 char mappings, the resulting
2538     * {@code String} may be a different length than the original {@code String}.
2539     * <p>
2540     * Examples of locale-sensitive and 1:M case mappings are in the following table.
2541     *
2542     * <table class="plain">
2543     * <caption style="display:none">Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.</caption>
2544     * <thead>
2545     * <tr>
2546     *   <th scope="col">Language Code of Locale</th>
2547     *   <th scope="col">Lower Case</th>
2548     *   <th scope="col">Upper Case</th>
2549     *   <th scope="col">Description</th>
2550     * </tr>
2551     * </thead>
2552     * <tbody>
2553     * <tr>
2554     *   <td>tr (Turkish)</td>
2555     *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0069</th>
2556     *   <td>&#92;u0130</td>
2557     *   <td>small letter i -&gt; capital letter I with dot above</td>
2558     * </tr>
2559     * <tr>
2560     *   <td>tr (Turkish)</td>
2561     *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0131</th>
2562     *   <td>&#92;u0049</td>
2563     *   <td>small letter dotless i -&gt; capital letter I</td>
2564     * </tr>
2565     * <tr>
2566     *   <td>(all)</td>
2567     *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u00df</th>
2568     *   <td>&#92;u0053 &#92;u0053</td>
2569     *   <td>small letter sharp s -&gt; two letters: SS</td>
2570     * </tr>
2571     * <tr>
2572     *   <td>(all)</td>
2573     *   <th scope="row" style="font-weight:normal; text-align:left">Fahrvergn&uuml;gen</th>
2574     *   <td>FAHRVERGN&Uuml;GEN</td>
2575     *   <td></td>
2576     * </tr>
2577     * </tbody>
2578     * </table>
2579     * @param locale use the case transformation rules for this locale
2580     * @return the {@code String}, converted to uppercase.
2581     * @see     java.lang.String#toUpperCase()
2582     * @see     java.lang.String#toLowerCase()
2583     * @see     java.lang.String#toLowerCase(Locale)
2584     * @since   1.1
2585     */
2586    public String toUpperCase(Locale locale) {
2587        return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
2588                          : StringUTF16.toUpperCase(this, value, locale);
2589    }
2590
2591    /**
2592     * Converts all of the characters in this {@code String} to upper
2593     * case using the rules of the default locale. This method is equivalent to
2594     * {@code toUpperCase(Locale.getDefault())}.
2595     * <p>
2596     * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2597     * results if used for strings that are intended to be interpreted locale
2598     * independently.
2599     * Examples are programming language identifiers, protocol keys, and HTML
2600     * tags.
2601     * For instance, {@code "title".toUpperCase()} in a Turkish locale
2602     * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2603     * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2604     * To obtain correct results for locale insensitive strings, use
2605     * {@code toUpperCase(Locale.ROOT)}.
2606     *
2607     * @return  the {@code String}, converted to uppercase.
2608     * @see     java.lang.String#toUpperCase(Locale)
2609     */
2610    public String toUpperCase() {
2611        return toUpperCase(Locale.getDefault());
2612    }
2613
2614    /**
2615     * Returns a string whose value is this string, with any leading and trailing
2616     * whitespace removed.
2617     * <p>
2618     * If this {@code String} object represents an empty character
2619     * sequence, or the first and last characters of character sequence
2620     * represented by this {@code String} object both have codes
2621     * greater than {@code '\u005Cu0020'} (the space character), then a
2622     * reference to this {@code String} object is returned.
2623     * <p>
2624     * Otherwise, if there is no character with a code greater than
2625     * {@code '\u005Cu0020'} in the string, then a
2626     * {@code String} object representing an empty string is
2627     * returned.
2628     * <p>
2629     * Otherwise, let <i>k</i> be the index of the first character in the
2630     * string whose code is greater than {@code '\u005Cu0020'}, and let
2631     * <i>m</i> be the index of the last character in the string whose code
2632     * is greater than {@code '\u005Cu0020'}. A {@code String}
2633     * object is returned, representing the substring of this string that
2634     * begins with the character at index <i>k</i> and ends with the
2635     * character at index <i>m</i>-that is, the result of
2636     * {@code this.substring(k, m + 1)}.
2637     * <p>
2638     * This method may be used to trim whitespace (as defined above) from
2639     * the beginning and end of a string.
2640     *
2641     * @return  A string whose value is this string, with any leading and trailing white
2642     *          space removed, or this string if it has no leading or
2643     *          trailing white space.
2644     */
2645    public String trim() {
2646        String ret = isLatin1() ? StringLatin1.trim(value)
2647                                : StringUTF16.trim(value);
2648        return ret == null ? this : ret;
2649    }
2650
2651    /**
2652     * This object (which is already a string!) is itself returned.
2653     *
2654     * @return  the string itself.
2655     */
2656    public String toString() {
2657        return this;
2658    }
2659
2660    /**
2661     * Returns a stream of {@code int} zero-extending the {@code char} values
2662     * from this sequence.  Any char which maps to a <a
2663     * href="{@docRoot}/java/lang/Character.html#unicode">surrogate code
2664     * point</a> is passed through uninterpreted.
2665     *
2666     * @return an IntStream of char values from this sequence
2667     */
2668    @Override
2669    public IntStream chars() {
2670        return StreamSupport.intStream(
2671            isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2672                       : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE),
2673            false);
2674    }
2675
2676
2677    /**
2678     * Returns a stream of code point values from this sequence.  Any surrogate
2679     * pairs encountered in the sequence are combined as if by {@linkplain
2680     * Character#toCodePoint Character.toCodePoint} and the result is passed
2681     * to the stream. Any other code units, including ordinary BMP characters,
2682     * unpaired surrogates, and undefined code units, are zero-extended to
2683     * {@code int} values which are then passed to the stream.
2684     *
2685     * @return an IntStream of Unicode code points from this sequence
2686     */
2687    @Override
2688    public IntStream codePoints() {
2689        return StreamSupport.intStream(
2690            isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2691                       : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE),
2692            false);
2693    }
2694
2695    /**
2696     * Converts this string to a new character array.
2697     *
2698     * @return  a newly allocated character array whose length is the length
2699     *          of this string and whose contents are initialized to contain
2700     *          the character sequence represented by this string.
2701     */
2702    public char[] toCharArray() {
2703        return isLatin1() ? StringLatin1.toChars(value)
2704                          : StringUTF16.toChars(value);
2705    }
2706
2707    /**
2708     * Returns a formatted string using the specified format string and
2709     * arguments.
2710     *
2711     * <p> The locale always used is the one returned by {@link
2712     * java.util.Locale#getDefault(java.util.Locale.Category)
2713     * Locale.getDefault(Locale.Category)} with
2714     * {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
2715     *
2716     * @param  format
2717     *         A <a href="../util/Formatter.html#syntax">format string</a>
2718     *
2719     * @param  args
2720     *         Arguments referenced by the format specifiers in the format
2721     *         string.  If there are more arguments than format specifiers, the
2722     *         extra arguments are ignored.  The number of arguments is
2723     *         variable and may be zero.  The maximum number of arguments is
2724     *         limited by the maximum dimension of a Java array as defined by
2725     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2726     *         The behaviour on a
2727     *         {@code null} argument depends on the <a
2728     *         href="../util/Formatter.html#syntax">conversion</a>.
2729     *
2730     * @throws  java.util.IllegalFormatException
2731     *          If a format string contains an illegal syntax, a format
2732     *          specifier that is incompatible with the given arguments,
2733     *          insufficient arguments given the format string, or other
2734     *          illegal conditions.  For specification of all possible
2735     *          formatting errors, see the <a
2736     *          href="../util/Formatter.html#detail">Details</a> section of the
2737     *          formatter class specification.
2738     *
2739     * @return  A formatted string
2740     *
2741     * @see  java.util.Formatter
2742     * @since  1.5
2743     */
2744    public static String format(String format, Object... args) {
2745        return new Formatter().format(format, args).toString();
2746    }
2747
2748    /**
2749     * Returns a formatted string using the specified locale, format string,
2750     * and arguments.
2751     *
2752     * @param  l
2753     *         The {@linkplain java.util.Locale locale} to apply during
2754     *         formatting.  If {@code l} is {@code null} then no localization
2755     *         is applied.
2756     *
2757     * @param  format
2758     *         A <a href="../util/Formatter.html#syntax">format string</a>
2759     *
2760     * @param  args
2761     *         Arguments referenced by the format specifiers in the format
2762     *         string.  If there are more arguments than format specifiers, the
2763     *         extra arguments are ignored.  The number of arguments is
2764     *         variable and may be zero.  The maximum number of arguments is
2765     *         limited by the maximum dimension of a Java array as defined by
2766     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2767     *         The behaviour on a
2768     *         {@code null} argument depends on the
2769     *         <a href="../util/Formatter.html#syntax">conversion</a>.
2770     *
2771     * @throws  java.util.IllegalFormatException
2772     *          If a format string contains an illegal syntax, a format
2773     *          specifier that is incompatible with the given arguments,
2774     *          insufficient arguments given the format string, or other
2775     *          illegal conditions.  For specification of all possible
2776     *          formatting errors, see the <a
2777     *          href="../util/Formatter.html#detail">Details</a> section of the
2778     *          formatter class specification
2779     *
2780     * @return  A formatted string
2781     *
2782     * @see  java.util.Formatter
2783     * @since  1.5
2784     */
2785    public static String format(Locale l, String format, Object... args) {
2786        return new Formatter(l).format(format, args).toString();
2787    }
2788
2789    /**
2790     * Returns the string representation of the {@code Object} argument.
2791     *
2792     * @param   obj   an {@code Object}.
2793     * @return  if the argument is {@code null}, then a string equal to
2794     *          {@code "null"}; otherwise, the value of
2795     *          {@code obj.toString()} is returned.
2796     * @see     java.lang.Object#toString()
2797     */
2798    public static String valueOf(Object obj) {
2799        return (obj == null) ? "null" : obj.toString();
2800    }
2801
2802    /**
2803     * Returns the string representation of the {@code char} array
2804     * argument. The contents of the character array are copied; subsequent
2805     * modification of the character array does not affect the returned
2806     * string.
2807     *
2808     * @param   data     the character array.
2809     * @return  a {@code String} that contains the characters of the
2810     *          character array.
2811     */
2812    public static String valueOf(char data[]) {
2813        return new String(data);
2814    }
2815
2816    /**
2817     * Returns the string representation of a specific subarray of the
2818     * {@code char} array argument.
2819     * <p>
2820     * The {@code offset} argument is the index of the first
2821     * character of the subarray. The {@code count} argument
2822     * specifies the length of the subarray. The contents of the subarray
2823     * are copied; subsequent modification of the character array does not
2824     * affect the returned string.
2825     *
2826     * @param   data     the character array.
2827     * @param   offset   initial offset of the subarray.
2828     * @param   count    length of the subarray.
2829     * @return  a {@code String} that contains the characters of the
2830     *          specified subarray of the character array.
2831     * @exception IndexOutOfBoundsException if {@code offset} is
2832     *          negative, or {@code count} is negative, or
2833     *          {@code offset+count} is larger than
2834     *          {@code data.length}.
2835     */
2836    public static String valueOf(char data[], int offset, int count) {
2837        return new String(data, offset, count);
2838    }
2839
2840    /**
2841     * Equivalent to {@link #valueOf(char[], int, int)}.
2842     *
2843     * @param   data     the character array.
2844     * @param   offset   initial offset of the subarray.
2845     * @param   count    length of the subarray.
2846     * @return  a {@code String} that contains the characters of the
2847     *          specified subarray of the character array.
2848     * @exception IndexOutOfBoundsException if {@code offset} is
2849     *          negative, or {@code count} is negative, or
2850     *          {@code offset+count} is larger than
2851     *          {@code data.length}.
2852     */
2853    public static String copyValueOf(char data[], int offset, int count) {
2854        return new String(data, offset, count);
2855    }
2856
2857    /**
2858     * Equivalent to {@link #valueOf(char[])}.
2859     *
2860     * @param   data   the character array.
2861     * @return  a {@code String} that contains the characters of the
2862     *          character array.
2863     */
2864    public static String copyValueOf(char data[]) {
2865        return new String(data);
2866    }
2867
2868    /**
2869     * Returns the string representation of the {@code boolean} argument.
2870     *
2871     * @param   b   a {@code boolean}.
2872     * @return  if the argument is {@code true}, a string equal to
2873     *          {@code "true"} is returned; otherwise, a string equal to
2874     *          {@code "false"} is returned.
2875     */
2876    public static String valueOf(boolean b) {
2877        return b ? "true" : "false";
2878    }
2879
2880    /**
2881     * Returns the string representation of the {@code char}
2882     * argument.
2883     *
2884     * @param   c   a {@code char}.
2885     * @return  a string of length {@code 1} containing
2886     *          as its single character the argument {@code c}.
2887     */
2888    public static String valueOf(char c) {
2889        if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
2890            return new String(StringLatin1.toBytes(c), LATIN1);
2891        }
2892        return new String(StringUTF16.toBytes(c), UTF16);
2893    }
2894
2895    /**
2896     * Returns the string representation of the {@code int} argument.
2897     * <p>
2898     * The representation is exactly the one returned by the
2899     * {@code Integer.toString} method of one argument.
2900     *
2901     * @param   i   an {@code int}.
2902     * @return  a string representation of the {@code int} argument.
2903     * @see     java.lang.Integer#toString(int, int)
2904     */
2905    public static String valueOf(int i) {
2906        return Integer.toString(i);
2907    }
2908
2909    /**
2910     * Returns the string representation of the {@code long} argument.
2911     * <p>
2912     * The representation is exactly the one returned by the
2913     * {@code Long.toString} method of one argument.
2914     *
2915     * @param   l   a {@code long}.
2916     * @return  a string representation of the {@code long} argument.
2917     * @see     java.lang.Long#toString(long)
2918     */
2919    public static String valueOf(long l) {
2920        return Long.toString(l);
2921    }
2922
2923    /**
2924     * Returns the string representation of the {@code float} argument.
2925     * <p>
2926     * The representation is exactly the one returned by the
2927     * {@code Float.toString} method of one argument.
2928     *
2929     * @param   f   a {@code float}.
2930     * @return  a string representation of the {@code float} argument.
2931     * @see     java.lang.Float#toString(float)
2932     */
2933    public static String valueOf(float f) {
2934        return Float.toString(f);
2935    }
2936
2937    /**
2938     * Returns the string representation of the {@code double} argument.
2939     * <p>
2940     * The representation is exactly the one returned by the
2941     * {@code Double.toString} method of one argument.
2942     *
2943     * @param   d   a {@code double}.
2944     * @return  a  string representation of the {@code double} argument.
2945     * @see     java.lang.Double#toString(double)
2946     */
2947    public static String valueOf(double d) {
2948        return Double.toString(d);
2949    }
2950
2951    /**
2952     * Returns a canonical representation for the string object.
2953     * <p>
2954     * A pool of strings, initially empty, is maintained privately by the
2955     * class {@code String}.
2956     * <p>
2957     * When the intern method is invoked, if the pool already contains a
2958     * string equal to this {@code String} object as determined by
2959     * the {@link #equals(Object)} method, then the string from the pool is
2960     * returned. Otherwise, this {@code String} object is added to the
2961     * pool and a reference to this {@code String} object is returned.
2962     * <p>
2963     * It follows that for any two strings {@code s} and {@code t},
2964     * {@code s.intern() == t.intern()} is {@code true}
2965     * if and only if {@code s.equals(t)} is {@code true}.
2966     * <p>
2967     * All literal strings and string-valued constant expressions are
2968     * interned. String literals are defined in section 3.10.5 of the
2969     * <cite>The Java&trade; Language Specification</cite>.
2970     *
2971     * @return  a string that has the same contents as this string, but is
2972     *          guaranteed to be from a pool of unique strings.
2973     * @jls 3.10.5 String Literals
2974     */
2975    public native String intern();
2976
2977    ////////////////////////////////////////////////////////////////
2978
2979    /**
2980     * Copy character bytes from this string into dst starting at dstBegin.
2981     * This method doesn't perform any range checking.
2982     *
2983     * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
2984     * coders are different, and dst is big enough (range check)
2985     *
2986     * @param dstBegin  the char index, not offset of byte[]
2987     * @param coder     the coder of dst[]
2988     */
2989    void getBytes(byte dst[], int dstBegin, byte coder) {
2990        if (coder() == coder) {
2991            System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
2992        } else {    // this.coder == LATIN && coder == UTF16
2993            StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
2994        }
2995    }
2996
2997    /*
2998     * Package private constructor. Trailing Void argument is there for
2999     * disambiguating it against other (public) constructors.
3000     *
3001     * Stores the char[] value into a byte[] that each byte represents
3002     * the8 low-order bits of the corresponding character, if the char[]
3003     * contains only latin1 character. Or a byte[] that stores all
3004     * characters in their byte sequences defined by the {@code StringUTF16}.
3005     */
3006    String(char[] value, int off, int len, Void sig) {
3007        if (len == 0) {
3008            this.value = "".value;
3009            this.coder = "".coder;
3010            return;
3011        }
3012        if (COMPACT_STRINGS) {
3013            byte[] val = StringUTF16.compress(value, off, len);
3014            if (val != null) {
3015                this.value = val;
3016                this.coder = LATIN1;
3017                return;
3018            }
3019        }
3020        this.coder = UTF16;
3021        this.value = StringUTF16.toBytes(value, off, len);
3022    }
3023
3024    /*
3025     * Package private constructor. Trailing Void argument is there for
3026     * disambiguating it against other (public) constructors.
3027     */
3028    String(AbstractStringBuilder asb, Void sig) {
3029        byte[] val = asb.getValue();
3030        int length = asb.length();
3031        if (asb.isLatin1()) {
3032            this.coder = LATIN1;
3033            this.value = Arrays.copyOfRange(val, 0, length);
3034        } else {
3035            if (COMPACT_STRINGS) {
3036                byte[] buf = StringUTF16.compress(val, 0, length);
3037                if (buf != null) {
3038                    this.coder = LATIN1;
3039                    this.value = buf;
3040                    return;
3041                }
3042            }
3043            this.coder = UTF16;
3044            this.value = Arrays.copyOfRange(val, 0, length << 1);
3045        }
3046    }
3047
3048   /*
3049    * Package private constructor which shares value array for speed.
3050    */
3051    String(byte[] value, byte coder) {
3052        this.value = value;
3053        this.coder = coder;
3054    }
3055
3056    byte coder() {
3057        return COMPACT_STRINGS ? coder : UTF16;
3058    }
3059
3060    private boolean isLatin1() {
3061        return COMPACT_STRINGS && coder == LATIN1;
3062    }
3063
3064    @Native static final byte LATIN1 = 0;
3065    @Native static final byte UTF16  = 1;
3066
3067    /*
3068     * StringIndexOutOfBoundsException  if {@code index} is
3069     * negative or greater than or equal to {@code length}.
3070     */
3071    static void checkIndex(int index, int length) {
3072        if (index < 0 || index >= length) {
3073            throw new StringIndexOutOfBoundsException("index " + index +
3074                                                      ",length " + length);
3075        }
3076    }
3077
3078    /*
3079     * StringIndexOutOfBoundsException  if {@code offset}
3080     * is negative or greater than {@code length}.
3081     */
3082    static void checkOffset(int offset, int length) {
3083        if (offset < 0 || offset > length) {
3084            throw new StringIndexOutOfBoundsException("offset " + offset +
3085                                                      ",length " + length);
3086        }
3087    }
3088
3089    /*
3090     * Check {@code offset}, {@code count} against {@code 0} and {@code length}
3091     * bounds.
3092     *
3093     * @throws  StringIndexOutOfBoundsException
3094     *          If {@code offset} is negative, {@code count} is negative,
3095     *          or {@code offset} is greater than {@code length - count}
3096     */
3097    static void checkBoundsOffCount(int offset, int count, int length) {
3098        if (offset < 0 || count < 0 || offset > length - count) {
3099            throw new StringIndexOutOfBoundsException(
3100                "offset " + offset + ", count " + count + ", length " + length);
3101        }
3102    }
3103
3104    /*
3105     * Check {@code begin}, {@code end} against {@code 0} and {@code length}
3106     * bounds.
3107     *
3108     * @throws  StringIndexOutOfBoundsException
3109     *          If {@code begin} is negative, {@code begin} is greater than
3110     *          {@code end}, or {@code end} is greater than {@code length}.
3111     */
3112    static void checkBoundsBeginEnd(int begin, int end, int length) {
3113        if (begin < 0 || begin > end || end > length) {
3114            throw new StringIndexOutOfBoundsException(
3115                "begin " + begin + ", end " + end + ", length " + length);
3116        }
3117    }
3118}
3119