1/*
2 * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang;
27
28import java.lang.annotation.Native;
29import java.math.*;
30import java.util.Objects;
31import jdk.internal.HotSpotIntrinsicCandidate;
32
33import static java.lang.String.COMPACT_STRINGS;
34import static java.lang.String.LATIN1;
35import static java.lang.String.UTF16;
36
37/**
38 * The {@code Long} class wraps a value of the primitive type {@code
39 * long} in an object. An object of type {@code Long} contains a
40 * single field whose type is {@code long}.
41 *
42 * <p> In addition, this class provides several methods for converting
43 * a {@code long} to a {@code String} and a {@code String} to a {@code
44 * long}, as well as other constants and methods useful when dealing
45 * with a {@code long}.
46 *
47 * <p>Implementation note: The implementations of the "bit twiddling"
48 * methods (such as {@link #highestOneBit(long) highestOneBit} and
49 * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
50 * based on material from Henry S. Warren, Jr.'s <i>Hacker's
51 * Delight</i>, (Addison Wesley, 2002).
52 *
53 * @author  Lee Boynton
54 * @author  Arthur van Hoff
55 * @author  Josh Bloch
56 * @author  Joseph D. Darcy
57 * @since   1.0
58 */
59public final class Long extends Number implements Comparable<Long> {
60    /**
61     * A constant holding the minimum value a {@code long} can
62     * have, -2<sup>63</sup>.
63     */
64    @Native public static final long MIN_VALUE = 0x8000000000000000L;
65
66    /**
67     * A constant holding the maximum value a {@code long} can
68     * have, 2<sup>63</sup>-1.
69     */
70    @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
71
72    /**
73     * The {@code Class} instance representing the primitive type
74     * {@code long}.
75     *
76     * @since   1.1
77     */
78    @SuppressWarnings("unchecked")
79    public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
80
81    /**
82     * Returns a string representation of the first argument in the
83     * radix specified by the second argument.
84     *
85     * <p>If the radix is smaller than {@code Character.MIN_RADIX}
86     * or larger than {@code Character.MAX_RADIX}, then the radix
87     * {@code 10} is used instead.
88     *
89     * <p>If the first argument is negative, the first element of the
90     * result is the ASCII minus sign {@code '-'}
91     * ({@code '\u005Cu002d'}). If the first argument is not
92     * negative, no sign character appears in the result.
93     *
94     * <p>The remaining characters of the result represent the magnitude
95     * of the first argument. If the magnitude is zero, it is
96     * represented by a single zero character {@code '0'}
97     * ({@code '\u005Cu0030'}); otherwise, the first character of
98     * the representation of the magnitude will not be the zero
99     * character.  The following ASCII characters are used as digits:
100     *
101     * <blockquote>
102     *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
103     * </blockquote>
104     *
105     * These are {@code '\u005Cu0030'} through
106     * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
107     * {@code '\u005Cu007a'}. If {@code radix} is
108     * <var>N</var>, then the first <var>N</var> of these characters
109     * are used as radix-<var>N</var> digits in the order shown. Thus,
110     * the digits for hexadecimal (radix 16) are
111     * {@code 0123456789abcdef}. If uppercase letters are
112     * desired, the {@link java.lang.String#toUpperCase()} method may
113     * be called on the result:
114     *
115     * <blockquote>
116     *  {@code Long.toString(n, 16).toUpperCase()}
117     * </blockquote>
118     *
119     * @param   i       a {@code long} to be converted to a string.
120     * @param   radix   the radix to use in the string representation.
121     * @return  a string representation of the argument in the specified radix.
122     * @see     java.lang.Character#MAX_RADIX
123     * @see     java.lang.Character#MIN_RADIX
124     */
125    public static String toString(long i, int radix) {
126        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
127            radix = 10;
128        if (radix == 10)
129            return toString(i);
130
131        if (COMPACT_STRINGS) {
132            byte[] buf = new byte[65];
133            int charPos = 64;
134            boolean negative = (i < 0);
135
136            if (!negative) {
137                i = -i;
138            }
139
140            while (i <= -radix) {
141                buf[charPos--] = (byte)Integer.digits[(int)(-(i % radix))];
142                i = i / radix;
143            }
144            buf[charPos] = (byte)Integer.digits[(int)(-i)];
145
146            if (negative) {
147                buf[--charPos] = '-';
148            }
149            return StringLatin1.newString(buf, charPos, (65 - charPos));
150        }
151        return toStringUTF16(i, radix);
152    }
153
154    private static String toStringUTF16(long i, int radix) {
155        byte[] buf = new byte[65 * 2];
156        int charPos = 64;
157        boolean negative = (i < 0);
158        if (!negative) {
159            i = -i;
160        }
161        while (i <= -radix) {
162            StringUTF16.putChar(buf, charPos--, Integer.digits[(int)(-(i % radix))]);
163            i = i / radix;
164        }
165        StringUTF16.putChar(buf, charPos, Integer.digits[(int)(-i)]);
166        if (negative) {
167            StringUTF16.putChar(buf, --charPos, '-');
168        }
169        return StringUTF16.newString(buf, charPos, (65 - charPos));
170    }
171
172    /**
173     * Returns a string representation of the first argument as an
174     * unsigned integer value in the radix specified by the second
175     * argument.
176     *
177     * <p>If the radix is smaller than {@code Character.MIN_RADIX}
178     * or larger than {@code Character.MAX_RADIX}, then the radix
179     * {@code 10} is used instead.
180     *
181     * <p>Note that since the first argument is treated as an unsigned
182     * value, no leading sign character is printed.
183     *
184     * <p>If the magnitude is zero, it is represented by a single zero
185     * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
186     * the first character of the representation of the magnitude will
187     * not be the zero character.
188     *
189     * <p>The behavior of radixes and the characters used as digits
190     * are the same as {@link #toString(long, int) toString}.
191     *
192     * @param   i       an integer to be converted to an unsigned string.
193     * @param   radix   the radix to use in the string representation.
194     * @return  an unsigned string representation of the argument in the specified radix.
195     * @see     #toString(long, int)
196     * @since 1.8
197     */
198    public static String toUnsignedString(long i, int radix) {
199        if (i >= 0)
200            return toString(i, radix);
201        else {
202            switch (radix) {
203            case 2:
204                return toBinaryString(i);
205
206            case 4:
207                return toUnsignedString0(i, 2);
208
209            case 8:
210                return toOctalString(i);
211
212            case 10:
213                /*
214                 * We can get the effect of an unsigned division by 10
215                 * on a long value by first shifting right, yielding a
216                 * positive value, and then dividing by 5.  This
217                 * allows the last digit and preceding digits to be
218                 * isolated more quickly than by an initial conversion
219                 * to BigInteger.
220                 */
221                long quot = (i >>> 1) / 5;
222                long rem = i - quot * 10;
223                return toString(quot) + rem;
224
225            case 16:
226                return toHexString(i);
227
228            case 32:
229                return toUnsignedString0(i, 5);
230
231            default:
232                return toUnsignedBigInteger(i).toString(radix);
233            }
234        }
235    }
236
237    /**
238     * Return a BigInteger equal to the unsigned value of the
239     * argument.
240     */
241    private static BigInteger toUnsignedBigInteger(long i) {
242        if (i >= 0L)
243            return BigInteger.valueOf(i);
244        else {
245            int upper = (int) (i >>> 32);
246            int lower = (int) i;
247
248            // return (upper << 32) + lower
249            return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
250                add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
251        }
252    }
253
254    /**
255     * Returns a string representation of the {@code long}
256     * argument as an unsigned integer in base&nbsp;16.
257     *
258     * <p>The unsigned {@code long} value is the argument plus
259     * 2<sup>64</sup> if the argument is negative; otherwise, it is
260     * equal to the argument.  This value is converted to a string of
261     * ASCII digits in hexadecimal (base&nbsp;16) with no extra
262     * leading {@code 0}s.
263     *
264     * <p>The value of the argument can be recovered from the returned
265     * string {@code s} by calling {@link
266     * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
267     * 16)}.
268     *
269     * <p>If the unsigned magnitude is zero, it is represented by a
270     * single zero character {@code '0'} ({@code '\u005Cu0030'});
271     * otherwise, the first character of the representation of the
272     * unsigned magnitude will not be the zero character. The
273     * following characters are used as hexadecimal digits:
274     *
275     * <blockquote>
276     *  {@code 0123456789abcdef}
277     * </blockquote>
278     *
279     * These are the characters {@code '\u005Cu0030'} through
280     * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
281     * {@code '\u005Cu0066'}.  If uppercase letters are desired,
282     * the {@link java.lang.String#toUpperCase()} method may be called
283     * on the result:
284     *
285     * <blockquote>
286     *  {@code Long.toHexString(n).toUpperCase()}
287     * </blockquote>
288     *
289     * @param   i   a {@code long} to be converted to a string.
290     * @return  the string representation of the unsigned {@code long}
291     *          value represented by the argument in hexadecimal
292     *          (base&nbsp;16).
293     * @see #parseUnsignedLong(String, int)
294     * @see #toUnsignedString(long, int)
295     * @since   1.0.2
296     */
297    public static String toHexString(long i) {
298        return toUnsignedString0(i, 4);
299    }
300
301    /**
302     * Returns a string representation of the {@code long}
303     * argument as an unsigned integer in base&nbsp;8.
304     *
305     * <p>The unsigned {@code long} value is the argument plus
306     * 2<sup>64</sup> if the argument is negative; otherwise, it is
307     * equal to the argument.  This value is converted to a string of
308     * ASCII digits in octal (base&nbsp;8) with no extra leading
309     * {@code 0}s.
310     *
311     * <p>The value of the argument can be recovered from the returned
312     * string {@code s} by calling {@link
313     * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
314     * 8)}.
315     *
316     * <p>If the unsigned magnitude is zero, it is represented by a
317     * single zero character {@code '0'} ({@code '\u005Cu0030'});
318     * otherwise, the first character of the representation of the
319     * unsigned magnitude will not be the zero character. The
320     * following characters are used as octal digits:
321     *
322     * <blockquote>
323     *  {@code 01234567}
324     * </blockquote>
325     *
326     * These are the characters {@code '\u005Cu0030'} through
327     * {@code '\u005Cu0037'}.
328     *
329     * @param   i   a {@code long} to be converted to a string.
330     * @return  the string representation of the unsigned {@code long}
331     *          value represented by the argument in octal (base&nbsp;8).
332     * @see #parseUnsignedLong(String, int)
333     * @see #toUnsignedString(long, int)
334     * @since   1.0.2
335     */
336    public static String toOctalString(long i) {
337        return toUnsignedString0(i, 3);
338    }
339
340    /**
341     * Returns a string representation of the {@code long}
342     * argument as an unsigned integer in base&nbsp;2.
343     *
344     * <p>The unsigned {@code long} value is the argument plus
345     * 2<sup>64</sup> if the argument is negative; otherwise, it is
346     * equal to the argument.  This value is converted to a string of
347     * ASCII digits in binary (base&nbsp;2) with no extra leading
348     * {@code 0}s.
349     *
350     * <p>The value of the argument can be recovered from the returned
351     * string {@code s} by calling {@link
352     * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
353     * 2)}.
354     *
355     * <p>If the unsigned magnitude is zero, it is represented by a
356     * single zero character {@code '0'} ({@code '\u005Cu0030'});
357     * otherwise, the first character of the representation of the
358     * unsigned magnitude will not be the zero character. The
359     * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
360     * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
361     *
362     * @param   i   a {@code long} to be converted to a string.
363     * @return  the string representation of the unsigned {@code long}
364     *          value represented by the argument in binary (base&nbsp;2).
365     * @see #parseUnsignedLong(String, int)
366     * @see #toUnsignedString(long, int)
367     * @since   1.0.2
368     */
369    public static String toBinaryString(long i) {
370        return toUnsignedString0(i, 1);
371    }
372
373    /**
374     * Format a long (treated as unsigned) into a String.
375     * @param val the value to format
376     * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
377     */
378    static String toUnsignedString0(long val, int shift) {
379        // assert shift > 0 && shift <=5 : "Illegal shift value";
380        int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
381        int chars = Math.max(((mag + (shift - 1)) / shift), 1);
382        if (COMPACT_STRINGS) {
383            byte[] buf = new byte[chars];
384            formatUnsignedLong0(val, shift, buf, 0, chars);
385            return new String(buf, LATIN1);
386        } else {
387            byte[] buf = new byte[chars * 2];
388            formatUnsignedLong0UTF16(val, shift, buf, 0, chars);
389            return new String(buf, UTF16);
390        }
391    }
392
393    /**
394     * Format a long (treated as unsigned) into a character buffer. If
395     * {@code len} exceeds the formatted ASCII representation of {@code val},
396     * {@code buf} will be padded with leading zeroes.
397     *
398     * @param val the unsigned long to format
399     * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
400     * @param buf the character buffer to write to
401     * @param offset the offset in the destination buffer to start at
402     * @param len the number of characters to write
403     */
404
405    /** byte[]/LATIN1 version    */
406    static void formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len) {
407        int charPos = offset + len;
408        int radix = 1 << shift;
409        int mask = radix - 1;
410        do {
411            buf[--charPos] = (byte)Integer.digits[((int) val) & mask];
412            val >>>= shift;
413        } while (charPos > offset);
414    }
415
416    /** byte[]/UTF16 version    */
417    private static void formatUnsignedLong0UTF16(long val, int shift, byte[] buf, int offset, int len) {
418        int charPos = offset + len;
419        int radix = 1 << shift;
420        int mask = radix - 1;
421        do {
422            StringUTF16.putChar(buf, --charPos, Integer.digits[((int) val) & mask]);
423            val >>>= shift;
424        } while (charPos > offset);
425    }
426
427    static String fastUUID(long lsb, long msb) {
428        if (COMPACT_STRINGS) {
429            byte[] buf = new byte[36];
430            formatUnsignedLong0(lsb,        4, buf, 24, 12);
431            formatUnsignedLong0(lsb >>> 48, 4, buf, 19, 4);
432            formatUnsignedLong0(msb,        4, buf, 14, 4);
433            formatUnsignedLong0(msb >>> 16, 4, buf, 9,  4);
434            formatUnsignedLong0(msb >>> 32, 4, buf, 0,  8);
435
436            buf[23] = '-';
437            buf[18] = '-';
438            buf[13] = '-';
439            buf[8]  = '-';
440
441            return new String(buf, LATIN1);
442        } else {
443            byte[] buf = new byte[72];
444
445            formatUnsignedLong0UTF16(lsb,        4, buf, 24, 12);
446            formatUnsignedLong0UTF16(lsb >>> 48, 4, buf, 19, 4);
447            formatUnsignedLong0UTF16(msb,        4, buf, 14, 4);
448            formatUnsignedLong0UTF16(msb >>> 16, 4, buf, 9,  4);
449            formatUnsignedLong0UTF16(msb >>> 32, 4, buf, 0,  8);
450
451            StringUTF16.putChar(buf, 23, '-');
452            StringUTF16.putChar(buf, 18, '-');
453            StringUTF16.putChar(buf, 13, '-');
454            StringUTF16.putChar(buf,  8, '-');
455
456            return new String(buf, UTF16);
457        }
458    }
459
460    /**
461     * Returns a {@code String} object representing the specified
462     * {@code long}.  The argument is converted to signed decimal
463     * representation and returned as a string, exactly as if the
464     * argument and the radix 10 were given as arguments to the {@link
465     * #toString(long, int)} method.
466     *
467     * @param   i   a {@code long} to be converted.
468     * @return  a string representation of the argument in base&nbsp;10.
469     */
470    public static String toString(long i) {
471        int size = stringSize(i);
472        if (COMPACT_STRINGS) {
473            byte[] buf = new byte[size];
474            getChars(i, size, buf);
475            return new String(buf, LATIN1);
476        } else {
477            byte[] buf = new byte[size * 2];
478            StringUTF16.getChars(i, size, buf);
479            return new String(buf, UTF16);
480        }
481    }
482
483    /**
484     * Returns a string representation of the argument as an unsigned
485     * decimal value.
486     *
487     * The argument is converted to unsigned decimal representation
488     * and returned as a string exactly as if the argument and radix
489     * 10 were given as arguments to the {@link #toUnsignedString(long,
490     * int)} method.
491     *
492     * @param   i  an integer to be converted to an unsigned string.
493     * @return  an unsigned string representation of the argument.
494     * @see     #toUnsignedString(long, int)
495     * @since 1.8
496     */
497    public static String toUnsignedString(long i) {
498        return toUnsignedString(i, 10);
499    }
500
501    /**
502     * Places characters representing the long i into the
503     * character array buf. The characters are placed into
504     * the buffer backwards starting with the least significant
505     * digit at the specified index (exclusive), and working
506     * backwards from there.
507     *
508     * @implNote This method converts positive inputs into negative
509     * values, to cover the Long.MIN_VALUE case. Converting otherwise
510     * (negative to positive) will expose -Long.MIN_VALUE that overflows
511     * long.
512     *
513     * @param i     value to convert
514     * @param index next index, after the least significant digit
515     * @param buf   target buffer, Latin1-encoded
516     * @return index of the most significant digit or minus sign, if present
517     */
518    static int getChars(long i, int index, byte[] buf) {
519        long q;
520        int r;
521        int charPos = index;
522
523        boolean negative = (i < 0);
524        if (!negative) {
525            i = -i;
526        }
527
528        // Get 2 digits/iteration using longs until quotient fits into an int
529        while (i <= Integer.MIN_VALUE) {
530            q = i / 100;
531            r = (int)((q * 100) - i);
532            i = q;
533            buf[--charPos] = Integer.DigitOnes[r];
534            buf[--charPos] = Integer.DigitTens[r];
535        }
536
537        // Get 2 digits/iteration using ints
538        int q2;
539        int i2 = (int)i;
540        while (i2 <= -100) {
541            q2 = i2 / 100;
542            r  = (q2 * 100) - i2;
543            i2 = q2;
544            buf[--charPos] = Integer.DigitOnes[r];
545            buf[--charPos] = Integer.DigitTens[r];
546        }
547
548        // We know there are at most two digits left at this point.
549        q2 = i2 / 10;
550        r  = (q2 * 10) - i2;
551        buf[--charPos] = (byte)('0' + r);
552
553        // Whatever left is the remaining digit.
554        if (q2 < 0) {
555            buf[--charPos] = (byte)('0' - q2);
556        }
557
558        if (negative) {
559            buf[--charPos] = (byte)'-';
560        }
561        return charPos;
562    }
563
564    /**
565     * Returns the string representation size for a given long value.
566     *
567     * @param x long value
568     * @return string size
569     *
570     * @implNote There are other ways to compute this: e.g. binary search,
571     * but values are biased heavily towards zero, and therefore linear search
572     * wins. The iteration results are also routinely inlined in the generated
573     * code after loop unrolling.
574     */
575    static int stringSize(long x) {
576        int d = 1;
577        if (x >= 0) {
578            d = 0;
579            x = -x;
580        }
581        long p = -10;
582        for (int i = 1; i < 19; i++) {
583            if (x > p)
584                return i + d;
585            p = 10 * p;
586        }
587        return 19 + d;
588    }
589
590    /**
591     * Parses the string argument as a signed {@code long} in the
592     * radix specified by the second argument. The characters in the
593     * string must all be digits of the specified radix (as determined
594     * by whether {@link java.lang.Character#digit(char, int)} returns
595     * a nonnegative value), except that the first character may be an
596     * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
597     * indicate a negative value or an ASCII plus sign {@code '+'}
598     * ({@code '\u005Cu002B'}) to indicate a positive value. The
599     * resulting {@code long} value is returned.
600     *
601     * <p>Note that neither the character {@code L}
602     * ({@code '\u005Cu004C'}) nor {@code l}
603     * ({@code '\u005Cu006C'}) is permitted to appear at the end
604     * of the string as a type indicator, as would be permitted in
605     * Java programming language source code - except that either
606     * {@code L} or {@code l} may appear as a digit for a
607     * radix greater than or equal to 22.
608     *
609     * <p>An exception of type {@code NumberFormatException} is
610     * thrown if any of the following situations occurs:
611     * <ul>
612     *
613     * <li>The first argument is {@code null} or is a string of
614     * length zero.
615     *
616     * <li>The {@code radix} is either smaller than {@link
617     * java.lang.Character#MIN_RADIX} or larger than {@link
618     * java.lang.Character#MAX_RADIX}.
619     *
620     * <li>Any character of the string is not a digit of the specified
621     * radix, except that the first character may be a minus sign
622     * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
623     * '+'} ({@code '\u005Cu002B'}) provided that the string is
624     * longer than length 1.
625     *
626     * <li>The value represented by the string is not a value of type
627     *      {@code long}.
628     * </ul>
629     *
630     * <p>Examples:
631     * <blockquote><pre>
632     * parseLong("0", 10) returns 0L
633     * parseLong("473", 10) returns 473L
634     * parseLong("+42", 10) returns 42L
635     * parseLong("-0", 10) returns 0L
636     * parseLong("-FF", 16) returns -255L
637     * parseLong("1100110", 2) returns 102L
638     * parseLong("99", 8) throws a NumberFormatException
639     * parseLong("Hazelnut", 10) throws a NumberFormatException
640     * parseLong("Hazelnut", 36) returns 1356099454469L
641     * </pre></blockquote>
642     *
643     * @param      s       the {@code String} containing the
644     *                     {@code long} representation to be parsed.
645     * @param      radix   the radix to be used while parsing {@code s}.
646     * @return     the {@code long} represented by the string argument in
647     *             the specified radix.
648     * @throws     NumberFormatException  if the string does not contain a
649     *             parsable {@code long}.
650     */
651    public static long parseLong(String s, int radix)
652              throws NumberFormatException
653    {
654        if (s == null) {
655            throw new NumberFormatException("null");
656        }
657
658        if (radix < Character.MIN_RADIX) {
659            throw new NumberFormatException("radix " + radix +
660                                            " less than Character.MIN_RADIX");
661        }
662        if (radix > Character.MAX_RADIX) {
663            throw new NumberFormatException("radix " + radix +
664                                            " greater than Character.MAX_RADIX");
665        }
666
667        boolean negative = false;
668        int i = 0, len = s.length();
669        long limit = -Long.MAX_VALUE;
670
671        if (len > 0) {
672            char firstChar = s.charAt(0);
673            if (firstChar < '0') { // Possible leading "+" or "-"
674                if (firstChar == '-') {
675                    negative = true;
676                    limit = Long.MIN_VALUE;
677                } else if (firstChar != '+') {
678                    throw NumberFormatException.forInputString(s);
679                }
680
681                if (len == 1) { // Cannot have lone "+" or "-"
682                    throw NumberFormatException.forInputString(s);
683                }
684                i++;
685            }
686            long multmin = limit / radix;
687            long result = 0;
688            while (i < len) {
689                // Accumulating negatively avoids surprises near MAX_VALUE
690                int digit = Character.digit(s.charAt(i++),radix);
691                if (digit < 0 || result < multmin) {
692                    throw NumberFormatException.forInputString(s);
693                }
694                result *= radix;
695                if (result < limit + digit) {
696                    throw NumberFormatException.forInputString(s);
697                }
698                result -= digit;
699            }
700            return negative ? result : -result;
701        } else {
702            throw NumberFormatException.forInputString(s);
703        }
704    }
705
706    /**
707     * Parses the {@link CharSequence} argument as a signed {@code long} in
708     * the specified {@code radix}, beginning at the specified
709     * {@code beginIndex} and extending to {@code endIndex - 1}.
710     *
711     * <p>The method does not take steps to guard against the
712     * {@code CharSequence} being mutated while parsing.
713     *
714     * @param      s   the {@code CharSequence} containing the {@code long}
715     *                  representation to be parsed
716     * @param      beginIndex   the beginning index, inclusive.
717     * @param      endIndex     the ending index, exclusive.
718     * @param      radix   the radix to be used while parsing {@code s}.
719     * @return     the signed {@code long} represented by the subsequence in
720     *             the specified radix.
721     * @throws     NullPointerException  if {@code s} is null.
722     * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
723     *             negative, or if {@code beginIndex} is greater than
724     *             {@code endIndex} or if {@code endIndex} is greater than
725     *             {@code s.length()}.
726     * @throws     NumberFormatException  if the {@code CharSequence} does not
727     *             contain a parsable {@code int} in the specified
728     *             {@code radix}, or if {@code radix} is either smaller than
729     *             {@link java.lang.Character#MIN_RADIX} or larger than
730     *             {@link java.lang.Character#MAX_RADIX}.
731     * @since  9
732     */
733    public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
734                throws NumberFormatException {
735        s = Objects.requireNonNull(s);
736
737        if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
738            throw new IndexOutOfBoundsException();
739        }
740        if (radix < Character.MIN_RADIX) {
741            throw new NumberFormatException("radix " + radix +
742                    " less than Character.MIN_RADIX");
743        }
744        if (radix > Character.MAX_RADIX) {
745            throw new NumberFormatException("radix " + radix +
746                    " greater than Character.MAX_RADIX");
747        }
748
749        boolean negative = false;
750        int i = beginIndex;
751        long limit = -Long.MAX_VALUE;
752
753        if (i < endIndex) {
754            char firstChar = s.charAt(i);
755            if (firstChar < '0') { // Possible leading "+" or "-"
756                if (firstChar == '-') {
757                    negative = true;
758                    limit = Long.MIN_VALUE;
759                } else if (firstChar != '+') {
760                    throw NumberFormatException.forCharSequence(s, beginIndex,
761                            endIndex, i);
762                }
763                i++;
764            }
765            if (i >= endIndex) { // Cannot have lone "+", "-" or ""
766                throw NumberFormatException.forCharSequence(s, beginIndex,
767                        endIndex, i);
768            }
769            long multmin = limit / radix;
770            long result = 0;
771            while (i < endIndex) {
772                // Accumulating negatively avoids surprises near MAX_VALUE
773                int digit = Character.digit(s.charAt(i), radix);
774                if (digit < 0 || result < multmin) {
775                    throw NumberFormatException.forCharSequence(s, beginIndex,
776                            endIndex, i);
777                }
778                result *= radix;
779                if (result < limit + digit) {
780                    throw NumberFormatException.forCharSequence(s, beginIndex,
781                            endIndex, i);
782                }
783                i++;
784                result -= digit;
785            }
786            return negative ? result : -result;
787        } else {
788            throw new NumberFormatException("");
789        }
790    }
791
792    /**
793     * Parses the string argument as a signed decimal {@code long}.
794     * The characters in the string must all be decimal digits, except
795     * that the first character may be an ASCII minus sign {@code '-'}
796     * ({@code \u005Cu002D'}) to indicate a negative value or an
797     * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
798     * indicate a positive value. The resulting {@code long} value is
799     * returned, exactly as if the argument and the radix {@code 10}
800     * were given as arguments to the {@link
801     * #parseLong(java.lang.String, int)} method.
802     *
803     * <p>Note that neither the character {@code L}
804     * ({@code '\u005Cu004C'}) nor {@code l}
805     * ({@code '\u005Cu006C'}) is permitted to appear at the end
806     * of the string as a type indicator, as would be permitted in
807     * Java programming language source code.
808     *
809     * @param      s   a {@code String} containing the {@code long}
810     *             representation to be parsed
811     * @return     the {@code long} represented by the argument in
812     *             decimal.
813     * @throws     NumberFormatException  if the string does not contain a
814     *             parsable {@code long}.
815     */
816    public static long parseLong(String s) throws NumberFormatException {
817        return parseLong(s, 10);
818    }
819
820    /**
821     * Parses the string argument as an unsigned {@code long} in the
822     * radix specified by the second argument.  An unsigned integer
823     * maps the values usually associated with negative numbers to
824     * positive numbers larger than {@code MAX_VALUE}.
825     *
826     * The characters in the string must all be digits of the
827     * specified radix (as determined by whether {@link
828     * java.lang.Character#digit(char, int)} returns a nonnegative
829     * value), except that the first character may be an ASCII plus
830     * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
831     * integer value is returned.
832     *
833     * <p>An exception of type {@code NumberFormatException} is
834     * thrown if any of the following situations occurs:
835     * <ul>
836     * <li>The first argument is {@code null} or is a string of
837     * length zero.
838     *
839     * <li>The radix is either smaller than
840     * {@link java.lang.Character#MIN_RADIX} or
841     * larger than {@link java.lang.Character#MAX_RADIX}.
842     *
843     * <li>Any character of the string is not a digit of the specified
844     * radix, except that the first character may be a plus sign
845     * {@code '+'} ({@code '\u005Cu002B'}) provided that the
846     * string is longer than length 1.
847     *
848     * <li>The value represented by the string is larger than the
849     * largest unsigned {@code long}, 2<sup>64</sup>-1.
850     *
851     * </ul>
852     *
853     *
854     * @param      s   the {@code String} containing the unsigned integer
855     *                  representation to be parsed
856     * @param      radix   the radix to be used while parsing {@code s}.
857     * @return     the unsigned {@code long} represented by the string
858     *             argument in the specified radix.
859     * @throws     NumberFormatException if the {@code String}
860     *             does not contain a parsable {@code long}.
861     * @since 1.8
862     */
863    public static long parseUnsignedLong(String s, int radix)
864                throws NumberFormatException {
865        if (s == null)  {
866            throw new NumberFormatException("null");
867        }
868
869        int len = s.length();
870        if (len > 0) {
871            char firstChar = s.charAt(0);
872            if (firstChar == '-') {
873                throw new
874                    NumberFormatException(String.format("Illegal leading minus sign " +
875                                                       "on unsigned string %s.", s));
876            } else {
877                if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
878                    (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
879                    return parseLong(s, radix);
880                }
881
882                // No need for range checks on len due to testing above.
883                long first = parseLong(s, 0, len - 1, radix);
884                int second = Character.digit(s.charAt(len - 1), radix);
885                if (second < 0) {
886                    throw new NumberFormatException("Bad digit at end of " + s);
887                }
888                long result = first * radix + second;
889
890                /*
891                 * Test leftmost bits of multiprecision extension of first*radix
892                 * for overflow. The number of bits needed is defined by
893                 * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
894                 * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
895                 * overflow is tested by splitting guard in the ranges
896                 * guard < 92, 92 <= guard < 128, and 128 <= guard, where
897                 * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
898                 * on a value which does not include a prime factor in the legal
899                 * radix range.
900                 */
901                int guard = radix * (int) (first >>> 57);
902                if (guard >= 128 ||
903                    (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
904                    /*
905                     * For purposes of exposition, the programmatic statements
906                     * below should be taken to be multi-precision, i.e., not
907                     * subject to overflow.
908                     *
909                     * A) Condition guard >= 128:
910                     * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
911                     * hence always overflow.
912                     *
913                     * B) Condition guard < 92:
914                     * Define left7 = first >>> 57.
915                     * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
916                     * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
917                     * Thus if radix*left7 < 92, radix <= 36, and second < 36,
918                     * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
919                     * never overflow.
920                     *
921                     * C) Condition 92 <= guard < 128:
922                     * first*radix + second >= radix*left7*2^57 + second
923                     * so that first*radix + second >= 92*2^57 + 0 > 2^63
924                     *
925                     * D) Condition guard < 128:
926                     * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
927                     * so
928                     * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
929                     * thus
930                     * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
931                     * whence
932                     * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
933                     *
934                     * E) Conditions C, D, and result >= 0:
935                     * C and D combined imply the mathematical result
936                     * 2^63 < first*radix + second < 2^64 + 2^63. The lower
937                     * bound is therefore negative as a signed long, but the
938                     * upper bound is too small to overflow again after the
939                     * signed long overflows to positive above 2^64 - 1. Hence
940                     * result >= 0 implies overflow given C and D.
941                     */
942                    throw new NumberFormatException(String.format("String value %s exceeds " +
943                                                                  "range of unsigned long.", s));
944                }
945                return result;
946            }
947        } else {
948            throw NumberFormatException.forInputString(s);
949        }
950    }
951
952    /**
953     * Parses the {@link CharSequence} argument as an unsigned {@code long} in
954     * the specified {@code radix}, beginning at the specified
955     * {@code beginIndex} and extending to {@code endIndex - 1}.
956     *
957     * <p>The method does not take steps to guard against the
958     * {@code CharSequence} being mutated while parsing.
959     *
960     * @param      s   the {@code CharSequence} containing the unsigned
961     *                 {@code long} representation to be parsed
962     * @param      beginIndex   the beginning index, inclusive.
963     * @param      endIndex     the ending index, exclusive.
964     * @param      radix   the radix to be used while parsing {@code s}.
965     * @return     the unsigned {@code long} represented by the subsequence in
966     *             the specified radix.
967     * @throws     NullPointerException  if {@code s} is null.
968     * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
969     *             negative, or if {@code beginIndex} is greater than
970     *             {@code endIndex} or if {@code endIndex} is greater than
971     *             {@code s.length()}.
972     * @throws     NumberFormatException  if the {@code CharSequence} does not
973     *             contain a parsable unsigned {@code long} in the specified
974     *             {@code radix}, or if {@code radix} is either smaller than
975     *             {@link java.lang.Character#MIN_RADIX} or larger than
976     *             {@link java.lang.Character#MAX_RADIX}.
977     * @since  9
978     */
979    public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
980                throws NumberFormatException {
981        s = Objects.requireNonNull(s);
982
983        if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
984            throw new IndexOutOfBoundsException();
985        }
986        int start = beginIndex, len = endIndex - beginIndex;
987
988        if (len > 0) {
989            char firstChar = s.charAt(start);
990            if (firstChar == '-') {
991                throw new NumberFormatException(String.format("Illegal leading minus sign " +
992                        "on unsigned string %s.", s.subSequence(start, start + len)));
993            } else {
994                if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
995                    (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
996                    return parseLong(s, start, start + len, radix);
997                }
998
999                // No need for range checks on end due to testing above.
1000                long first = parseLong(s, start, start + len - 1, radix);
1001                int second = Character.digit(s.charAt(start + len - 1), radix);
1002                if (second < 0) {
1003                    throw new NumberFormatException("Bad digit at end of " +
1004                            s.subSequence(start, start + len));
1005                }
1006                long result = first * radix + second;
1007
1008                /*
1009                 * Test leftmost bits of multiprecision extension of first*radix
1010                 * for overflow. The number of bits needed is defined by
1011                 * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
1012                 * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
1013                 * overflow is tested by splitting guard in the ranges
1014                 * guard < 92, 92 <= guard < 128, and 128 <= guard, where
1015                 * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
1016                 * on a value which does not include a prime factor in the legal
1017                 * radix range.
1018                 */
1019                int guard = radix * (int) (first >>> 57);
1020                if (guard >= 128 ||
1021                        (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
1022                    /*
1023                     * For purposes of exposition, the programmatic statements
1024                     * below should be taken to be multi-precision, i.e., not
1025                     * subject to overflow.
1026                     *
1027                     * A) Condition guard >= 128:
1028                     * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
1029                     * hence always overflow.
1030                     *
1031                     * B) Condition guard < 92:
1032                     * Define left7 = first >>> 57.
1033                     * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
1034                     * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
1035                     * Thus if radix*left7 < 92, radix <= 36, and second < 36,
1036                     * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
1037                     * never overflow.
1038                     *
1039                     * C) Condition 92 <= guard < 128:
1040                     * first*radix + second >= radix*left7*2^57 + second
1041                     * so that first*radix + second >= 92*2^57 + 0 > 2^63
1042                     *
1043                     * D) Condition guard < 128:
1044                     * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
1045                     * so
1046                     * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
1047                     * thus
1048                     * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
1049                     * whence
1050                     * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
1051                     *
1052                     * E) Conditions C, D, and result >= 0:
1053                     * C and D combined imply the mathematical result
1054                     * 2^63 < first*radix + second < 2^64 + 2^63. The lower
1055                     * bound is therefore negative as a signed long, but the
1056                     * upper bound is too small to overflow again after the
1057                     * signed long overflows to positive above 2^64 - 1. Hence
1058                     * result >= 0 implies overflow given C and D.
1059                     */
1060                    throw new NumberFormatException(String.format("String value %s exceeds " +
1061                            "range of unsigned long.", s.subSequence(start, start + len)));
1062                }
1063                return result;
1064            }
1065        } else {
1066            throw NumberFormatException.forInputString("");
1067        }
1068    }
1069
1070    /**
1071     * Parses the string argument as an unsigned decimal {@code long}. The
1072     * characters in the string must all be decimal digits, except
1073     * that the first character may be an ASCII plus sign {@code
1074     * '+'} ({@code '\u005Cu002B'}). The resulting integer value
1075     * is returned, exactly as if the argument and the radix 10 were
1076     * given as arguments to the {@link
1077     * #parseUnsignedLong(java.lang.String, int)} method.
1078     *
1079     * @param s   a {@code String} containing the unsigned {@code long}
1080     *            representation to be parsed
1081     * @return    the unsigned {@code long} value represented by the decimal string argument
1082     * @throws    NumberFormatException  if the string does not contain a
1083     *            parsable unsigned integer.
1084     * @since 1.8
1085     */
1086    public static long parseUnsignedLong(String s) throws NumberFormatException {
1087        return parseUnsignedLong(s, 10);
1088    }
1089
1090    /**
1091     * Returns a {@code Long} object holding the value
1092     * extracted from the specified {@code String} when parsed
1093     * with the radix given by the second argument.  The first
1094     * argument is interpreted as representing a signed
1095     * {@code long} in the radix specified by the second
1096     * argument, exactly as if the arguments were given to the {@link
1097     * #parseLong(java.lang.String, int)} method. The result is a
1098     * {@code Long} object that represents the {@code long}
1099     * value specified by the string.
1100     *
1101     * <p>In other words, this method returns a {@code Long} object equal
1102     * to the value of:
1103     *
1104     * <blockquote>
1105     *  {@code new Long(Long.parseLong(s, radix))}
1106     * </blockquote>
1107     *
1108     * @param      s       the string to be parsed
1109     * @param      radix   the radix to be used in interpreting {@code s}
1110     * @return     a {@code Long} object holding the value
1111     *             represented by the string argument in the specified
1112     *             radix.
1113     * @throws     NumberFormatException  If the {@code String} does not
1114     *             contain a parsable {@code long}.
1115     */
1116    public static Long valueOf(String s, int radix) throws NumberFormatException {
1117        return Long.valueOf(parseLong(s, radix));
1118    }
1119
1120    /**
1121     * Returns a {@code Long} object holding the value
1122     * of the specified {@code String}. The argument is
1123     * interpreted as representing a signed decimal {@code long},
1124     * exactly as if the argument were given to the {@link
1125     * #parseLong(java.lang.String)} method. The result is a
1126     * {@code Long} object that represents the integer value
1127     * specified by the string.
1128     *
1129     * <p>In other words, this method returns a {@code Long} object
1130     * equal to the value of:
1131     *
1132     * <blockquote>
1133     *  {@code new Long(Long.parseLong(s))}
1134     * </blockquote>
1135     *
1136     * @param      s   the string to be parsed.
1137     * @return     a {@code Long} object holding the value
1138     *             represented by the string argument.
1139     * @throws     NumberFormatException  If the string cannot be parsed
1140     *             as a {@code long}.
1141     */
1142    public static Long valueOf(String s) throws NumberFormatException
1143    {
1144        return Long.valueOf(parseLong(s, 10));
1145    }
1146
1147    private static class LongCache {
1148        private LongCache(){}
1149
1150        static final Long cache[] = new Long[-(-128) + 127 + 1];
1151
1152        static {
1153            for(int i = 0; i < cache.length; i++)
1154                cache[i] = new Long(i - 128);
1155        }
1156    }
1157
1158    /**
1159     * Returns a {@code Long} instance representing the specified
1160     * {@code long} value.
1161     * If a new {@code Long} instance is not required, this method
1162     * should generally be used in preference to the constructor
1163     * {@link #Long(long)}, as this method is likely to yield
1164     * significantly better space and time performance by caching
1165     * frequently requested values.
1166     *
1167     * Note that unlike the {@linkplain Integer#valueOf(int)
1168     * corresponding method} in the {@code Integer} class, this method
1169     * is <em>not</em> required to cache values within a particular
1170     * range.
1171     *
1172     * @param  l a long value.
1173     * @return a {@code Long} instance representing {@code l}.
1174     * @since  1.5
1175     */
1176    @HotSpotIntrinsicCandidate
1177    public static Long valueOf(long l) {
1178        final int offset = 128;
1179        if (l >= -128 && l <= 127) { // will cache
1180            return LongCache.cache[(int)l + offset];
1181        }
1182        return new Long(l);
1183    }
1184
1185    /**
1186     * Decodes a {@code String} into a {@code Long}.
1187     * Accepts decimal, hexadecimal, and octal numbers given by the
1188     * following grammar:
1189     *
1190     * <blockquote>
1191     * <dl>
1192     * <dt><i>DecodableString:</i>
1193     * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1194     * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1195     * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1196     * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1197     * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1198     *
1199     * <dt><i>Sign:</i>
1200     * <dd>{@code -}
1201     * <dd>{@code +}
1202     * </dl>
1203     * </blockquote>
1204     *
1205     * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1206     * are as defined in section 3.10.1 of
1207     * <cite>The Java&trade; Language Specification</cite>,
1208     * except that underscores are not accepted between digits.
1209     *
1210     * <p>The sequence of characters following an optional
1211     * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1212     * "{@code #}", or leading zero) is parsed as by the {@code
1213     * Long.parseLong} method with the indicated radix (10, 16, or 8).
1214     * This sequence of characters must represent a positive value or
1215     * a {@link NumberFormatException} will be thrown.  The result is
1216     * negated if first character of the specified {@code String} is
1217     * the minus sign.  No whitespace characters are permitted in the
1218     * {@code String}.
1219     *
1220     * @param     nm the {@code String} to decode.
1221     * @return    a {@code Long} object holding the {@code long}
1222     *            value represented by {@code nm}
1223     * @throws    NumberFormatException  if the {@code String} does not
1224     *            contain a parsable {@code long}.
1225     * @see java.lang.Long#parseLong(String, int)
1226     * @since 1.2
1227     */
1228    public static Long decode(String nm) throws NumberFormatException {
1229        int radix = 10;
1230        int index = 0;
1231        boolean negative = false;
1232        Long result;
1233
1234        if (nm.length() == 0)
1235            throw new NumberFormatException("Zero length string");
1236        char firstChar = nm.charAt(0);
1237        // Handle sign, if present
1238        if (firstChar == '-') {
1239            negative = true;
1240            index++;
1241        } else if (firstChar == '+')
1242            index++;
1243
1244        // Handle radix specifier, if present
1245        if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1246            index += 2;
1247            radix = 16;
1248        }
1249        else if (nm.startsWith("#", index)) {
1250            index ++;
1251            radix = 16;
1252        }
1253        else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1254            index ++;
1255            radix = 8;
1256        }
1257
1258        if (nm.startsWith("-", index) || nm.startsWith("+", index))
1259            throw new NumberFormatException("Sign character in wrong position");
1260
1261        try {
1262            result = Long.valueOf(nm.substring(index), radix);
1263            result = negative ? Long.valueOf(-result.longValue()) : result;
1264        } catch (NumberFormatException e) {
1265            // If number is Long.MIN_VALUE, we'll end up here. The next line
1266            // handles this case, and causes any genuine format error to be
1267            // rethrown.
1268            String constant = negative ? ("-" + nm.substring(index))
1269                                       : nm.substring(index);
1270            result = Long.valueOf(constant, radix);
1271        }
1272        return result;
1273    }
1274
1275    /**
1276     * The value of the {@code Long}.
1277     *
1278     * @serial
1279     */
1280    private final long value;
1281
1282    /**
1283     * Constructs a newly allocated {@code Long} object that
1284     * represents the specified {@code long} argument.
1285     *
1286     * @param   value   the value to be represented by the
1287     *          {@code Long} object.
1288     *
1289     * @deprecated
1290     * It is rarely appropriate to use this constructor. The static factory
1291     * {@link #valueOf(long)} is generally a better choice, as it is
1292     * likely to yield significantly better space and time performance.
1293     */
1294    @Deprecated(since="9")
1295    public Long(long value) {
1296        this.value = value;
1297    }
1298
1299    /**
1300     * Constructs a newly allocated {@code Long} object that
1301     * represents the {@code long} value indicated by the
1302     * {@code String} parameter. The string is converted to a
1303     * {@code long} value in exactly the manner used by the
1304     * {@code parseLong} method for radix 10.
1305     *
1306     * @param      s   the {@code String} to be converted to a
1307     *             {@code Long}.
1308     * @throws     NumberFormatException  if the {@code String} does not
1309     *             contain a parsable {@code long}.
1310     *
1311     * @deprecated
1312     * It is rarely appropriate to use this constructor.
1313     * Use {@link #parseLong(String)} to convert a string to a
1314     * {@code long} primitive, or use {@link #valueOf(String)}
1315     * to convert a string to a {@code Long} object.
1316     */
1317    @Deprecated(since="9")
1318    public Long(String s) throws NumberFormatException {
1319        this.value = parseLong(s, 10);
1320    }
1321
1322    /**
1323     * Returns the value of this {@code Long} as a {@code byte} after
1324     * a narrowing primitive conversion.
1325     * @jls 5.1.3 Narrowing Primitive Conversions
1326     */
1327    public byte byteValue() {
1328        return (byte)value;
1329    }
1330
1331    /**
1332     * Returns the value of this {@code Long} as a {@code short} after
1333     * a narrowing primitive conversion.
1334     * @jls 5.1.3 Narrowing Primitive Conversions
1335     */
1336    public short shortValue() {
1337        return (short)value;
1338    }
1339
1340    /**
1341     * Returns the value of this {@code Long} as an {@code int} after
1342     * a narrowing primitive conversion.
1343     * @jls 5.1.3 Narrowing Primitive Conversions
1344     */
1345    public int intValue() {
1346        return (int)value;
1347    }
1348
1349    /**
1350     * Returns the value of this {@code Long} as a
1351     * {@code long} value.
1352     */
1353    @HotSpotIntrinsicCandidate
1354    public long longValue() {
1355        return value;
1356    }
1357
1358    /**
1359     * Returns the value of this {@code Long} as a {@code float} after
1360     * a widening primitive conversion.
1361     * @jls 5.1.2 Widening Primitive Conversions
1362     */
1363    public float floatValue() {
1364        return (float)value;
1365    }
1366
1367    /**
1368     * Returns the value of this {@code Long} as a {@code double}
1369     * after a widening primitive conversion.
1370     * @jls 5.1.2 Widening Primitive Conversions
1371     */
1372    public double doubleValue() {
1373        return (double)value;
1374    }
1375
1376    /**
1377     * Returns a {@code String} object representing this
1378     * {@code Long}'s value.  The value is converted to signed
1379     * decimal representation and returned as a string, exactly as if
1380     * the {@code long} value were given as an argument to the
1381     * {@link java.lang.Long#toString(long)} method.
1382     *
1383     * @return  a string representation of the value of this object in
1384     *          base&nbsp;10.
1385     */
1386    public String toString() {
1387        return toString(value);
1388    }
1389
1390    /**
1391     * Returns a hash code for this {@code Long}. The result is
1392     * the exclusive OR of the two halves of the primitive
1393     * {@code long} value held by this {@code Long}
1394     * object. That is, the hashcode is the value of the expression:
1395     *
1396     * <blockquote>
1397     *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1398     * </blockquote>
1399     *
1400     * @return  a hash code value for this object.
1401     */
1402    @Override
1403    public int hashCode() {
1404        return Long.hashCode(value);
1405    }
1406
1407    /**
1408     * Returns a hash code for a {@code long} value; compatible with
1409     * {@code Long.hashCode()}.
1410     *
1411     * @param value the value to hash
1412     * @return a hash code value for a {@code long} value.
1413     * @since 1.8
1414     */
1415    public static int hashCode(long value) {
1416        return (int)(value ^ (value >>> 32));
1417    }
1418
1419    /**
1420     * Compares this object to the specified object.  The result is
1421     * {@code true} if and only if the argument is not
1422     * {@code null} and is a {@code Long} object that
1423     * contains the same {@code long} value as this object.
1424     *
1425     * @param   obj   the object to compare with.
1426     * @return  {@code true} if the objects are the same;
1427     *          {@code false} otherwise.
1428     */
1429    public boolean equals(Object obj) {
1430        if (obj instanceof Long) {
1431            return value == ((Long)obj).longValue();
1432        }
1433        return false;
1434    }
1435
1436    /**
1437     * Determines the {@code long} value of the system property
1438     * with the specified name.
1439     *
1440     * <p>The first argument is treated as the name of a system
1441     * property.  System properties are accessible through the {@link
1442     * java.lang.System#getProperty(java.lang.String)} method. The
1443     * string value of this property is then interpreted as a {@code
1444     * long} value using the grammar supported by {@link Long#decode decode}
1445     * and a {@code Long} object representing this value is returned.
1446     *
1447     * <p>If there is no property with the specified name, if the
1448     * specified name is empty or {@code null}, or if the property
1449     * does not have the correct numeric format, then {@code null} is
1450     * returned.
1451     *
1452     * <p>In other words, this method returns a {@code Long} object
1453     * equal to the value of:
1454     *
1455     * <blockquote>
1456     *  {@code getLong(nm, null)}
1457     * </blockquote>
1458     *
1459     * @param   nm   property name.
1460     * @return  the {@code Long} value of the property.
1461     * @throws  SecurityException for the same reasons as
1462     *          {@link System#getProperty(String) System.getProperty}
1463     * @see     java.lang.System#getProperty(java.lang.String)
1464     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1465     */
1466    public static Long getLong(String nm) {
1467        return getLong(nm, null);
1468    }
1469
1470    /**
1471     * Determines the {@code long} value of the system property
1472     * with the specified name.
1473     *
1474     * <p>The first argument is treated as the name of a system
1475     * property.  System properties are accessible through the {@link
1476     * java.lang.System#getProperty(java.lang.String)} method. The
1477     * string value of this property is then interpreted as a {@code
1478     * long} value using the grammar supported by {@link Long#decode decode}
1479     * and a {@code Long} object representing this value is returned.
1480     *
1481     * <p>The second argument is the default value. A {@code Long} object
1482     * that represents the value of the second argument is returned if there
1483     * is no property of the specified name, if the property does not have
1484     * the correct numeric format, or if the specified name is empty or null.
1485     *
1486     * <p>In other words, this method returns a {@code Long} object equal
1487     * to the value of:
1488     *
1489     * <blockquote>
1490     *  {@code getLong(nm, new Long(val))}
1491     * </blockquote>
1492     *
1493     * but in practice it may be implemented in a manner such as:
1494     *
1495     * <blockquote><pre>
1496     * Long result = getLong(nm, null);
1497     * return (result == null) ? new Long(val) : result;
1498     * </pre></blockquote>
1499     *
1500     * to avoid the unnecessary allocation of a {@code Long} object when
1501     * the default value is not needed.
1502     *
1503     * @param   nm    property name.
1504     * @param   val   default value.
1505     * @return  the {@code Long} value of the property.
1506     * @throws  SecurityException for the same reasons as
1507     *          {@link System#getProperty(String) System.getProperty}
1508     * @see     java.lang.System#getProperty(java.lang.String)
1509     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1510     */
1511    public static Long getLong(String nm, long val) {
1512        Long result = Long.getLong(nm, null);
1513        return (result == null) ? Long.valueOf(val) : result;
1514    }
1515
1516    /**
1517     * Returns the {@code long} value of the system property with
1518     * the specified name.  The first argument is treated as the name
1519     * of a system property.  System properties are accessible through
1520     * the {@link java.lang.System#getProperty(java.lang.String)}
1521     * method. The string value of this property is then interpreted
1522     * as a {@code long} value, as per the
1523     * {@link Long#decode decode} method, and a {@code Long} object
1524     * representing this value is returned; in summary:
1525     *
1526     * <ul>
1527     * <li>If the property value begins with the two ASCII characters
1528     * {@code 0x} or the ASCII character {@code #}, not followed by
1529     * a minus sign, then the rest of it is parsed as a hexadecimal integer
1530     * exactly as for the method {@link #valueOf(java.lang.String, int)}
1531     * with radix 16.
1532     * <li>If the property value begins with the ASCII character
1533     * {@code 0} followed by another character, it is parsed as
1534     * an octal integer exactly as by the method {@link
1535     * #valueOf(java.lang.String, int)} with radix 8.
1536     * <li>Otherwise the property value is parsed as a decimal
1537     * integer exactly as by the method
1538     * {@link #valueOf(java.lang.String, int)} with radix 10.
1539     * </ul>
1540     *
1541     * <p>Note that, in every case, neither {@code L}
1542     * ({@code '\u005Cu004C'}) nor {@code l}
1543     * ({@code '\u005Cu006C'}) is permitted to appear at the end
1544     * of the property value as a type indicator, as would be
1545     * permitted in Java programming language source code.
1546     *
1547     * <p>The second argument is the default value. The default value is
1548     * returned if there is no property of the specified name, if the
1549     * property does not have the correct numeric format, or if the
1550     * specified name is empty or {@code null}.
1551     *
1552     * @param   nm   property name.
1553     * @param   val   default value.
1554     * @return  the {@code Long} value of the property.
1555     * @throws  SecurityException for the same reasons as
1556     *          {@link System#getProperty(String) System.getProperty}
1557     * @see     System#getProperty(java.lang.String)
1558     * @see     System#getProperty(java.lang.String, java.lang.String)
1559     */
1560    public static Long getLong(String nm, Long val) {
1561        String v = null;
1562        try {
1563            v = System.getProperty(nm);
1564        } catch (IllegalArgumentException | NullPointerException e) {
1565        }
1566        if (v != null) {
1567            try {
1568                return Long.decode(v);
1569            } catch (NumberFormatException e) {
1570            }
1571        }
1572        return val;
1573    }
1574
1575    /**
1576     * Compares two {@code Long} objects numerically.
1577     *
1578     * @param   anotherLong   the {@code Long} to be compared.
1579     * @return  the value {@code 0} if this {@code Long} is
1580     *          equal to the argument {@code Long}; a value less than
1581     *          {@code 0} if this {@code Long} is numerically less
1582     *          than the argument {@code Long}; and a value greater
1583     *          than {@code 0} if this {@code Long} is numerically
1584     *           greater than the argument {@code Long} (signed
1585     *           comparison).
1586     * @since   1.2
1587     */
1588    public int compareTo(Long anotherLong) {
1589        return compare(this.value, anotherLong.value);
1590    }
1591
1592    /**
1593     * Compares two {@code long} values numerically.
1594     * The value returned is identical to what would be returned by:
1595     * <pre>
1596     *    Long.valueOf(x).compareTo(Long.valueOf(y))
1597     * </pre>
1598     *
1599     * @param  x the first {@code long} to compare
1600     * @param  y the second {@code long} to compare
1601     * @return the value {@code 0} if {@code x == y};
1602     *         a value less than {@code 0} if {@code x < y}; and
1603     *         a value greater than {@code 0} if {@code x > y}
1604     * @since 1.7
1605     */
1606    public static int compare(long x, long y) {
1607        return (x < y) ? -1 : ((x == y) ? 0 : 1);
1608    }
1609
1610    /**
1611     * Compares two {@code long} values numerically treating the values
1612     * as unsigned.
1613     *
1614     * @param  x the first {@code long} to compare
1615     * @param  y the second {@code long} to compare
1616     * @return the value {@code 0} if {@code x == y}; a value less
1617     *         than {@code 0} if {@code x < y} as unsigned values; and
1618     *         a value greater than {@code 0} if {@code x > y} as
1619     *         unsigned values
1620     * @since 1.8
1621     */
1622    public static int compareUnsigned(long x, long y) {
1623        return compare(x + MIN_VALUE, y + MIN_VALUE);
1624    }
1625
1626
1627    /**
1628     * Returns the unsigned quotient of dividing the first argument by
1629     * the second where each argument and the result is interpreted as
1630     * an unsigned value.
1631     *
1632     * <p>Note that in two's complement arithmetic, the three other
1633     * basic arithmetic operations of add, subtract, and multiply are
1634     * bit-wise identical if the two operands are regarded as both
1635     * being signed or both being unsigned.  Therefore separate {@code
1636     * addUnsigned}, etc. methods are not provided.
1637     *
1638     * @param dividend the value to be divided
1639     * @param divisor the value doing the dividing
1640     * @return the unsigned quotient of the first argument divided by
1641     * the second argument
1642     * @see #remainderUnsigned
1643     * @since 1.8
1644     */
1645    public static long divideUnsigned(long dividend, long divisor) {
1646        if (divisor < 0L) { // signed comparison
1647            // Answer must be 0 or 1 depending on relative magnitude
1648            // of dividend and divisor.
1649            return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
1650        }
1651
1652        if (dividend > 0) //  Both inputs non-negative
1653            return dividend/divisor;
1654        else {
1655            /*
1656             * For simple code, leveraging BigInteger.  Longer and faster
1657             * code written directly in terms of operations on longs is
1658             * possible; see "Hacker's Delight" for divide and remainder
1659             * algorithms.
1660             */
1661            return toUnsignedBigInteger(dividend).
1662                divide(toUnsignedBigInteger(divisor)).longValue();
1663        }
1664    }
1665
1666    /**
1667     * Returns the unsigned remainder from dividing the first argument
1668     * by the second where each argument and the result is interpreted
1669     * as an unsigned value.
1670     *
1671     * @param dividend the value to be divided
1672     * @param divisor the value doing the dividing
1673     * @return the unsigned remainder of the first argument divided by
1674     * the second argument
1675     * @see #divideUnsigned
1676     * @since 1.8
1677     */
1678    public static long remainderUnsigned(long dividend, long divisor) {
1679        if (dividend > 0 && divisor > 0) { // signed comparisons
1680            return dividend % divisor;
1681        } else {
1682            if (compareUnsigned(dividend, divisor) < 0) // Avoid explicit check for 0 divisor
1683                return dividend;
1684            else
1685                return toUnsignedBigInteger(dividend).
1686                    remainder(toUnsignedBigInteger(divisor)).longValue();
1687        }
1688    }
1689
1690    // Bit Twiddling
1691
1692    /**
1693     * The number of bits used to represent a {@code long} value in two's
1694     * complement binary form.
1695     *
1696     * @since 1.5
1697     */
1698    @Native public static final int SIZE = 64;
1699
1700    /**
1701     * The number of bytes used to represent a {@code long} value in two's
1702     * complement binary form.
1703     *
1704     * @since 1.8
1705     */
1706    public static final int BYTES = SIZE / Byte.SIZE;
1707
1708    /**
1709     * Returns a {@code long} value with at most a single one-bit, in the
1710     * position of the highest-order ("leftmost") one-bit in the specified
1711     * {@code long} value.  Returns zero if the specified value has no
1712     * one-bits in its two's complement binary representation, that is, if it
1713     * is equal to zero.
1714     *
1715     * @param i the value whose highest one bit is to be computed
1716     * @return a {@code long} value with a single one-bit, in the position
1717     *     of the highest-order one-bit in the specified value, or zero if
1718     *     the specified value is itself equal to zero.
1719     * @since 1.5
1720     */
1721    public static long highestOneBit(long i) {
1722        // HD, Figure 3-1
1723        i |= (i >>  1);
1724        i |= (i >>  2);
1725        i |= (i >>  4);
1726        i |= (i >>  8);
1727        i |= (i >> 16);
1728        i |= (i >> 32);
1729        return i - (i >>> 1);
1730    }
1731
1732    /**
1733     * Returns a {@code long} value with at most a single one-bit, in the
1734     * position of the lowest-order ("rightmost") one-bit in the specified
1735     * {@code long} value.  Returns zero if the specified value has no
1736     * one-bits in its two's complement binary representation, that is, if it
1737     * is equal to zero.
1738     *
1739     * @param i the value whose lowest one bit is to be computed
1740     * @return a {@code long} value with a single one-bit, in the position
1741     *     of the lowest-order one-bit in the specified value, or zero if
1742     *     the specified value is itself equal to zero.
1743     * @since 1.5
1744     */
1745    public static long lowestOneBit(long i) {
1746        // HD, Section 2-1
1747        return i & -i;
1748    }
1749
1750    /**
1751     * Returns the number of zero bits preceding the highest-order
1752     * ("leftmost") one-bit in the two's complement binary representation
1753     * of the specified {@code long} value.  Returns 64 if the
1754     * specified value has no one-bits in its two's complement representation,
1755     * in other words if it is equal to zero.
1756     *
1757     * <p>Note that this method is closely related to the logarithm base 2.
1758     * For all positive {@code long} values x:
1759     * <ul>
1760     * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1761     * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1762     * </ul>
1763     *
1764     * @param i the value whose number of leading zeros is to be computed
1765     * @return the number of zero bits preceding the highest-order
1766     *     ("leftmost") one-bit in the two's complement binary representation
1767     *     of the specified {@code long} value, or 64 if the value
1768     *     is equal to zero.
1769     * @since 1.5
1770     */
1771    @HotSpotIntrinsicCandidate
1772    public static int numberOfLeadingZeros(long i) {
1773        // HD, Figure 5-6
1774         if (i == 0)
1775            return 64;
1776        int n = 1;
1777        int x = (int)(i >>> 32);
1778        if (x == 0) { n += 32; x = (int)i; }
1779        if (x >>> 16 == 0) { n += 16; x <<= 16; }
1780        if (x >>> 24 == 0) { n +=  8; x <<=  8; }
1781        if (x >>> 28 == 0) { n +=  4; x <<=  4; }
1782        if (x >>> 30 == 0) { n +=  2; x <<=  2; }
1783        n -= x >>> 31;
1784        return n;
1785    }
1786
1787    /**
1788     * Returns the number of zero bits following the lowest-order ("rightmost")
1789     * one-bit in the two's complement binary representation of the specified
1790     * {@code long} value.  Returns 64 if the specified value has no
1791     * one-bits in its two's complement representation, in other words if it is
1792     * equal to zero.
1793     *
1794     * @param i the value whose number of trailing zeros is to be computed
1795     * @return the number of zero bits following the lowest-order ("rightmost")
1796     *     one-bit in the two's complement binary representation of the
1797     *     specified {@code long} value, or 64 if the value is equal
1798     *     to zero.
1799     * @since 1.5
1800     */
1801    @HotSpotIntrinsicCandidate
1802    public static int numberOfTrailingZeros(long i) {
1803        // HD, Figure 5-14
1804        int x, y;
1805        if (i == 0) return 64;
1806        int n = 63;
1807        y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
1808        y = x <<16; if (y != 0) { n = n -16; x = y; }
1809        y = x << 8; if (y != 0) { n = n - 8; x = y; }
1810        y = x << 4; if (y != 0) { n = n - 4; x = y; }
1811        y = x << 2; if (y != 0) { n = n - 2; x = y; }
1812        return n - ((x << 1) >>> 31);
1813    }
1814
1815    /**
1816     * Returns the number of one-bits in the two's complement binary
1817     * representation of the specified {@code long} value.  This function is
1818     * sometimes referred to as the <i>population count</i>.
1819     *
1820     * @param i the value whose bits are to be counted
1821     * @return the number of one-bits in the two's complement binary
1822     *     representation of the specified {@code long} value.
1823     * @since 1.5
1824     */
1825     @HotSpotIntrinsicCandidate
1826     public static int bitCount(long i) {
1827        // HD, Figure 5-2
1828        i = i - ((i >>> 1) & 0x5555555555555555L);
1829        i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1830        i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1831        i = i + (i >>> 8);
1832        i = i + (i >>> 16);
1833        i = i + (i >>> 32);
1834        return (int)i & 0x7f;
1835     }
1836
1837    /**
1838     * Returns the value obtained by rotating the two's complement binary
1839     * representation of the specified {@code long} value left by the
1840     * specified number of bits.  (Bits shifted out of the left hand, or
1841     * high-order, side reenter on the right, or low-order.)
1842     *
1843     * <p>Note that left rotation with a negative distance is equivalent to
1844     * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1845     * distance)}.  Note also that rotation by any multiple of 64 is a
1846     * no-op, so all but the last six bits of the rotation distance can be
1847     * ignored, even if the distance is negative: {@code rotateLeft(val,
1848     * distance) == rotateLeft(val, distance & 0x3F)}.
1849     *
1850     * @param i the value whose bits are to be rotated left
1851     * @param distance the number of bit positions to rotate left
1852     * @return the value obtained by rotating the two's complement binary
1853     *     representation of the specified {@code long} value left by the
1854     *     specified number of bits.
1855     * @since 1.5
1856     */
1857    public static long rotateLeft(long i, int distance) {
1858        return (i << distance) | (i >>> -distance);
1859    }
1860
1861    /**
1862     * Returns the value obtained by rotating the two's complement binary
1863     * representation of the specified {@code long} value right by the
1864     * specified number of bits.  (Bits shifted out of the right hand, or
1865     * low-order, side reenter on the left, or high-order.)
1866     *
1867     * <p>Note that right rotation with a negative distance is equivalent to
1868     * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1869     * distance)}.  Note also that rotation by any multiple of 64 is a
1870     * no-op, so all but the last six bits of the rotation distance can be
1871     * ignored, even if the distance is negative: {@code rotateRight(val,
1872     * distance) == rotateRight(val, distance & 0x3F)}.
1873     *
1874     * @param i the value whose bits are to be rotated right
1875     * @param distance the number of bit positions to rotate right
1876     * @return the value obtained by rotating the two's complement binary
1877     *     representation of the specified {@code long} value right by the
1878     *     specified number of bits.
1879     * @since 1.5
1880     */
1881    public static long rotateRight(long i, int distance) {
1882        return (i >>> distance) | (i << -distance);
1883    }
1884
1885    /**
1886     * Returns the value obtained by reversing the order of the bits in the
1887     * two's complement binary representation of the specified {@code long}
1888     * value.
1889     *
1890     * @param i the value to be reversed
1891     * @return the value obtained by reversing order of the bits in the
1892     *     specified {@code long} value.
1893     * @since 1.5
1894     */
1895    public static long reverse(long i) {
1896        // HD, Figure 7-1
1897        i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1898        i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1899        i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1900
1901        return reverseBytes(i);
1902    }
1903
1904    /**
1905     * Returns the signum function of the specified {@code long} value.  (The
1906     * return value is -1 if the specified value is negative; 0 if the
1907     * specified value is zero; and 1 if the specified value is positive.)
1908     *
1909     * @param i the value whose signum is to be computed
1910     * @return the signum function of the specified {@code long} value.
1911     * @since 1.5
1912     */
1913    public static int signum(long i) {
1914        // HD, Section 2-7
1915        return (int) ((i >> 63) | (-i >>> 63));
1916    }
1917
1918    /**
1919     * Returns the value obtained by reversing the order of the bytes in the
1920     * two's complement representation of the specified {@code long} value.
1921     *
1922     * @param i the value whose bytes are to be reversed
1923     * @return the value obtained by reversing the bytes in the specified
1924     *     {@code long} value.
1925     * @since 1.5
1926     */
1927    @HotSpotIntrinsicCandidate
1928    public static long reverseBytes(long i) {
1929        i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1930        return (i << 48) | ((i & 0xffff0000L) << 16) |
1931            ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1932    }
1933
1934    /**
1935     * Adds two {@code long} values together as per the + operator.
1936     *
1937     * @param a the first operand
1938     * @param b the second operand
1939     * @return the sum of {@code a} and {@code b}
1940     * @see java.util.function.BinaryOperator
1941     * @since 1.8
1942     */
1943    public static long sum(long a, long b) {
1944        return a + b;
1945    }
1946
1947    /**
1948     * Returns the greater of two {@code long} values
1949     * as if by calling {@link Math#max(long, long) Math.max}.
1950     *
1951     * @param a the first operand
1952     * @param b the second operand
1953     * @return the greater of {@code a} and {@code b}
1954     * @see java.util.function.BinaryOperator
1955     * @since 1.8
1956     */
1957    public static long max(long a, long b) {
1958        return Math.max(a, b);
1959    }
1960
1961    /**
1962     * Returns the smaller of two {@code long} values
1963     * as if by calling {@link Math#min(long, long) Math.min}.
1964     *
1965     * @param a the first operand
1966     * @param b the second operand
1967     * @return the smaller of {@code a} and {@code b}
1968     * @see java.util.function.BinaryOperator
1969     * @since 1.8
1970     */
1971    public static long min(long a, long b) {
1972        return Math.min(a, b);
1973    }
1974
1975    /** use serialVersionUID from JDK 1.0.2 for interoperability */
1976    @Native private static final long serialVersionUID = 4290774380558885855L;
1977}
1978