1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
26#define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
27
28#include "memory/allocation.hpp"
29#include "memory/allocation.inline.hpp"
30#include "utilities/debug.hpp"
31#include "utilities/globalDefinitions.hpp"
32
33// A growable array.
34
35/*************************************************************************/
36/*                                                                       */
37/*     WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING   */
38/*                                                                       */
39/* Should you use GrowableArrays to contain handles you must be certain  */
40/* the the GrowableArray does not outlive the HandleMark that contains   */
41/* the handles. Since GrowableArrays are typically resource allocated    */
42/* the following is an example of INCORRECT CODE,                        */
43/*                                                                       */
44/* ResourceMark rm;                                                      */
45/* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size);         */
46/* if (blah) {                                                           */
47/*    while (...) {                                                      */
48/*      HandleMark hm;                                                   */
49/*      ...                                                              */
50/*      Handle h(THREAD, some_oop);                                      */
51/*      arr->append(h);                                                  */
52/*    }                                                                  */
53/* }                                                                     */
54/* if (arr->length() != 0 ) {                                            */
55/*    oop bad_oop = arr->at(0)(); // Handle is BAD HERE.                 */
56/*    ...                                                                */
57/* }                                                                     */
58/*                                                                       */
59/* If the GrowableArrays you are creating is C_Heap allocated then it    */
60/* hould not old handles since the handles could trivially try and       */
61/* outlive their HandleMark. In some situations you might need to do     */
62/* this and it would be legal but be very careful and see if you can do  */
63/* the code in some other manner.                                        */
64/*                                                                       */
65/*************************************************************************/
66
67// To call default constructor the placement operator new() is used.
68// It should be empty (it only returns the passed void* pointer).
69// The definition of placement operator new(size_t, void*) in the <new>.
70
71#include <new>
72
73// Need the correct linkage to call qsort without warnings
74extern "C" {
75  typedef int (*_sort_Fn)(const void *, const void *);
76}
77
78class GenericGrowableArray : public ResourceObj {
79  friend class VMStructs;
80
81 protected:
82  int    _len;          // current length
83  int    _max;          // maximum length
84  Arena* _arena;        // Indicates where allocation occurs:
85                        //   0 means default ResourceArea
86                        //   1 means on C heap
87                        //   otherwise, allocate in _arena
88
89  MEMFLAGS   _memflags;   // memory type if allocation in C heap
90
91#ifdef ASSERT
92  int    _nesting;      // resource area nesting at creation
93  void   set_nesting();
94  void   check_nesting();
95#else
96#define  set_nesting();
97#define  check_nesting();
98#endif
99
100  // Where are we going to allocate memory?
101  bool on_C_heap() { return _arena == (Arena*)1; }
102  bool on_stack () { return _arena == NULL;      }
103  bool on_arena () { return _arena >  (Arena*)1;  }
104
105  // This GA will use the resource stack for storage if c_heap==false,
106  // Else it will use the C heap.  Use clear_and_deallocate to avoid leaks.
107  GenericGrowableArray(int initial_size, int initial_len, bool c_heap, MEMFLAGS flags = mtNone) {
108    _len = initial_len;
109    _max = initial_size;
110    _memflags = flags;
111
112    // memory type has to be specified for C heap allocation
113    assert(!(c_heap && flags == mtNone), "memory type not specified for C heap object");
114
115    assert(_len >= 0 && _len <= _max, "initial_len too big");
116    _arena = (c_heap ? (Arena*)1 : NULL);
117    set_nesting();
118    assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
119    assert(!on_stack() ||
120           (allocated_on_res_area() || allocated_on_stack()),
121           "growable array must be on stack if elements are not on arena and not on C heap");
122  }
123
124  // This GA will use the given arena for storage.
125  // Consider using new(arena) GrowableArray<T> to allocate the header.
126  GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
127    _len = initial_len;
128    _max = initial_size;
129    assert(_len >= 0 && _len <= _max, "initial_len too big");
130    _arena = arena;
131    _memflags = mtNone;
132
133    assert(on_arena(), "arena has taken on reserved value 0 or 1");
134    // Relax next assert to allow object allocation on resource area,
135    // on stack or embedded into an other object.
136    assert(allocated_on_arena() || allocated_on_stack(),
137           "growable array must be on arena or on stack if elements are on arena");
138  }
139
140  void* raw_allocate(int elementSize);
141
142  // some uses pass the Thread explicitly for speed (4990299 tuning)
143  void* raw_allocate(Thread* thread, int elementSize) {
144    assert(on_stack(), "fast ResourceObj path only");
145    return (void*)resource_allocate_bytes(thread, elementSize * _max);
146  }
147};
148
149template<class E> class GrowableArrayIterator;
150template<class E, class UnaryPredicate> class GrowableArrayFilterIterator;
151
152template<class E> class GrowableArray : public GenericGrowableArray {
153  friend class VMStructs;
154
155 private:
156  E*     _data;         // data array
157
158  void grow(int j);
159  void raw_at_put_grow(int i, const E& p, const E& fill);
160  void  clear_and_deallocate();
161 public:
162  GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
163    _data = (E*)raw_allocate(thread, sizeof(E));
164    for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
165  }
166
167  GrowableArray(int initial_size, bool C_heap = false, MEMFLAGS F = mtInternal)
168    : GenericGrowableArray(initial_size, 0, C_heap, F) {
169    _data = (E*)raw_allocate(sizeof(E));
170// Needed for Visual Studio 2012 and older
171#ifdef _MSC_VER
172#pragma warning(suppress: 4345)
173#endif
174    for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
175  }
176
177  GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false, MEMFLAGS memflags = mtInternal)
178    : GenericGrowableArray(initial_size, initial_len, C_heap, memflags) {
179    _data = (E*)raw_allocate(sizeof(E));
180    int i = 0;
181    for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
182    for (; i < _max; i++) ::new ((void*)&_data[i]) E();
183  }
184
185  GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
186    _data = (E*)raw_allocate(sizeof(E));
187    int i = 0;
188    for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
189    for (; i < _max; i++) ::new ((void*)&_data[i]) E();
190  }
191
192  GrowableArray() : GenericGrowableArray(2, 0, false) {
193    _data = (E*)raw_allocate(sizeof(E));
194    ::new ((void*)&_data[0]) E();
195    ::new ((void*)&_data[1]) E();
196  }
197
198                                // Does nothing for resource and arena objects
199  ~GrowableArray()              { if (on_C_heap()) clear_and_deallocate(); }
200
201  void  clear()                 { _len = 0; }
202  int   length() const          { return _len; }
203  int   max_length() const      { return _max; }
204  void  trunc_to(int l)         { assert(l <= _len,"cannot increase length"); _len = l; }
205  bool  is_empty() const        { return _len == 0; }
206  bool  is_nonempty() const     { return _len != 0; }
207  bool  is_full() const         { return _len == _max; }
208  DEBUG_ONLY(E* data_addr() const      { return _data; })
209
210  void print();
211
212  int append(const E& elem) {
213    check_nesting();
214    if (_len == _max) grow(_len);
215    int idx = _len++;
216    _data[idx] = elem;
217    return idx;
218  }
219
220  bool append_if_missing(const E& elem) {
221    // Returns TRUE if elem is added.
222    bool missed = !contains(elem);
223    if (missed) append(elem);
224    return missed;
225  }
226
227  E& at(int i) {
228    assert(0 <= i && i < _len, "illegal index");
229    return _data[i];
230  }
231
232  E const& at(int i) const {
233    assert(0 <= i && i < _len, "illegal index");
234    return _data[i];
235  }
236
237  E* adr_at(int i) const {
238    assert(0 <= i && i < _len, "illegal index");
239    return &_data[i];
240  }
241
242  E first() const {
243    assert(_len > 0, "empty list");
244    return _data[0];
245  }
246
247  E top() const {
248    assert(_len > 0, "empty list");
249    return _data[_len-1];
250  }
251
252  E last() const {
253    return top();
254  }
255
256  GrowableArrayIterator<E> begin() const {
257    return GrowableArrayIterator<E>(this, 0);
258  }
259
260  GrowableArrayIterator<E> end() const {
261    return GrowableArrayIterator<E>(this, length());
262  }
263
264  void push(const E& elem) { append(elem); }
265
266  E pop() {
267    assert(_len > 0, "empty list");
268    return _data[--_len];
269  }
270
271  void at_put(int i, const E& elem) {
272    assert(0 <= i && i < _len, "illegal index");
273    _data[i] = elem;
274  }
275
276  E at_grow(int i, const E& fill = E()) {
277    assert(0 <= i, "negative index");
278    check_nesting();
279    if (i >= _len) {
280      if (i >= _max) grow(i);
281      for (int j = _len; j <= i; j++)
282        _data[j] = fill;
283      _len = i+1;
284    }
285    return _data[i];
286  }
287
288  void at_put_grow(int i, const E& elem, const E& fill = E()) {
289    assert(0 <= i, "negative index");
290    check_nesting();
291    raw_at_put_grow(i, elem, fill);
292  }
293
294  bool contains(const E& elem) const {
295    for (int i = 0; i < _len; i++) {
296      if (_data[i] == elem) return true;
297    }
298    return false;
299  }
300
301  int  find(const E& elem) const {
302    for (int i = 0; i < _len; i++) {
303      if (_data[i] == elem) return i;
304    }
305    return -1;
306  }
307
308  int  find_from_end(const E& elem) const {
309    for (int i = _len-1; i >= 0; i--) {
310      if (_data[i] == elem) return i;
311    }
312    return -1;
313  }
314
315  int  find(void* token, bool f(void*, E)) const {
316    for (int i = 0; i < _len; i++) {
317      if (f(token, _data[i])) return i;
318    }
319    return -1;
320  }
321
322  int  find_from_end(void* token, bool f(void*, E)) const {
323    // start at the end of the array
324    for (int i = _len-1; i >= 0; i--) {
325      if (f(token, _data[i])) return i;
326    }
327    return -1;
328  }
329
330  void remove(const E& elem) {
331    for (int i = 0; i < _len; i++) {
332      if (_data[i] == elem) {
333        for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
334        _len--;
335        return;
336      }
337    }
338    ShouldNotReachHere();
339  }
340
341  // The order is preserved.
342  void remove_at(int index) {
343    assert(0 <= index && index < _len, "illegal index");
344    for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
345    _len--;
346  }
347
348  // The order is changed.
349  void delete_at(int index) {
350    assert(0 <= index && index < _len, "illegal index");
351    if (index < --_len) {
352      // Replace removed element with last one.
353      _data[index] = _data[_len];
354    }
355  }
356
357  // inserts the given element before the element at index i
358  void insert_before(const int idx, const E& elem) {
359    assert(0 <= idx && idx <= _len, "illegal index");
360    check_nesting();
361    if (_len == _max) grow(_len);
362    for (int j = _len - 1; j >= idx; j--) {
363      _data[j + 1] = _data[j];
364    }
365    _len++;
366    _data[idx] = elem;
367  }
368
369  void insert_before(const int idx, const GrowableArray<E>* array) {
370    assert(0 <= idx && idx <= _len, "illegal index");
371    check_nesting();
372    int array_len = array->length();
373    int new_len = _len + array_len;
374    if (new_len >= _max) grow(new_len);
375
376    for (int j = _len - 1; j >= idx; j--) {
377      _data[j + array_len] = _data[j];
378    }
379
380    for (int j = 0; j < array_len; j++) {
381      _data[idx + j] = array->_data[j];
382    }
383
384    _len += array_len;
385  }
386
387  void appendAll(const GrowableArray<E>* l) {
388    for (int i = 0; i < l->_len; i++) {
389      raw_at_put_grow(_len, l->_data[i], E());
390    }
391  }
392
393  void sort(int f(E*,E*)) {
394    qsort(_data, length(), sizeof(E), (_sort_Fn)f);
395  }
396  // sort by fixed-stride sub arrays:
397  void sort(int f(E*,E*), int stride) {
398    qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
399  }
400
401  // Binary search and insertion utility.  Search array for element
402  // matching key according to the static compare function.  Insert
403  // that element is not already in the list.  Assumes the list is
404  // already sorted according to compare function.
405  template <int compare(const E&, const E&)> E insert_sorted(E& key) {
406    bool found;
407    int location = find_sorted<E, compare>(key, found);
408    if (!found) {
409      insert_before(location, key);
410    }
411    return at(location);
412  }
413
414  template <typename K, int compare(const K&, const E&)> int find_sorted(const K& key, bool& found) {
415    found = false;
416    int min = 0;
417    int max = length() - 1;
418
419    while (max >= min) {
420      int mid = (int)(((uint)max + min) / 2);
421      E value = at(mid);
422      int diff = compare(key, value);
423      if (diff > 0) {
424        min = mid + 1;
425      } else if (diff < 0) {
426        max = mid - 1;
427      } else {
428        found = true;
429        return mid;
430      }
431    }
432    return min;
433  }
434};
435
436// Global GrowableArray methods (one instance in the library per each 'E' type).
437
438template<class E> void GrowableArray<E>::grow(int j) {
439    // grow the array by doubling its size (amortized growth)
440    int old_max = _max;
441    if (_max == 0) _max = 1; // prevent endless loop
442    while (j >= _max) _max = _max*2;
443    // j < _max
444    E* newData = (E*)raw_allocate(sizeof(E));
445    int i = 0;
446    for (     ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
447// Needed for Visual Studio 2012 and older
448#ifdef _MSC_VER
449#pragma warning(suppress: 4345)
450#endif
451    for (     ; i < _max; i++) ::new ((void*)&newData[i]) E();
452    for (i = 0; i < old_max; i++) _data[i].~E();
453    if (on_C_heap() && _data != NULL) {
454      FreeHeap(_data);
455    }
456    _data = newData;
457}
458
459template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
460    if (i >= _len) {
461      if (i >= _max) grow(i);
462      for (int j = _len; j < i; j++)
463        _data[j] = fill;
464      _len = i+1;
465    }
466    _data[i] = p;
467}
468
469// This function clears and deallocate the data in the growable array that
470// has been allocated on the C heap.  It's not public - called by the
471// destructor.
472template<class E> void GrowableArray<E>::clear_and_deallocate() {
473    assert(on_C_heap(),
474           "clear_and_deallocate should only be called when on C heap");
475    clear();
476    if (_data != NULL) {
477      for (int i = 0; i < _max; i++) _data[i].~E();
478      FreeHeap(_data);
479      _data = NULL;
480    }
481}
482
483template<class E> void GrowableArray<E>::print() {
484    tty->print("Growable Array " INTPTR_FORMAT, this);
485    tty->print(": length %ld (_max %ld) { ", _len, _max);
486    for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
487    tty->print("}\n");
488}
489
490// Custom STL-style iterator to iterate over GrowableArrays
491// It is constructed by invoking GrowableArray::begin() and GrowableArray::end()
492template<class E> class GrowableArrayIterator : public StackObj {
493  friend class GrowableArray<E>;
494  template<class F, class UnaryPredicate> friend class GrowableArrayFilterIterator;
495
496 private:
497  const GrowableArray<E>* _array; // GrowableArray we iterate over
498  int _position;                  // The current position in the GrowableArray
499
500  // Private constructor used in GrowableArray::begin() and GrowableArray::end()
501  GrowableArrayIterator(const GrowableArray<E>* array, int position) : _array(array), _position(position) {
502    assert(0 <= position && position <= _array->length(), "illegal position");
503  }
504
505 public:
506  GrowableArrayIterator() : _array(NULL), _position(0) { }
507  GrowableArrayIterator<E>& operator++()  { ++_position; return *this; }
508  E operator*()                           { return _array->at(_position); }
509
510  bool operator==(const GrowableArrayIterator<E>& rhs)  {
511    assert(_array == rhs._array, "iterator belongs to different array");
512    return _position == rhs._position;
513  }
514
515  bool operator!=(const GrowableArrayIterator<E>& rhs)  {
516    assert(_array == rhs._array, "iterator belongs to different array");
517    return _position != rhs._position;
518  }
519};
520
521// Custom STL-style iterator to iterate over elements of a GrowableArray that satisfy a given predicate
522template<class E, class UnaryPredicate> class GrowableArrayFilterIterator : public StackObj {
523  friend class GrowableArray<E>;
524
525 private:
526  const GrowableArray<E>* _array;   // GrowableArray we iterate over
527  int _position;                    // Current position in the GrowableArray
528  UnaryPredicate _predicate;        // Unary predicate the elements of the GrowableArray should satisfy
529
530 public:
531  GrowableArrayFilterIterator(const GrowableArrayIterator<E>& begin, UnaryPredicate filter_predicate)
532   : _array(begin._array), _position(begin._position), _predicate(filter_predicate) {
533    // Advance to first element satisfying the predicate
534    while(_position != _array->length() && !_predicate(_array->at(_position))) {
535      ++_position;
536    }
537  }
538
539  GrowableArrayFilterIterator<E, UnaryPredicate>& operator++() {
540    do {
541      // Advance to next element satisfying the predicate
542      ++_position;
543    } while(_position != _array->length() && !_predicate(_array->at(_position)));
544    return *this;
545  }
546
547  E operator*()   { return _array->at(_position); }
548
549  bool operator==(const GrowableArrayIterator<E>& rhs)  {
550    assert(_array == rhs._array, "iterator belongs to different array");
551    return _position == rhs._position;
552  }
553
554  bool operator!=(const GrowableArrayIterator<E>& rhs)  {
555    assert(_array == rhs._array, "iterator belongs to different array");
556    return _position != rhs._position;
557  }
558
559  bool operator==(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs)  {
560    assert(_array == rhs._array, "iterator belongs to different array");
561    return _position == rhs._position;
562  }
563
564  bool operator!=(const GrowableArrayFilterIterator<E, UnaryPredicate>& rhs)  {
565    assert(_array == rhs._array, "iterator belongs to different array");
566    return _position != rhs._position;
567  }
568};
569
570// Arrays for basic types
571typedef GrowableArray<int> intArray;
572typedef GrowableArray<int> intStack;
573typedef GrowableArray<bool> boolArray;
574
575#endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
576