1/*
2 * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang;
27
28import jdk.internal.math.FloatingDecimal;
29import jdk.internal.math.DoubleConsts;
30import jdk.internal.HotSpotIntrinsicCandidate;
31
32/**
33 * The {@code Double} class wraps a value of the primitive type
34 * {@code double} in an object. An object of type
35 * {@code Double} contains a single field whose type is
36 * {@code double}.
37 *
38 * <p>In addition, this class provides several methods for converting a
39 * {@code double} to a {@code String} and a
40 * {@code String} to a {@code double}, as well as other
41 * constants and methods useful when dealing with a
42 * {@code double}.
43 *
44 * @author  Lee Boynton
45 * @author  Arthur van Hoff
46 * @author  Joseph D. Darcy
47 * @since 1.0
48 */
49public final class Double extends Number implements Comparable<Double> {
50    /**
51     * A constant holding the positive infinity of type
52     * {@code double}. It is equal to the value returned by
53     * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
54     */
55    public static final double POSITIVE_INFINITY = 1.0 / 0.0;
56
57    /**
58     * A constant holding the negative infinity of type
59     * {@code double}. It is equal to the value returned by
60     * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
61     */
62    public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
63
64    /**
65     * A constant holding a Not-a-Number (NaN) value of type
66     * {@code double}. It is equivalent to the value returned by
67     * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
68     */
69    public static final double NaN = 0.0d / 0.0;
70
71    /**
72     * A constant holding the largest positive finite value of type
73     * {@code double},
74     * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
75     * the hexadecimal floating-point literal
76     * {@code 0x1.fffffffffffffP+1023} and also equal to
77     * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
78     */
79    public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308
80
81    /**
82     * A constant holding the smallest positive normal value of type
83     * {@code double}, 2<sup>-1022</sup>.  It is equal to the
84     * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
85     * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
86     *
87     * @since 1.6
88     */
89    public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308
90
91    /**
92     * A constant holding the smallest positive nonzero value of type
93     * {@code double}, 2<sup>-1074</sup>. It is equal to the
94     * hexadecimal floating-point literal
95     * {@code 0x0.0000000000001P-1022} and also equal to
96     * {@code Double.longBitsToDouble(0x1L)}.
97     */
98    public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324
99
100    /**
101     * Maximum exponent a finite {@code double} variable may have.
102     * It is equal to the value returned by
103     * {@code Math.getExponent(Double.MAX_VALUE)}.
104     *
105     * @since 1.6
106     */
107    public static final int MAX_EXPONENT = 1023;
108
109    /**
110     * Minimum exponent a normalized {@code double} variable may
111     * have.  It is equal to the value returned by
112     * {@code Math.getExponent(Double.MIN_NORMAL)}.
113     *
114     * @since 1.6
115     */
116    public static final int MIN_EXPONENT = -1022;
117
118    /**
119     * The number of bits used to represent a {@code double} value.
120     *
121     * @since 1.5
122     */
123    public static final int SIZE = 64;
124
125    /**
126     * The number of bytes used to represent a {@code double} value.
127     *
128     * @since 1.8
129     */
130    public static final int BYTES = SIZE / Byte.SIZE;
131
132    /**
133     * The {@code Class} instance representing the primitive type
134     * {@code double}.
135     *
136     * @since 1.1
137     */
138    @SuppressWarnings("unchecked")
139    public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");
140
141    /**
142     * Returns a string representation of the {@code double}
143     * argument. All characters mentioned below are ASCII characters.
144     * <ul>
145     * <li>If the argument is NaN, the result is the string
146     *     "{@code NaN}".
147     * <li>Otherwise, the result is a string that represents the sign and
148     * magnitude (absolute value) of the argument. If the sign is negative,
149     * the first character of the result is '{@code -}'
150     * ({@code '\u005Cu002D'}); if the sign is positive, no sign character
151     * appears in the result. As for the magnitude <i>m</i>:
152     * <ul>
153     * <li>If <i>m</i> is infinity, it is represented by the characters
154     * {@code "Infinity"}; thus, positive infinity produces the result
155     * {@code "Infinity"} and negative infinity produces the result
156     * {@code "-Infinity"}.
157     *
158     * <li>If <i>m</i> is zero, it is represented by the characters
159     * {@code "0.0"}; thus, negative zero produces the result
160     * {@code "-0.0"} and positive zero produces the result
161     * {@code "0.0"}.
162     *
163     * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
164     * than 10<sup>7</sup>, then it is represented as the integer part of
165     * <i>m</i>, in decimal form with no leading zeroes, followed by
166     * '{@code .}' ({@code '\u005Cu002E'}), followed by one or
167     * more decimal digits representing the fractional part of <i>m</i>.
168     *
169     * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
170     * equal to 10<sup>7</sup>, then it is represented in so-called
171     * "computerized scientific notation." Let <i>n</i> be the unique
172     * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
173     * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
174     * mathematically exact quotient of <i>m</i> and
175     * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
176     * magnitude is then represented as the integer part of <i>a</i>,
177     * as a single decimal digit, followed by '{@code .}'
178     * ({@code '\u005Cu002E'}), followed by decimal digits
179     * representing the fractional part of <i>a</i>, followed by the
180     * letter '{@code E}' ({@code '\u005Cu0045'}), followed
181     * by a representation of <i>n</i> as a decimal integer, as
182     * produced by the method {@link Integer#toString(int)}.
183     * </ul>
184     * </ul>
185     * How many digits must be printed for the fractional part of
186     * <i>m</i> or <i>a</i>? There must be at least one digit to represent
187     * the fractional part, and beyond that as many, but only as many, more
188     * digits as are needed to uniquely distinguish the argument value from
189     * adjacent values of type {@code double}. That is, suppose that
190     * <i>x</i> is the exact mathematical value represented by the decimal
191     * representation produced by this method for a finite nonzero argument
192     * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
193     * to <i>x</i>; or if two {@code double} values are equally close
194     * to <i>x</i>, then <i>d</i> must be one of them and the least
195     * significant bit of the significand of <i>d</i> must be {@code 0}.
196     *
197     * <p>To create localized string representations of a floating-point
198     * value, use subclasses of {@link java.text.NumberFormat}.
199     *
200     * @param   d   the {@code double} to be converted.
201     * @return a string representation of the argument.
202     */
203    public static String toString(double d) {
204        return FloatingDecimal.toJavaFormatString(d);
205    }
206
207    /**
208     * Returns a hexadecimal string representation of the
209     * {@code double} argument. All characters mentioned below
210     * are ASCII characters.
211     *
212     * <ul>
213     * <li>If the argument is NaN, the result is the string
214     *     "{@code NaN}".
215     * <li>Otherwise, the result is a string that represents the sign
216     * and magnitude of the argument. If the sign is negative, the
217     * first character of the result is '{@code -}'
218     * ({@code '\u005Cu002D'}); if the sign is positive, no sign
219     * character appears in the result. As for the magnitude <i>m</i>:
220     *
221     * <ul>
222     * <li>If <i>m</i> is infinity, it is represented by the string
223     * {@code "Infinity"}; thus, positive infinity produces the
224     * result {@code "Infinity"} and negative infinity produces
225     * the result {@code "-Infinity"}.
226     *
227     * <li>If <i>m</i> is zero, it is represented by the string
228     * {@code "0x0.0p0"}; thus, negative zero produces the result
229     * {@code "-0x0.0p0"} and positive zero produces the result
230     * {@code "0x0.0p0"}.
231     *
232     * <li>If <i>m</i> is a {@code double} value with a
233     * normalized representation, substrings are used to represent the
234     * significand and exponent fields.  The significand is
235     * represented by the characters {@code "0x1."}
236     * followed by a lowercase hexadecimal representation of the rest
237     * of the significand as a fraction.  Trailing zeros in the
238     * hexadecimal representation are removed unless all the digits
239     * are zero, in which case a single zero is used. Next, the
240     * exponent is represented by {@code "p"} followed
241     * by a decimal string of the unbiased exponent as if produced by
242     * a call to {@link Integer#toString(int) Integer.toString} on the
243     * exponent value.
244     *
245     * <li>If <i>m</i> is a {@code double} value with a subnormal
246     * representation, the significand is represented by the
247     * characters {@code "0x0."} followed by a
248     * hexadecimal representation of the rest of the significand as a
249     * fraction.  Trailing zeros in the hexadecimal representation are
250     * removed. Next, the exponent is represented by
251     * {@code "p-1022"}.  Note that there must be at
252     * least one nonzero digit in a subnormal significand.
253     *
254     * </ul>
255     *
256     * </ul>
257     *
258     * <table class="striped">
259     * <caption>Examples</caption>
260     * <thead>
261     * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th>
262     * </thead>
263     * <tbody style="text-align:right">
264     * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td>
265     * <tr><th scope="row">{@code -1.0}</th>        <td>{@code -0x1.0p0}</td>
266     * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td>
267     * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td>
268     * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td>
269     * <tr><th scope="row">{@code 0.25}</th>        <td>{@code 0x1.0p-2}</td>
270     * <tr><th scope="row">{@code Double.MAX_VALUE}</th>
271     *     <td>{@code 0x1.fffffffffffffp1023}</td>
272     * <tr><th scope="row">{@code Minimum Normal Value}</th>
273     *     <td>{@code 0x1.0p-1022}</td>
274     * <tr><th scope="row">{@code Maximum Subnormal Value}</th>
275     *     <td>{@code 0x0.fffffffffffffp-1022}</td>
276     * <tr><th scope="row">{@code Double.MIN_VALUE}</th>
277     *     <td>{@code 0x0.0000000000001p-1022}</td>
278     * </tbody>
279     * </table>
280     * @param   d   the {@code double} to be converted.
281     * @return a hex string representation of the argument.
282     * @since 1.5
283     * @author Joseph D. Darcy
284     */
285    public static String toHexString(double d) {
286        /*
287         * Modeled after the "a" conversion specifier in C99, section
288         * 7.19.6.1; however, the output of this method is more
289         * tightly specified.
290         */
291        if (!isFinite(d) )
292            // For infinity and NaN, use the decimal output.
293            return Double.toString(d);
294        else {
295            // Initialized to maximum size of output.
296            StringBuilder answer = new StringBuilder(24);
297
298            if (Math.copySign(1.0, d) == -1.0)    // value is negative,
299                answer.append("-");                  // so append sign info
300
301            answer.append("0x");
302
303            d = Math.abs(d);
304
305            if(d == 0.0) {
306                answer.append("0.0p0");
307            } else {
308                boolean subnormal = (d < Double.MIN_NORMAL);
309
310                // Isolate significand bits and OR in a high-order bit
311                // so that the string representation has a known
312                // length.
313                long signifBits = (Double.doubleToLongBits(d)
314                                   & DoubleConsts.SIGNIF_BIT_MASK) |
315                    0x1000000000000000L;
316
317                // Subnormal values have a 0 implicit bit; normal
318                // values have a 1 implicit bit.
319                answer.append(subnormal ? "0." : "1.");
320
321                // Isolate the low-order 13 digits of the hex
322                // representation.  If all the digits are zero,
323                // replace with a single 0; otherwise, remove all
324                // trailing zeros.
325                String signif = Long.toHexString(signifBits).substring(3,16);
326                answer.append(signif.equals("0000000000000") ? // 13 zeros
327                              "0":
328                              signif.replaceFirst("0{1,12}$", ""));
329
330                answer.append('p');
331                // If the value is subnormal, use the E_min exponent
332                // value for double; otherwise, extract and report d's
333                // exponent (the representation of a subnormal uses
334                // E_min -1).
335                answer.append(subnormal ?
336                              Double.MIN_EXPONENT:
337                              Math.getExponent(d));
338            }
339            return answer.toString();
340        }
341    }
342
343    /**
344     * Returns a {@code Double} object holding the
345     * {@code double} value represented by the argument string
346     * {@code s}.
347     *
348     * <p>If {@code s} is {@code null}, then a
349     * {@code NullPointerException} is thrown.
350     *
351     * <p>Leading and trailing whitespace characters in {@code s}
352     * are ignored.  Whitespace is removed as if by the {@link
353     * String#trim} method; that is, both ASCII space and control
354     * characters are removed. The rest of {@code s} should
355     * constitute a <i>FloatValue</i> as described by the lexical
356     * syntax rules:
357     *
358     * <blockquote>
359     * <dl>
360     * <dt><i>FloatValue:</i>
361     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
362     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
363     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
364     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
365     * <dd><i>SignedInteger</i>
366     * </dl>
367     *
368     * <dl>
369     * <dt><i>HexFloatingPointLiteral</i>:
370     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
371     * </dl>
372     *
373     * <dl>
374     * <dt><i>HexSignificand:</i>
375     * <dd><i>HexNumeral</i>
376     * <dd><i>HexNumeral</i> {@code .}
377     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
378     *     </i>{@code .}<i> HexDigits</i>
379     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
380     *     </i>{@code .} <i>HexDigits</i>
381     * </dl>
382     *
383     * <dl>
384     * <dt><i>BinaryExponent:</i>
385     * <dd><i>BinaryExponentIndicator SignedInteger</i>
386     * </dl>
387     *
388     * <dl>
389     * <dt><i>BinaryExponentIndicator:</i>
390     * <dd>{@code p}
391     * <dd>{@code P}
392     * </dl>
393     *
394     * </blockquote>
395     *
396     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
397     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
398     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
399     * sections of
400     * <cite>The Java&trade; Language Specification</cite>,
401     * except that underscores are not accepted between digits.
402     * If {@code s} does not have the form of
403     * a <i>FloatValue</i>, then a {@code NumberFormatException}
404     * is thrown. Otherwise, {@code s} is regarded as
405     * representing an exact decimal value in the usual
406     * "computerized scientific notation" or as an exact
407     * hexadecimal value; this exact numerical value is then
408     * conceptually converted to an "infinitely precise"
409     * binary value that is then rounded to type {@code double}
410     * by the usual round-to-nearest rule of IEEE 754 floating-point
411     * arithmetic, which includes preserving the sign of a zero
412     * value.
413     *
414     * Note that the round-to-nearest rule also implies overflow and
415     * underflow behaviour; if the exact value of {@code s} is large
416     * enough in magnitude (greater than or equal to ({@link
417     * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
418     * rounding to {@code double} will result in an infinity and if the
419     * exact value of {@code s} is small enough in magnitude (less
420     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
421     * result in a zero.
422     *
423     * Finally, after rounding a {@code Double} object representing
424     * this {@code double} value is returned.
425     *
426     * <p> To interpret localized string representations of a
427     * floating-point value, use subclasses of {@link
428     * java.text.NumberFormat}.
429     *
430     * <p>Note that trailing format specifiers, specifiers that
431     * determine the type of a floating-point literal
432     * ({@code 1.0f} is a {@code float} value;
433     * {@code 1.0d} is a {@code double} value), do
434     * <em>not</em> influence the results of this method.  In other
435     * words, the numerical value of the input string is converted
436     * directly to the target floating-point type.  The two-step
437     * sequence of conversions, string to {@code float} followed
438     * by {@code float} to {@code double}, is <em>not</em>
439     * equivalent to converting a string directly to
440     * {@code double}. For example, the {@code float}
441     * literal {@code 0.1f} is equal to the {@code double}
442     * value {@code 0.10000000149011612}; the {@code float}
443     * literal {@code 0.1f} represents a different numerical
444     * value than the {@code double} literal
445     * {@code 0.1}. (The numerical value 0.1 cannot be exactly
446     * represented in a binary floating-point number.)
447     *
448     * <p>To avoid calling this method on an invalid string and having
449     * a {@code NumberFormatException} be thrown, the regular
450     * expression below can be used to screen the input string:
451     *
452     * <pre>{@code
453     *  final String Digits     = "(\\p{Digit}+)";
454     *  final String HexDigits  = "(\\p{XDigit}+)";
455     *  // an exponent is 'e' or 'E' followed by an optionally
456     *  // signed decimal integer.
457     *  final String Exp        = "[eE][+-]?"+Digits;
458     *  final String fpRegex    =
459     *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
460     *       "[+-]?(" + // Optional sign character
461     *       "NaN|" +           // "NaN" string
462     *       "Infinity|" +      // "Infinity" string
463     *
464     *       // A decimal floating-point string representing a finite positive
465     *       // number without a leading sign has at most five basic pieces:
466     *       // Digits . Digits ExponentPart FloatTypeSuffix
467     *       //
468     *       // Since this method allows integer-only strings as input
469     *       // in addition to strings of floating-point literals, the
470     *       // two sub-patterns below are simplifications of the grammar
471     *       // productions from section 3.10.2 of
472     *       // The Java Language Specification.
473     *
474     *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
475     *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
476     *
477     *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
478     *       "(\\.("+Digits+")("+Exp+")?)|"+
479     *
480     *       // Hexadecimal strings
481     *       "((" +
482     *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
483     *        "(0[xX]" + HexDigits + "(\\.)?)|" +
484     *
485     *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
486     *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
487     *
488     *        ")[pP][+-]?" + Digits + "))" +
489     *       "[fFdD]?))" +
490     *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
491     *
492     *  if (Pattern.matches(fpRegex, myString))
493     *      Double.valueOf(myString); // Will not throw NumberFormatException
494     *  else {
495     *      // Perform suitable alternative action
496     *  }
497     * }</pre>
498     *
499     * @param      s   the string to be parsed.
500     * @return     a {@code Double} object holding the value
501     *             represented by the {@code String} argument.
502     * @throws     NumberFormatException  if the string does not contain a
503     *             parsable number.
504     */
505    public static Double valueOf(String s) throws NumberFormatException {
506        return new Double(parseDouble(s));
507    }
508
509    /**
510     * Returns a {@code Double} instance representing the specified
511     * {@code double} value.
512     * If a new {@code Double} instance is not required, this method
513     * should generally be used in preference to the constructor
514     * {@link #Double(double)}, as this method is likely to yield
515     * significantly better space and time performance by caching
516     * frequently requested values.
517     *
518     * @param  d a double value.
519     * @return a {@code Double} instance representing {@code d}.
520     * @since  1.5
521     */
522    @HotSpotIntrinsicCandidate
523    public static Double valueOf(double d) {
524        return new Double(d);
525    }
526
527    /**
528     * Returns a new {@code double} initialized to the value
529     * represented by the specified {@code String}, as performed
530     * by the {@code valueOf} method of class
531     * {@code Double}.
532     *
533     * @param  s   the string to be parsed.
534     * @return the {@code double} value represented by the string
535     *         argument.
536     * @throws NullPointerException  if the string is null
537     * @throws NumberFormatException if the string does not contain
538     *         a parsable {@code double}.
539     * @see    java.lang.Double#valueOf(String)
540     * @since 1.2
541     */
542    public static double parseDouble(String s) throws NumberFormatException {
543        return FloatingDecimal.parseDouble(s);
544    }
545
546    /**
547     * Returns {@code true} if the specified number is a
548     * Not-a-Number (NaN) value, {@code false} otherwise.
549     *
550     * @param   v   the value to be tested.
551     * @return  {@code true} if the value of the argument is NaN;
552     *          {@code false} otherwise.
553     */
554    public static boolean isNaN(double v) {
555        return (v != v);
556    }
557
558    /**
559     * Returns {@code true} if the specified number is infinitely
560     * large in magnitude, {@code false} otherwise.
561     *
562     * @param   v   the value to be tested.
563     * @return  {@code true} if the value of the argument is positive
564     *          infinity or negative infinity; {@code false} otherwise.
565     */
566    public static boolean isInfinite(double v) {
567        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
568    }
569
570    /**
571     * Returns {@code true} if the argument is a finite floating-point
572     * value; returns {@code false} otherwise (for NaN and infinity
573     * arguments).
574     *
575     * @param d the {@code double} value to be tested
576     * @return {@code true} if the argument is a finite
577     * floating-point value, {@code false} otherwise.
578     * @since 1.8
579     */
580    public static boolean isFinite(double d) {
581        return Math.abs(d) <= Double.MAX_VALUE;
582    }
583
584    /**
585     * The value of the Double.
586     *
587     * @serial
588     */
589    private final double value;
590
591    /**
592     * Constructs a newly allocated {@code Double} object that
593     * represents the primitive {@code double} argument.
594     *
595     * @param   value   the value to be represented by the {@code Double}.
596     *
597     * @deprecated
598     * It is rarely appropriate to use this constructor. The static factory
599     * {@link #valueOf(double)} is generally a better choice, as it is
600     * likely to yield significantly better space and time performance.
601     */
602    @Deprecated(since="9")
603    public Double(double value) {
604        this.value = value;
605    }
606
607    /**
608     * Constructs a newly allocated {@code Double} object that
609     * represents the floating-point value of type {@code double}
610     * represented by the string. The string is converted to a
611     * {@code double} value as if by the {@code valueOf} method.
612     *
613     * @param  s  a string to be converted to a {@code Double}.
614     * @throws    NumberFormatException if the string does not contain a
615     *            parsable number.
616     *
617     * @deprecated
618     * It is rarely appropriate to use this constructor.
619     * Use {@link #parseDouble(String)} to convert a string to a
620     * {@code double} primitive, or use {@link #valueOf(String)}
621     * to convert a string to a {@code Double} object.
622     */
623    @Deprecated(since="9")
624    public Double(String s) throws NumberFormatException {
625        value = parseDouble(s);
626    }
627
628    /**
629     * Returns {@code true} if this {@code Double} value is
630     * a Not-a-Number (NaN), {@code false} otherwise.
631     *
632     * @return  {@code true} if the value represented by this object is
633     *          NaN; {@code false} otherwise.
634     */
635    public boolean isNaN() {
636        return isNaN(value);
637    }
638
639    /**
640     * Returns {@code true} if this {@code Double} value is
641     * infinitely large in magnitude, {@code false} otherwise.
642     *
643     * @return  {@code true} if the value represented by this object is
644     *          positive infinity or negative infinity;
645     *          {@code false} otherwise.
646     */
647    public boolean isInfinite() {
648        return isInfinite(value);
649    }
650
651    /**
652     * Returns a string representation of this {@code Double} object.
653     * The primitive {@code double} value represented by this
654     * object is converted to a string exactly as if by the method
655     * {@code toString} of one argument.
656     *
657     * @return  a {@code String} representation of this object.
658     * @see java.lang.Double#toString(double)
659     */
660    public String toString() {
661        return toString(value);
662    }
663
664    /**
665     * Returns the value of this {@code Double} as a {@code byte}
666     * after a narrowing primitive conversion.
667     *
668     * @return  the {@code double} value represented by this object
669     *          converted to type {@code byte}
670     * @jls 5.1.3 Narrowing Primitive Conversions
671     * @since 1.1
672     */
673    public byte byteValue() {
674        return (byte)value;
675    }
676
677    /**
678     * Returns the value of this {@code Double} as a {@code short}
679     * after a narrowing primitive conversion.
680     *
681     * @return  the {@code double} value represented by this object
682     *          converted to type {@code short}
683     * @jls 5.1.3 Narrowing Primitive Conversions
684     * @since 1.1
685     */
686    public short shortValue() {
687        return (short)value;
688    }
689
690    /**
691     * Returns the value of this {@code Double} as an {@code int}
692     * after a narrowing primitive conversion.
693     * @jls 5.1.3 Narrowing Primitive Conversions
694     *
695     * @return  the {@code double} value represented by this object
696     *          converted to type {@code int}
697     */
698    public int intValue() {
699        return (int)value;
700    }
701
702    /**
703     * Returns the value of this {@code Double} as a {@code long}
704     * after a narrowing primitive conversion.
705     *
706     * @return  the {@code double} value represented by this object
707     *          converted to type {@code long}
708     * @jls 5.1.3 Narrowing Primitive Conversions
709     */
710    public long longValue() {
711        return (long)value;
712    }
713
714    /**
715     * Returns the value of this {@code Double} as a {@code float}
716     * after a narrowing primitive conversion.
717     *
718     * @return  the {@code double} value represented by this object
719     *          converted to type {@code float}
720     * @jls 5.1.3 Narrowing Primitive Conversions
721     * @since 1.0
722     */
723    public float floatValue() {
724        return (float)value;
725    }
726
727    /**
728     * Returns the {@code double} value of this {@code Double} object.
729     *
730     * @return the {@code double} value represented by this object
731     */
732    @HotSpotIntrinsicCandidate
733    public double doubleValue() {
734        return value;
735    }
736
737    /**
738     * Returns a hash code for this {@code Double} object. The
739     * result is the exclusive OR of the two halves of the
740     * {@code long} integer bit representation, exactly as
741     * produced by the method {@link #doubleToLongBits(double)}, of
742     * the primitive {@code double} value represented by this
743     * {@code Double} object. That is, the hash code is the value
744     * of the expression:
745     *
746     * <blockquote>
747     *  {@code (int)(v^(v>>>32))}
748     * </blockquote>
749     *
750     * where {@code v} is defined by:
751     *
752     * <blockquote>
753     *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
754     * </blockquote>
755     *
756     * @return  a {@code hash code} value for this object.
757     */
758    @Override
759    public int hashCode() {
760        return Double.hashCode(value);
761    }
762
763    /**
764     * Returns a hash code for a {@code double} value; compatible with
765     * {@code Double.hashCode()}.
766     *
767     * @param value the value to hash
768     * @return a hash code value for a {@code double} value.
769     * @since 1.8
770     */
771    public static int hashCode(double value) {
772        long bits = doubleToLongBits(value);
773        return (int)(bits ^ (bits >>> 32));
774    }
775
776    /**
777     * Compares this object against the specified object.  The result
778     * is {@code true} if and only if the argument is not
779     * {@code null} and is a {@code Double} object that
780     * represents a {@code double} that has the same value as the
781     * {@code double} represented by this object. For this
782     * purpose, two {@code double} values are considered to be
783     * the same if and only if the method {@link
784     * #doubleToLongBits(double)} returns the identical
785     * {@code long} value when applied to each.
786     *
787     * <p>Note that in most cases, for two instances of class
788     * {@code Double}, {@code d1} and {@code d2}, the
789     * value of {@code d1.equals(d2)} is {@code true} if and
790     * only if
791     *
792     * <blockquote>
793     *  {@code d1.doubleValue() == d2.doubleValue()}
794     * </blockquote>
795     *
796     * <p>also has the value {@code true}. However, there are two
797     * exceptions:
798     * <ul>
799     * <li>If {@code d1} and {@code d2} both represent
800     *     {@code Double.NaN}, then the {@code equals} method
801     *     returns {@code true}, even though
802     *     {@code Double.NaN==Double.NaN} has the value
803     *     {@code false}.
804     * <li>If {@code d1} represents {@code +0.0} while
805     *     {@code d2} represents {@code -0.0}, or vice versa,
806     *     the {@code equal} test has the value {@code false},
807     *     even though {@code +0.0==-0.0} has the value {@code true}.
808     * </ul>
809     * This definition allows hash tables to operate properly.
810     * @param   obj   the object to compare with.
811     * @return  {@code true} if the objects are the same;
812     *          {@code false} otherwise.
813     * @see java.lang.Double#doubleToLongBits(double)
814     */
815    public boolean equals(Object obj) {
816        return (obj instanceof Double)
817               && (doubleToLongBits(((Double)obj).value) ==
818                      doubleToLongBits(value));
819    }
820
821    /**
822     * Returns a representation of the specified floating-point value
823     * according to the IEEE 754 floating-point "double
824     * format" bit layout.
825     *
826     * <p>Bit 63 (the bit that is selected by the mask
827     * {@code 0x8000000000000000L}) represents the sign of the
828     * floating-point number. Bits
829     * 62-52 (the bits that are selected by the mask
830     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
831     * (the bits that are selected by the mask
832     * {@code 0x000fffffffffffffL}) represent the significand
833     * (sometimes called the mantissa) of the floating-point number.
834     *
835     * <p>If the argument is positive infinity, the result is
836     * {@code 0x7ff0000000000000L}.
837     *
838     * <p>If the argument is negative infinity, the result is
839     * {@code 0xfff0000000000000L}.
840     *
841     * <p>If the argument is NaN, the result is
842     * {@code 0x7ff8000000000000L}.
843     *
844     * <p>In all cases, the result is a {@code long} integer that, when
845     * given to the {@link #longBitsToDouble(long)} method, will produce a
846     * floating-point value the same as the argument to
847     * {@code doubleToLongBits} (except all NaN values are
848     * collapsed to a single "canonical" NaN value).
849     *
850     * @param   value   a {@code double} precision floating-point number.
851     * @return the bits that represent the floating-point number.
852     */
853    @HotSpotIntrinsicCandidate
854    public static long doubleToLongBits(double value) {
855        if (!isNaN(value)) {
856            return doubleToRawLongBits(value);
857        }
858        return 0x7ff8000000000000L;
859    }
860
861    /**
862     * Returns a representation of the specified floating-point value
863     * according to the IEEE 754 floating-point "double
864     * format" bit layout, preserving Not-a-Number (NaN) values.
865     *
866     * <p>Bit 63 (the bit that is selected by the mask
867     * {@code 0x8000000000000000L}) represents the sign of the
868     * floating-point number. Bits
869     * 62-52 (the bits that are selected by the mask
870     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
871     * (the bits that are selected by the mask
872     * {@code 0x000fffffffffffffL}) represent the significand
873     * (sometimes called the mantissa) of the floating-point number.
874     *
875     * <p>If the argument is positive infinity, the result is
876     * {@code 0x7ff0000000000000L}.
877     *
878     * <p>If the argument is negative infinity, the result is
879     * {@code 0xfff0000000000000L}.
880     *
881     * <p>If the argument is NaN, the result is the {@code long}
882     * integer representing the actual NaN value.  Unlike the
883     * {@code doubleToLongBits} method,
884     * {@code doubleToRawLongBits} does not collapse all the bit
885     * patterns encoding a NaN to a single "canonical" NaN
886     * value.
887     *
888     * <p>In all cases, the result is a {@code long} integer that,
889     * when given to the {@link #longBitsToDouble(long)} method, will
890     * produce a floating-point value the same as the argument to
891     * {@code doubleToRawLongBits}.
892     *
893     * @param   value   a {@code double} precision floating-point number.
894     * @return the bits that represent the floating-point number.
895     * @since 1.3
896     */
897    @HotSpotIntrinsicCandidate
898    public static native long doubleToRawLongBits(double value);
899
900    /**
901     * Returns the {@code double} value corresponding to a given
902     * bit representation.
903     * The argument is considered to be a representation of a
904     * floating-point value according to the IEEE 754 floating-point
905     * "double format" bit layout.
906     *
907     * <p>If the argument is {@code 0x7ff0000000000000L}, the result
908     * is positive infinity.
909     *
910     * <p>If the argument is {@code 0xfff0000000000000L}, the result
911     * is negative infinity.
912     *
913     * <p>If the argument is any value in the range
914     * {@code 0x7ff0000000000001L} through
915     * {@code 0x7fffffffffffffffL} or in the range
916     * {@code 0xfff0000000000001L} through
917     * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
918     * 754 floating-point operation provided by Java can distinguish
919     * between two NaN values of the same type with different bit
920     * patterns.  Distinct values of NaN are only distinguishable by
921     * use of the {@code Double.doubleToRawLongBits} method.
922     *
923     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
924     * values that can be computed from the argument:
925     *
926     * <blockquote><pre>{@code
927     * int s = ((bits >> 63) == 0) ? 1 : -1;
928     * int e = (int)((bits >> 52) & 0x7ffL);
929     * long m = (e == 0) ?
930     *                 (bits & 0xfffffffffffffL) << 1 :
931     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
932     * }</pre></blockquote>
933     *
934     * Then the floating-point result equals the value of the mathematical
935     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
936     *
937     * <p>Note that this method may not be able to return a
938     * {@code double} NaN with exactly same bit pattern as the
939     * {@code long} argument.  IEEE 754 distinguishes between two
940     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
941     * differences between the two kinds of NaN are generally not
942     * visible in Java.  Arithmetic operations on signaling NaNs turn
943     * them into quiet NaNs with a different, but often similar, bit
944     * pattern.  However, on some processors merely copying a
945     * signaling NaN also performs that conversion.  In particular,
946     * copying a signaling NaN to return it to the calling method
947     * may perform this conversion.  So {@code longBitsToDouble}
948     * may not be able to return a {@code double} with a
949     * signaling NaN bit pattern.  Consequently, for some
950     * {@code long} values,
951     * {@code doubleToRawLongBits(longBitsToDouble(start))} may
952     * <i>not</i> equal {@code start}.  Moreover, which
953     * particular bit patterns represent signaling NaNs is platform
954     * dependent; although all NaN bit patterns, quiet or signaling,
955     * must be in the NaN range identified above.
956     *
957     * @param   bits   any {@code long} integer.
958     * @return  the {@code double} floating-point value with the same
959     *          bit pattern.
960     */
961    @HotSpotIntrinsicCandidate
962    public static native double longBitsToDouble(long bits);
963
964    /**
965     * Compares two {@code Double} objects numerically.  There
966     * are two ways in which comparisons performed by this method
967     * differ from those performed by the Java language numerical
968     * comparison operators ({@code <, <=, ==, >=, >})
969     * when applied to primitive {@code double} values:
970     * <ul><li>
971     *          {@code Double.NaN} is considered by this method
972     *          to be equal to itself and greater than all other
973     *          {@code double} values (including
974     *          {@code Double.POSITIVE_INFINITY}).
975     * <li>
976     *          {@code 0.0d} is considered by this method to be greater
977     *          than {@code -0.0d}.
978     * </ul>
979     * This ensures that the <i>natural ordering</i> of
980     * {@code Double} objects imposed by this method is <i>consistent
981     * with equals</i>.
982     *
983     * @param   anotherDouble   the {@code Double} to be compared.
984     * @return  the value {@code 0} if {@code anotherDouble} is
985     *          numerically equal to this {@code Double}; a value
986     *          less than {@code 0} if this {@code Double}
987     *          is numerically less than {@code anotherDouble};
988     *          and a value greater than {@code 0} if this
989     *          {@code Double} is numerically greater than
990     *          {@code anotherDouble}.
991     *
992     * @since   1.2
993     */
994    public int compareTo(Double anotherDouble) {
995        return Double.compare(value, anotherDouble.value);
996    }
997
998    /**
999     * Compares the two specified {@code double} values. The sign
1000     * of the integer value returned is the same as that of the
1001     * integer that would be returned by the call:
1002     * <pre>
1003     *    new Double(d1).compareTo(new Double(d2))
1004     * </pre>
1005     *
1006     * @param   d1        the first {@code double} to compare
1007     * @param   d2        the second {@code double} to compare
1008     * @return  the value {@code 0} if {@code d1} is
1009     *          numerically equal to {@code d2}; a value less than
1010     *          {@code 0} if {@code d1} is numerically less than
1011     *          {@code d2}; and a value greater than {@code 0}
1012     *          if {@code d1} is numerically greater than
1013     *          {@code d2}.
1014     * @since 1.4
1015     */
1016    public static int compare(double d1, double d2) {
1017        if (d1 < d2)
1018            return -1;           // Neither val is NaN, thisVal is smaller
1019        if (d1 > d2)
1020            return 1;            // Neither val is NaN, thisVal is larger
1021
1022        // Cannot use doubleToRawLongBits because of possibility of NaNs.
1023        long thisBits    = Double.doubleToLongBits(d1);
1024        long anotherBits = Double.doubleToLongBits(d2);
1025
1026        return (thisBits == anotherBits ?  0 : // Values are equal
1027                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1028                 1));                          // (0.0, -0.0) or (NaN, !NaN)
1029    }
1030
1031    /**
1032     * Adds two {@code double} values together as per the + operator.
1033     *
1034     * @param a the first operand
1035     * @param b the second operand
1036     * @return the sum of {@code a} and {@code b}
1037     * @jls 4.2.4 Floating-Point Operations
1038     * @see java.util.function.BinaryOperator
1039     * @since 1.8
1040     */
1041    public static double sum(double a, double b) {
1042        return a + b;
1043    }
1044
1045    /**
1046     * Returns the greater of two {@code double} values
1047     * as if by calling {@link Math#max(double, double) Math.max}.
1048     *
1049     * @param a the first operand
1050     * @param b the second operand
1051     * @return the greater of {@code a} and {@code b}
1052     * @see java.util.function.BinaryOperator
1053     * @since 1.8
1054     */
1055    public static double max(double a, double b) {
1056        return Math.max(a, b);
1057    }
1058
1059    /**
1060     * Returns the smaller of two {@code double} values
1061     * as if by calling {@link Math#min(double, double) Math.min}.
1062     *
1063     * @param a the first operand
1064     * @param b the second operand
1065     * @return the smaller of {@code a} and {@code b}.
1066     * @see java.util.function.BinaryOperator
1067     * @since 1.8
1068     */
1069    public static double min(double a, double b) {
1070        return Math.min(a, b);
1071    }
1072
1073    /** use serialVersionUID from JDK 1.0.2 for interoperability */
1074    private static final long serialVersionUID = -9172774392245257468L;
1075}
1076