1/*
2 * Copyright (c) 2010, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "code/codeCache.hpp"
27#include "runtime/advancedThresholdPolicy.hpp"
28#include "runtime/simpleThresholdPolicy.inline.hpp"
29#if INCLUDE_JVMCI
30#include "jvmci/jvmciRuntime.hpp"
31#endif
32
33#ifdef TIERED
34// Print an event.
35void AdvancedThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
36                                             int bci, CompLevel level) {
37  tty->print(" rate=");
38  if (mh->prev_time() == 0) tty->print("n/a");
39  else tty->print("%f", mh->rate());
40
41  tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
42                               threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
43
44}
45
46void AdvancedThresholdPolicy::initialize() {
47  int count = CICompilerCount;
48#ifdef _LP64
49  // Turn on ergonomic compiler count selection
50  if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
51    FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
52  }
53  if (CICompilerCountPerCPU) {
54    // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
55    int log_cpu = log2_intptr(os::active_processor_count());
56    int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
57    count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
58    FLAG_SET_ERGO(intx, CICompilerCount, count);
59  }
60#else
61  // On 32-bit systems, the number of compiler threads is limited to 3.
62  // On these systems, the virtual address space available to the JVM
63  // is usually limited to 2-4 GB (the exact value depends on the platform).
64  // As the compilers (especially C2) can consume a large amount of
65  // memory, scaling the number of compiler threads with the number of
66  // available cores can result in the exhaustion of the address space
67  /// available to the VM and thus cause the VM to crash.
68  if (FLAG_IS_DEFAULT(CICompilerCount)) {
69    count = 3;
70    FLAG_SET_ERGO(intx, CICompilerCount, count);
71  }
72#endif
73
74  if (TieredStopAtLevel < CompLevel_full_optimization) {
75    // No C2 compiler thread required
76    set_c1_count(count);
77  } else {
78    set_c1_count(MAX2(count / 3, 1));
79    set_c2_count(MAX2(count - c1_count(), 1));
80  }
81  assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
82
83  // Some inlining tuning
84#ifdef X86
85  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
86    FLAG_SET_DEFAULT(InlineSmallCode, 2000);
87  }
88#endif
89
90#if defined SPARC || defined AARCH64
91  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
92    FLAG_SET_DEFAULT(InlineSmallCode, 2500);
93  }
94#endif
95
96  set_increase_threshold_at_ratio();
97  set_start_time(os::javaTimeMillis());
98}
99
100// update_rate() is called from select_task() while holding a compile queue lock.
101void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
102  // Skip update if counters are absent.
103  // Can't allocate them since we are holding compile queue lock.
104  if (m->method_counters() == NULL)  return;
105
106  if (is_old(m)) {
107    // We don't remove old methods from the queue,
108    // so we can just zero the rate.
109    m->set_rate(0);
110    return;
111  }
112
113  // We don't update the rate if we've just came out of a safepoint.
114  // delta_s is the time since last safepoint in milliseconds.
115  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
116  jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
117  // How many events were there since the last time?
118  int event_count = m->invocation_count() + m->backedge_count();
119  int delta_e = event_count - m->prev_event_count();
120
121  // We should be running for at least 1ms.
122  if (delta_s >= TieredRateUpdateMinTime) {
123    // And we must've taken the previous point at least 1ms before.
124    if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
125      m->set_prev_time(t);
126      m->set_prev_event_count(event_count);
127      m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
128    } else {
129      if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
130        // If nothing happened for 25ms, zero the rate. Don't modify prev values.
131        m->set_rate(0);
132      }
133    }
134  }
135}
136
137// Check if this method has been stale from a given number of milliseconds.
138// See select_task().
139bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
140  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
141  jlong delta_t = t - m->prev_time();
142  if (delta_t > timeout && delta_s > timeout) {
143    int event_count = m->invocation_count() + m->backedge_count();
144    int delta_e = event_count - m->prev_event_count();
145    // Return true if there were no events.
146    return delta_e == 0;
147  }
148  return false;
149}
150
151// We don't remove old methods from the compile queue even if they have
152// very low activity. See select_task().
153bool AdvancedThresholdPolicy::is_old(Method* method) {
154  return method->invocation_count() > 50000 || method->backedge_count() > 500000;
155}
156
157double AdvancedThresholdPolicy::weight(Method* method) {
158  return (double)(method->rate() + 1) *
159    (method->invocation_count() + 1) * (method->backedge_count() + 1);
160}
161
162// Apply heuristics and return true if x should be compiled before y
163bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
164  if (x->highest_comp_level() > y->highest_comp_level()) {
165    // recompilation after deopt
166    return true;
167  } else
168    if (x->highest_comp_level() == y->highest_comp_level()) {
169      if (weight(x) > weight(y)) {
170        return true;
171      }
172    }
173  return false;
174}
175
176// Is method profiled enough?
177bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
178  MethodData* mdo = method->method_data();
179  if (mdo != NULL) {
180    int i = mdo->invocation_count_delta();
181    int b = mdo->backedge_count_delta();
182    return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
183  }
184  return false;
185}
186
187// Called with the queue locked and with at least one element
188CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
189  CompileTask *max_blocking_task = NULL;
190  CompileTask *max_task = NULL;
191  Method* max_method = NULL;
192  jlong t = os::javaTimeMillis();
193  // Iterate through the queue and find a method with a maximum rate.
194  for (CompileTask* task = compile_queue->first(); task != NULL;) {
195    CompileTask* next_task = task->next();
196    Method* method = task->method();
197    update_rate(t, method);
198    if (max_task == NULL) {
199      max_task = task;
200      max_method = method;
201    } else {
202      // If a method has been stale for some time, remove it from the queue.
203      // Blocking tasks and tasks submitted from whitebox API don't become stale
204      if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
205        if (PrintTieredEvents) {
206          print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
207        }
208        compile_queue->remove_and_mark_stale(task);
209        method->clear_queued_for_compilation();
210        task = next_task;
211        continue;
212      }
213
214      // Select a method with a higher rate
215      if (compare_methods(method, max_method)) {
216        max_task = task;
217        max_method = method;
218      }
219    }
220
221    if (task->is_blocking()) {
222      if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
223        max_blocking_task = task;
224      }
225    }
226
227    task = next_task;
228  }
229
230  if (max_blocking_task != NULL) {
231    // In blocking compilation mode, the CompileBroker will make
232    // compilations submitted by a JVMCI compiler thread non-blocking. These
233    // compilations should be scheduled after all blocking compilations
234    // to service non-compiler related compilations sooner and reduce the
235    // chance of such compilations timing out.
236    max_task = max_blocking_task;
237    max_method = max_task->method();
238  }
239
240  if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
241      && is_method_profiled(max_method)) {
242    max_task->set_comp_level(CompLevel_limited_profile);
243    if (PrintTieredEvents) {
244      print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
245    }
246  }
247
248  return max_task;
249}
250
251double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
252  double queue_size = CompileBroker::queue_size(level);
253  int comp_count = compiler_count(level);
254  double k = queue_size / (feedback_k * comp_count) + 1;
255
256  // Increase C1 compile threshold when the code cache is filled more
257  // than specified by IncreaseFirstTierCompileThresholdAt percentage.
258  // The main intention is to keep enough free space for C2 compiled code
259  // to achieve peak performance if the code cache is under stress.
260  if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
261    double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
262    if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
263      k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
264    }
265  }
266  return k;
267}
268
269// Call and loop predicates determine whether a transition to a higher
270// compilation level should be performed (pointers to predicate functions
271// are passed to common()).
272// Tier?LoadFeedback is basically a coefficient that determines of
273// how many methods per compiler thread can be in the queue before
274// the threshold values double.
275bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
276  switch(cur_level) {
277  case CompLevel_aot: {
278    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
279    return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
280  }
281  case CompLevel_none:
282  case CompLevel_limited_profile: {
283    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
284    return loop_predicate_helper<CompLevel_none>(i, b, k, method);
285  }
286  case CompLevel_full_profile: {
287    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
288    return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
289  }
290  default:
291    return true;
292  }
293}
294
295bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
296  switch(cur_level) {
297  case CompLevel_aot: {
298    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
299    return call_predicate_helper<CompLevel_aot>(i, b, k, method);
300  }
301  case CompLevel_none:
302  case CompLevel_limited_profile: {
303    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
304    return call_predicate_helper<CompLevel_none>(i, b, k, method);
305  }
306  case CompLevel_full_profile: {
307    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
308    return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
309  }
310  default:
311    return true;
312  }
313}
314
315// If a method is old enough and is still in the interpreter we would want to
316// start profiling without waiting for the compiled method to arrive.
317// We also take the load on compilers into the account.
318bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
319  if (cur_level == CompLevel_none &&
320      CompileBroker::queue_size(CompLevel_full_optimization) <=
321      Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
322    int i = method->invocation_count();
323    int b = method->backedge_count();
324    double k = Tier0ProfilingStartPercentage / 100.0;
325    return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
326  }
327  return false;
328}
329
330// Inlining control: if we're compiling a profiled method with C1 and the callee
331// is known to have OSRed in a C2 version, don't inline it.
332bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
333  CompLevel comp_level = (CompLevel)env->comp_level();
334  if (comp_level == CompLevel_full_profile ||
335      comp_level == CompLevel_limited_profile) {
336    return callee->highest_osr_comp_level() == CompLevel_full_optimization;
337  }
338  return false;
339}
340
341// Create MDO if necessary.
342void AdvancedThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
343  if (mh->is_native() ||
344      mh->is_abstract() ||
345      mh->is_accessor() ||
346      mh->is_constant_getter()) {
347    return;
348  }
349  if (mh->method_data() == NULL) {
350    Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
351  }
352}
353
354
355/*
356 * Method states:
357 *   0 - interpreter (CompLevel_none)
358 *   1 - pure C1 (CompLevel_simple)
359 *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
360 *   3 - C1 with full profiling (CompLevel_full_profile)
361 *   4 - C2 (CompLevel_full_optimization)
362 *
363 * Common state transition patterns:
364 * a. 0 -> 3 -> 4.
365 *    The most common path. But note that even in this straightforward case
366 *    profiling can start at level 0 and finish at level 3.
367 *
368 * b. 0 -> 2 -> 3 -> 4.
369 *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
370 *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
371 *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
372 *
373 * c. 0 -> (3->2) -> 4.
374 *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
375 *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
376 *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
377 *    without full profiling while c2 is compiling.
378 *
379 * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
380 *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
381 *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
382 *
383 * e. 0 -> 4.
384 *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
385 *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
386 *    the compiled version already exists).
387 *
388 * Note that since state 0 can be reached from any other state via deoptimization different loops
389 * are possible.
390 *
391 */
392
393// Common transition function. Given a predicate determines if a method should transition to another level.
394CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
395  CompLevel next_level = cur_level;
396  int i = method->invocation_count();
397  int b = method->backedge_count();
398
399  if (is_trivial(method)) {
400    next_level = CompLevel_simple;
401  } else {
402    switch(cur_level) {
403      default: break;
404      case CompLevel_aot: {
405      // If we were at full profile level, would we switch to full opt?
406      if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
407        next_level = CompLevel_full_optimization;
408      } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
409                               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
410                               (this->*p)(i, b, cur_level, method))) {
411        next_level = CompLevel_full_profile;
412      }
413    }
414    break;
415    case CompLevel_none:
416      // If we were at full profile level, would we switch to full opt?
417      if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
418        next_level = CompLevel_full_optimization;
419      } else if ((this->*p)(i, b, cur_level, method)) {
420#if INCLUDE_JVMCI
421        if (EnableJVMCI && UseJVMCICompiler) {
422          // Since JVMCI takes a while to warm up, its queue inevitably backs up during
423          // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
424          // compilation method and all potential inlinees have mature profiles (which
425          // includes type profiling). If it sees immature profiles, JVMCI's inliner
426          // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
427          // exploring/inlining too many graphs). Since a rewrite of the inliner is
428          // in progress, we simply disable the dialing back heuristic for now and will
429          // revisit this decision once the new inliner is completed.
430          next_level = CompLevel_full_profile;
431        } else
432#endif
433        {
434          // C1-generated fully profiled code is about 30% slower than the limited profile
435          // code that has only invocation and backedge counters. The observation is that
436          // if C2 queue is large enough we can spend too much time in the fully profiled code
437          // while waiting for C2 to pick the method from the queue. To alleviate this problem
438          // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
439          // we choose to compile a limited profiled version and then recompile with full profiling
440          // when the load on C2 goes down.
441          if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
442              Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
443            next_level = CompLevel_limited_profile;
444          } else {
445            next_level = CompLevel_full_profile;
446          }
447        }
448      }
449      break;
450    case CompLevel_limited_profile:
451      if (is_method_profiled(method)) {
452        // Special case: we got here because this method was fully profiled in the interpreter.
453        next_level = CompLevel_full_optimization;
454      } else {
455        MethodData* mdo = method->method_data();
456        if (mdo != NULL) {
457          if (mdo->would_profile()) {
458            if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
459                                     Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
460                                     (this->*p)(i, b, cur_level, method))) {
461              next_level = CompLevel_full_profile;
462            }
463          } else {
464            next_level = CompLevel_full_optimization;
465          }
466        } else {
467          // If there is no MDO we need to profile
468          if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
469                                   Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
470                                   (this->*p)(i, b, cur_level, method))) {
471            next_level = CompLevel_full_profile;
472          }
473        }
474      }
475      break;
476    case CompLevel_full_profile:
477      {
478        MethodData* mdo = method->method_data();
479        if (mdo != NULL) {
480          if (mdo->would_profile()) {
481            int mdo_i = mdo->invocation_count_delta();
482            int mdo_b = mdo->backedge_count_delta();
483            if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
484              next_level = CompLevel_full_optimization;
485            }
486          } else {
487            next_level = CompLevel_full_optimization;
488          }
489        }
490      }
491      break;
492    }
493  }
494  return MIN2(next_level, (CompLevel)TieredStopAtLevel);
495}
496
497// Determine if a method should be compiled with a normal entry point at a different level.
498CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
499  CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
500                             common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
501  CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
502
503  // If OSR method level is greater than the regular method level, the levels should be
504  // equalized by raising the regular method level in order to avoid OSRs during each
505  // invocation of the method.
506  if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
507    MethodData* mdo = method->method_data();
508    guarantee(mdo != NULL, "MDO should not be NULL");
509    if (mdo->invocation_count() >= 1) {
510      next_level = CompLevel_full_optimization;
511    }
512  } else {
513    next_level = MAX2(osr_level, next_level);
514  }
515#if INCLUDE_JVMCI
516  if (UseJVMCICompiler) {
517    next_level = JVMCIRuntime::adjust_comp_level(method, false, next_level, thread);
518  }
519#endif
520  return next_level;
521}
522
523// Determine if we should do an OSR compilation of a given method.
524CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread * thread) {
525  CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
526  if (cur_level == CompLevel_none) {
527    // If there is a live OSR method that means that we deopted to the interpreter
528    // for the transition.
529    CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
530    if (osr_level > CompLevel_none) {
531      return osr_level;
532    }
533  }
534#if INCLUDE_JVMCI
535  if (UseJVMCICompiler) {
536    next_level = JVMCIRuntime::adjust_comp_level(method, true, next_level, thread);
537  }
538#endif
539  return next_level;
540}
541
542// Update the rate and submit compile
543void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
544  int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
545  update_rate(os::javaTimeMillis(), mh());
546  CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
547}
548
549bool AdvancedThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
550  if (UseAOT && !delay_compilation_during_startup()) {
551    if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
552      // If the current level is full profile or interpreter and we're switching to any other level,
553      // activate the AOT code back first so that we won't waste time overprofiling.
554      compile(mh, InvocationEntryBci, CompLevel_aot, thread);
555      // Fall through for JIT compilation.
556    }
557    if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
558      // If the next level is limited profile, use the aot code (if there is any),
559      // since it's essentially the same thing.
560      compile(mh, InvocationEntryBci, CompLevel_aot, thread);
561      // Not need to JIT, we're done.
562      return true;
563    }
564  }
565  return false;
566}
567
568
569// Handle the invocation event.
570void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
571                                                      CompLevel level, CompiledMethod* nm, JavaThread* thread) {
572  if (should_create_mdo(mh(), level)) {
573    create_mdo(mh, thread);
574  }
575  CompLevel next_level = call_event(mh(), level, thread);
576  if (next_level != level) {
577    if (maybe_switch_to_aot(mh, level, next_level, thread)) {
578      // No JITting necessary
579      return;
580    }
581    if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
582      compile(mh, InvocationEntryBci, next_level, thread);
583    }
584  }
585}
586
587// Handle the back branch event. Notice that we can compile the method
588// with a regular entry from here.
589void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
590                                                       int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
591  if (should_create_mdo(mh(), level)) {
592    create_mdo(mh, thread);
593  }
594  // Check if MDO should be created for the inlined method
595  if (should_create_mdo(imh(), level)) {
596    create_mdo(imh, thread);
597  }
598
599  if (is_compilation_enabled()) {
600    CompLevel next_osr_level = loop_event(imh(), level, thread);
601    CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
602    // At the very least compile the OSR version
603    if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
604      compile(imh, bci, next_osr_level, thread);
605    }
606
607    // Use loop event as an opportunity to also check if there's been
608    // enough calls.
609    CompLevel cur_level, next_level;
610    if (mh() != imh()) { // If there is an enclosing method
611      if (level == CompLevel_aot) {
612        // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
613        if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
614          compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
615        }
616      } else {
617        // Current loop event level is not AOT
618        guarantee(nm != NULL, "Should have nmethod here");
619        cur_level = comp_level(mh());
620        next_level = call_event(mh(), cur_level, thread);
621
622        if (max_osr_level == CompLevel_full_optimization) {
623          // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
624          bool make_not_entrant = false;
625          if (nm->is_osr_method()) {
626            // This is an osr method, just make it not entrant and recompile later if needed
627            make_not_entrant = true;
628          } else {
629            if (next_level != CompLevel_full_optimization) {
630              // next_level is not full opt, so we need to recompile the
631              // enclosing method without the inlinee
632              cur_level = CompLevel_none;
633              make_not_entrant = true;
634            }
635          }
636          if (make_not_entrant) {
637            if (PrintTieredEvents) {
638              int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
639              print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
640            }
641            nm->make_not_entrant();
642          }
643        }
644        // Fix up next_level if necessary to avoid deopts
645        if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
646          next_level = CompLevel_full_profile;
647        }
648        if (cur_level != next_level) {
649          if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
650            compile(mh, InvocationEntryBci, next_level, thread);
651          }
652        }
653      }
654    } else {
655      cur_level = comp_level(mh());
656      next_level = call_event(mh(), cur_level, thread);
657      if (next_level != cur_level) {
658        if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
659          compile(mh, InvocationEntryBci, next_level, thread);
660        }
661      }
662    }
663  }
664}
665
666#endif // TIERED
667