1/*
2 * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang;
27
28import java.lang.annotation.Native;
29import java.util.Objects;
30import jdk.internal.HotSpotIntrinsicCandidate;
31import jdk.internal.misc.VM;
32
33import static java.lang.String.COMPACT_STRINGS;
34import static java.lang.String.LATIN1;
35import static java.lang.String.UTF16;
36
37/**
38 * The {@code Integer} class wraps a value of the primitive type
39 * {@code int} in an object. An object of type {@code Integer}
40 * contains a single field whose type is {@code int}.
41 *
42 * <p>In addition, this class provides several methods for converting
43 * an {@code int} to a {@code String} and a {@code String} to an
44 * {@code int}, as well as other constants and methods useful when
45 * dealing with an {@code int}.
46 *
47 * <p>Implementation note: The implementations of the "bit twiddling"
48 * methods (such as {@link #highestOneBit(int) highestOneBit} and
49 * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are
50 * based on material from Henry S. Warren, Jr.'s <i>Hacker's
51 * Delight</i>, (Addison Wesley, 2002).
52 *
53 * @author  Lee Boynton
54 * @author  Arthur van Hoff
55 * @author  Josh Bloch
56 * @author  Joseph D. Darcy
57 * @since 1.0
58 */
59public final class Integer extends Number implements Comparable<Integer> {
60    /**
61     * A constant holding the minimum value an {@code int} can
62     * have, -2<sup>31</sup>.
63     */
64    @Native public static final int   MIN_VALUE = 0x80000000;
65
66    /**
67     * A constant holding the maximum value an {@code int} can
68     * have, 2<sup>31</sup>-1.
69     */
70    @Native public static final int   MAX_VALUE = 0x7fffffff;
71
72    /**
73     * The {@code Class} instance representing the primitive type
74     * {@code int}.
75     *
76     * @since   1.1
77     */
78    @SuppressWarnings("unchecked")
79    public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");
80
81    /**
82     * All possible chars for representing a number as a String
83     */
84    static final char[] digits = {
85        '0' , '1' , '2' , '3' , '4' , '5' ,
86        '6' , '7' , '8' , '9' , 'a' , 'b' ,
87        'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
88        'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
89        'o' , 'p' , 'q' , 'r' , 's' , 't' ,
90        'u' , 'v' , 'w' , 'x' , 'y' , 'z'
91    };
92
93    /**
94     * Returns a string representation of the first argument in the
95     * radix specified by the second argument.
96     *
97     * <p>If the radix is smaller than {@code Character.MIN_RADIX}
98     * or larger than {@code Character.MAX_RADIX}, then the radix
99     * {@code 10} is used instead.
100     *
101     * <p>If the first argument is negative, the first element of the
102     * result is the ASCII minus character {@code '-'}
103     * ({@code '\u005Cu002D'}). If the first argument is not
104     * negative, no sign character appears in the result.
105     *
106     * <p>The remaining characters of the result represent the magnitude
107     * of the first argument. If the magnitude is zero, it is
108     * represented by a single zero character {@code '0'}
109     * ({@code '\u005Cu0030'}); otherwise, the first character of
110     * the representation of the magnitude will not be the zero
111     * character.  The following ASCII characters are used as digits:
112     *
113     * <blockquote>
114     *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
115     * </blockquote>
116     *
117     * These are {@code '\u005Cu0030'} through
118     * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
119     * {@code '\u005Cu007A'}. If {@code radix} is
120     * <var>N</var>, then the first <var>N</var> of these characters
121     * are used as radix-<var>N</var> digits in the order shown. Thus,
122     * the digits for hexadecimal (radix 16) are
123     * {@code 0123456789abcdef}. If uppercase letters are
124     * desired, the {@link java.lang.String#toUpperCase()} method may
125     * be called on the result:
126     *
127     * <blockquote>
128     *  {@code Integer.toString(n, 16).toUpperCase()}
129     * </blockquote>
130     *
131     * @param   i       an integer to be converted to a string.
132     * @param   radix   the radix to use in the string representation.
133     * @return  a string representation of the argument in the specified radix.
134     * @see     java.lang.Character#MAX_RADIX
135     * @see     java.lang.Character#MIN_RADIX
136     */
137    public static String toString(int i, int radix) {
138        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
139            radix = 10;
140
141        /* Use the faster version */
142        if (radix == 10) {
143            return toString(i);
144        }
145
146        if (COMPACT_STRINGS) {
147            byte[] buf = new byte[33];
148            boolean negative = (i < 0);
149            int charPos = 32;
150
151            if (!negative) {
152                i = -i;
153            }
154
155            while (i <= -radix) {
156                buf[charPos--] = (byte)digits[-(i % radix)];
157                i = i / radix;
158            }
159            buf[charPos] = (byte)digits[-i];
160
161            if (negative) {
162                buf[--charPos] = '-';
163            }
164
165            return StringLatin1.newString(buf, charPos, (33 - charPos));
166        }
167        return toStringUTF16(i, radix);
168    }
169
170    private static String toStringUTF16(int i, int radix) {
171        byte[] buf = new byte[33 * 2];
172        boolean negative = (i < 0);
173        int charPos = 32;
174        if (!negative) {
175            i = -i;
176        }
177        while (i <= -radix) {
178            StringUTF16.putChar(buf, charPos--, digits[-(i % radix)]);
179            i = i / radix;
180        }
181        StringUTF16.putChar(buf, charPos, digits[-i]);
182
183        if (negative) {
184            StringUTF16.putChar(buf, --charPos, '-');
185        }
186        return StringUTF16.newString(buf, charPos, (33 - charPos));
187    }
188
189    /**
190     * Returns a string representation of the first argument as an
191     * unsigned integer value in the radix specified by the second
192     * argument.
193     *
194     * <p>If the radix is smaller than {@code Character.MIN_RADIX}
195     * or larger than {@code Character.MAX_RADIX}, then the radix
196     * {@code 10} is used instead.
197     *
198     * <p>Note that since the first argument is treated as an unsigned
199     * value, no leading sign character is printed.
200     *
201     * <p>If the magnitude is zero, it is represented by a single zero
202     * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
203     * the first character of the representation of the magnitude will
204     * not be the zero character.
205     *
206     * <p>The behavior of radixes and the characters used as digits
207     * are the same as {@link #toString(int, int) toString}.
208     *
209     * @param   i       an integer to be converted to an unsigned string.
210     * @param   radix   the radix to use in the string representation.
211     * @return  an unsigned string representation of the argument in the specified radix.
212     * @see     #toString(int, int)
213     * @since 1.8
214     */
215    public static String toUnsignedString(int i, int radix) {
216        return Long.toUnsignedString(toUnsignedLong(i), radix);
217    }
218
219    /**
220     * Returns a string representation of the integer argument as an
221     * unsigned integer in base&nbsp;16.
222     *
223     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
224     * if the argument is negative; otherwise, it is equal to the
225     * argument.  This value is converted to a string of ASCII digits
226     * in hexadecimal (base&nbsp;16) with no extra leading
227     * {@code 0}s.
228     *
229     * <p>The value of the argument can be recovered from the returned
230     * string {@code s} by calling {@link
231     * Integer#parseUnsignedInt(String, int)
232     * Integer.parseUnsignedInt(s, 16)}.
233     *
234     * <p>If the unsigned magnitude is zero, it is represented by a
235     * single zero character {@code '0'} ({@code '\u005Cu0030'});
236     * otherwise, the first character of the representation of the
237     * unsigned magnitude will not be the zero character. The
238     * following characters are used as hexadecimal digits:
239     *
240     * <blockquote>
241     *  {@code 0123456789abcdef}
242     * </blockquote>
243     *
244     * These are the characters {@code '\u005Cu0030'} through
245     * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
246     * {@code '\u005Cu0066'}. If uppercase letters are
247     * desired, the {@link java.lang.String#toUpperCase()} method may
248     * be called on the result:
249     *
250     * <blockquote>
251     *  {@code Integer.toHexString(n).toUpperCase()}
252     * </blockquote>
253     *
254     * @param   i   an integer to be converted to a string.
255     * @return  the string representation of the unsigned integer value
256     *          represented by the argument in hexadecimal (base&nbsp;16).
257     * @see #parseUnsignedInt(String, int)
258     * @see #toUnsignedString(int, int)
259     * @since   1.0.2
260     */
261    public static String toHexString(int i) {
262        return toUnsignedString0(i, 4);
263    }
264
265    /**
266     * Returns a string representation of the integer argument as an
267     * unsigned integer in base&nbsp;8.
268     *
269     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
270     * if the argument is negative; otherwise, it is equal to the
271     * argument.  This value is converted to a string of ASCII digits
272     * in octal (base&nbsp;8) with no extra leading {@code 0}s.
273     *
274     * <p>The value of the argument can be recovered from the returned
275     * string {@code s} by calling {@link
276     * Integer#parseUnsignedInt(String, int)
277     * Integer.parseUnsignedInt(s, 8)}.
278     *
279     * <p>If the unsigned magnitude is zero, it is represented by a
280     * single zero character {@code '0'} ({@code '\u005Cu0030'});
281     * otherwise, the first character of the representation of the
282     * unsigned magnitude will not be the zero character. The
283     * following characters are used as octal digits:
284     *
285     * <blockquote>
286     * {@code 01234567}
287     * </blockquote>
288     *
289     * These are the characters {@code '\u005Cu0030'} through
290     * {@code '\u005Cu0037'}.
291     *
292     * @param   i   an integer to be converted to a string.
293     * @return  the string representation of the unsigned integer value
294     *          represented by the argument in octal (base&nbsp;8).
295     * @see #parseUnsignedInt(String, int)
296     * @see #toUnsignedString(int, int)
297     * @since   1.0.2
298     */
299    public static String toOctalString(int i) {
300        return toUnsignedString0(i, 3);
301    }
302
303    /**
304     * Returns a string representation of the integer argument as an
305     * unsigned integer in base&nbsp;2.
306     *
307     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
308     * if the argument is negative; otherwise it is equal to the
309     * argument.  This value is converted to a string of ASCII digits
310     * in binary (base&nbsp;2) with no extra leading {@code 0}s.
311     *
312     * <p>The value of the argument can be recovered from the returned
313     * string {@code s} by calling {@link
314     * Integer#parseUnsignedInt(String, int)
315     * Integer.parseUnsignedInt(s, 2)}.
316     *
317     * <p>If the unsigned magnitude is zero, it is represented by a
318     * single zero character {@code '0'} ({@code '\u005Cu0030'});
319     * otherwise, the first character of the representation of the
320     * unsigned magnitude will not be the zero character. The
321     * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
322     * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
323     *
324     * @param   i   an integer to be converted to a string.
325     * @return  the string representation of the unsigned integer value
326     *          represented by the argument in binary (base&nbsp;2).
327     * @see #parseUnsignedInt(String, int)
328     * @see #toUnsignedString(int, int)
329     * @since   1.0.2
330     */
331    public static String toBinaryString(int i) {
332        return toUnsignedString0(i, 1);
333    }
334
335    /**
336     * Convert the integer to an unsigned number.
337     */
338    private static String toUnsignedString0(int val, int shift) {
339        // assert shift > 0 && shift <=5 : "Illegal shift value";
340        int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val);
341        int chars = Math.max(((mag + (shift - 1)) / shift), 1);
342        if (COMPACT_STRINGS) {
343            byte[] buf = new byte[chars];
344            formatUnsignedInt(val, shift, buf, 0, chars);
345            return new String(buf, LATIN1);
346        } else {
347            byte[] buf = new byte[chars * 2];
348            formatUnsignedIntUTF16(val, shift, buf, 0, chars);
349            return new String(buf, UTF16);
350        }
351    }
352
353    /**
354     * Format an {@code int} (treated as unsigned) into a character buffer. If
355     * {@code len} exceeds the formatted ASCII representation of {@code val},
356     * {@code buf} will be padded with leading zeroes.
357     *
358     * @param val the unsigned int to format
359     * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
360     * @param buf the character buffer to write to
361     * @param offset the offset in the destination buffer to start at
362     * @param len the number of characters to write
363     */
364    static void formatUnsignedInt(int val, int shift, char[] buf, int offset, int len) {
365        // assert shift > 0 && shift <=5 : "Illegal shift value";
366        // assert offset >= 0 && offset < buf.length : "illegal offset";
367        // assert len > 0 && (offset + len) <= buf.length : "illegal length";
368        int charPos = offset + len;
369        int radix = 1 << shift;
370        int mask = radix - 1;
371        do {
372            buf[--charPos] = Integer.digits[val & mask];
373            val >>>= shift;
374        } while (charPos > offset);
375    }
376
377    /** byte[]/LATIN1 version    */
378    static void formatUnsignedInt(int val, int shift, byte[] buf, int offset, int len) {
379        int charPos = offset + len;
380        int radix = 1 << shift;
381        int mask = radix - 1;
382        do {
383            buf[--charPos] = (byte)Integer.digits[val & mask];
384            val >>>= shift;
385        } while (charPos > offset);
386    }
387
388    /** byte[]/UTF16 version    */
389    private static void formatUnsignedIntUTF16(int val, int shift, byte[] buf, int offset, int len) {
390        int charPos = offset + len;
391        int radix = 1 << shift;
392        int mask = radix - 1;
393        do {
394            StringUTF16.putChar(buf, --charPos, Integer.digits[val & mask]);
395            val >>>= shift;
396        } while (charPos > offset);
397    }
398
399    static final byte[] DigitTens = {
400        '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
401        '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
402        '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
403        '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
404        '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
405        '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
406        '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
407        '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
408        '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
409        '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
410        } ;
411
412    static final byte[] DigitOnes = {
413        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
414        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
415        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
416        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
417        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
418        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
419        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
420        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
421        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
422        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
423        } ;
424
425
426    /**
427     * Returns a {@code String} object representing the
428     * specified integer. The argument is converted to signed decimal
429     * representation and returned as a string, exactly as if the
430     * argument and radix 10 were given as arguments to the {@link
431     * #toString(int, int)} method.
432     *
433     * @param   i   an integer to be converted.
434     * @return  a string representation of the argument in base&nbsp;10.
435     */
436    @HotSpotIntrinsicCandidate
437    public static String toString(int i) {
438        int size = stringSize(i);
439        if (COMPACT_STRINGS) {
440            byte[] buf = new byte[size];
441            getChars(i, size, buf);
442            return new String(buf, LATIN1);
443        } else {
444            byte[] buf = new byte[size * 2];
445            StringUTF16.getChars(i, size, buf);
446            return new String(buf, UTF16);
447        }
448    }
449
450    /**
451     * Returns a string representation of the argument as an unsigned
452     * decimal value.
453     *
454     * The argument is converted to unsigned decimal representation
455     * and returned as a string exactly as if the argument and radix
456     * 10 were given as arguments to the {@link #toUnsignedString(int,
457     * int)} method.
458     *
459     * @param   i  an integer to be converted to an unsigned string.
460     * @return  an unsigned string representation of the argument.
461     * @see     #toUnsignedString(int, int)
462     * @since 1.8
463     */
464    public static String toUnsignedString(int i) {
465        return Long.toString(toUnsignedLong(i));
466    }
467
468    /**
469     * Places characters representing the integer i into the
470     * character array buf. The characters are placed into
471     * the buffer backwards starting with the least significant
472     * digit at the specified index (exclusive), and working
473     * backwards from there.
474     *
475     * @implNote This method converts positive inputs into negative
476     * values, to cover the Integer.MIN_VALUE case. Converting otherwise
477     * (negative to positive) will expose -Integer.MIN_VALUE that overflows
478     * integer.
479     *
480     * @param i     value to convert
481     * @param index next index, after the least significant digit
482     * @param buf   target buffer, Latin1-encoded
483     * @return index of the most significant digit or minus sign, if present
484     */
485    static int getChars(int i, int index, byte[] buf) {
486        int q, r;
487        int charPos = index;
488
489        boolean negative = i < 0;
490        if (!negative) {
491            i = -i;
492        }
493
494        // Generate two digits per iteration
495        while (i <= -100) {
496            q = i / 100;
497            r = (q * 100) - i;
498            i = q;
499            buf[--charPos] = DigitOnes[r];
500            buf[--charPos] = DigitTens[r];
501        }
502
503        // We know there are at most two digits left at this point.
504        q = i / 10;
505        r = (q * 10) - i;
506        buf[--charPos] = (byte)('0' + r);
507
508        // Whatever left is the remaining digit.
509        if (q < 0) {
510            buf[--charPos] = (byte)('0' - q);
511        }
512
513        if (negative) {
514            buf[--charPos] = (byte)'-';
515        }
516        return charPos;
517    }
518
519    // Left here for compatibility reasons, see JDK-8143900.
520    static final int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
521                                      99999999, 999999999, Integer.MAX_VALUE };
522
523    /**
524     * Returns the string representation size for a given int value.
525     *
526     * @param x int value
527     * @return string size
528     *
529     * @implNote There are other ways to compute this: e.g. binary search,
530     * but values are biased heavily towards zero, and therefore linear search
531     * wins. The iteration results are also routinely inlined in the generated
532     * code after loop unrolling.
533     */
534    static int stringSize(int x) {
535        int d = 1;
536        if (x >= 0) {
537            d = 0;
538            x = -x;
539        }
540        int p = -10;
541        for (int i = 1; i < 10; i++) {
542            if (x > p)
543                return i + d;
544            p = 10 * p;
545        }
546        return 10 + d;
547    }
548
549    /**
550     * Parses the string argument as a signed integer in the radix
551     * specified by the second argument. The characters in the string
552     * must all be digits of the specified radix (as determined by
553     * whether {@link java.lang.Character#digit(char, int)} returns a
554     * nonnegative value), except that the first character may be an
555     * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
556     * indicate a negative value or an ASCII plus sign {@code '+'}
557     * ({@code '\u005Cu002B'}) to indicate a positive value. The
558     * resulting integer value is returned.
559     *
560     * <p>An exception of type {@code NumberFormatException} is
561     * thrown if any of the following situations occurs:
562     * <ul>
563     * <li>The first argument is {@code null} or is a string of
564     * length zero.
565     *
566     * <li>The radix is either smaller than
567     * {@link java.lang.Character#MIN_RADIX} or
568     * larger than {@link java.lang.Character#MAX_RADIX}.
569     *
570     * <li>Any character of the string is not a digit of the specified
571     * radix, except that the first character may be a minus sign
572     * {@code '-'} ({@code '\u005Cu002D'}) or plus sign
573     * {@code '+'} ({@code '\u005Cu002B'}) provided that the
574     * string is longer than length 1.
575     *
576     * <li>The value represented by the string is not a value of type
577     * {@code int}.
578     * </ul>
579     *
580     * <p>Examples:
581     * <blockquote><pre>
582     * parseInt("0", 10) returns 0
583     * parseInt("473", 10) returns 473
584     * parseInt("+42", 10) returns 42
585     * parseInt("-0", 10) returns 0
586     * parseInt("-FF", 16) returns -255
587     * parseInt("1100110", 2) returns 102
588     * parseInt("2147483647", 10) returns 2147483647
589     * parseInt("-2147483648", 10) returns -2147483648
590     * parseInt("2147483648", 10) throws a NumberFormatException
591     * parseInt("99", 8) throws a NumberFormatException
592     * parseInt("Kona", 10) throws a NumberFormatException
593     * parseInt("Kona", 27) returns 411787
594     * </pre></blockquote>
595     *
596     * @param      s   the {@code String} containing the integer
597     *                  representation to be parsed
598     * @param      radix   the radix to be used while parsing {@code s}.
599     * @return     the integer represented by the string argument in the
600     *             specified radix.
601     * @exception  NumberFormatException if the {@code String}
602     *             does not contain a parsable {@code int}.
603     */
604    public static int parseInt(String s, int radix)
605                throws NumberFormatException
606    {
607        /*
608         * WARNING: This method may be invoked early during VM initialization
609         * before IntegerCache is initialized. Care must be taken to not use
610         * the valueOf method.
611         */
612
613        if (s == null) {
614            throw new NumberFormatException("null");
615        }
616
617        if (radix < Character.MIN_RADIX) {
618            throw new NumberFormatException("radix " + radix +
619                                            " less than Character.MIN_RADIX");
620        }
621
622        if (radix > Character.MAX_RADIX) {
623            throw new NumberFormatException("radix " + radix +
624                                            " greater than Character.MAX_RADIX");
625        }
626
627        boolean negative = false;
628        int i = 0, len = s.length();
629        int limit = -Integer.MAX_VALUE;
630
631        if (len > 0) {
632            char firstChar = s.charAt(0);
633            if (firstChar < '0') { // Possible leading "+" or "-"
634                if (firstChar == '-') {
635                    negative = true;
636                    limit = Integer.MIN_VALUE;
637                } else if (firstChar != '+') {
638                    throw NumberFormatException.forInputString(s);
639                }
640
641                if (len == 1) { // Cannot have lone "+" or "-"
642                    throw NumberFormatException.forInputString(s);
643                }
644                i++;
645            }
646            int multmin = limit / radix;
647            int result = 0;
648            while (i < len) {
649                // Accumulating negatively avoids surprises near MAX_VALUE
650                int digit = Character.digit(s.charAt(i++), radix);
651                if (digit < 0 || result < multmin) {
652                    throw NumberFormatException.forInputString(s);
653                }
654                result *= radix;
655                if (result < limit + digit) {
656                    throw NumberFormatException.forInputString(s);
657                }
658                result -= digit;
659            }
660            return negative ? result : -result;
661        } else {
662            throw NumberFormatException.forInputString(s);
663        }
664    }
665
666    /**
667     * Parses the {@link CharSequence} argument as a signed {@code int} in the
668     * specified {@code radix}, beginning at the specified {@code beginIndex}
669     * and extending to {@code endIndex - 1}.
670     *
671     * <p>The method does not take steps to guard against the
672     * {@code CharSequence} being mutated while parsing.
673     *
674     * @param      s   the {@code CharSequence} containing the {@code int}
675     *                  representation to be parsed
676     * @param      beginIndex   the beginning index, inclusive.
677     * @param      endIndex     the ending index, exclusive.
678     * @param      radix   the radix to be used while parsing {@code s}.
679     * @return     the signed {@code int} represented by the subsequence in
680     *             the specified radix.
681     * @throws     NullPointerException  if {@code s} is null.
682     * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
683     *             negative, or if {@code beginIndex} is greater than
684     *             {@code endIndex} or if {@code endIndex} is greater than
685     *             {@code s.length()}.
686     * @throws     NumberFormatException  if the {@code CharSequence} does not
687     *             contain a parsable {@code int} in the specified
688     *             {@code radix}, or if {@code radix} is either smaller than
689     *             {@link java.lang.Character#MIN_RADIX} or larger than
690     *             {@link java.lang.Character#MAX_RADIX}.
691     * @since  9
692     */
693    public static int parseInt(CharSequence s, int beginIndex, int endIndex, int radix)
694                throws NumberFormatException {
695        s = Objects.requireNonNull(s);
696
697        if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
698            throw new IndexOutOfBoundsException();
699        }
700        if (radix < Character.MIN_RADIX) {
701            throw new NumberFormatException("radix " + radix +
702                                            " less than Character.MIN_RADIX");
703        }
704        if (radix > Character.MAX_RADIX) {
705            throw new NumberFormatException("radix " + radix +
706                                            " greater than Character.MAX_RADIX");
707        }
708
709        boolean negative = false;
710        int i = beginIndex;
711        int limit = -Integer.MAX_VALUE;
712
713        if (i < endIndex) {
714            char firstChar = s.charAt(i);
715            if (firstChar < '0') { // Possible leading "+" or "-"
716                if (firstChar == '-') {
717                    negative = true;
718                    limit = Integer.MIN_VALUE;
719                } else if (firstChar != '+') {
720                    throw NumberFormatException.forCharSequence(s, beginIndex,
721                            endIndex, i);
722                }
723                i++;
724                if (i == endIndex) { // Cannot have lone "+" or "-"
725                    throw NumberFormatException.forCharSequence(s, beginIndex,
726                            endIndex, i);
727                }
728            }
729            int multmin = limit / radix;
730            int result = 0;
731            while (i < endIndex) {
732                // Accumulating negatively avoids surprises near MAX_VALUE
733                int digit = Character.digit(s.charAt(i), radix);
734                if (digit < 0 || result < multmin) {
735                    throw NumberFormatException.forCharSequence(s, beginIndex,
736                            endIndex, i);
737                }
738                result *= radix;
739                if (result < limit + digit) {
740                    throw NumberFormatException.forCharSequence(s, beginIndex,
741                            endIndex, i);
742                }
743                i++;
744                result -= digit;
745            }
746            return negative ? result : -result;
747        } else {
748            throw NumberFormatException.forInputString("");
749        }
750    }
751
752    /**
753     * Parses the string argument as a signed decimal integer. The
754     * characters in the string must all be decimal digits, except
755     * that the first character may be an ASCII minus sign {@code '-'}
756     * ({@code '\u005Cu002D'}) to indicate a negative value or an
757     * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
758     * indicate a positive value. The resulting integer value is
759     * returned, exactly as if the argument and the radix 10 were
760     * given as arguments to the {@link #parseInt(java.lang.String,
761     * int)} method.
762     *
763     * @param s    a {@code String} containing the {@code int}
764     *             representation to be parsed
765     * @return     the integer value represented by the argument in decimal.
766     * @exception  NumberFormatException  if the string does not contain a
767     *               parsable integer.
768     */
769    public static int parseInt(String s) throws NumberFormatException {
770        return parseInt(s,10);
771    }
772
773    /**
774     * Parses the string argument as an unsigned integer in the radix
775     * specified by the second argument.  An unsigned integer maps the
776     * values usually associated with negative numbers to positive
777     * numbers larger than {@code MAX_VALUE}.
778     *
779     * The characters in the string must all be digits of the
780     * specified radix (as determined by whether {@link
781     * java.lang.Character#digit(char, int)} returns a nonnegative
782     * value), except that the first character may be an ASCII plus
783     * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
784     * integer value is returned.
785     *
786     * <p>An exception of type {@code NumberFormatException} is
787     * thrown if any of the following situations occurs:
788     * <ul>
789     * <li>The first argument is {@code null} or is a string of
790     * length zero.
791     *
792     * <li>The radix is either smaller than
793     * {@link java.lang.Character#MIN_RADIX} or
794     * larger than {@link java.lang.Character#MAX_RADIX}.
795     *
796     * <li>Any character of the string is not a digit of the specified
797     * radix, except that the first character may be a plus sign
798     * {@code '+'} ({@code '\u005Cu002B'}) provided that the
799     * string is longer than length 1.
800     *
801     * <li>The value represented by the string is larger than the
802     * largest unsigned {@code int}, 2<sup>32</sup>-1.
803     *
804     * </ul>
805     *
806     *
807     * @param      s   the {@code String} containing the unsigned integer
808     *                  representation to be parsed
809     * @param      radix   the radix to be used while parsing {@code s}.
810     * @return     the integer represented by the string argument in the
811     *             specified radix.
812     * @throws     NumberFormatException if the {@code String}
813     *             does not contain a parsable {@code int}.
814     * @since 1.8
815     */
816    public static int parseUnsignedInt(String s, int radix)
817                throws NumberFormatException {
818        if (s == null)  {
819            throw new NumberFormatException("null");
820        }
821
822        int len = s.length();
823        if (len > 0) {
824            char firstChar = s.charAt(0);
825            if (firstChar == '-') {
826                throw new
827                    NumberFormatException(String.format("Illegal leading minus sign " +
828                                                       "on unsigned string %s.", s));
829            } else {
830                if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
831                    (radix == 10 && len <= 9) ) { // Integer.MAX_VALUE in base 10 is 10 digits
832                    return parseInt(s, radix);
833                } else {
834                    long ell = Long.parseLong(s, radix);
835                    if ((ell & 0xffff_ffff_0000_0000L) == 0) {
836                        return (int) ell;
837                    } else {
838                        throw new
839                            NumberFormatException(String.format("String value %s exceeds " +
840                                                                "range of unsigned int.", s));
841                    }
842                }
843            }
844        } else {
845            throw NumberFormatException.forInputString(s);
846        }
847    }
848
849    /**
850     * Parses the {@link CharSequence} argument as an unsigned {@code int} in
851     * the specified {@code radix}, beginning at the specified
852     * {@code beginIndex} and extending to {@code endIndex - 1}.
853     *
854     * <p>The method does not take steps to guard against the
855     * {@code CharSequence} being mutated while parsing.
856     *
857     * @param      s   the {@code CharSequence} containing the unsigned
858     *                 {@code int} representation to be parsed
859     * @param      beginIndex   the beginning index, inclusive.
860     * @param      endIndex     the ending index, exclusive.
861     * @param      radix   the radix to be used while parsing {@code s}.
862     * @return     the unsigned {@code int} represented by the subsequence in
863     *             the specified radix.
864     * @throws     NullPointerException  if {@code s} is null.
865     * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
866     *             negative, or if {@code beginIndex} is greater than
867     *             {@code endIndex} or if {@code endIndex} is greater than
868     *             {@code s.length()}.
869     * @throws     NumberFormatException  if the {@code CharSequence} does not
870     *             contain a parsable unsigned {@code int} in the specified
871     *             {@code radix}, or if {@code radix} is either smaller than
872     *             {@link java.lang.Character#MIN_RADIX} or larger than
873     *             {@link java.lang.Character#MAX_RADIX}.
874     * @since  9
875     */
876    public static int parseUnsignedInt(CharSequence s, int beginIndex, int endIndex, int radix)
877                throws NumberFormatException {
878        s = Objects.requireNonNull(s);
879
880        if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
881            throw new IndexOutOfBoundsException();
882        }
883        int start = beginIndex, len = endIndex - beginIndex;
884
885        if (len > 0) {
886            char firstChar = s.charAt(start);
887            if (firstChar == '-') {
888                throw new
889                    NumberFormatException(String.format("Illegal leading minus sign " +
890                                                       "on unsigned string %s.", s));
891            } else {
892                if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
893                        (radix == 10 && len <= 9)) { // Integer.MAX_VALUE in base 10 is 10 digits
894                    return parseInt(s, start, start + len, radix);
895                } else {
896                    long ell = Long.parseLong(s, start, start + len, radix);
897                    if ((ell & 0xffff_ffff_0000_0000L) == 0) {
898                        return (int) ell;
899                    } else {
900                        throw new
901                            NumberFormatException(String.format("String value %s exceeds " +
902                                                                "range of unsigned int.", s));
903                    }
904                }
905            }
906        } else {
907            throw new NumberFormatException("");
908        }
909    }
910
911    /**
912     * Parses the string argument as an unsigned decimal integer. The
913     * characters in the string must all be decimal digits, except
914     * that the first character may be an ASCII plus sign {@code
915     * '+'} ({@code '\u005Cu002B'}). The resulting integer value
916     * is returned, exactly as if the argument and the radix 10 were
917     * given as arguments to the {@link
918     * #parseUnsignedInt(java.lang.String, int)} method.
919     *
920     * @param s   a {@code String} containing the unsigned {@code int}
921     *            representation to be parsed
922     * @return    the unsigned integer value represented by the argument in decimal.
923     * @throws    NumberFormatException  if the string does not contain a
924     *            parsable unsigned integer.
925     * @since 1.8
926     */
927    public static int parseUnsignedInt(String s) throws NumberFormatException {
928        return parseUnsignedInt(s, 10);
929    }
930
931    /**
932     * Returns an {@code Integer} object holding the value
933     * extracted from the specified {@code String} when parsed
934     * with the radix given by the second argument. The first argument
935     * is interpreted as representing a signed integer in the radix
936     * specified by the second argument, exactly as if the arguments
937     * were given to the {@link #parseInt(java.lang.String, int)}
938     * method. The result is an {@code Integer} object that
939     * represents the integer value specified by the string.
940     *
941     * <p>In other words, this method returns an {@code Integer}
942     * object equal to the value of:
943     *
944     * <blockquote>
945     *  {@code new Integer(Integer.parseInt(s, radix))}
946     * </blockquote>
947     *
948     * @param      s   the string to be parsed.
949     * @param      radix the radix to be used in interpreting {@code s}
950     * @return     an {@code Integer} object holding the value
951     *             represented by the string argument in the specified
952     *             radix.
953     * @exception NumberFormatException if the {@code String}
954     *            does not contain a parsable {@code int}.
955     */
956    public static Integer valueOf(String s, int radix) throws NumberFormatException {
957        return Integer.valueOf(parseInt(s,radix));
958    }
959
960    /**
961     * Returns an {@code Integer} object holding the
962     * value of the specified {@code String}. The argument is
963     * interpreted as representing a signed decimal integer, exactly
964     * as if the argument were given to the {@link
965     * #parseInt(java.lang.String)} method. The result is an
966     * {@code Integer} object that represents the integer value
967     * specified by the string.
968     *
969     * <p>In other words, this method returns an {@code Integer}
970     * object equal to the value of:
971     *
972     * <blockquote>
973     *  {@code new Integer(Integer.parseInt(s))}
974     * </blockquote>
975     *
976     * @param      s   the string to be parsed.
977     * @return     an {@code Integer} object holding the value
978     *             represented by the string argument.
979     * @exception  NumberFormatException  if the string cannot be parsed
980     *             as an integer.
981     */
982    public static Integer valueOf(String s) throws NumberFormatException {
983        return Integer.valueOf(parseInt(s, 10));
984    }
985
986    /**
987     * Cache to support the object identity semantics of autoboxing for values between
988     * -128 and 127 (inclusive) as required by JLS.
989     *
990     * The cache is initialized on first usage.  The size of the cache
991     * may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
992     * During VM initialization, java.lang.Integer.IntegerCache.high property
993     * may be set and saved in the private system properties in the
994     * jdk.internal.misc.VM class.
995     */
996
997    private static class IntegerCache {
998        static final int low = -128;
999        static final int high;
1000        static final Integer cache[];
1001
1002        static {
1003            // high value may be configured by property
1004            int h = 127;
1005            String integerCacheHighPropValue =
1006                VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
1007            if (integerCacheHighPropValue != null) {
1008                try {
1009                    int i = parseInt(integerCacheHighPropValue);
1010                    i = Math.max(i, 127);
1011                    // Maximum array size is Integer.MAX_VALUE
1012                    h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
1013                } catch( NumberFormatException nfe) {
1014                    // If the property cannot be parsed into an int, ignore it.
1015                }
1016            }
1017            high = h;
1018
1019            cache = new Integer[(high - low) + 1];
1020            int j = low;
1021            for(int k = 0; k < cache.length; k++)
1022                cache[k] = new Integer(j++);
1023
1024            // range [-128, 127] must be interned (JLS7 5.1.7)
1025            assert IntegerCache.high >= 127;
1026        }
1027
1028        private IntegerCache() {}
1029    }
1030
1031    /**
1032     * Returns an {@code Integer} instance representing the specified
1033     * {@code int} value.  If a new {@code Integer} instance is not
1034     * required, this method should generally be used in preference to
1035     * the constructor {@link #Integer(int)}, as this method is likely
1036     * to yield significantly better space and time performance by
1037     * caching frequently requested values.
1038     *
1039     * This method will always cache values in the range -128 to 127,
1040     * inclusive, and may cache other values outside of this range.
1041     *
1042     * @param  i an {@code int} value.
1043     * @return an {@code Integer} instance representing {@code i}.
1044     * @since  1.5
1045     */
1046    @HotSpotIntrinsicCandidate
1047    public static Integer valueOf(int i) {
1048        if (i >= IntegerCache.low && i <= IntegerCache.high)
1049            return IntegerCache.cache[i + (-IntegerCache.low)];
1050        return new Integer(i);
1051    }
1052
1053    /**
1054     * The value of the {@code Integer}.
1055     *
1056     * @serial
1057     */
1058    private final int value;
1059
1060    /**
1061     * Constructs a newly allocated {@code Integer} object that
1062     * represents the specified {@code int} value.
1063     *
1064     * @param   value   the value to be represented by the
1065     *                  {@code Integer} object.
1066     *
1067     * @deprecated
1068     * It is rarely appropriate to use this constructor. The static factory
1069     * {@link #valueOf(int)} is generally a better choice, as it is
1070     * likely to yield significantly better space and time performance.
1071     */
1072    @Deprecated(since="9")
1073    public Integer(int value) {
1074        this.value = value;
1075    }
1076
1077    /**
1078     * Constructs a newly allocated {@code Integer} object that
1079     * represents the {@code int} value indicated by the
1080     * {@code String} parameter. The string is converted to an
1081     * {@code int} value in exactly the manner used by the
1082     * {@code parseInt} method for radix 10.
1083     *
1084     * @param   s   the {@code String} to be converted to an {@code Integer}.
1085     * @throws      NumberFormatException if the {@code String} does not
1086     *              contain a parsable integer.
1087     *
1088     * @deprecated
1089     * It is rarely appropriate to use this constructor.
1090     * Use {@link #parseInt(String)} to convert a string to a
1091     * {@code int} primitive, or use {@link #valueOf(String)}
1092     * to convert a string to an {@code Integer} object.
1093     */
1094    @Deprecated(since="9")
1095    public Integer(String s) throws NumberFormatException {
1096        this.value = parseInt(s, 10);
1097    }
1098
1099    /**
1100     * Returns the value of this {@code Integer} as a {@code byte}
1101     * after a narrowing primitive conversion.
1102     * @jls 5.1.3 Narrowing Primitive Conversions
1103     */
1104    public byte byteValue() {
1105        return (byte)value;
1106    }
1107
1108    /**
1109     * Returns the value of this {@code Integer} as a {@code short}
1110     * after a narrowing primitive conversion.
1111     * @jls 5.1.3 Narrowing Primitive Conversions
1112     */
1113    public short shortValue() {
1114        return (short)value;
1115    }
1116
1117    /**
1118     * Returns the value of this {@code Integer} as an
1119     * {@code int}.
1120     */
1121    @HotSpotIntrinsicCandidate
1122    public int intValue() {
1123        return value;
1124    }
1125
1126    /**
1127     * Returns the value of this {@code Integer} as a {@code long}
1128     * after a widening primitive conversion.
1129     * @jls 5.1.2 Widening Primitive Conversions
1130     * @see Integer#toUnsignedLong(int)
1131     */
1132    public long longValue() {
1133        return (long)value;
1134    }
1135
1136    /**
1137     * Returns the value of this {@code Integer} as a {@code float}
1138     * after a widening primitive conversion.
1139     * @jls 5.1.2 Widening Primitive Conversions
1140     */
1141    public float floatValue() {
1142        return (float)value;
1143    }
1144
1145    /**
1146     * Returns the value of this {@code Integer} as a {@code double}
1147     * after a widening primitive conversion.
1148     * @jls 5.1.2 Widening Primitive Conversions
1149     */
1150    public double doubleValue() {
1151        return (double)value;
1152    }
1153
1154    /**
1155     * Returns a {@code String} object representing this
1156     * {@code Integer}'s value. The value is converted to signed
1157     * decimal representation and returned as a string, exactly as if
1158     * the integer value were given as an argument to the {@link
1159     * java.lang.Integer#toString(int)} method.
1160     *
1161     * @return  a string representation of the value of this object in
1162     *          base&nbsp;10.
1163     */
1164    public String toString() {
1165        return toString(value);
1166    }
1167
1168    /**
1169     * Returns a hash code for this {@code Integer}.
1170     *
1171     * @return  a hash code value for this object, equal to the
1172     *          primitive {@code int} value represented by this
1173     *          {@code Integer} object.
1174     */
1175    @Override
1176    public int hashCode() {
1177        return Integer.hashCode(value);
1178    }
1179
1180    /**
1181     * Returns a hash code for an {@code int} value; compatible with
1182     * {@code Integer.hashCode()}.
1183     *
1184     * @param value the value to hash
1185     * @since 1.8
1186     *
1187     * @return a hash code value for an {@code int} value.
1188     */
1189    public static int hashCode(int value) {
1190        return value;
1191    }
1192
1193    /**
1194     * Compares this object to the specified object.  The result is
1195     * {@code true} if and only if the argument is not
1196     * {@code null} and is an {@code Integer} object that
1197     * contains the same {@code int} value as this object.
1198     *
1199     * @param   obj   the object to compare with.
1200     * @return  {@code true} if the objects are the same;
1201     *          {@code false} otherwise.
1202     */
1203    public boolean equals(Object obj) {
1204        if (obj instanceof Integer) {
1205            return value == ((Integer)obj).intValue();
1206        }
1207        return false;
1208    }
1209
1210    /**
1211     * Determines the integer value of the system property with the
1212     * specified name.
1213     *
1214     * <p>The first argument is treated as the name of a system
1215     * property.  System properties are accessible through the {@link
1216     * java.lang.System#getProperty(java.lang.String)} method. The
1217     * string value of this property is then interpreted as an integer
1218     * value using the grammar supported by {@link Integer#decode decode} and
1219     * an {@code Integer} object representing this value is returned.
1220     *
1221     * <p>If there is no property with the specified name, if the
1222     * specified name is empty or {@code null}, or if the property
1223     * does not have the correct numeric format, then {@code null} is
1224     * returned.
1225     *
1226     * <p>In other words, this method returns an {@code Integer}
1227     * object equal to the value of:
1228     *
1229     * <blockquote>
1230     *  {@code getInteger(nm, null)}
1231     * </blockquote>
1232     *
1233     * @param   nm   property name.
1234     * @return  the {@code Integer} value of the property.
1235     * @throws  SecurityException for the same reasons as
1236     *          {@link System#getProperty(String) System.getProperty}
1237     * @see     java.lang.System#getProperty(java.lang.String)
1238     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1239     */
1240    public static Integer getInteger(String nm) {
1241        return getInteger(nm, null);
1242    }
1243
1244    /**
1245     * Determines the integer value of the system property with the
1246     * specified name.
1247     *
1248     * <p>The first argument is treated as the name of a system
1249     * property.  System properties are accessible through the {@link
1250     * java.lang.System#getProperty(java.lang.String)} method. The
1251     * string value of this property is then interpreted as an integer
1252     * value using the grammar supported by {@link Integer#decode decode} and
1253     * an {@code Integer} object representing this value is returned.
1254     *
1255     * <p>The second argument is the default value. An {@code Integer} object
1256     * that represents the value of the second argument is returned if there
1257     * is no property of the specified name, if the property does not have
1258     * the correct numeric format, or if the specified name is empty or
1259     * {@code null}.
1260     *
1261     * <p>In other words, this method returns an {@code Integer} object
1262     * equal to the value of:
1263     *
1264     * <blockquote>
1265     *  {@code getInteger(nm, new Integer(val))}
1266     * </blockquote>
1267     *
1268     * but in practice it may be implemented in a manner such as:
1269     *
1270     * <blockquote><pre>
1271     * Integer result = getInteger(nm, null);
1272     * return (result == null) ? new Integer(val) : result;
1273     * </pre></blockquote>
1274     *
1275     * to avoid the unnecessary allocation of an {@code Integer}
1276     * object when the default value is not needed.
1277     *
1278     * @param   nm   property name.
1279     * @param   val   default value.
1280     * @return  the {@code Integer} value of the property.
1281     * @throws  SecurityException for the same reasons as
1282     *          {@link System#getProperty(String) System.getProperty}
1283     * @see     java.lang.System#getProperty(java.lang.String)
1284     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1285     */
1286    public static Integer getInteger(String nm, int val) {
1287        Integer result = getInteger(nm, null);
1288        return (result == null) ? Integer.valueOf(val) : result;
1289    }
1290
1291    /**
1292     * Returns the integer value of the system property with the
1293     * specified name.  The first argument is treated as the name of a
1294     * system property.  System properties are accessible through the
1295     * {@link java.lang.System#getProperty(java.lang.String)} method.
1296     * The string value of this property is then interpreted as an
1297     * integer value, as per the {@link Integer#decode decode} method,
1298     * and an {@code Integer} object representing this value is
1299     * returned; in summary:
1300     *
1301     * <ul><li>If the property value begins with the two ASCII characters
1302     *         {@code 0x} or the ASCII character {@code #}, not
1303     *      followed by a minus sign, then the rest of it is parsed as a
1304     *      hexadecimal integer exactly as by the method
1305     *      {@link #valueOf(java.lang.String, int)} with radix 16.
1306     * <li>If the property value begins with the ASCII character
1307     *     {@code 0} followed by another character, it is parsed as an
1308     *     octal integer exactly as by the method
1309     *     {@link #valueOf(java.lang.String, int)} with radix 8.
1310     * <li>Otherwise, the property value is parsed as a decimal integer
1311     * exactly as by the method {@link #valueOf(java.lang.String, int)}
1312     * with radix 10.
1313     * </ul>
1314     *
1315     * <p>The second argument is the default value. The default value is
1316     * returned if there is no property of the specified name, if the
1317     * property does not have the correct numeric format, or if the
1318     * specified name is empty or {@code null}.
1319     *
1320     * @param   nm   property name.
1321     * @param   val   default value.
1322     * @return  the {@code Integer} value of the property.
1323     * @throws  SecurityException for the same reasons as
1324     *          {@link System#getProperty(String) System.getProperty}
1325     * @see     System#getProperty(java.lang.String)
1326     * @see     System#getProperty(java.lang.String, java.lang.String)
1327     */
1328    public static Integer getInteger(String nm, Integer val) {
1329        String v = null;
1330        try {
1331            v = System.getProperty(nm);
1332        } catch (IllegalArgumentException | NullPointerException e) {
1333        }
1334        if (v != null) {
1335            try {
1336                return Integer.decode(v);
1337            } catch (NumberFormatException e) {
1338            }
1339        }
1340        return val;
1341    }
1342
1343    /**
1344     * Decodes a {@code String} into an {@code Integer}.
1345     * Accepts decimal, hexadecimal, and octal numbers given
1346     * by the following grammar:
1347     *
1348     * <blockquote>
1349     * <dl>
1350     * <dt><i>DecodableString:</i>
1351     * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1352     * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1353     * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1354     * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1355     * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1356     *
1357     * <dt><i>Sign:</i>
1358     * <dd>{@code -}
1359     * <dd>{@code +}
1360     * </dl>
1361     * </blockquote>
1362     *
1363     * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1364     * are as defined in section 3.10.1 of
1365     * <cite>The Java&trade; Language Specification</cite>,
1366     * except that underscores are not accepted between digits.
1367     *
1368     * <p>The sequence of characters following an optional
1369     * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1370     * "{@code #}", or leading zero) is parsed as by the {@code
1371     * Integer.parseInt} method with the indicated radix (10, 16, or
1372     * 8).  This sequence of characters must represent a positive
1373     * value or a {@link NumberFormatException} will be thrown.  The
1374     * result is negated if first character of the specified {@code
1375     * String} is the minus sign.  No whitespace characters are
1376     * permitted in the {@code String}.
1377     *
1378     * @param     nm the {@code String} to decode.
1379     * @return    an {@code Integer} object holding the {@code int}
1380     *             value represented by {@code nm}
1381     * @exception NumberFormatException  if the {@code String} does not
1382     *            contain a parsable integer.
1383     * @see java.lang.Integer#parseInt(java.lang.String, int)
1384     */
1385    public static Integer decode(String nm) throws NumberFormatException {
1386        int radix = 10;
1387        int index = 0;
1388        boolean negative = false;
1389        Integer result;
1390
1391        if (nm.length() == 0)
1392            throw new NumberFormatException("Zero length string");
1393        char firstChar = nm.charAt(0);
1394        // Handle sign, if present
1395        if (firstChar == '-') {
1396            negative = true;
1397            index++;
1398        } else if (firstChar == '+')
1399            index++;
1400
1401        // Handle radix specifier, if present
1402        if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1403            index += 2;
1404            radix = 16;
1405        }
1406        else if (nm.startsWith("#", index)) {
1407            index ++;
1408            radix = 16;
1409        }
1410        else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1411            index ++;
1412            radix = 8;
1413        }
1414
1415        if (nm.startsWith("-", index) || nm.startsWith("+", index))
1416            throw new NumberFormatException("Sign character in wrong position");
1417
1418        try {
1419            result = Integer.valueOf(nm.substring(index), radix);
1420            result = negative ? Integer.valueOf(-result.intValue()) : result;
1421        } catch (NumberFormatException e) {
1422            // If number is Integer.MIN_VALUE, we'll end up here. The next line
1423            // handles this case, and causes any genuine format error to be
1424            // rethrown.
1425            String constant = negative ? ("-" + nm.substring(index))
1426                                       : nm.substring(index);
1427            result = Integer.valueOf(constant, radix);
1428        }
1429        return result;
1430    }
1431
1432    /**
1433     * Compares two {@code Integer} objects numerically.
1434     *
1435     * @param   anotherInteger   the {@code Integer} to be compared.
1436     * @return  the value {@code 0} if this {@code Integer} is
1437     *          equal to the argument {@code Integer}; a value less than
1438     *          {@code 0} if this {@code Integer} is numerically less
1439     *          than the argument {@code Integer}; and a value greater
1440     *          than {@code 0} if this {@code Integer} is numerically
1441     *           greater than the argument {@code Integer} (signed
1442     *           comparison).
1443     * @since   1.2
1444     */
1445    public int compareTo(Integer anotherInteger) {
1446        return compare(this.value, anotherInteger.value);
1447    }
1448
1449    /**
1450     * Compares two {@code int} values numerically.
1451     * The value returned is identical to what would be returned by:
1452     * <pre>
1453     *    Integer.valueOf(x).compareTo(Integer.valueOf(y))
1454     * </pre>
1455     *
1456     * @param  x the first {@code int} to compare
1457     * @param  y the second {@code int} to compare
1458     * @return the value {@code 0} if {@code x == y};
1459     *         a value less than {@code 0} if {@code x < y}; and
1460     *         a value greater than {@code 0} if {@code x > y}
1461     * @since 1.7
1462     */
1463    public static int compare(int x, int y) {
1464        return (x < y) ? -1 : ((x == y) ? 0 : 1);
1465    }
1466
1467    /**
1468     * Compares two {@code int} values numerically treating the values
1469     * as unsigned.
1470     *
1471     * @param  x the first {@code int} to compare
1472     * @param  y the second {@code int} to compare
1473     * @return the value {@code 0} if {@code x == y}; a value less
1474     *         than {@code 0} if {@code x < y} as unsigned values; and
1475     *         a value greater than {@code 0} if {@code x > y} as
1476     *         unsigned values
1477     * @since 1.8
1478     */
1479    public static int compareUnsigned(int x, int y) {
1480        return compare(x + MIN_VALUE, y + MIN_VALUE);
1481    }
1482
1483    /**
1484     * Converts the argument to a {@code long} by an unsigned
1485     * conversion.  In an unsigned conversion to a {@code long}, the
1486     * high-order 32 bits of the {@code long} are zero and the
1487     * low-order 32 bits are equal to the bits of the integer
1488     * argument.
1489     *
1490     * Consequently, zero and positive {@code int} values are mapped
1491     * to a numerically equal {@code long} value and negative {@code
1492     * int} values are mapped to a {@code long} value equal to the
1493     * input plus 2<sup>32</sup>.
1494     *
1495     * @param  x the value to convert to an unsigned {@code long}
1496     * @return the argument converted to {@code long} by an unsigned
1497     *         conversion
1498     * @since 1.8
1499     */
1500    public static long toUnsignedLong(int x) {
1501        return ((long) x) & 0xffffffffL;
1502    }
1503
1504    /**
1505     * Returns the unsigned quotient of dividing the first argument by
1506     * the second where each argument and the result is interpreted as
1507     * an unsigned value.
1508     *
1509     * <p>Note that in two's complement arithmetic, the three other
1510     * basic arithmetic operations of add, subtract, and multiply are
1511     * bit-wise identical if the two operands are regarded as both
1512     * being signed or both being unsigned.  Therefore separate {@code
1513     * addUnsigned}, etc. methods are not provided.
1514     *
1515     * @param dividend the value to be divided
1516     * @param divisor the value doing the dividing
1517     * @return the unsigned quotient of the first argument divided by
1518     * the second argument
1519     * @see #remainderUnsigned
1520     * @since 1.8
1521     */
1522    public static int divideUnsigned(int dividend, int divisor) {
1523        // In lieu of tricky code, for now just use long arithmetic.
1524        return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor));
1525    }
1526
1527    /**
1528     * Returns the unsigned remainder from dividing the first argument
1529     * by the second where each argument and the result is interpreted
1530     * as an unsigned value.
1531     *
1532     * @param dividend the value to be divided
1533     * @param divisor the value doing the dividing
1534     * @return the unsigned remainder of the first argument divided by
1535     * the second argument
1536     * @see #divideUnsigned
1537     * @since 1.8
1538     */
1539    public static int remainderUnsigned(int dividend, int divisor) {
1540        // In lieu of tricky code, for now just use long arithmetic.
1541        return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor));
1542    }
1543
1544
1545    // Bit twiddling
1546
1547    /**
1548     * The number of bits used to represent an {@code int} value in two's
1549     * complement binary form.
1550     *
1551     * @since 1.5
1552     */
1553    @Native public static final int SIZE = 32;
1554
1555    /**
1556     * The number of bytes used to represent an {@code int} value in two's
1557     * complement binary form.
1558     *
1559     * @since 1.8
1560     */
1561    public static final int BYTES = SIZE / Byte.SIZE;
1562
1563    /**
1564     * Returns an {@code int} value with at most a single one-bit, in the
1565     * position of the highest-order ("leftmost") one-bit in the specified
1566     * {@code int} value.  Returns zero if the specified value has no
1567     * one-bits in its two's complement binary representation, that is, if it
1568     * is equal to zero.
1569     *
1570     * @param i the value whose highest one bit is to be computed
1571     * @return an {@code int} value with a single one-bit, in the position
1572     *     of the highest-order one-bit in the specified value, or zero if
1573     *     the specified value is itself equal to zero.
1574     * @since 1.5
1575     */
1576    public static int highestOneBit(int i) {
1577        // HD, Figure 3-1
1578        i |= (i >>  1);
1579        i |= (i >>  2);
1580        i |= (i >>  4);
1581        i |= (i >>  8);
1582        i |= (i >> 16);
1583        return i - (i >>> 1);
1584    }
1585
1586    /**
1587     * Returns an {@code int} value with at most a single one-bit, in the
1588     * position of the lowest-order ("rightmost") one-bit in the specified
1589     * {@code int} value.  Returns zero if the specified value has no
1590     * one-bits in its two's complement binary representation, that is, if it
1591     * is equal to zero.
1592     *
1593     * @param i the value whose lowest one bit is to be computed
1594     * @return an {@code int} value with a single one-bit, in the position
1595     *     of the lowest-order one-bit in the specified value, or zero if
1596     *     the specified value is itself equal to zero.
1597     * @since 1.5
1598     */
1599    public static int lowestOneBit(int i) {
1600        // HD, Section 2-1
1601        return i & -i;
1602    }
1603
1604    /**
1605     * Returns the number of zero bits preceding the highest-order
1606     * ("leftmost") one-bit in the two's complement binary representation
1607     * of the specified {@code int} value.  Returns 32 if the
1608     * specified value has no one-bits in its two's complement representation,
1609     * in other words if it is equal to zero.
1610     *
1611     * <p>Note that this method is closely related to the logarithm base 2.
1612     * For all positive {@code int} values x:
1613     * <ul>
1614     * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}
1615     * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
1616     * </ul>
1617     *
1618     * @param i the value whose number of leading zeros is to be computed
1619     * @return the number of zero bits preceding the highest-order
1620     *     ("leftmost") one-bit in the two's complement binary representation
1621     *     of the specified {@code int} value, or 32 if the value
1622     *     is equal to zero.
1623     * @since 1.5
1624     */
1625    @HotSpotIntrinsicCandidate
1626    public static int numberOfLeadingZeros(int i) {
1627        // HD, Figure 5-6
1628        if (i == 0)
1629            return 32;
1630        int n = 1;
1631        if (i >>> 16 == 0) { n += 16; i <<= 16; }
1632        if (i >>> 24 == 0) { n +=  8; i <<=  8; }
1633        if (i >>> 28 == 0) { n +=  4; i <<=  4; }
1634        if (i >>> 30 == 0) { n +=  2; i <<=  2; }
1635        n -= i >>> 31;
1636        return n;
1637    }
1638
1639    /**
1640     * Returns the number of zero bits following the lowest-order ("rightmost")
1641     * one-bit in the two's complement binary representation of the specified
1642     * {@code int} value.  Returns 32 if the specified value has no
1643     * one-bits in its two's complement representation, in other words if it is
1644     * equal to zero.
1645     *
1646     * @param i the value whose number of trailing zeros is to be computed
1647     * @return the number of zero bits following the lowest-order ("rightmost")
1648     *     one-bit in the two's complement binary representation of the
1649     *     specified {@code int} value, or 32 if the value is equal
1650     *     to zero.
1651     * @since 1.5
1652     */
1653    @HotSpotIntrinsicCandidate
1654    public static int numberOfTrailingZeros(int i) {
1655        // HD, Figure 5-14
1656        int y;
1657        if (i == 0) return 32;
1658        int n = 31;
1659        y = i <<16; if (y != 0) { n = n -16; i = y; }
1660        y = i << 8; if (y != 0) { n = n - 8; i = y; }
1661        y = i << 4; if (y != 0) { n = n - 4; i = y; }
1662        y = i << 2; if (y != 0) { n = n - 2; i = y; }
1663        return n - ((i << 1) >>> 31);
1664    }
1665
1666    /**
1667     * Returns the number of one-bits in the two's complement binary
1668     * representation of the specified {@code int} value.  This function is
1669     * sometimes referred to as the <i>population count</i>.
1670     *
1671     * @param i the value whose bits are to be counted
1672     * @return the number of one-bits in the two's complement binary
1673     *     representation of the specified {@code int} value.
1674     * @since 1.5
1675     */
1676    @HotSpotIntrinsicCandidate
1677    public static int bitCount(int i) {
1678        // HD, Figure 5-2
1679        i = i - ((i >>> 1) & 0x55555555);
1680        i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
1681        i = (i + (i >>> 4)) & 0x0f0f0f0f;
1682        i = i + (i >>> 8);
1683        i = i + (i >>> 16);
1684        return i & 0x3f;
1685    }
1686
1687    /**
1688     * Returns the value obtained by rotating the two's complement binary
1689     * representation of the specified {@code int} value left by the
1690     * specified number of bits.  (Bits shifted out of the left hand, or
1691     * high-order, side reenter on the right, or low-order.)
1692     *
1693     * <p>Note that left rotation with a negative distance is equivalent to
1694     * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1695     * distance)}.  Note also that rotation by any multiple of 32 is a
1696     * no-op, so all but the last five bits of the rotation distance can be
1697     * ignored, even if the distance is negative: {@code rotateLeft(val,
1698     * distance) == rotateLeft(val, distance & 0x1F)}.
1699     *
1700     * @param i the value whose bits are to be rotated left
1701     * @param distance the number of bit positions to rotate left
1702     * @return the value obtained by rotating the two's complement binary
1703     *     representation of the specified {@code int} value left by the
1704     *     specified number of bits.
1705     * @since 1.5
1706     */
1707    public static int rotateLeft(int i, int distance) {
1708        return (i << distance) | (i >>> -distance);
1709    }
1710
1711    /**
1712     * Returns the value obtained by rotating the two's complement binary
1713     * representation of the specified {@code int} value right by the
1714     * specified number of bits.  (Bits shifted out of the right hand, or
1715     * low-order, side reenter on the left, or high-order.)
1716     *
1717     * <p>Note that right rotation with a negative distance is equivalent to
1718     * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1719     * distance)}.  Note also that rotation by any multiple of 32 is a
1720     * no-op, so all but the last five bits of the rotation distance can be
1721     * ignored, even if the distance is negative: {@code rotateRight(val,
1722     * distance) == rotateRight(val, distance & 0x1F)}.
1723     *
1724     * @param i the value whose bits are to be rotated right
1725     * @param distance the number of bit positions to rotate right
1726     * @return the value obtained by rotating the two's complement binary
1727     *     representation of the specified {@code int} value right by the
1728     *     specified number of bits.
1729     * @since 1.5
1730     */
1731    public static int rotateRight(int i, int distance) {
1732        return (i >>> distance) | (i << -distance);
1733    }
1734
1735    /**
1736     * Returns the value obtained by reversing the order of the bits in the
1737     * two's complement binary representation of the specified {@code int}
1738     * value.
1739     *
1740     * @param i the value to be reversed
1741     * @return the value obtained by reversing order of the bits in the
1742     *     specified {@code int} value.
1743     * @since 1.5
1744     */
1745    public static int reverse(int i) {
1746        // HD, Figure 7-1
1747        i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
1748        i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
1749        i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
1750
1751        return reverseBytes(i);
1752    }
1753
1754    /**
1755     * Returns the signum function of the specified {@code int} value.  (The
1756     * return value is -1 if the specified value is negative; 0 if the
1757     * specified value is zero; and 1 if the specified value is positive.)
1758     *
1759     * @param i the value whose signum is to be computed
1760     * @return the signum function of the specified {@code int} value.
1761     * @since 1.5
1762     */
1763    public static int signum(int i) {
1764        // HD, Section 2-7
1765        return (i >> 31) | (-i >>> 31);
1766    }
1767
1768    /**
1769     * Returns the value obtained by reversing the order of the bytes in the
1770     * two's complement representation of the specified {@code int} value.
1771     *
1772     * @param i the value whose bytes are to be reversed
1773     * @return the value obtained by reversing the bytes in the specified
1774     *     {@code int} value.
1775     * @since 1.5
1776     */
1777    @HotSpotIntrinsicCandidate
1778    public static int reverseBytes(int i) {
1779        return (i << 24)            |
1780               ((i & 0xff00) << 8)  |
1781               ((i >>> 8) & 0xff00) |
1782               (i >>> 24);
1783    }
1784
1785    /**
1786     * Adds two integers together as per the + operator.
1787     *
1788     * @param a the first operand
1789     * @param b the second operand
1790     * @return the sum of {@code a} and {@code b}
1791     * @see java.util.function.BinaryOperator
1792     * @since 1.8
1793     */
1794    public static int sum(int a, int b) {
1795        return a + b;
1796    }
1797
1798    /**
1799     * Returns the greater of two {@code int} values
1800     * as if by calling {@link Math#max(int, int) Math.max}.
1801     *
1802     * @param a the first operand
1803     * @param b the second operand
1804     * @return the greater of {@code a} and {@code b}
1805     * @see java.util.function.BinaryOperator
1806     * @since 1.8
1807     */
1808    public static int max(int a, int b) {
1809        return Math.max(a, b);
1810    }
1811
1812    /**
1813     * Returns the smaller of two {@code int} values
1814     * as if by calling {@link Math#min(int, int) Math.min}.
1815     *
1816     * @param a the first operand
1817     * @param b the second operand
1818     * @return the smaller of {@code a} and {@code b}
1819     * @see java.util.function.BinaryOperator
1820     * @since 1.8
1821     */
1822    public static int min(int a, int b) {
1823        return Math.min(a, b);
1824    }
1825
1826    /** use serialVersionUID from JDK 1.0.2 for interoperability */
1827    @Native private static final long serialVersionUID = 1360826667806852920L;
1828}
1829