1/*
2 * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.crypto.provider;
27
28import java.util.Arrays;
29import java.util.Locale;
30
31import java.security.*;
32import java.security.spec.*;
33import javax.crypto.*;
34import javax.crypto.spec.*;
35import javax.crypto.BadPaddingException;
36
37/**
38 * This class represents the symmetric algorithms in its various modes
39 * (<code>ECB</code>, <code>CFB</code>, <code>OFB</code>, <code>CBC</code>,
40 * <code>PCBC</code>, <code>CTR</code>, and <code>CTS</code>) and
41 * padding schemes (<code>PKCS5Padding</code>, <code>NoPadding</code>,
42 * <code>ISO10126Padding</code>).
43 *
44 * @author Gigi Ankeny
45 * @author Jan Luehe
46 * @see ElectronicCodeBook
47 * @see CipherFeedback
48 * @see OutputFeedback
49 * @see CipherBlockChaining
50 * @see PCBC
51 * @see CounterMode
52 * @see CipherTextStealing
53 */
54
55final class CipherCore {
56
57    /*
58     * internal buffer
59     */
60    private byte[] buffer = null;
61
62    /*
63     * block size of cipher in bytes
64     */
65    private int blockSize = 0;
66
67    /*
68     * unit size (number of input bytes that can be processed at a time)
69     */
70    private int unitBytes = 0;
71
72    /*
73     * index of the content size left in the buffer
74     */
75    private int buffered = 0;
76
77    /*
78     * minimum number of bytes in the buffer required for
79     * FeedbackCipher.encryptFinal()/decryptFinal() call.
80     * update() must buffer this many bytes before starting
81     * to encrypt/decrypt data.
82     * currently, only the following cases have non-zero values:
83     * 1) CTS mode - due to its special handling on the last two blocks
84     * (the last one may be incomplete).
85     * 2) GCM mode + decryption - due to its trailing tag bytes
86     */
87    private int minBytes = 0;
88
89    /*
90     * number of bytes needed to make the total input length a multiple
91     * of the blocksize (this is used in feedback mode, when the number of
92     * input bytes that are processed at a time is different from the block
93     * size)
94     */
95    private int diffBlocksize = 0;
96
97    /*
98     * padding class
99     */
100    private Padding padding = null;
101
102    /*
103     * internal cipher engine
104     */
105    private FeedbackCipher cipher = null;
106
107    /*
108     * the cipher mode
109     */
110    private int cipherMode = ECB_MODE;
111
112    /*
113     * are we encrypting or decrypting?
114     */
115    private boolean decrypting = false;
116
117    /*
118     * Block Mode constants
119     */
120    private static final int ECB_MODE = 0;
121    private static final int CBC_MODE = 1;
122    private static final int CFB_MODE = 2;
123    private static final int OFB_MODE = 3;
124    private static final int PCBC_MODE = 4;
125    private static final int CTR_MODE = 5;
126    private static final int CTS_MODE = 6;
127    static final int GCM_MODE = 7;
128
129    /*
130     * variables used for performing the GCM (key+iv) uniqueness check.
131     * To use GCM mode safely, the cipher object must be re-initialized
132     * with a different combination of key + iv values for each
133     * encryption operation. However, checking all past key + iv values
134     * isn't feasible. Thus, we only do a per-instance check of the
135     * key + iv values used in previous encryption.
136     * For decryption operations, no checking is necessary.
137     * NOTE: this key+iv check have to be done inside CipherCore class
138     * since CipherCore class buffers potential tag bytes in GCM mode
139     * and may not call GaloisCounterMode when there isn't sufficient
140     * input to process.
141     */
142    private boolean requireReinit = false;
143    private byte[] lastEncKey = null;
144    private byte[] lastEncIv = null;
145
146    /**
147     * Creates an instance of CipherCore with default ECB mode and
148     * PKCS5Padding.
149     */
150    CipherCore(SymmetricCipher impl, int blkSize) {
151        blockSize = blkSize;
152        unitBytes = blkSize;
153        diffBlocksize = blkSize;
154
155        /*
156         * The buffer should be usable for all cipher mode and padding
157         * schemes. Thus, it has to be at least (blockSize+1) for CTS.
158         * In decryption mode, it also hold the possible padding block.
159         */
160        buffer = new byte[blockSize*2];
161
162        // set mode and padding
163        cipher = new ElectronicCodeBook(impl);
164        padding = new PKCS5Padding(blockSize);
165    }
166
167    /**
168     * Sets the mode of this cipher.
169     *
170     * @param mode the cipher mode
171     *
172     * @exception NoSuchAlgorithmException if the requested cipher mode does
173     * not exist for this cipher
174     */
175    void setMode(String mode) throws NoSuchAlgorithmException {
176        if (mode == null)
177            throw new NoSuchAlgorithmException("null mode");
178
179        String modeUpperCase = mode.toUpperCase(Locale.ENGLISH);
180
181        if (modeUpperCase.equals("ECB")) {
182            return;
183        }
184
185        SymmetricCipher rawImpl = cipher.getEmbeddedCipher();
186        if (modeUpperCase.equals("CBC")) {
187            cipherMode = CBC_MODE;
188            cipher = new CipherBlockChaining(rawImpl);
189        } else if (modeUpperCase.equals("CTS")) {
190            cipherMode = CTS_MODE;
191            cipher = new CipherTextStealing(rawImpl);
192            minBytes = blockSize+1;
193            padding = null;
194        } else if (modeUpperCase.equals("CTR")) {
195            cipherMode = CTR_MODE;
196            cipher = new CounterMode(rawImpl);
197            unitBytes = 1;
198            padding = null;
199        }  else if (modeUpperCase.equals("GCM")) {
200            // can only be used for block ciphers w/ 128-bit block size
201            if (blockSize != 16) {
202                throw new NoSuchAlgorithmException
203                    ("GCM mode can only be used for AES cipher");
204            }
205            cipherMode = GCM_MODE;
206            cipher = new GaloisCounterMode(rawImpl);
207            padding = null;
208        } else if (modeUpperCase.startsWith("CFB")) {
209            cipherMode = CFB_MODE;
210            unitBytes = getNumOfUnit(mode, "CFB".length(), blockSize);
211            cipher = new CipherFeedback(rawImpl, unitBytes);
212        } else if (modeUpperCase.startsWith("OFB")) {
213            cipherMode = OFB_MODE;
214            unitBytes = getNumOfUnit(mode, "OFB".length(), blockSize);
215            cipher = new OutputFeedback(rawImpl, unitBytes);
216        } else if (modeUpperCase.equals("PCBC")) {
217            cipherMode = PCBC_MODE;
218            cipher = new PCBC(rawImpl);
219        }
220        else {
221            throw new NoSuchAlgorithmException("Cipher mode: " + mode
222                                               + " not found");
223        }
224    }
225
226    /**
227     * Returns the mode of this cipher.
228     *
229     * @return the parsed cipher mode
230     */
231    int getMode() {
232        return cipherMode;
233    }
234
235    private static int getNumOfUnit(String mode, int offset, int blockSize)
236        throws NoSuchAlgorithmException {
237        int result = blockSize; // use blockSize as default value
238        if (mode.length() > offset) {
239            int numInt;
240            try {
241                Integer num = Integer.valueOf(mode.substring(offset));
242                numInt = num.intValue();
243                result = numInt >> 3;
244            } catch (NumberFormatException e) {
245                throw new NoSuchAlgorithmException
246                    ("Algorithm mode: " + mode + " not implemented");
247            }
248            if ((numInt % 8 != 0) || (result > blockSize)) {
249                throw new NoSuchAlgorithmException
250                    ("Invalid algorithm mode: " + mode);
251            }
252        }
253        return result;
254    }
255
256
257    /**
258     * Sets the padding mechanism of this cipher.
259     *
260     * @param padding the padding mechanism
261     *
262     * @exception NoSuchPaddingException if the requested padding mechanism
263     * does not exist
264     */
265    void setPadding(String paddingScheme)
266        throws NoSuchPaddingException
267    {
268        if (paddingScheme == null) {
269            throw new NoSuchPaddingException("null padding");
270        }
271        if (paddingScheme.equalsIgnoreCase("NoPadding")) {
272            padding = null;
273        } else if (paddingScheme.equalsIgnoreCase("ISO10126Padding")) {
274            padding = new ISO10126Padding(blockSize);
275        } else if (!paddingScheme.equalsIgnoreCase("PKCS5Padding")) {
276            throw new NoSuchPaddingException("Padding: " + paddingScheme
277                                             + " not implemented");
278        }
279        if ((padding != null) &&
280            ((cipherMode == CTR_MODE) || (cipherMode == CTS_MODE)
281             || (cipherMode == GCM_MODE))) {
282            padding = null;
283            String modeStr = null;
284            switch (cipherMode) {
285            case CTR_MODE:
286                modeStr = "CTR";
287                break;
288            case GCM_MODE:
289                modeStr = "GCM";
290                break;
291            case CTS_MODE:
292                modeStr = "CTS";
293                break;
294            default:
295                // should never happen
296            }
297            if (modeStr != null) {
298                throw new NoSuchPaddingException
299                    (modeStr + " mode must be used with NoPadding");
300            }
301        }
302    }
303
304    /**
305     * Returns the length in bytes that an output buffer would need to be in
306     * order to hold the result of the next <code>update</code> or
307     * <code>doFinal</code> operation, given the input length
308     * <code>inputLen</code> (in bytes).
309     *
310     * <p>This call takes into account any unprocessed (buffered) data from a
311     * previous <code>update</code> call, padding, and AEAD tagging.
312     *
313     * <p>The actual output length of the next <code>update</code> or
314     * <code>doFinal</code> call may be smaller than the length returned by
315     * this method.
316     *
317     * @param inputLen the input length (in bytes)
318     *
319     * @return the required output buffer size (in bytes)
320     */
321    int getOutputSize(int inputLen) {
322        // estimate based on the maximum
323        return getOutputSizeByOperation(inputLen, true);
324    }
325
326    private int getOutputSizeByOperation(int inputLen, boolean isDoFinal) {
327        int totalLen = buffered + inputLen + cipher.getBufferedLength();
328        switch (cipherMode) {
329        case GCM_MODE:
330            if (isDoFinal) {
331                int tagLen = ((GaloisCounterMode) cipher).getTagLen();
332                if (!decrypting) {
333                    totalLen += tagLen;
334                } else {
335                    totalLen -= tagLen;
336                }
337            }
338            if (totalLen < 0) {
339                totalLen = 0;
340            }
341            break;
342        default:
343            if (padding != null && !decrypting) {
344                if (unitBytes != blockSize) {
345                    if (totalLen < diffBlocksize) {
346                        totalLen = diffBlocksize;
347                    } else {
348                        int residue = (totalLen - diffBlocksize) % blockSize;
349                        totalLen += (blockSize - residue);
350                    }
351                } else {
352                    totalLen += padding.padLength(totalLen);
353                }
354            }
355            break;
356        }
357        return totalLen;
358    }
359
360    /**
361     * Returns the initialization vector (IV) in a new buffer.
362     *
363     * <p>This is useful in the case where a random IV has been created
364     * (see <a href = "#init">init</a>),
365     * or in the context of password-based encryption or
366     * decryption, where the IV is derived from a user-provided password.
367     *
368     * @return the initialization vector in a new buffer, or null if the
369     * underlying algorithm does not use an IV, or if the IV has not yet
370     * been set.
371     */
372    byte[] getIV() {
373        byte[] iv = cipher.getIV();
374        return (iv == null) ? null : iv.clone();
375    }
376
377    /**
378     * Returns the parameters used with this cipher.
379     *
380     * <p>The returned parameters may be the same that were used to initialize
381     * this cipher, or may contain the default set of parameters or a set of
382     * randomly generated parameters used by the underlying cipher
383     * implementation (provided that the underlying cipher implementation
384     * uses a default set of parameters or creates new parameters if it needs
385     * parameters but was not initialized with any).
386     *
387     * @return the parameters used with this cipher, or null if this cipher
388     * does not use any parameters.
389     */
390    AlgorithmParameters getParameters(String algName) {
391        if (cipherMode == ECB_MODE) {
392            return null;
393        }
394        AlgorithmParameters params = null;
395        AlgorithmParameterSpec spec;
396        byte[] iv = getIV();
397        if (iv == null) {
398            // generate spec using default value
399            if (cipherMode == GCM_MODE) {
400                iv = new byte[GaloisCounterMode.DEFAULT_IV_LEN];
401            } else {
402                iv = new byte[blockSize];
403            }
404            SunJCE.getRandom().nextBytes(iv);
405        }
406        if (cipherMode == GCM_MODE) {
407            algName = "GCM";
408            spec = new GCMParameterSpec
409                (((GaloisCounterMode) cipher).getTagLen()*8, iv);
410        } else {
411           if (algName.equals("RC2")) {
412               RC2Crypt rawImpl = (RC2Crypt) cipher.getEmbeddedCipher();
413               spec = new RC2ParameterSpec
414                   (rawImpl.getEffectiveKeyBits(), iv);
415           } else {
416               spec = new IvParameterSpec(iv);
417           }
418        }
419        try {
420            params = AlgorithmParameters.getInstance(algName,
421                    SunJCE.getInstance());
422            params.init(spec);
423        } catch (NoSuchAlgorithmException nsae) {
424            // should never happen
425            throw new RuntimeException("Cannot find " + algName +
426                " AlgorithmParameters implementation in SunJCE provider");
427        } catch (InvalidParameterSpecException ipse) {
428            // should never happen
429            throw new RuntimeException(spec.getClass() + " not supported");
430        }
431        return params;
432    }
433
434    /**
435     * Initializes this cipher with a key and a source of randomness.
436     *
437     * <p>The cipher is initialized for one of the following four operations:
438     * encryption, decryption, key wrapping or key unwrapping, depending on
439     * the value of <code>opmode</code>.
440     *
441     * <p>If this cipher requires an initialization vector (IV), it will get
442     * it from <code>random</code>.
443     * This behaviour should only be used in encryption or key wrapping
444     * mode, however.
445     * When initializing a cipher that requires an IV for decryption or
446     * key unwrapping, the IV
447     * (same IV that was used for encryption or key wrapping) must be provided
448     * explicitly as a
449     * parameter, in order to get the correct result.
450     *
451     * <p>This method also cleans existing buffer and other related state
452     * information.
453     *
454     * @param opmode the operation mode of this cipher (this is one of
455     * the following:
456     * <code>ENCRYPT_MODE</code>, <code>DECRYPT_MODE</code>,
457     * <code>WRAP_MODE</code> or <code>UNWRAP_MODE</code>)
458     * @param key the secret key
459     * @param random the source of randomness
460     *
461     * @exception InvalidKeyException if the given key is inappropriate for
462     * initializing this cipher
463     */
464    void init(int opmode, Key key, SecureRandom random)
465            throws InvalidKeyException {
466        try {
467            init(opmode, key, (AlgorithmParameterSpec)null, random);
468        } catch (InvalidAlgorithmParameterException e) {
469            throw new InvalidKeyException(e.getMessage());
470        }
471    }
472
473    /**
474     * Initializes this cipher with a key, a set of
475     * algorithm parameters, and a source of randomness.
476     *
477     * <p>The cipher is initialized for one of the following four operations:
478     * encryption, decryption, key wrapping or key unwrapping, depending on
479     * the value of <code>opmode</code>.
480     *
481     * <p>If this cipher (including its underlying feedback or padding scheme)
482     * requires any random bytes, it will get them from <code>random</code>.
483     *
484     * @param opmode the operation mode of this cipher (this is one of
485     * the following:
486     * <code>ENCRYPT_MODE</code>, <code>DECRYPT_MODE</code>,
487     * <code>WRAP_MODE</code> or <code>UNWRAP_MODE</code>)
488     * @param key the encryption key
489     * @param params the algorithm parameters
490     * @param random the source of randomness
491     *
492     * @exception InvalidKeyException if the given key is inappropriate for
493     * initializing this cipher
494     * @exception InvalidAlgorithmParameterException if the given algorithm
495     * parameters are inappropriate for this cipher
496     */
497    void init(int opmode, Key key, AlgorithmParameterSpec params,
498            SecureRandom random)
499            throws InvalidKeyException, InvalidAlgorithmParameterException {
500        decrypting = (opmode == Cipher.DECRYPT_MODE)
501                  || (opmode == Cipher.UNWRAP_MODE);
502
503        byte[] keyBytes = getKeyBytes(key);
504        int tagLen = -1;
505        byte[] ivBytes = null;
506        if (params != null) {
507            if (cipherMode == GCM_MODE) {
508                if (params instanceof GCMParameterSpec) {
509                    tagLen = ((GCMParameterSpec)params).getTLen();
510                    if (tagLen < 96 || tagLen > 128 || ((tagLen & 0x07) != 0)) {
511                        throw new InvalidAlgorithmParameterException
512                            ("Unsupported TLen value; must be one of " +
513                             "{128, 120, 112, 104, 96}");
514                    }
515                    tagLen = tagLen >> 3;
516                    ivBytes = ((GCMParameterSpec)params).getIV();
517                } else {
518                    throw new InvalidAlgorithmParameterException
519                        ("Unsupported parameter: " + params);
520               }
521            } else {
522                if (params instanceof IvParameterSpec) {
523                    ivBytes = ((IvParameterSpec)params).getIV();
524                    if ((ivBytes == null) || (ivBytes.length != blockSize)) {
525                        throw new InvalidAlgorithmParameterException
526                            ("Wrong IV length: must be " + blockSize +
527                             " bytes long");
528                    }
529                } else if (params instanceof RC2ParameterSpec) {
530                    ivBytes = ((RC2ParameterSpec)params).getIV();
531                    if ((ivBytes != null) && (ivBytes.length != blockSize)) {
532                        throw new InvalidAlgorithmParameterException
533                            ("Wrong IV length: must be " + blockSize +
534                             " bytes long");
535                    }
536                } else {
537                    throw new InvalidAlgorithmParameterException
538                        ("Unsupported parameter: " + params);
539                }
540            }
541        }
542        if (cipherMode == ECB_MODE) {
543            if (ivBytes != null) {
544                throw new InvalidAlgorithmParameterException
545                                                ("ECB mode cannot use IV");
546            }
547        } else if (ivBytes == null)  {
548            if (decrypting) {
549                throw new InvalidAlgorithmParameterException("Parameters "
550                                                             + "missing");
551            }
552
553            if (random == null) {
554                random = SunJCE.getRandom();
555            }
556            if (cipherMode == GCM_MODE) {
557                ivBytes = new byte[GaloisCounterMode.DEFAULT_IV_LEN];
558            } else {
559                ivBytes = new byte[blockSize];
560            }
561            random.nextBytes(ivBytes);
562        }
563
564        buffered = 0;
565        diffBlocksize = blockSize;
566
567        String algorithm = key.getAlgorithm();
568
569        // GCM mode needs additional handling
570        if (cipherMode == GCM_MODE) {
571            if(tagLen == -1) {
572                tagLen = GaloisCounterMode.DEFAULT_TAG_LEN;
573            }
574            if (decrypting) {
575                minBytes = tagLen;
576            } else {
577                // check key+iv for encryption in GCM mode
578                requireReinit =
579                    Arrays.equals(ivBytes, lastEncIv) &&
580                    MessageDigest.isEqual(keyBytes, lastEncKey);
581                if (requireReinit) {
582                    throw new InvalidAlgorithmParameterException
583                        ("Cannot reuse iv for GCM encryption");
584                }
585                lastEncIv = ivBytes;
586                lastEncKey = keyBytes;
587            }
588            ((GaloisCounterMode) cipher).init
589                (decrypting, algorithm, keyBytes, ivBytes, tagLen);
590        } else {
591            cipher.init(decrypting, algorithm, keyBytes, ivBytes);
592        }
593        // skip checking key+iv from now on until after doFinal()
594        requireReinit = false;
595    }
596
597    void init(int opmode, Key key, AlgorithmParameters params,
598              SecureRandom random)
599        throws InvalidKeyException, InvalidAlgorithmParameterException {
600        AlgorithmParameterSpec spec = null;
601        String paramType = null;
602        if (params != null) {
603            try {
604                if (cipherMode == GCM_MODE) {
605                    paramType = "GCM";
606                    spec = params.getParameterSpec(GCMParameterSpec.class);
607                } else {
608                    // NOTE: RC2 parameters are always handled through
609                    // init(..., AlgorithmParameterSpec,...) method, so
610                    // we can assume IvParameterSpec type here.
611                    paramType = "IV";
612                    spec = params.getParameterSpec(IvParameterSpec.class);
613                }
614            } catch (InvalidParameterSpecException ipse) {
615                throw new InvalidAlgorithmParameterException
616                    ("Wrong parameter type: " + paramType + " expected");
617            }
618        }
619        init(opmode, key, spec, random);
620    }
621
622    /**
623     * Return the key bytes of the specified key. Throw an InvalidKeyException
624     * if the key is not usable.
625     */
626    static byte[] getKeyBytes(Key key) throws InvalidKeyException {
627        if (key == null) {
628            throw new InvalidKeyException("No key given");
629        }
630        // note: key.getFormat() may return null
631        if (!"RAW".equalsIgnoreCase(key.getFormat())) {
632            throw new InvalidKeyException("Wrong format: RAW bytes needed");
633        }
634        byte[] keyBytes = key.getEncoded();
635        if (keyBytes == null) {
636            throw new InvalidKeyException("RAW key bytes missing");
637        }
638        return keyBytes;
639    }
640
641
642    /**
643     * Continues a multiple-part encryption or decryption operation
644     * (depending on how this cipher was initialized), processing another data
645     * part.
646     *
647     * <p>The first <code>inputLen</code> bytes in the <code>input</code>
648     * buffer, starting at <code>inputOffset</code>, are processed, and the
649     * result is stored in a new buffer.
650     *
651     * @param input the input buffer
652     * @param inputOffset the offset in <code>input</code> where the input
653     * starts
654     * @param inputLen the input length
655     *
656     * @return the new buffer with the result
657     *
658     * @exception IllegalStateException if this cipher is in a wrong state
659     * (e.g., has not been initialized)
660     */
661    byte[] update(byte[] input, int inputOffset, int inputLen) {
662        if (requireReinit) {
663            throw new IllegalStateException
664                ("Must use either different key or iv for GCM encryption");
665        }
666
667        byte[] output = null;
668        try {
669            output = new byte[getOutputSizeByOperation(inputLen, false)];
670            int len = update(input, inputOffset, inputLen, output,
671                             0);
672            if (len == output.length) {
673                return output;
674            } else {
675                return Arrays.copyOf(output, len);
676            }
677        } catch (ShortBufferException e) {
678            // should never happen
679            throw new ProviderException("Unexpected exception", e);
680        }
681    }
682
683    /**
684     * Continues a multiple-part encryption or decryption operation
685     * (depending on how this cipher was initialized), processing another data
686     * part.
687     *
688     * <p>The first <code>inputLen</code> bytes in the <code>input</code>
689     * buffer, starting at <code>inputOffset</code>, are processed, and the
690     * result is stored in the <code>output</code> buffer, starting at
691     * <code>outputOffset</code>.
692     *
693     * @param input the input buffer
694     * @param inputOffset the offset in <code>input</code> where the input
695     * starts
696     * @param inputLen the input length
697     * @param output the buffer for the result
698     * @param outputOffset the offset in <code>output</code> where the result
699     * is stored
700     *
701     * @return the number of bytes stored in <code>output</code>
702     *
703     * @exception ShortBufferException if the given output buffer is too small
704     * to hold the result
705     */
706    int update(byte[] input, int inputOffset, int inputLen, byte[] output,
707               int outputOffset) throws ShortBufferException {
708        if (requireReinit) {
709            throw new IllegalStateException
710                ("Must use either different key or iv for GCM encryption");
711        }
712
713        // figure out how much can be sent to crypto function
714        int len = buffered + inputLen - minBytes;
715        if (padding != null && decrypting) {
716            // do not include the padding bytes when decrypting
717            len -= blockSize;
718        }
719        // do not count the trailing bytes which do not make up a unit
720        len = (len > 0 ? (len - (len % unitBytes)) : 0);
721
722        // check output buffer capacity
723        if ((output == null) ||
724            ((output.length - outputOffset) < len)) {
725            throw new ShortBufferException("Output buffer must be "
726                                           + "(at least) " + len
727                                           + " bytes long");
728        }
729
730        int outLen = 0;
731        if (len != 0) { // there is some work to do
732            if ((input == output)
733                 && (outputOffset < (inputOffset + inputLen))
734                 && (inputOffset < (outputOffset + buffer.length))) {
735                // copy 'input' out to avoid its content being
736                // overwritten prematurely.
737                input = Arrays.copyOfRange(input, inputOffset,
738                    inputOffset + inputLen);
739                inputOffset = 0;
740            }
741            if (len <= buffered) {
742                // all to-be-processed data are from 'buffer'
743                if (decrypting) {
744                    outLen = cipher.decrypt(buffer, 0, len, output, outputOffset);
745                } else {
746                    outLen = cipher.encrypt(buffer, 0, len, output, outputOffset);
747                }
748                buffered -= len;
749                if (buffered != 0) {
750                    System.arraycopy(buffer, len, buffer, 0, buffered);
751                }
752            } else { // len > buffered
753                int inputConsumed = len - buffered;
754                int temp;
755                if (buffered > 0) {
756                    int bufferCapacity = buffer.length - buffered;
757                    if (bufferCapacity != 0) {
758                        temp = Math.min(bufferCapacity, inputConsumed);
759                        if (unitBytes != blockSize) {
760                            temp -= ((buffered + temp) % unitBytes);
761                        }
762                        System.arraycopy(input, inputOffset, buffer, buffered, temp);
763                        inputOffset += temp;
764                        inputConsumed -= temp;
765                        inputLen -= temp;
766                        buffered += temp;
767                    }
768                    // process 'buffer'
769                    if (decrypting) {
770                         outLen = cipher.decrypt(buffer, 0, buffered, output, outputOffset);
771                    } else {
772                         outLen = cipher.encrypt(buffer, 0, buffered, output, outputOffset);
773                    }
774                    outputOffset += outLen;
775                    buffered = 0;
776                }
777                if (inputConsumed > 0) { // still has input to process
778                    if (decrypting) {
779                        outLen += cipher.decrypt(input, inputOffset, inputConsumed,
780                            output, outputOffset);
781                    } else {
782                        outLen += cipher.encrypt(input, inputOffset, inputConsumed,
783                            output, outputOffset);
784                    }
785                    inputOffset += inputConsumed;
786                    inputLen -= inputConsumed;
787                }
788            }
789            // Let's keep track of how many bytes are needed to make
790            // the total input length a multiple of blocksize when
791            // padding is applied
792            if (unitBytes != blockSize) {
793                if (len < diffBlocksize) {
794                    diffBlocksize -= len;
795                } else {
796                    diffBlocksize = blockSize -
797                        ((len - diffBlocksize) % blockSize);
798                }
799            }
800        }
801        // Store remaining input into 'buffer' again
802        if (inputLen > 0) {
803            System.arraycopy(input, inputOffset, buffer, buffered,
804                             inputLen);
805            buffered += inputLen;
806        }
807        return outLen;
808    }
809
810    /**
811     * Encrypts or decrypts data in a single-part operation,
812     * or finishes a multiple-part operation.
813     * The data is encrypted or decrypted, depending on how this cipher was
814     * initialized.
815     *
816     * <p>The first <code>inputLen</code> bytes in the <code>input</code>
817     * buffer, starting at <code>inputOffset</code>, and any input bytes that
818     * may have been buffered during a previous <code>update</code> operation,
819     * are processed, with padding (if requested) being applied.
820     * The result is stored in a new buffer.
821     *
822     * <p>The cipher is reset to its initial state (uninitialized) after this
823     * call.
824     *
825     * @param input the input buffer
826     * @param inputOffset the offset in <code>input</code> where the input
827     * starts
828     * @param inputLen the input length
829     *
830     * @return the new buffer with the result
831     *
832     * @exception IllegalBlockSizeException if this cipher is a block cipher,
833     * no padding has been requested (only in encryption mode), and the total
834     * input length of the data processed by this cipher is not a multiple of
835     * block size
836     * @exception BadPaddingException if this cipher is in decryption mode,
837     * and (un)padding has been requested, but the decrypted data is not
838     * bounded by the appropriate padding bytes
839     */
840    byte[] doFinal(byte[] input, int inputOffset, int inputLen)
841        throws IllegalBlockSizeException, BadPaddingException {
842        byte[] output = null;
843        try {
844            output = new byte[getOutputSizeByOperation(inputLen, true)];
845            int len = doFinal(input, inputOffset, inputLen, output, 0);
846            if (len < output.length) {
847                return Arrays.copyOf(output, len);
848            } else {
849                return output;
850            }
851        } catch (ShortBufferException e) {
852            // never thrown
853            throw new ProviderException("Unexpected exception", e);
854        }
855    }
856
857    /**
858     * Encrypts or decrypts data in a single-part operation,
859     * or finishes a multiple-part operation.
860     * The data is encrypted or decrypted, depending on how this cipher was
861     * initialized.
862     *
863     * <p>The first <code>inputLen</code> bytes in the <code>input</code>
864     * buffer, starting at <code>inputOffset</code>, and any input bytes that
865     * may have been buffered during a previous <code>update</code> operation,
866     * are processed, with padding (if requested) being applied.
867     * The result is stored in the <code>output</code> buffer, starting at
868     * <code>outputOffset</code>.
869     *
870     * <p>The cipher is reset to its initial state (uninitialized) after this
871     * call.
872     *
873     * @param input the input buffer
874     * @param inputOffset the offset in <code>input</code> where the input
875     * starts
876     * @param inputLen the input length
877     * @param output the buffer for the result
878     * @param outputOffset the offset in <code>output</code> where the result
879     * is stored
880     *
881     * @return the number of bytes stored in <code>output</code>
882     *
883     * @exception IllegalBlockSizeException if this cipher is a block cipher,
884     * no padding has been requested (only in encryption mode), and the total
885     * input length of the data processed by this cipher is not a multiple of
886     * block size
887     * @exception ShortBufferException if the given output buffer is too small
888     * to hold the result
889     * @exception BadPaddingException if this cipher is in decryption mode,
890     * and (un)padding has been requested, but the decrypted data is not
891     * bounded by the appropriate padding bytes
892     */
893    int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output,
894                int outputOffset)
895        throws IllegalBlockSizeException, ShortBufferException,
896               BadPaddingException {
897        if (requireReinit) {
898            throw new IllegalStateException
899                ("Must use either different key or iv for GCM encryption");
900        }
901
902        int estOutSize = getOutputSizeByOperation(inputLen, true);
903        // check output buffer capacity.
904        // if we are decrypting with padding applied, we can perform this
905        // check only after we have determined how many padding bytes there
906        // are.
907        int outputCapacity = output.length - outputOffset;
908        int minOutSize = (decrypting? (estOutSize - blockSize):estOutSize);
909        if ((output == null) || (outputCapacity < minOutSize)) {
910            throw new ShortBufferException("Output buffer must be "
911                + "(at least) " + minOutSize + " bytes long");
912        }
913
914        // calculate total input length
915        int len = buffered + inputLen;
916
917        // calculate padding length
918        int totalLen = len + cipher.getBufferedLength();
919        int paddingLen = 0;
920        // will the total input length be a multiple of blockSize?
921        if (unitBytes != blockSize) {
922            if (totalLen < diffBlocksize) {
923                paddingLen = diffBlocksize - totalLen;
924            } else {
925                paddingLen = blockSize -
926                    ((totalLen - diffBlocksize) % blockSize);
927            }
928        } else if (padding != null) {
929            paddingLen = padding.padLength(totalLen);
930        }
931
932        if (decrypting && (padding != null) &&
933            (paddingLen > 0) && (paddingLen != blockSize)) {
934            throw new IllegalBlockSizeException
935                ("Input length must be multiple of " + blockSize +
936                 " when decrypting with padded cipher");
937        }
938
939        /*
940         * prepare the final input, assemble a new buffer if any
941         * of the following is true:
942         *  - 'input' and 'output' are the same buffer
943         *  - there are internally buffered bytes
944         *  - doing encryption and padding is needed
945         */
946        byte[] finalBuf = input;
947        int finalOffset = inputOffset;
948        int finalBufLen = inputLen;
949        if ((buffered != 0) || (!decrypting && padding != null) ||
950            ((input == output)
951              && (outputOffset < (inputOffset + inputLen))
952              && (inputOffset < (outputOffset + buffer.length)))) {
953            if (decrypting || padding == null) {
954                paddingLen = 0;
955            }
956            finalBuf = new byte[len + paddingLen];
957            finalOffset = 0;
958            if (buffered != 0) {
959                System.arraycopy(buffer, 0, finalBuf, 0, buffered);
960            }
961            if (inputLen != 0) {
962                System.arraycopy(input, inputOffset, finalBuf,
963                                 buffered, inputLen);
964            }
965            if (paddingLen != 0) {
966                padding.padWithLen(finalBuf, (buffered+inputLen), paddingLen);
967            }
968            finalBufLen = finalBuf.length;
969        }
970        int outLen = 0;
971        if (decrypting) {
972            // if the size of specified output buffer is less than
973            // the length of the cipher text, then the current
974            // content of cipher has to be preserved in order for
975            // users to retry the call with a larger buffer in the
976            // case of ShortBufferException.
977            if (outputCapacity < estOutSize) {
978                cipher.save();
979            }
980            // create temporary output buffer so that only "real"
981            // data bytes are passed to user's output buffer.
982            byte[] outWithPadding = new byte[estOutSize];
983            outLen = finalNoPadding(finalBuf, finalOffset, outWithPadding,
984                                    0, finalBufLen);
985
986            if (padding != null) {
987                int padStart = padding.unpad(outWithPadding, 0, outLen);
988                if (padStart < 0) {
989                    throw new BadPaddingException("Given final block not " +
990                    "properly padded. Such issues can arise if a bad key " +
991                    "is used during decryption.");
992                }
993                outLen = padStart;
994            }
995
996            if (outputCapacity < outLen) {
997                // restore so users can retry with a larger buffer
998                cipher.restore();
999                throw new ShortBufferException("Output buffer too short: "
1000                                               + (outputCapacity)
1001                                               + " bytes given, " + outLen
1002                                               + " bytes needed");
1003            }
1004            // copy the result into user-supplied output buffer
1005            System.arraycopy(outWithPadding, 0, output, outputOffset, outLen);
1006        } else { // encrypting
1007            try {
1008                outLen = finalNoPadding(finalBuf, finalOffset, output,
1009                                        outputOffset, finalBufLen);
1010            } finally {
1011                // reset after doFinal() for GCM encryption
1012                requireReinit = (cipherMode == GCM_MODE);
1013            }
1014        }
1015
1016        buffered = 0;
1017        diffBlocksize = blockSize;
1018        if (cipherMode != ECB_MODE) {
1019            cipher.reset();
1020        }
1021        return outLen;
1022    }
1023
1024    private int finalNoPadding(byte[] in, int inOfs, byte[] out, int outOfs,
1025                               int len)
1026        throws IllegalBlockSizeException, AEADBadTagException,
1027        ShortBufferException {
1028
1029        if ((cipherMode != GCM_MODE) && (in == null || len == 0)) {
1030            return 0;
1031        }
1032        if ((cipherMode != CFB_MODE) && (cipherMode != OFB_MODE) &&
1033            (cipherMode != GCM_MODE) &&
1034            ((len % unitBytes) != 0) && (cipherMode != CTS_MODE)) {
1035                if (padding != null) {
1036                    throw new IllegalBlockSizeException
1037                        ("Input length (with padding) not multiple of " +
1038                         unitBytes + " bytes");
1039                } else {
1040                    throw new IllegalBlockSizeException
1041                        ("Input length not multiple of " + unitBytes
1042                         + " bytes");
1043                }
1044        }
1045        int outLen = 0;
1046        if (decrypting) {
1047            outLen = cipher.decryptFinal(in, inOfs, len, out, outOfs);
1048        } else {
1049            outLen = cipher.encryptFinal(in, inOfs, len, out, outOfs);
1050        }
1051        return outLen;
1052    }
1053
1054    // Note: Wrap() and Unwrap() are the same in
1055    // each of SunJCE CipherSpi implementation classes.
1056    // They are duplicated due to export control requirements:
1057    // All CipherSpi implementation must be final.
1058    /**
1059     * Wrap a key.
1060     *
1061     * @param key the key to be wrapped.
1062     *
1063     * @return the wrapped key.
1064     *
1065     * @exception IllegalBlockSizeException if this cipher is a block
1066     * cipher, no padding has been requested, and the length of the
1067     * encoding of the key to be wrapped is not a
1068     * multiple of the block size.
1069     *
1070     * @exception InvalidKeyException if it is impossible or unsafe to
1071     * wrap the key with this cipher (e.g., a hardware protected key is
1072     * being passed to a software only cipher).
1073     */
1074    byte[] wrap(Key key)
1075        throws IllegalBlockSizeException, InvalidKeyException {
1076        byte[] result = null;
1077
1078        try {
1079            byte[] encodedKey = key.getEncoded();
1080            if ((encodedKey == null) || (encodedKey.length == 0)) {
1081                throw new InvalidKeyException("Cannot get an encoding of " +
1082                                              "the key to be wrapped");
1083            }
1084            result = doFinal(encodedKey, 0, encodedKey.length);
1085        } catch (BadPaddingException e) {
1086            // Should never happen
1087        }
1088        return result;
1089    }
1090
1091    /**
1092     * Unwrap a previously wrapped key.
1093     *
1094     * @param wrappedKey the key to be unwrapped.
1095     *
1096     * @param wrappedKeyAlgorithm the algorithm the wrapped key is for.
1097     *
1098     * @param wrappedKeyType the type of the wrapped key.
1099     * This is one of <code>Cipher.SECRET_KEY</code>,
1100     * <code>Cipher.PRIVATE_KEY</code>, or <code>Cipher.PUBLIC_KEY</code>.
1101     *
1102     * @return the unwrapped key.
1103     *
1104     * @exception NoSuchAlgorithmException if no installed providers
1105     * can create keys of type <code>wrappedKeyType</code> for the
1106     * <code>wrappedKeyAlgorithm</code>.
1107     *
1108     * @exception InvalidKeyException if <code>wrappedKey</code> does not
1109     * represent a wrapped key of type <code>wrappedKeyType</code> for
1110     * the <code>wrappedKeyAlgorithm</code>.
1111     */
1112    Key unwrap(byte[] wrappedKey, String wrappedKeyAlgorithm,
1113               int wrappedKeyType)
1114        throws InvalidKeyException, NoSuchAlgorithmException {
1115        byte[] encodedKey;
1116        try {
1117            encodedKey = doFinal(wrappedKey, 0, wrappedKey.length);
1118        } catch (BadPaddingException ePadding) {
1119            throw new InvalidKeyException("The wrapped key is not padded " +
1120                                          "correctly");
1121        } catch (IllegalBlockSizeException eBlockSize) {
1122            throw new InvalidKeyException("The wrapped key does not have " +
1123                                          "the correct length");
1124        }
1125        return ConstructKeys.constructKey(encodedKey, wrappedKeyAlgorithm,
1126                                          wrappedKeyType);
1127    }
1128
1129    /**
1130     * Continues a multi-part update of the Additional Authentication
1131     * Data (AAD), using a subset of the provided buffer.
1132     * <p>
1133     * Calls to this method provide AAD to the cipher when operating in
1134     * modes such as AEAD (GCM/CCM).  If this cipher is operating in
1135     * either GCM or CCM mode, all AAD must be supplied before beginning
1136     * operations on the ciphertext (via the {@code update} and {@code
1137     * doFinal} methods).
1138     *
1139     * @param src the buffer containing the AAD
1140     * @param offset the offset in {@code src} where the AAD input starts
1141     * @param len the number of AAD bytes
1142     *
1143     * @throws IllegalStateException if this cipher is in a wrong state
1144     * (e.g., has not been initialized), does not accept AAD, or if
1145     * operating in either GCM or CCM mode and one of the {@code update}
1146     * methods has already been called for the active
1147     * encryption/decryption operation
1148     * @throws UnsupportedOperationException if this method
1149     * has not been overridden by an implementation
1150     *
1151     * @since 1.8
1152     */
1153    void updateAAD(byte[] src, int offset, int len) {
1154        if (requireReinit) {
1155            throw new IllegalStateException
1156                ("Must use either different key or iv for GCM encryption");
1157        }
1158        cipher.updateAAD(src, offset, len);
1159    }
1160}
1161