1/*
2 * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24import java.text.*;
25import java.util.Random;
26
27class TreeNode {
28    public TreeNode left, right;
29    public int val;                // will always be the height of the tree
30}
31
32
33/* Args:
34   live-data-size: in megabytes (approximate, will be rounded down).
35   work: units of mutator non-allocation work per byte allocated,
36     (in unspecified units.  This will affect the promotion rate
37      printed at the end of the run: more mutator work per step implies
38      fewer steps per second implies fewer bytes promoted per second.)
39   short/long ratio: ratio of short-lived bytes allocated to long-lived
40      bytes allocated.
41   pointer mutation rate: number of pointer mutations per step.
42   steps: number of steps to do.
43*/
44
45public class TestGCOld {
46
47  // Command-line parameters.
48
49  private static int size, workUnits, promoteRate, ptrMutRate, steps;
50
51  // Constants.
52
53  private static final int MEG = 1000000;
54  private static final int INSIGNIFICANT = 999; // this many bytes don't matter
55  private static final int BYTES_PER_WORD = 4;
56  private static final int BYTES_PER_NODE = 20; // bytes per TreeNode
57  private static final int WORDS_DEAD = 100;    // size of young garbage object
58
59  private final static int treeHeight = 14;
60  private final static long treeSize = heightToBytes(treeHeight);
61
62  private static final String msg1
63    = "Usage: java TestGCOld <size> <work> <ratio> <mutation> <steps>";
64  private static final String msg2
65    = "  where <size> is the live storage in megabytes";
66  private static final String msg3
67    = "        <work> is the mutator work per step (arbitrary units)";
68  private static final String msg4
69    = "        <ratio> is the ratio of short-lived to long-lived allocation";
70  private static final String msg5
71    = "        <mutation> is the mutations per step";
72  private static final String msg6
73    = "        <steps> is the number of steps";
74
75  // Counters (and global variables that discourage optimization)
76
77  private static long youngBytes = 0;    // total young bytes allocated
78  private static long nodes = 0;         // total tree nodes allocated
79  private static long actuallyMut = 0;   // pointer mutations in old trees
80  private static long mutatorSum = 0;    // checksum to discourage optimization
81  public static int[] aexport;           // exported array to discourage opt
82
83  // Global variables.
84
85  private static TreeNode[] trees;
86  private static int where = 0;               // roving index into trees
87  private static Random rnd = new Random();
88
89  // Returns the height of the given tree.
90
91  private static int height (TreeNode t) {
92    if (t == null) {
93      return 0;
94    }
95    else {
96      return 1 + Math.max (height (t.left), height (t.right));
97    }
98  }
99
100  // Returns the length of the shortest path in the given tree.
101
102  private static int shortestPath (TreeNode t) {
103    if (t == null) {
104      return 0;
105    }
106    else {
107      return 1 + Math.min (shortestPath (t.left), shortestPath (t.right));
108    }
109  }
110
111  // Returns the number of nodes in a balanced tree of the given height.
112
113  private static long heightToNodes (int h) {
114    if (h == 0) {
115      return 0;
116    }
117    else {
118      long n = 1;
119      while (h > 1) {
120        n = n + n;
121        h = h - 1;
122      }
123      return n + n - 1;
124    }
125  }
126
127  // Returns the number of bytes in a balanced tree of the given height.
128
129  private static long heightToBytes (int h) {
130    return BYTES_PER_NODE * heightToNodes (h);
131  }
132
133  // Returns the height of the largest balanced tree
134  // that has no more than the given number of nodes.
135
136  private static int nodesToHeight (long nodes) {
137    int h = 1;
138    long n = 1;
139    while (n + n - 1 <= nodes) {
140      n = n + n;
141      h = h + 1;
142    }
143    return h - 1;
144  }
145
146  // Returns the height of the largest balanced tree
147  // that occupies no more than the given number of bytes.
148
149  private static int bytesToHeight (long bytes) {
150    return nodesToHeight (bytes / BYTES_PER_NODE);
151  }
152
153  // Returns a newly allocated balanced binary tree of height h.
154
155  private static TreeNode makeTree(int h) {
156    if (h == 0) return null;
157    else {
158      TreeNode res = new TreeNode();
159      nodes++;
160      res.left = makeTree(h-1);
161      res.right = makeTree(h-1);
162      res.val = h;
163      return res;
164    }
165  }
166
167  // Allocates approximately size megabytes of trees and stores
168  // them into a global array.
169
170  private static void init() {
171    int ntrees = (int) ((size * MEG) / treeSize);
172    trees = new TreeNode[ntrees];
173
174    System.err.println("Allocating " + ntrees + " trees.");
175    System.err.println("  (" + (ntrees * treeSize) + " bytes)");
176    for (int i = 0; i < ntrees; i++) {
177      trees[i] = makeTree(treeHeight);
178      // doYoungGenAlloc(promoteRate*ntrees*treeSize, WORDS_DEAD);
179    }
180    System.err.println("  (" + nodes + " nodes)");
181
182    /* Allow any in-progress GC to catch up... */
183    // try { Thread.sleep(20000); } catch (InterruptedException x) {}
184  }
185
186  // Confirms that all trees are balanced and have the correct height.
187
188  private static void checkTrees() {
189    int ntrees = trees.length;
190    for (int i = 0; i < ntrees; i++) {
191      TreeNode t = trees[i];
192      int h1 = height(t);
193      int h2 = shortestPath(t);
194      if ((h1 != treeHeight) || (h2 != treeHeight)) {
195        System.err.println("*****BUG: " + h1 + " " + h2);
196      }
197    }
198  }
199
200  // Called only by replaceTree (below) and by itself.
201
202  private static void replaceTreeWork(TreeNode full, TreeNode partial, boolean dir) {
203    boolean canGoLeft = full.left != null && full.left.val > partial.val;
204    boolean canGoRight = full.right != null && full.right.val > partial.val;
205    if (canGoLeft && canGoRight) {
206      if (dir)
207        replaceTreeWork(full.left, partial, !dir);
208      else
209        replaceTreeWork(full.right, partial, !dir);
210    } else if (!canGoLeft && !canGoRight) {
211      if (dir)
212        full.left = partial;
213      else
214        full.right = partial;
215    } else if (!canGoLeft) {
216      full.left = partial;
217    } else {
218      full.right = partial;
219    }
220  }
221
222  // Given a balanced tree full and a smaller balanced tree partial,
223  // replaces an appropriate subtree of full by partial, taking care
224  // to preserve the shape of the full tree.
225
226  private static void replaceTree(TreeNode full, TreeNode partial) {
227    boolean dir = (partial.val % 2) == 0;
228    actuallyMut++;
229    replaceTreeWork(full, partial, dir);
230  }
231
232  // Allocates approximately n bytes of long-lived storage,
233  // replacing oldest existing long-lived storage.
234
235  private static void oldGenAlloc(long n) {
236    int full = (int) (n / treeSize);
237    long partial = n % treeSize;
238    // System.out.println("In oldGenAlloc, doing " + full + " full trees "
239    // + "and one partial tree of size " + partial);
240    for (int i = 0; i < full; i++) {
241      trees[where++] = makeTree(treeHeight);
242      if (where == trees.length) where = 0;
243    }
244    while (partial > INSIGNIFICANT) {
245      int h = bytesToHeight(partial);
246      TreeNode newTree = makeTree(h);
247      replaceTree(trees[where++], newTree);
248      if (where == trees.length) where = 0;
249      partial = partial - heightToBytes(h);
250    }
251  }
252
253  // Interchanges two randomly selected subtrees (of same size and depth).
254
255  private static void oldGenSwapSubtrees() {
256    // Randomly pick:
257    //   * two tree indices
258    //   * A depth
259    //   * A path to that depth.
260    int index1 = rnd.nextInt(trees.length);
261    int index2 = rnd.nextInt(trees.length);
262    int depth = rnd.nextInt(treeHeight);
263    int path = rnd.nextInt();
264    TreeNode tn1 = trees[index1];
265    TreeNode tn2 = trees[index2];
266    for (int i = 0; i < depth; i++) {
267      if ((path & 1) == 0) {
268        tn1 = tn1.left;
269        tn2 = tn2.left;
270      } else {
271        tn1 = tn1.right;
272        tn2 = tn2.right;
273      }
274      path >>= 1;
275    }
276    TreeNode tmp;
277    if ((path & 1) == 0) {
278      tmp = tn1.left;
279      tn1.left = tn2.left;
280      tn2.left = tmp;
281    } else {
282      tmp = tn1.right;
283      tn1.right = tn2.right;
284      tn2.right = tmp;
285    }
286    actuallyMut += 2;
287  }
288
289  // Update "n" old-generation pointers.
290
291  private static void oldGenMut(long n) {
292    for (int i = 0; i < n/2; i++) {
293      oldGenSwapSubtrees();
294    }
295  }
296
297  // Does the amount of mutator work appropriate for n bytes of young-gen
298  // garbage allocation.
299
300  private static void doMutWork(long n) {
301    int sum = 0;
302    long limit = workUnits*n/10;
303    for (long k = 0; k < limit; k++) sum++;
304    // We don't want dead code elimination to eliminate the loop above.
305    mutatorSum = mutatorSum + sum;
306  }
307
308  // Allocate n bytes of young-gen garbage, in units of "nwords"
309  // words.
310
311  private static void doYoungGenAlloc(long n, int nwords) {
312    final int nbytes = nwords*BYTES_PER_WORD;
313    int allocated = 0;
314    while (allocated < n) {
315      aexport = new int[nwords];
316      /* System.err.println("Step"); */
317      allocated += nbytes;
318    }
319    youngBytes = youngBytes + allocated;
320  }
321
322  // Allocate "n" bytes of young-gen data; and do the
323  // corresponding amount of old-gen allocation and pointer
324  // mutation.
325
326  // oldGenAlloc may perform some mutations, so this code
327  // takes those mutations into account.
328
329  private static void doStep(long n) {
330    long mutations = actuallyMut;
331
332    doYoungGenAlloc(n, WORDS_DEAD);
333    doMutWork(n);
334    oldGenAlloc(n / promoteRate);
335    oldGenMut(Math.max(0L, (mutations + ptrMutRate) - actuallyMut));
336  }
337
338  public static void main(String[] args) {
339    if (args.length != 5) {
340      System.err.println(msg1);
341      System.err.println(msg2);
342      System.err.println(msg3);
343      System.err.println(msg4);
344      System.err.println(msg5);
345      System.err.println(msg6);
346      return;
347    }
348
349    size = Integer.parseInt(args[0]);
350    workUnits = Integer.parseInt(args[1]);
351    promoteRate = Integer.parseInt(args[2]);
352    ptrMutRate = Integer.parseInt(args[3]);
353    steps = Integer.parseInt(args[4]);
354
355    System.out.println(size + " megabytes of live storage");
356    System.out.println(workUnits + " work units per step");
357    System.out.println("promotion ratio is 1:" + promoteRate);
358    System.out.println("pointer mutation rate is " + ptrMutRate);
359    System.out.println(steps + " steps");
360
361    init();
362//  checkTrees();
363    youngBytes = 0;
364    nodes = 0;
365
366    System.err.println("Initialization complete...");
367
368    long start = System.currentTimeMillis();
369
370    for (int step = 0; step < steps; step++) {
371      doStep(MEG);
372    }
373
374    long end = System.currentTimeMillis();
375    float secs = ((float)(end-start))/1000.0F;
376
377//  checkTrees();
378
379    NumberFormat nf = NumberFormat.getInstance();
380    nf.setMaximumFractionDigits(1);
381    System.out.println("\nTook " + nf.format(secs) + " sec in steady state.");
382    nf.setMaximumFractionDigits(2);
383    System.out.println("Allocated " + steps + " Mb of young gen garbage"
384                       + " (= " + nf.format(((float)steps)/secs) +
385                       " Mb/sec)");
386    System.out.println("    (actually allocated " +
387                       nf.format(((float) youngBytes)/MEG) + " megabytes)");
388    float promoted = ((float)steps) / (float)promoteRate;
389    System.out.println("Promoted " + promoted +
390                       " Mb (= " + nf.format(promoted/secs) + " Mb/sec)");
391    System.out.println("    (actually promoted " +
392                       nf.format(((float) (nodes * BYTES_PER_NODE))/MEG) +
393                       " megabytes)");
394    if (ptrMutRate != 0) {
395      System.out.println("Mutated " + actuallyMut +
396                         " pointers (= " +
397                         nf.format(actuallyMut/secs) + " ptrs/sec)");
398
399    }
400    // This output serves mainly to discourage optimization.
401    System.out.println("Checksum = " + (mutatorSum + aexport.length));
402
403  }
404}
405