1/*
2 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24#include "precompiled.hpp"
25#include "memory/allocation.inline.hpp"
26#include "opto/connode.hpp"
27#include "opto/vectornode.hpp"
28
29//------------------------------VectorNode--------------------------------------
30
31// Return the vector operator for the specified scalar operation
32// and vector length.
33int VectorNode::opcode(int sopc, BasicType bt) {
34  switch (sopc) {
35  case Op_AddI:
36    switch (bt) {
37    case T_BOOLEAN:
38    case T_BYTE:      return Op_AddVB;
39    case T_CHAR:
40    case T_SHORT:     return Op_AddVS;
41    case T_INT:       return Op_AddVI;
42    default:          ShouldNotReachHere(); return 0;
43    }
44  case Op_AddL:
45    assert(bt == T_LONG, "must be");
46    return Op_AddVL;
47  case Op_AddF:
48    assert(bt == T_FLOAT, "must be");
49    return Op_AddVF;
50  case Op_AddD:
51    assert(bt == T_DOUBLE, "must be");
52    return Op_AddVD;
53  case Op_SubI:
54    switch (bt) {
55    case T_BOOLEAN:
56    case T_BYTE:   return Op_SubVB;
57    case T_CHAR:
58    case T_SHORT:  return Op_SubVS;
59    case T_INT:    return Op_SubVI;
60    default:       ShouldNotReachHere(); return 0;
61    }
62  case Op_SubL:
63    assert(bt == T_LONG, "must be");
64    return Op_SubVL;
65  case Op_SubF:
66    assert(bt == T_FLOAT, "must be");
67    return Op_SubVF;
68  case Op_SubD:
69    assert(bt == T_DOUBLE, "must be");
70    return Op_SubVD;
71  case Op_MulI:
72    switch (bt) {
73    case T_BOOLEAN:
74    case T_BYTE:   return 0;   // Unimplemented
75    case T_CHAR:
76    case T_SHORT:  return Op_MulVS;
77    case T_INT:    return Op_MulVI;
78    default:       ShouldNotReachHere(); return 0;
79    }
80  case Op_MulL:
81    assert(bt == T_LONG, "must be");
82    return Op_MulVL;
83  case Op_MulF:
84    assert(bt == T_FLOAT, "must be");
85    return Op_MulVF;
86  case Op_MulD:
87    assert(bt == T_DOUBLE, "must be");
88    return Op_MulVD;
89  case Op_FmaD:
90    assert(bt == T_DOUBLE, "must be");
91    return Op_FmaVD;
92  case Op_FmaF:
93    assert(bt == T_FLOAT, "must be");
94    return Op_FmaVF;
95  case Op_CMoveD:
96    assert(bt == T_DOUBLE, "must be");
97    return Op_CMoveVD;
98  case Op_DivF:
99    assert(bt == T_FLOAT, "must be");
100    return Op_DivVF;
101  case Op_DivD:
102    assert(bt == T_DOUBLE, "must be");
103    return Op_DivVD;
104  case Op_AbsF:
105    assert(bt == T_FLOAT, "must be");
106    return Op_AbsVF;
107  case Op_AbsD:
108    assert(bt == T_DOUBLE, "must be");
109    return Op_AbsVD;
110  case Op_NegF:
111    assert(bt == T_FLOAT, "must be");
112    return Op_NegVF;
113  case Op_NegD:
114    assert(bt == T_DOUBLE, "must be");
115    return Op_NegVD;
116  case Op_SqrtD:
117    assert(bt == T_DOUBLE, "must be");
118    return Op_SqrtVD;
119  case Op_LShiftI:
120    switch (bt) {
121    case T_BOOLEAN:
122    case T_BYTE:   return Op_LShiftVB;
123    case T_CHAR:
124    case T_SHORT:  return Op_LShiftVS;
125    case T_INT:    return Op_LShiftVI;
126      default:       ShouldNotReachHere(); return 0;
127    }
128  case Op_LShiftL:
129    assert(bt == T_LONG, "must be");
130    return Op_LShiftVL;
131  case Op_RShiftI:
132    switch (bt) {
133    case T_BOOLEAN:return Op_URShiftVB; // boolean is unsigned value
134    case T_CHAR:   return Op_URShiftVS; // char is unsigned value
135    case T_BYTE:   return Op_RShiftVB;
136    case T_SHORT:  return Op_RShiftVS;
137    case T_INT:    return Op_RShiftVI;
138    default:       ShouldNotReachHere(); return 0;
139    }
140  case Op_RShiftL:
141    assert(bt == T_LONG, "must be");
142    return Op_RShiftVL;
143  case Op_URShiftI:
144    switch (bt) {
145    case T_BOOLEAN:return Op_URShiftVB;
146    case T_CHAR:   return Op_URShiftVS;
147    case T_BYTE:
148    case T_SHORT:  return 0; // Vector logical right shift for signed short
149                             // values produces incorrect Java result for
150                             // negative data because java code should convert
151                             // a short value into int value with sign
152                             // extension before a shift.
153    case T_INT:    return Op_URShiftVI;
154    default:       ShouldNotReachHere(); return 0;
155    }
156  case Op_URShiftL:
157    assert(bt == T_LONG, "must be");
158    return Op_URShiftVL;
159  case Op_AndI:
160  case Op_AndL:
161    return Op_AndV;
162  case Op_OrI:
163  case Op_OrL:
164    return Op_OrV;
165  case Op_XorI:
166  case Op_XorL:
167    return Op_XorV;
168
169  case Op_LoadB:
170  case Op_LoadUB:
171  case Op_LoadUS:
172  case Op_LoadS:
173  case Op_LoadI:
174  case Op_LoadL:
175  case Op_LoadF:
176  case Op_LoadD:
177    return Op_LoadVector;
178
179  case Op_StoreB:
180  case Op_StoreC:
181  case Op_StoreI:
182  case Op_StoreL:
183  case Op_StoreF:
184  case Op_StoreD:
185    return Op_StoreVector;
186
187  default:
188    return 0; // Unimplemented
189  }
190}
191
192// Also used to check if the code generator
193// supports the vector operation.
194bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
195  if (is_java_primitive(bt) &&
196      (vlen > 1) && is_power_of_2(vlen) &&
197      Matcher::vector_size_supported(bt, vlen)) {
198    int vopc = VectorNode::opcode(opc, bt);
199    return vopc > 0 && Matcher::match_rule_supported_vector(vopc, vlen);
200  }
201  return false;
202}
203
204bool VectorNode::is_shift(Node* n) {
205  switch (n->Opcode()) {
206  case Op_LShiftI:
207  case Op_LShiftL:
208  case Op_RShiftI:
209  case Op_RShiftL:
210  case Op_URShiftI:
211  case Op_URShiftL:
212    return true;
213  default:
214    return false;
215  }
216}
217
218// Check if input is loop invariant vector.
219bool VectorNode::is_invariant_vector(Node* n) {
220  // Only Replicate vector nodes are loop invariant for now.
221  switch (n->Opcode()) {
222  case Op_ReplicateB:
223  case Op_ReplicateS:
224  case Op_ReplicateI:
225  case Op_ReplicateL:
226  case Op_ReplicateF:
227  case Op_ReplicateD:
228    return true;
229  default:
230    return false;
231  }
232}
233
234// [Start, end) half-open range defining which operands are vectors
235void VectorNode::vector_operands(Node* n, uint* start, uint* end) {
236  switch (n->Opcode()) {
237  case Op_LoadB:   case Op_LoadUB:
238  case Op_LoadS:   case Op_LoadUS:
239  case Op_LoadI:   case Op_LoadL:
240  case Op_LoadF:   case Op_LoadD:
241  case Op_LoadP:   case Op_LoadN:
242    *start = 0;
243    *end   = 0; // no vector operands
244    break;
245  case Op_StoreB:  case Op_StoreC:
246  case Op_StoreI:  case Op_StoreL:
247  case Op_StoreF:  case Op_StoreD:
248  case Op_StoreP:  case Op_StoreN:
249    *start = MemNode::ValueIn;
250    *end   = MemNode::ValueIn + 1; // 1 vector operand
251    break;
252  case Op_LShiftI:  case Op_LShiftL:
253  case Op_RShiftI:  case Op_RShiftL:
254  case Op_URShiftI: case Op_URShiftL:
255    *start = 1;
256    *end   = 2; // 1 vector operand
257    break;
258  case Op_AddI: case Op_AddL: case Op_AddF: case Op_AddD:
259  case Op_SubI: case Op_SubL: case Op_SubF: case Op_SubD:
260  case Op_MulI: case Op_MulL: case Op_MulF: case Op_MulD:
261  case Op_DivF: case Op_DivD:
262  case Op_AndI: case Op_AndL:
263  case Op_OrI:  case Op_OrL:
264  case Op_XorI: case Op_XorL:
265    *start = 1;
266    *end   = 3; // 2 vector operands
267    break;
268  case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
269    *start = 2;
270    *end   = n->req();
271    break;
272  case Op_FmaD:
273  case Op_FmaF:
274    *start = 1;
275    *end   = 4; // 3 vector operands
276    break;
277  default:
278    *start = 1;
279    *end   = n->req(); // default is all operands
280  }
281}
282
283// Return the vector version of a scalar operation node.
284VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
285  const TypeVect* vt = TypeVect::make(bt, vlen);
286  int vopc = VectorNode::opcode(opc, bt);
287  // This method should not be called for unimplemented vectors.
288  guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
289  switch (vopc) {
290  case Op_AddVB: return new AddVBNode(n1, n2, vt);
291  case Op_AddVS: return new AddVSNode(n1, n2, vt);
292  case Op_AddVI: return new AddVINode(n1, n2, vt);
293  case Op_AddVL: return new AddVLNode(n1, n2, vt);
294  case Op_AddVF: return new AddVFNode(n1, n2, vt);
295  case Op_AddVD: return new AddVDNode(n1, n2, vt);
296
297  case Op_SubVB: return new SubVBNode(n1, n2, vt);
298  case Op_SubVS: return new SubVSNode(n1, n2, vt);
299  case Op_SubVI: return new SubVINode(n1, n2, vt);
300  case Op_SubVL: return new SubVLNode(n1, n2, vt);
301  case Op_SubVF: return new SubVFNode(n1, n2, vt);
302  case Op_SubVD: return new SubVDNode(n1, n2, vt);
303
304  case Op_MulVS: return new MulVSNode(n1, n2, vt);
305  case Op_MulVI: return new MulVINode(n1, n2, vt);
306  case Op_MulVL: return new MulVLNode(n1, n2, vt);
307  case Op_MulVF: return new MulVFNode(n1, n2, vt);
308  case Op_MulVD: return new MulVDNode(n1, n2, vt);
309
310  case Op_DivVF: return new DivVFNode(n1, n2, vt);
311  case Op_DivVD: return new DivVDNode(n1, n2, vt);
312
313  case Op_AbsVF: return new AbsVFNode(n1, vt);
314  case Op_AbsVD: return new AbsVDNode(n1, vt);
315
316  case Op_NegVF: return new NegVFNode(n1, vt);
317  case Op_NegVD: return new NegVDNode(n1, vt);
318
319  // Currently only supports double precision sqrt
320  case Op_SqrtVD: return new SqrtVDNode(n1, vt);
321
322  case Op_LShiftVB: return new LShiftVBNode(n1, n2, vt);
323  case Op_LShiftVS: return new LShiftVSNode(n1, n2, vt);
324  case Op_LShiftVI: return new LShiftVINode(n1, n2, vt);
325  case Op_LShiftVL: return new LShiftVLNode(n1, n2, vt);
326
327  case Op_RShiftVB: return new RShiftVBNode(n1, n2, vt);
328  case Op_RShiftVS: return new RShiftVSNode(n1, n2, vt);
329  case Op_RShiftVI: return new RShiftVINode(n1, n2, vt);
330  case Op_RShiftVL: return new RShiftVLNode(n1, n2, vt);
331
332  case Op_URShiftVB: return new URShiftVBNode(n1, n2, vt);
333  case Op_URShiftVS: return new URShiftVSNode(n1, n2, vt);
334  case Op_URShiftVI: return new URShiftVINode(n1, n2, vt);
335  case Op_URShiftVL: return new URShiftVLNode(n1, n2, vt);
336
337  case Op_AndV: return new AndVNode(n1, n2, vt);
338  case Op_OrV:  return new OrVNode (n1, n2, vt);
339  case Op_XorV: return new XorVNode(n1, n2, vt);
340  default:
341    fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
342    return NULL;
343  }
344}
345
346VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, Node* n3, uint vlen, BasicType bt) {
347  const TypeVect* vt = TypeVect::make(bt, vlen);
348  int vopc = VectorNode::opcode(opc, bt);
349  // This method should not be called for unimplemented vectors.
350  guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
351  switch (vopc) {
352  case Op_FmaVD: return new FmaVDNode(n1, n2, n3, vt);
353  case Op_FmaVF: return new FmaVFNode(n1, n2, n3, vt);
354  default:
355    fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
356    return NULL;
357  }
358}
359
360// Scalar promotion
361VectorNode* VectorNode::scalar2vector(Node* s, uint vlen, const Type* opd_t) {
362  BasicType bt = opd_t->array_element_basic_type();
363  const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
364                                          : TypeVect::make(bt, vlen);
365  switch (bt) {
366  case T_BOOLEAN:
367  case T_BYTE:
368    return new ReplicateBNode(s, vt);
369  case T_CHAR:
370  case T_SHORT:
371    return new ReplicateSNode(s, vt);
372  case T_INT:
373    return new ReplicateINode(s, vt);
374  case T_LONG:
375    return new ReplicateLNode(s, vt);
376  case T_FLOAT:
377    return new ReplicateFNode(s, vt);
378  case T_DOUBLE:
379    return new ReplicateDNode(s, vt);
380  default:
381    fatal("Type '%s' is not supported for vectors", type2name(bt));
382    return NULL;
383  }
384}
385
386VectorNode* VectorNode::shift_count(Node* shift, Node* cnt, uint vlen, BasicType bt) {
387  assert(VectorNode::is_shift(shift) && !cnt->is_Con(), "only variable shift count");
388  // Match shift count type with shift vector type.
389  const TypeVect* vt = TypeVect::make(bt, vlen);
390  switch (shift->Opcode()) {
391  case Op_LShiftI:
392  case Op_LShiftL:
393    return new LShiftCntVNode(cnt, vt);
394  case Op_RShiftI:
395  case Op_RShiftL:
396  case Op_URShiftI:
397  case Op_URShiftL:
398    return new RShiftCntVNode(cnt, vt);
399  default:
400    fatal("Missed vector creation for '%s'", NodeClassNames[shift->Opcode()]);
401    return NULL;
402  }
403}
404
405// Return initial Pack node. Additional operands added with add_opd() calls.
406PackNode* PackNode::make(Node* s, uint vlen, BasicType bt) {
407  const TypeVect* vt = TypeVect::make(bt, vlen);
408  switch (bt) {
409  case T_BOOLEAN:
410  case T_BYTE:
411    return new PackBNode(s, vt);
412  case T_CHAR:
413  case T_SHORT:
414    return new PackSNode(s, vt);
415  case T_INT:
416    return new PackINode(s, vt);
417  case T_LONG:
418    return new PackLNode(s, vt);
419  case T_FLOAT:
420    return new PackFNode(s, vt);
421  case T_DOUBLE:
422    return new PackDNode(s, vt);
423  default:
424    fatal("Type '%s' is not supported for vectors", type2name(bt));
425    return NULL;
426  }
427}
428
429// Create a binary tree form for Packs. [lo, hi) (half-open) range
430PackNode* PackNode::binary_tree_pack(int lo, int hi) {
431  int ct = hi - lo;
432  assert(is_power_of_2(ct), "power of 2");
433  if (ct == 2) {
434    PackNode* pk = PackNode::make(in(lo), 2, vect_type()->element_basic_type());
435    pk->add_opd(in(lo+1));
436    return pk;
437  } else {
438    int mid = lo + ct/2;
439    PackNode* n1 = binary_tree_pack(lo,  mid);
440    PackNode* n2 = binary_tree_pack(mid, hi );
441
442    BasicType bt = n1->vect_type()->element_basic_type();
443    assert(bt == n2->vect_type()->element_basic_type(), "should be the same");
444    switch (bt) {
445    case T_BOOLEAN:
446    case T_BYTE:
447      return new PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
448    case T_CHAR:
449    case T_SHORT:
450      return new PackINode(n1, n2, TypeVect::make(T_INT, 2));
451    case T_INT:
452      return new PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
453    case T_LONG:
454      return new Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
455    case T_FLOAT:
456      return new PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
457    case T_DOUBLE:
458      return new Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
459    default:
460      fatal("Type '%s' is not supported for vectors", type2name(bt));
461      return NULL;
462    }
463  }
464}
465
466// Return the vector version of a scalar load node.
467LoadVectorNode* LoadVectorNode::make(int opc, Node* ctl, Node* mem,
468                                     Node* adr, const TypePtr* atyp,
469                                     uint vlen, BasicType bt,
470                                     ControlDependency control_dependency) {
471  const TypeVect* vt = TypeVect::make(bt, vlen);
472  return new LoadVectorNode(ctl, mem, adr, atyp, vt, control_dependency);
473}
474
475// Return the vector version of a scalar store node.
476StoreVectorNode* StoreVectorNode::make(int opc, Node* ctl, Node* mem,
477                                       Node* adr, const TypePtr* atyp, Node* val,
478                                       uint vlen) {
479  return new StoreVectorNode(ctl, mem, adr, atyp, val);
480}
481
482// Extract a scalar element of vector.
483Node* ExtractNode::make(Node* v, uint position, BasicType bt) {
484  assert((int)position < Matcher::max_vector_size(bt), "pos in range");
485  ConINode* pos = ConINode::make((int)position);
486  switch (bt) {
487  case T_BOOLEAN:
488    return new ExtractUBNode(v, pos);
489  case T_BYTE:
490    return new ExtractBNode(v, pos);
491  case T_CHAR:
492    return new ExtractCNode(v, pos);
493  case T_SHORT:
494    return new ExtractSNode(v, pos);
495  case T_INT:
496    return new ExtractINode(v, pos);
497  case T_LONG:
498    return new ExtractLNode(v, pos);
499  case T_FLOAT:
500    return new ExtractFNode(v, pos);
501  case T_DOUBLE:
502    return new ExtractDNode(v, pos);
503  default:
504    fatal("Type '%s' is not supported for vectors", type2name(bt));
505    return NULL;
506  }
507}
508
509int ReductionNode::opcode(int opc, BasicType bt) {
510  int vopc = opc;
511  switch (opc) {
512    case Op_AddI:
513      assert(bt == T_INT, "must be");
514      vopc = Op_AddReductionVI;
515      break;
516    case Op_AddL:
517      assert(bt == T_LONG, "must be");
518      vopc = Op_AddReductionVL;
519      break;
520    case Op_AddF:
521      assert(bt == T_FLOAT, "must be");
522      vopc = Op_AddReductionVF;
523      break;
524    case Op_AddD:
525      assert(bt == T_DOUBLE, "must be");
526      vopc = Op_AddReductionVD;
527      break;
528    case Op_MulI:
529      assert(bt == T_INT, "must be");
530      vopc = Op_MulReductionVI;
531      break;
532    case Op_MulL:
533      assert(bt == T_LONG, "must be");
534      vopc = Op_MulReductionVL;
535      break;
536    case Op_MulF:
537      assert(bt == T_FLOAT, "must be");
538      vopc = Op_MulReductionVF;
539      break;
540    case Op_MulD:
541      assert(bt == T_DOUBLE, "must be");
542      vopc = Op_MulReductionVD;
543      break;
544    // TODO: add MulL for targets that support it
545    default:
546      break;
547  }
548  return vopc;
549}
550
551// Return the appropriate reduction node.
552ReductionNode* ReductionNode::make(int opc, Node *ctrl, Node* n1, Node* n2, BasicType bt) {
553
554  int vopc = opcode(opc, bt);
555
556  // This method should not be called for unimplemented vectors.
557  guarantee(vopc != opc, "Vector for '%s' is not implemented", NodeClassNames[opc]);
558
559  switch (vopc) {
560  case Op_AddReductionVI: return new AddReductionVINode(ctrl, n1, n2);
561  case Op_AddReductionVL: return new AddReductionVLNode(ctrl, n1, n2);
562  case Op_AddReductionVF: return new AddReductionVFNode(ctrl, n1, n2);
563  case Op_AddReductionVD: return new AddReductionVDNode(ctrl, n1, n2);
564  case Op_MulReductionVI: return new MulReductionVINode(ctrl, n1, n2);
565  case Op_MulReductionVL: return new MulReductionVLNode(ctrl, n1, n2);
566  case Op_MulReductionVF: return new MulReductionVFNode(ctrl, n1, n2);
567  case Op_MulReductionVD: return new MulReductionVDNode(ctrl, n1, n2);
568  default:
569    fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
570    return NULL;
571  }
572}
573
574bool ReductionNode::implemented(int opc, uint vlen, BasicType bt) {
575  if (is_java_primitive(bt) &&
576      (vlen > 1) && is_power_of_2(vlen) &&
577      Matcher::vector_size_supported(bt, vlen)) {
578    int vopc = ReductionNode::opcode(opc, bt);
579    return vopc != opc && Matcher::match_rule_supported(vopc);
580  }
581  return false;
582}
583