type.cpp revision 9821:867bdec7c8c5
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "ci/ciTypeFlow.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "compiler/compileLog.hpp"
31#include "gc/shared/gcLocker.hpp"
32#include "libadt/dict.hpp"
33#include "memory/oopFactory.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/instanceKlass.hpp"
36#include "oops/instanceMirrorKlass.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "oops/typeArrayKlass.hpp"
39#include "opto/matcher.hpp"
40#include "opto/node.hpp"
41#include "opto/opcodes.hpp"
42#include "opto/type.hpp"
43
44// Portions of code courtesy of Clifford Click
45
46// Optimization - Graph Style
47
48// Dictionary of types shared among compilations.
49Dict* Type::_shared_type_dict = NULL;
50
51// Array which maps compiler types to Basic Types
52Type::TypeInfo Type::_type_info[Type::lastype] = {
53  { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
54  { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
55  { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
56  { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
57  { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
58  { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
59  { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
60  { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
61  { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
62  { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
63
64#ifdef SPARC
65  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
66  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
67  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
68  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
69  { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
70#elif defined(PPC64)
71  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
72  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
73  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
74  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
75  { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
76#else // all other
77  { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
78  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
79  { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
80  { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
81  { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
82#endif
83  { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
84  { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
85  { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
86  { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
87  { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
88  { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
89  { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
90  { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
91  { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
92  { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
93  { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
94  { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
95  { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
96  { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
97  { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
98  { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
99  { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
100  { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
101};
102
103// Map ideal registers (machine types) to ideal types
104const Type *Type::mreg2type[_last_machine_leaf];
105
106// Map basic types to canonical Type* pointers.
107const Type* Type::     _const_basic_type[T_CONFLICT+1];
108
109// Map basic types to constant-zero Types.
110const Type* Type::            _zero_type[T_CONFLICT+1];
111
112// Map basic types to array-body alias types.
113const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
114
115//=============================================================================
116// Convenience common pre-built types.
117const Type *Type::ABIO;         // State-of-machine only
118const Type *Type::BOTTOM;       // All values
119const Type *Type::CONTROL;      // Control only
120const Type *Type::DOUBLE;       // All doubles
121const Type *Type::FLOAT;        // All floats
122const Type *Type::HALF;         // Placeholder half of doublewide type
123const Type *Type::MEMORY;       // Abstract store only
124const Type *Type::RETURN_ADDRESS;
125const Type *Type::TOP;          // No values in set
126
127//------------------------------get_const_type---------------------------
128const Type* Type::get_const_type(ciType* type) {
129  if (type == NULL) {
130    return NULL;
131  } else if (type->is_primitive_type()) {
132    return get_const_basic_type(type->basic_type());
133  } else {
134    return TypeOopPtr::make_from_klass(type->as_klass());
135  }
136}
137
138//---------------------------array_element_basic_type---------------------------------
139// Mapping to the array element's basic type.
140BasicType Type::array_element_basic_type() const {
141  BasicType bt = basic_type();
142  if (bt == T_INT) {
143    if (this == TypeInt::INT)   return T_INT;
144    if (this == TypeInt::CHAR)  return T_CHAR;
145    if (this == TypeInt::BYTE)  return T_BYTE;
146    if (this == TypeInt::BOOL)  return T_BOOLEAN;
147    if (this == TypeInt::SHORT) return T_SHORT;
148    return T_VOID;
149  }
150  return bt;
151}
152
153// For two instance arrays of same dimension, return the base element types.
154// Otherwise or if the arrays have different dimensions, return NULL.
155void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
156                                    const TypeInstPtr **e1, const TypeInstPtr **e2) {
157
158  if (e1) *e1 = NULL;
159  if (e2) *e2 = NULL;
160  const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
161  const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
162
163  if (a1tap != NULL && a2tap != NULL) {
164    // Handle multidimensional arrays
165    const TypePtr* a1tp = a1tap->elem()->make_ptr();
166    const TypePtr* a2tp = a2tap->elem()->make_ptr();
167    while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
168      a1tap = a1tp->is_aryptr();
169      a2tap = a2tp->is_aryptr();
170      a1tp = a1tap->elem()->make_ptr();
171      a2tp = a2tap->elem()->make_ptr();
172    }
173    if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
174      if (e1) *e1 = a1tp->is_instptr();
175      if (e2) *e2 = a2tp->is_instptr();
176    }
177  }
178}
179
180//---------------------------get_typeflow_type---------------------------------
181// Import a type produced by ciTypeFlow.
182const Type* Type::get_typeflow_type(ciType* type) {
183  switch (type->basic_type()) {
184
185  case ciTypeFlow::StateVector::T_BOTTOM:
186    assert(type == ciTypeFlow::StateVector::bottom_type(), "");
187    return Type::BOTTOM;
188
189  case ciTypeFlow::StateVector::T_TOP:
190    assert(type == ciTypeFlow::StateVector::top_type(), "");
191    return Type::TOP;
192
193  case ciTypeFlow::StateVector::T_NULL:
194    assert(type == ciTypeFlow::StateVector::null_type(), "");
195    return TypePtr::NULL_PTR;
196
197  case ciTypeFlow::StateVector::T_LONG2:
198    // The ciTypeFlow pass pushes a long, then the half.
199    // We do the same.
200    assert(type == ciTypeFlow::StateVector::long2_type(), "");
201    return TypeInt::TOP;
202
203  case ciTypeFlow::StateVector::T_DOUBLE2:
204    // The ciTypeFlow pass pushes double, then the half.
205    // Our convention is the same.
206    assert(type == ciTypeFlow::StateVector::double2_type(), "");
207    return Type::TOP;
208
209  case T_ADDRESS:
210    assert(type->is_return_address(), "");
211    return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
212
213  default:
214    // make sure we did not mix up the cases:
215    assert(type != ciTypeFlow::StateVector::bottom_type(), "");
216    assert(type != ciTypeFlow::StateVector::top_type(), "");
217    assert(type != ciTypeFlow::StateVector::null_type(), "");
218    assert(type != ciTypeFlow::StateVector::long2_type(), "");
219    assert(type != ciTypeFlow::StateVector::double2_type(), "");
220    assert(!type->is_return_address(), "");
221
222    return Type::get_const_type(type);
223  }
224}
225
226
227//-----------------------make_from_constant------------------------------------
228const Type* Type::make_from_constant(ciConstant constant, bool require_constant) {
229  switch (constant.basic_type()) {
230  case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
231  case T_CHAR:     return TypeInt::make(constant.as_char());
232  case T_BYTE:     return TypeInt::make(constant.as_byte());
233  case T_SHORT:    return TypeInt::make(constant.as_short());
234  case T_INT:      return TypeInt::make(constant.as_int());
235  case T_LONG:     return TypeLong::make(constant.as_long());
236  case T_FLOAT:    return TypeF::make(constant.as_float());
237  case T_DOUBLE:   return TypeD::make(constant.as_double());
238  case T_ARRAY:
239  case T_OBJECT:
240    {
241      // cases:
242      //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
243      //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
244      // An oop is not scavengable if it is in the perm gen.
245      ciObject* oop_constant = constant.as_object();
246      if (oop_constant->is_null_object()) {
247        return Type::get_zero_type(T_OBJECT);
248      } else if (require_constant || oop_constant->should_be_constant()) {
249        return TypeOopPtr::make_from_constant(oop_constant, require_constant);
250      }
251    }
252  case T_ILLEGAL:
253    // Invalid ciConstant returned due to OutOfMemoryError in the CI
254    assert(Compile::current()->env()->failing(), "otherwise should not see this");
255    return NULL;
256  }
257  // Fall through to failure
258  return NULL;
259}
260
261
262const Type* Type::make_constant(ciField* field, Node* obj) {
263  if (!field->is_constant())  return NULL;
264
265  const Type* con_type = NULL;
266  if (field->is_static()) {
267    // final static field
268    con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true);
269    if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) {
270      con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
271    }
272  } else {
273    // final or stable non-static field
274    // Treat final non-static fields of trusted classes (classes in
275    // java.lang.invoke and sun.invoke packages and subpackages) as
276    // compile time constants.
277    if (obj->is_Con()) {
278      const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
279      ciObject* constant_oop = oop_ptr->const_oop();
280      ciConstant constant = field->constant_value_of(constant_oop);
281      con_type = Type::make_from_constant(constant, /*require_const=*/true);
282    }
283  }
284  if (FoldStableValues && field->is_stable() && con_type != NULL) {
285    if (con_type->is_zero_type()) {
286      return NULL; // the field hasn't been initialized yet
287    } else if (con_type->isa_oopptr()) {
288      const Type* stable_type = Type::get_const_type(field->type());
289      if (field->type()->is_array_klass()) {
290        int stable_dimension = field->type()->as_array_klass()->dimension();
291        stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
292      }
293      if (stable_type != NULL) {
294        con_type = con_type->join_speculative(stable_type);
295      }
296    }
297  }
298  return con_type;
299}
300
301//------------------------------make-------------------------------------------
302// Create a simple Type, with default empty symbol sets.  Then hashcons it
303// and look for an existing copy in the type dictionary.
304const Type *Type::make( enum TYPES t ) {
305  return (new Type(t))->hashcons();
306}
307
308//------------------------------cmp--------------------------------------------
309int Type::cmp( const Type *const t1, const Type *const t2 ) {
310  if( t1->_base != t2->_base )
311    return 1;                   // Missed badly
312  assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
313  return !t1->eq(t2);           // Return ZERO if equal
314}
315
316const Type* Type::maybe_remove_speculative(bool include_speculative) const {
317  if (!include_speculative) {
318    return remove_speculative();
319  }
320  return this;
321}
322
323//------------------------------hash-------------------------------------------
324int Type::uhash( const Type *const t ) {
325  return t->hash();
326}
327
328#define SMALLINT ((juint)3)  // a value too insignificant to consider widening
329
330//--------------------------Initialize_shared----------------------------------
331void Type::Initialize_shared(Compile* current) {
332  // This method does not need to be locked because the first system
333  // compilations (stub compilations) occur serially.  If they are
334  // changed to proceed in parallel, then this section will need
335  // locking.
336
337  Arena* save = current->type_arena();
338  Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
339
340  current->set_type_arena(shared_type_arena);
341  _shared_type_dict =
342    new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
343                                  shared_type_arena, 128 );
344  current->set_type_dict(_shared_type_dict);
345
346  // Make shared pre-built types.
347  CONTROL = make(Control);      // Control only
348  TOP     = make(Top);          // No values in set
349  MEMORY  = make(Memory);       // Abstract store only
350  ABIO    = make(Abio);         // State-of-machine only
351  RETURN_ADDRESS=make(Return_Address);
352  FLOAT   = make(FloatBot);     // All floats
353  DOUBLE  = make(DoubleBot);    // All doubles
354  BOTTOM  = make(Bottom);       // Everything
355  HALF    = make(Half);         // Placeholder half of doublewide type
356
357  TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
358  TypeF::ONE  = TypeF::make(1.0); // Float 1
359
360  TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
361  TypeD::ONE  = TypeD::make(1.0); // Double 1
362
363  TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
364  TypeInt::ZERO    = TypeInt::make( 0);  //  0
365  TypeInt::ONE     = TypeInt::make( 1);  //  1
366  TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
367  TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
368  TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
369  TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
370  TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
371  TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
372  TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
373  TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
374  TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
375  TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
376  TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
377  TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
378  TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
379  TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
380  TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
381  TypeInt::TYPE_DOMAIN  = TypeInt::INT;
382  // CmpL is overloaded both as the bytecode computation returning
383  // a trinary (-1,0,+1) integer result AND as an efficient long
384  // compare returning optimizer ideal-type flags.
385  assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
386  assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
387  assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
388  assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
389  assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
390
391  TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
392  TypeLong::ZERO    = TypeLong::make( 0);        //  0
393  TypeLong::ONE     = TypeLong::make( 1);        //  1
394  TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
395  TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
396  TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
397  TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
398  TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
399
400  const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
401  fboth[0] = Type::CONTROL;
402  fboth[1] = Type::CONTROL;
403  TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
404
405  const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
406  ffalse[0] = Type::CONTROL;
407  ffalse[1] = Type::TOP;
408  TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
409
410  const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
411  fneither[0] = Type::TOP;
412  fneither[1] = Type::TOP;
413  TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
414
415  const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
416  ftrue[0] = Type::TOP;
417  ftrue[1] = Type::CONTROL;
418  TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
419
420  const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
421  floop[0] = Type::CONTROL;
422  floop[1] = TypeInt::INT;
423  TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
424
425  TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
426  TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
427  TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
428
429  TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
430  TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
431
432  const Type **fmembar = TypeTuple::fields(0);
433  TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
434
435  const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
436  fsc[0] = TypeInt::CC;
437  fsc[1] = Type::MEMORY;
438  TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
439
440  TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
441  TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
442  TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
443  TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
444                                           false, 0, oopDesc::mark_offset_in_bytes());
445  TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
446                                           false, 0, oopDesc::klass_offset_in_bytes());
447  TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
448
449  TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
450
451  TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
452  TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
453
454  TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
455
456  mreg2type[Op_Node] = Type::BOTTOM;
457  mreg2type[Op_Set ] = 0;
458  mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
459  mreg2type[Op_RegI] = TypeInt::INT;
460  mreg2type[Op_RegP] = TypePtr::BOTTOM;
461  mreg2type[Op_RegF] = Type::FLOAT;
462  mreg2type[Op_RegD] = Type::DOUBLE;
463  mreg2type[Op_RegL] = TypeLong::LONG;
464  mreg2type[Op_RegFlags] = TypeInt::CC;
465
466  TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
467
468  TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
469
470#ifdef _LP64
471  if (UseCompressedOops) {
472    assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
473    TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
474  } else
475#endif
476  {
477    // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
478    TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
479  }
480  TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
481  TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
482  TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
483  TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
484  TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
485  TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
486  TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
487
488  // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
489  TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
490  TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
491  TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
492  TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
493  TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
494  TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
495  TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
496  TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
497  TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
498  TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
499  TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
500
501  TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
502  TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
503
504  const Type **fi2c = TypeTuple::fields(2);
505  fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
506  fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
507  TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
508
509  const Type **intpair = TypeTuple::fields(2);
510  intpair[0] = TypeInt::INT;
511  intpair[1] = TypeInt::INT;
512  TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
513
514  const Type **longpair = TypeTuple::fields(2);
515  longpair[0] = TypeLong::LONG;
516  longpair[1] = TypeLong::LONG;
517  TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
518
519  const Type **intccpair = TypeTuple::fields(2);
520  intccpair[0] = TypeInt::INT;
521  intccpair[1] = TypeInt::CC;
522  TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
523
524  const Type **longccpair = TypeTuple::fields(2);
525  longccpair[0] = TypeLong::LONG;
526  longccpair[1] = TypeInt::CC;
527  TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
528
529  _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
530  _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
531  _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
532  _const_basic_type[T_CHAR]        = TypeInt::CHAR;
533  _const_basic_type[T_BYTE]        = TypeInt::BYTE;
534  _const_basic_type[T_SHORT]       = TypeInt::SHORT;
535  _const_basic_type[T_INT]         = TypeInt::INT;
536  _const_basic_type[T_LONG]        = TypeLong::LONG;
537  _const_basic_type[T_FLOAT]       = Type::FLOAT;
538  _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
539  _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
540  _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
541  _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
542  _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
543  _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
544
545  _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
546  _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
547  _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
548  _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
549  _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
550  _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
551  _zero_type[T_INT]         = TypeInt::ZERO;
552  _zero_type[T_LONG]        = TypeLong::ZERO;
553  _zero_type[T_FLOAT]       = TypeF::ZERO;
554  _zero_type[T_DOUBLE]      = TypeD::ZERO;
555  _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
556  _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
557  _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
558  _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
559
560  // get_zero_type() should not happen for T_CONFLICT
561  _zero_type[T_CONFLICT]= NULL;
562
563  // Vector predefined types, it needs initialized _const_basic_type[].
564  if (Matcher::vector_size_supported(T_BYTE,4)) {
565    TypeVect::VECTS = TypeVect::make(T_BYTE,4);
566  }
567  if (Matcher::vector_size_supported(T_FLOAT,2)) {
568    TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
569  }
570  if (Matcher::vector_size_supported(T_FLOAT,4)) {
571    TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
572  }
573  if (Matcher::vector_size_supported(T_FLOAT,8)) {
574    TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
575  }
576  if (Matcher::vector_size_supported(T_FLOAT,16)) {
577    TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
578  }
579  mreg2type[Op_VecS] = TypeVect::VECTS;
580  mreg2type[Op_VecD] = TypeVect::VECTD;
581  mreg2type[Op_VecX] = TypeVect::VECTX;
582  mreg2type[Op_VecY] = TypeVect::VECTY;
583  mreg2type[Op_VecZ] = TypeVect::VECTZ;
584
585  // Restore working type arena.
586  current->set_type_arena(save);
587  current->set_type_dict(NULL);
588}
589
590//------------------------------Initialize-------------------------------------
591void Type::Initialize(Compile* current) {
592  assert(current->type_arena() != NULL, "must have created type arena");
593
594  if (_shared_type_dict == NULL) {
595    Initialize_shared(current);
596  }
597
598  Arena* type_arena = current->type_arena();
599
600  // Create the hash-cons'ing dictionary with top-level storage allocation
601  Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
602  current->set_type_dict(tdic);
603
604  // Transfer the shared types.
605  DictI i(_shared_type_dict);
606  for( ; i.test(); ++i ) {
607    Type* t = (Type*)i._value;
608    tdic->Insert(t,t);  // New Type, insert into Type table
609  }
610}
611
612//------------------------------hashcons---------------------------------------
613// Do the hash-cons trick.  If the Type already exists in the type table,
614// delete the current Type and return the existing Type.  Otherwise stick the
615// current Type in the Type table.
616const Type *Type::hashcons(void) {
617  debug_only(base());           // Check the assertion in Type::base().
618  // Look up the Type in the Type dictionary
619  Dict *tdic = type_dict();
620  Type* old = (Type*)(tdic->Insert(this, this, false));
621  if( old ) {                   // Pre-existing Type?
622    if( old != this )           // Yes, this guy is not the pre-existing?
623      delete this;              // Yes, Nuke this guy
624    assert( old->_dual, "" );
625    return old;                 // Return pre-existing
626  }
627
628  // Every type has a dual (to make my lattice symmetric).
629  // Since we just discovered a new Type, compute its dual right now.
630  assert( !_dual, "" );         // No dual yet
631  _dual = xdual();              // Compute the dual
632  if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
633    _dual = this;
634    return this;
635  }
636  assert( !_dual->_dual, "" );  // No reverse dual yet
637  assert( !(*tdic)[_dual], "" ); // Dual not in type system either
638  // New Type, insert into Type table
639  tdic->Insert((void*)_dual,(void*)_dual);
640  ((Type*)_dual)->_dual = this; // Finish up being symmetric
641#ifdef ASSERT
642  Type *dual_dual = (Type*)_dual->xdual();
643  assert( eq(dual_dual), "xdual(xdual()) should be identity" );
644  delete dual_dual;
645#endif
646  return this;                  // Return new Type
647}
648
649//------------------------------eq---------------------------------------------
650// Structural equality check for Type representations
651bool Type::eq( const Type * ) const {
652  return true;                  // Nothing else can go wrong
653}
654
655//------------------------------hash-------------------------------------------
656// Type-specific hashing function.
657int Type::hash(void) const {
658  return _base;
659}
660
661//------------------------------is_finite--------------------------------------
662// Has a finite value
663bool Type::is_finite() const {
664  return false;
665}
666
667//------------------------------is_nan-----------------------------------------
668// Is not a number (NaN)
669bool Type::is_nan()    const {
670  return false;
671}
672
673//----------------------interface_vs_oop---------------------------------------
674#ifdef ASSERT
675bool Type::interface_vs_oop_helper(const Type *t) const {
676  bool result = false;
677
678  const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
679  const TypePtr*    t_ptr =    t->make_ptr();
680  if( this_ptr == NULL || t_ptr == NULL )
681    return result;
682
683  const TypeInstPtr* this_inst = this_ptr->isa_instptr();
684  const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
685  if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
686    bool this_interface = this_inst->klass()->is_interface();
687    bool    t_interface =    t_inst->klass()->is_interface();
688    result = this_interface ^ t_interface;
689  }
690
691  return result;
692}
693
694bool Type::interface_vs_oop(const Type *t) const {
695  if (interface_vs_oop_helper(t)) {
696    return true;
697  }
698  // Now check the speculative parts as well
699  const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
700  const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
701  if (this_spec != NULL && t_spec != NULL) {
702    if (this_spec->interface_vs_oop_helper(t_spec)) {
703      return true;
704    }
705    return false;
706  }
707  if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
708    return true;
709  }
710  if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
711    return true;
712  }
713  return false;
714}
715
716#endif
717
718//------------------------------meet-------------------------------------------
719// Compute the MEET of two types.  NOT virtual.  It enforces that meet is
720// commutative and the lattice is symmetric.
721const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
722  if (isa_narrowoop() && t->isa_narrowoop()) {
723    const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
724    return result->make_narrowoop();
725  }
726  if (isa_narrowklass() && t->isa_narrowklass()) {
727    const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
728    return result->make_narrowklass();
729  }
730
731  const Type *this_t = maybe_remove_speculative(include_speculative);
732  t = t->maybe_remove_speculative(include_speculative);
733
734  const Type *mt = this_t->xmeet(t);
735  if (isa_narrowoop() || t->isa_narrowoop()) return mt;
736  if (isa_narrowklass() || t->isa_narrowklass()) return mt;
737#ifdef ASSERT
738  assert(mt == t->xmeet(this_t), "meet not commutative");
739  const Type* dual_join = mt->_dual;
740  const Type *t2t    = dual_join->xmeet(t->_dual);
741  const Type *t2this = dual_join->xmeet(this_t->_dual);
742
743  // Interface meet Oop is Not Symmetric:
744  // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
745  // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
746
747  if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
748    tty->print_cr("=== Meet Not Symmetric ===");
749    tty->print("t   =                   ");              t->dump(); tty->cr();
750    tty->print("this=                   ");         this_t->dump(); tty->cr();
751    tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
752
753    tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
754    tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
755    tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
756
757    tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
758    tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
759
760    fatal("meet not symmetric" );
761  }
762#endif
763  return mt;
764}
765
766//------------------------------xmeet------------------------------------------
767// Compute the MEET of two types.  It returns a new Type object.
768const Type *Type::xmeet( const Type *t ) const {
769  // Perform a fast test for common case; meeting the same types together.
770  if( this == t ) return this;  // Meeting same type-rep?
771
772  // Meeting TOP with anything?
773  if( _base == Top ) return t;
774
775  // Meeting BOTTOM with anything?
776  if( _base == Bottom ) return BOTTOM;
777
778  // Current "this->_base" is one of: Bad, Multi, Control, Top,
779  // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
780  switch (t->base()) {  // Switch on original type
781
782  // Cut in half the number of cases I must handle.  Only need cases for when
783  // the given enum "t->type" is less than or equal to the local enum "type".
784  case FloatCon:
785  case DoubleCon:
786  case Int:
787  case Long:
788    return t->xmeet(this);
789
790  case OopPtr:
791    return t->xmeet(this);
792
793  case InstPtr:
794    return t->xmeet(this);
795
796  case MetadataPtr:
797  case KlassPtr:
798    return t->xmeet(this);
799
800  case AryPtr:
801    return t->xmeet(this);
802
803  case NarrowOop:
804    return t->xmeet(this);
805
806  case NarrowKlass:
807    return t->xmeet(this);
808
809  case Bad:                     // Type check
810  default:                      // Bogus type not in lattice
811    typerr(t);
812    return Type::BOTTOM;
813
814  case Bottom:                  // Ye Olde Default
815    return t;
816
817  case FloatTop:
818    if( _base == FloatTop ) return this;
819  case FloatBot:                // Float
820    if( _base == FloatBot || _base == FloatTop ) return FLOAT;
821    if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
822    typerr(t);
823    return Type::BOTTOM;
824
825  case DoubleTop:
826    if( _base == DoubleTop ) return this;
827  case DoubleBot:               // Double
828    if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
829    if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
830    typerr(t);
831    return Type::BOTTOM;
832
833  // These next few cases must match exactly or it is a compile-time error.
834  case Control:                 // Control of code
835  case Abio:                    // State of world outside of program
836  case Memory:
837    if( _base == t->_base )  return this;
838    typerr(t);
839    return Type::BOTTOM;
840
841  case Top:                     // Top of the lattice
842    return this;
843  }
844
845  // The type is unchanged
846  return this;
847}
848
849//-----------------------------filter------------------------------------------
850const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
851  const Type* ft = join_helper(kills, include_speculative);
852  if (ft->empty())
853    return Type::TOP;           // Canonical empty value
854  return ft;
855}
856
857//------------------------------xdual------------------------------------------
858// Compute dual right now.
859const Type::TYPES Type::dual_type[Type::lastype] = {
860  Bad,          // Bad
861  Control,      // Control
862  Bottom,       // Top
863  Bad,          // Int - handled in v-call
864  Bad,          // Long - handled in v-call
865  Half,         // Half
866  Bad,          // NarrowOop - handled in v-call
867  Bad,          // NarrowKlass - handled in v-call
868
869  Bad,          // Tuple - handled in v-call
870  Bad,          // Array - handled in v-call
871  Bad,          // VectorS - handled in v-call
872  Bad,          // VectorD - handled in v-call
873  Bad,          // VectorX - handled in v-call
874  Bad,          // VectorY - handled in v-call
875  Bad,          // VectorZ - handled in v-call
876
877  Bad,          // AnyPtr - handled in v-call
878  Bad,          // RawPtr - handled in v-call
879  Bad,          // OopPtr - handled in v-call
880  Bad,          // InstPtr - handled in v-call
881  Bad,          // AryPtr - handled in v-call
882
883  Bad,          //  MetadataPtr - handled in v-call
884  Bad,          // KlassPtr - handled in v-call
885
886  Bad,          // Function - handled in v-call
887  Abio,         // Abio
888  Return_Address,// Return_Address
889  Memory,       // Memory
890  FloatBot,     // FloatTop
891  FloatCon,     // FloatCon
892  FloatTop,     // FloatBot
893  DoubleBot,    // DoubleTop
894  DoubleCon,    // DoubleCon
895  DoubleTop,    // DoubleBot
896  Top           // Bottom
897};
898
899const Type *Type::xdual() const {
900  // Note: the base() accessor asserts the sanity of _base.
901  assert(_type_info[base()].dual_type != Bad, "implement with v-call");
902  return new Type(_type_info[_base].dual_type);
903}
904
905//------------------------------has_memory-------------------------------------
906bool Type::has_memory() const {
907  Type::TYPES tx = base();
908  if (tx == Memory) return true;
909  if (tx == Tuple) {
910    const TypeTuple *t = is_tuple();
911    for (uint i=0; i < t->cnt(); i++) {
912      tx = t->field_at(i)->base();
913      if (tx == Memory)  return true;
914    }
915  }
916  return false;
917}
918
919#ifndef PRODUCT
920//------------------------------dump2------------------------------------------
921void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
922  st->print("%s", _type_info[_base].msg);
923}
924
925//------------------------------dump-------------------------------------------
926void Type::dump_on(outputStream *st) const {
927  ResourceMark rm;
928  Dict d(cmpkey,hashkey);       // Stop recursive type dumping
929  dump2(d,1, st);
930  if (is_ptr_to_narrowoop()) {
931    st->print(" [narrow]");
932  } else if (is_ptr_to_narrowklass()) {
933    st->print(" [narrowklass]");
934  }
935}
936#endif
937
938//------------------------------singleton--------------------------------------
939// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
940// constants (Ldi nodes).  Singletons are integer, float or double constants.
941bool Type::singleton(void) const {
942  return _base == Top || _base == Half;
943}
944
945//------------------------------empty------------------------------------------
946// TRUE if Type is a type with no values, FALSE otherwise.
947bool Type::empty(void) const {
948  switch (_base) {
949  case DoubleTop:
950  case FloatTop:
951  case Top:
952    return true;
953
954  case Half:
955  case Abio:
956  case Return_Address:
957  case Memory:
958  case Bottom:
959  case FloatBot:
960  case DoubleBot:
961    return false;  // never a singleton, therefore never empty
962  }
963
964  ShouldNotReachHere();
965  return false;
966}
967
968//------------------------------dump_stats-------------------------------------
969// Dump collected statistics to stderr
970#ifndef PRODUCT
971void Type::dump_stats() {
972  tty->print("Types made: %d\n", type_dict()->Size());
973}
974#endif
975
976//------------------------------typerr-----------------------------------------
977void Type::typerr( const Type *t ) const {
978#ifndef PRODUCT
979  tty->print("\nError mixing types: ");
980  dump();
981  tty->print(" and ");
982  t->dump();
983  tty->print("\n");
984#endif
985  ShouldNotReachHere();
986}
987
988
989//=============================================================================
990// Convenience common pre-built types.
991const TypeF *TypeF::ZERO;       // Floating point zero
992const TypeF *TypeF::ONE;        // Floating point one
993
994//------------------------------make-------------------------------------------
995// Create a float constant
996const TypeF *TypeF::make(float f) {
997  return (TypeF*)(new TypeF(f))->hashcons();
998}
999
1000//------------------------------meet-------------------------------------------
1001// Compute the MEET of two types.  It returns a new Type object.
1002const Type *TypeF::xmeet( const Type *t ) const {
1003  // Perform a fast test for common case; meeting the same types together.
1004  if( this == t ) return this;  // Meeting same type-rep?
1005
1006  // Current "this->_base" is FloatCon
1007  switch (t->base()) {          // Switch on original type
1008  case AnyPtr:                  // Mixing with oops happens when javac
1009  case RawPtr:                  // reuses local variables
1010  case OopPtr:
1011  case InstPtr:
1012  case AryPtr:
1013  case MetadataPtr:
1014  case KlassPtr:
1015  case NarrowOop:
1016  case NarrowKlass:
1017  case Int:
1018  case Long:
1019  case DoubleTop:
1020  case DoubleCon:
1021  case DoubleBot:
1022  case Bottom:                  // Ye Olde Default
1023    return Type::BOTTOM;
1024
1025  case FloatBot:
1026    return t;
1027
1028  default:                      // All else is a mistake
1029    typerr(t);
1030
1031  case FloatCon:                // Float-constant vs Float-constant?
1032    if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1033                                // must compare bitwise as positive zero, negative zero and NaN have
1034                                // all the same representation in C++
1035      return FLOAT;             // Return generic float
1036                                // Equal constants
1037  case Top:
1038  case FloatTop:
1039    break;                      // Return the float constant
1040  }
1041  return this;                  // Return the float constant
1042}
1043
1044//------------------------------xdual------------------------------------------
1045// Dual: symmetric
1046const Type *TypeF::xdual() const {
1047  return this;
1048}
1049
1050//------------------------------eq---------------------------------------------
1051// Structural equality check for Type representations
1052bool TypeF::eq(const Type *t) const {
1053  // Bitwise comparison to distinguish between +/-0. These values must be treated
1054  // as different to be consistent with C1 and the interpreter.
1055  return (jint_cast(_f) == jint_cast(t->getf()));
1056}
1057
1058//------------------------------hash-------------------------------------------
1059// Type-specific hashing function.
1060int TypeF::hash(void) const {
1061  return *(int*)(&_f);
1062}
1063
1064//------------------------------is_finite--------------------------------------
1065// Has a finite value
1066bool TypeF::is_finite() const {
1067  return g_isfinite(getf()) != 0;
1068}
1069
1070//------------------------------is_nan-----------------------------------------
1071// Is not a number (NaN)
1072bool TypeF::is_nan()    const {
1073  return g_isnan(getf()) != 0;
1074}
1075
1076//------------------------------dump2------------------------------------------
1077// Dump float constant Type
1078#ifndef PRODUCT
1079void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1080  Type::dump2(d,depth, st);
1081  st->print("%f", _f);
1082}
1083#endif
1084
1085//------------------------------singleton--------------------------------------
1086// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1087// constants (Ldi nodes).  Singletons are integer, float or double constants
1088// or a single symbol.
1089bool TypeF::singleton(void) const {
1090  return true;                  // Always a singleton
1091}
1092
1093bool TypeF::empty(void) const {
1094  return false;                 // always exactly a singleton
1095}
1096
1097//=============================================================================
1098// Convenience common pre-built types.
1099const TypeD *TypeD::ZERO;       // Floating point zero
1100const TypeD *TypeD::ONE;        // Floating point one
1101
1102//------------------------------make-------------------------------------------
1103const TypeD *TypeD::make(double d) {
1104  return (TypeD*)(new TypeD(d))->hashcons();
1105}
1106
1107//------------------------------meet-------------------------------------------
1108// Compute the MEET of two types.  It returns a new Type object.
1109const Type *TypeD::xmeet( const Type *t ) const {
1110  // Perform a fast test for common case; meeting the same types together.
1111  if( this == t ) return this;  // Meeting same type-rep?
1112
1113  // Current "this->_base" is DoubleCon
1114  switch (t->base()) {          // Switch on original type
1115  case AnyPtr:                  // Mixing with oops happens when javac
1116  case RawPtr:                  // reuses local variables
1117  case OopPtr:
1118  case InstPtr:
1119  case AryPtr:
1120  case MetadataPtr:
1121  case KlassPtr:
1122  case NarrowOop:
1123  case NarrowKlass:
1124  case Int:
1125  case Long:
1126  case FloatTop:
1127  case FloatCon:
1128  case FloatBot:
1129  case Bottom:                  // Ye Olde Default
1130    return Type::BOTTOM;
1131
1132  case DoubleBot:
1133    return t;
1134
1135  default:                      // All else is a mistake
1136    typerr(t);
1137
1138  case DoubleCon:               // Double-constant vs Double-constant?
1139    if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1140      return DOUBLE;            // Return generic double
1141  case Top:
1142  case DoubleTop:
1143    break;
1144  }
1145  return this;                  // Return the double constant
1146}
1147
1148//------------------------------xdual------------------------------------------
1149// Dual: symmetric
1150const Type *TypeD::xdual() const {
1151  return this;
1152}
1153
1154//------------------------------eq---------------------------------------------
1155// Structural equality check for Type representations
1156bool TypeD::eq(const Type *t) const {
1157  // Bitwise comparison to distinguish between +/-0. These values must be treated
1158  // as different to be consistent with C1 and the interpreter.
1159  return (jlong_cast(_d) == jlong_cast(t->getd()));
1160}
1161
1162//------------------------------hash-------------------------------------------
1163// Type-specific hashing function.
1164int TypeD::hash(void) const {
1165  return *(int*)(&_d);
1166}
1167
1168//------------------------------is_finite--------------------------------------
1169// Has a finite value
1170bool TypeD::is_finite() const {
1171  return g_isfinite(getd()) != 0;
1172}
1173
1174//------------------------------is_nan-----------------------------------------
1175// Is not a number (NaN)
1176bool TypeD::is_nan()    const {
1177  return g_isnan(getd()) != 0;
1178}
1179
1180//------------------------------dump2------------------------------------------
1181// Dump double constant Type
1182#ifndef PRODUCT
1183void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1184  Type::dump2(d,depth,st);
1185  st->print("%f", _d);
1186}
1187#endif
1188
1189//------------------------------singleton--------------------------------------
1190// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1191// constants (Ldi nodes).  Singletons are integer, float or double constants
1192// or a single symbol.
1193bool TypeD::singleton(void) const {
1194  return true;                  // Always a singleton
1195}
1196
1197bool TypeD::empty(void) const {
1198  return false;                 // always exactly a singleton
1199}
1200
1201//=============================================================================
1202// Convience common pre-built types.
1203const TypeInt *TypeInt::MINUS_1;// -1
1204const TypeInt *TypeInt::ZERO;   // 0
1205const TypeInt *TypeInt::ONE;    // 1
1206const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1207const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1208const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1209const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1210const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1211const TypeInt *TypeInt::CC_LE;  // [-1,0]
1212const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1213const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1214const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1215const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1216const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1217const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1218const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1219const TypeInt *TypeInt::INT;    // 32-bit integers
1220const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1221const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1222
1223//------------------------------TypeInt----------------------------------------
1224TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1225}
1226
1227//------------------------------make-------------------------------------------
1228const TypeInt *TypeInt::make( jint lo ) {
1229  return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1230}
1231
1232static int normalize_int_widen( jint lo, jint hi, int w ) {
1233  // Certain normalizations keep us sane when comparing types.
1234  // The 'SMALLINT' covers constants and also CC and its relatives.
1235  if (lo <= hi) {
1236    if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1237    if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1238  } else {
1239    if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1240    if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1241  }
1242  return w;
1243}
1244
1245const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1246  w = normalize_int_widen(lo, hi, w);
1247  return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1248}
1249
1250//------------------------------meet-------------------------------------------
1251// Compute the MEET of two types.  It returns a new Type representation object
1252// with reference count equal to the number of Types pointing at it.
1253// Caller should wrap a Types around it.
1254const Type *TypeInt::xmeet( const Type *t ) const {
1255  // Perform a fast test for common case; meeting the same types together.
1256  if( this == t ) return this;  // Meeting same type?
1257
1258  // Currently "this->_base" is a TypeInt
1259  switch (t->base()) {          // Switch on original type
1260  case AnyPtr:                  // Mixing with oops happens when javac
1261  case RawPtr:                  // reuses local variables
1262  case OopPtr:
1263  case InstPtr:
1264  case AryPtr:
1265  case MetadataPtr:
1266  case KlassPtr:
1267  case NarrowOop:
1268  case NarrowKlass:
1269  case Long:
1270  case FloatTop:
1271  case FloatCon:
1272  case FloatBot:
1273  case DoubleTop:
1274  case DoubleCon:
1275  case DoubleBot:
1276  case Bottom:                  // Ye Olde Default
1277    return Type::BOTTOM;
1278  default:                      // All else is a mistake
1279    typerr(t);
1280  case Top:                     // No change
1281    return this;
1282  case Int:                     // Int vs Int?
1283    break;
1284  }
1285
1286  // Expand covered set
1287  const TypeInt *r = t->is_int();
1288  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1289}
1290
1291//------------------------------xdual------------------------------------------
1292// Dual: reverse hi & lo; flip widen
1293const Type *TypeInt::xdual() const {
1294  int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1295  return new TypeInt(_hi,_lo,w);
1296}
1297
1298//------------------------------widen------------------------------------------
1299// Only happens for optimistic top-down optimizations.
1300const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1301  // Coming from TOP or such; no widening
1302  if( old->base() != Int ) return this;
1303  const TypeInt *ot = old->is_int();
1304
1305  // If new guy is equal to old guy, no widening
1306  if( _lo == ot->_lo && _hi == ot->_hi )
1307    return old;
1308
1309  // If new guy contains old, then we widened
1310  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1311    // New contains old
1312    // If new guy is already wider than old, no widening
1313    if( _widen > ot->_widen ) return this;
1314    // If old guy was a constant, do not bother
1315    if (ot->_lo == ot->_hi)  return this;
1316    // Now widen new guy.
1317    // Check for widening too far
1318    if (_widen == WidenMax) {
1319      int max = max_jint;
1320      int min = min_jint;
1321      if (limit->isa_int()) {
1322        max = limit->is_int()->_hi;
1323        min = limit->is_int()->_lo;
1324      }
1325      if (min < _lo && _hi < max) {
1326        // If neither endpoint is extremal yet, push out the endpoint
1327        // which is closer to its respective limit.
1328        if (_lo >= 0 ||                 // easy common case
1329            (juint)(_lo - min) >= (juint)(max - _hi)) {
1330          // Try to widen to an unsigned range type of 31 bits:
1331          return make(_lo, max, WidenMax);
1332        } else {
1333          return make(min, _hi, WidenMax);
1334        }
1335      }
1336      return TypeInt::INT;
1337    }
1338    // Returned widened new guy
1339    return make(_lo,_hi,_widen+1);
1340  }
1341
1342  // If old guy contains new, then we probably widened too far & dropped to
1343  // bottom.  Return the wider fellow.
1344  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1345    return old;
1346
1347  //fatal("Integer value range is not subset");
1348  //return this;
1349  return TypeInt::INT;
1350}
1351
1352//------------------------------narrow---------------------------------------
1353// Only happens for pessimistic optimizations.
1354const Type *TypeInt::narrow( const Type *old ) const {
1355  if (_lo >= _hi)  return this;   // already narrow enough
1356  if (old == NULL)  return this;
1357  const TypeInt* ot = old->isa_int();
1358  if (ot == NULL)  return this;
1359  jint olo = ot->_lo;
1360  jint ohi = ot->_hi;
1361
1362  // If new guy is equal to old guy, no narrowing
1363  if (_lo == olo && _hi == ohi)  return old;
1364
1365  // If old guy was maximum range, allow the narrowing
1366  if (olo == min_jint && ohi == max_jint)  return this;
1367
1368  if (_lo < olo || _hi > ohi)
1369    return this;                // doesn't narrow; pretty wierd
1370
1371  // The new type narrows the old type, so look for a "death march".
1372  // See comments on PhaseTransform::saturate.
1373  juint nrange = (juint)_hi - _lo;
1374  juint orange = (juint)ohi - olo;
1375  if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1376    // Use the new type only if the range shrinks a lot.
1377    // We do not want the optimizer computing 2^31 point by point.
1378    return old;
1379  }
1380
1381  return this;
1382}
1383
1384//-----------------------------filter------------------------------------------
1385const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1386  const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1387  if (ft == NULL || ft->empty())
1388    return Type::TOP;           // Canonical empty value
1389  if (ft->_widen < this->_widen) {
1390    // Do not allow the value of kill->_widen to affect the outcome.
1391    // The widen bits must be allowed to run freely through the graph.
1392    ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1393  }
1394  return ft;
1395}
1396
1397//------------------------------eq---------------------------------------------
1398// Structural equality check for Type representations
1399bool TypeInt::eq( const Type *t ) const {
1400  const TypeInt *r = t->is_int(); // Handy access
1401  return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1402}
1403
1404//------------------------------hash-------------------------------------------
1405// Type-specific hashing function.
1406int TypeInt::hash(void) const {
1407  return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1408}
1409
1410//------------------------------is_finite--------------------------------------
1411// Has a finite value
1412bool TypeInt::is_finite() const {
1413  return true;
1414}
1415
1416//------------------------------dump2------------------------------------------
1417// Dump TypeInt
1418#ifndef PRODUCT
1419static const char* intname(char* buf, jint n) {
1420  if (n == min_jint)
1421    return "min";
1422  else if (n < min_jint + 10000)
1423    sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1424  else if (n == max_jint)
1425    return "max";
1426  else if (n > max_jint - 10000)
1427    sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1428  else
1429    sprintf(buf, INT32_FORMAT, n);
1430  return buf;
1431}
1432
1433void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1434  char buf[40], buf2[40];
1435  if (_lo == min_jint && _hi == max_jint)
1436    st->print("int");
1437  else if (is_con())
1438    st->print("int:%s", intname(buf, get_con()));
1439  else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1440    st->print("bool");
1441  else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1442    st->print("byte");
1443  else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1444    st->print("char");
1445  else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1446    st->print("short");
1447  else if (_hi == max_jint)
1448    st->print("int:>=%s", intname(buf, _lo));
1449  else if (_lo == min_jint)
1450    st->print("int:<=%s", intname(buf, _hi));
1451  else
1452    st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1453
1454  if (_widen != 0 && this != TypeInt::INT)
1455    st->print(":%.*s", _widen, "wwww");
1456}
1457#endif
1458
1459//------------------------------singleton--------------------------------------
1460// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1461// constants.
1462bool TypeInt::singleton(void) const {
1463  return _lo >= _hi;
1464}
1465
1466bool TypeInt::empty(void) const {
1467  return _lo > _hi;
1468}
1469
1470//=============================================================================
1471// Convenience common pre-built types.
1472const TypeLong *TypeLong::MINUS_1;// -1
1473const TypeLong *TypeLong::ZERO; // 0
1474const TypeLong *TypeLong::ONE;  // 1
1475const TypeLong *TypeLong::POS;  // >=0
1476const TypeLong *TypeLong::LONG; // 64-bit integers
1477const TypeLong *TypeLong::INT;  // 32-bit subrange
1478const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1479const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1480
1481//------------------------------TypeLong---------------------------------------
1482TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1483}
1484
1485//------------------------------make-------------------------------------------
1486const TypeLong *TypeLong::make( jlong lo ) {
1487  return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1488}
1489
1490static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1491  // Certain normalizations keep us sane when comparing types.
1492  // The 'SMALLINT' covers constants.
1493  if (lo <= hi) {
1494    if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1495    if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1496  } else {
1497    if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1498    if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1499  }
1500  return w;
1501}
1502
1503const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1504  w = normalize_long_widen(lo, hi, w);
1505  return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1506}
1507
1508
1509//------------------------------meet-------------------------------------------
1510// Compute the MEET of two types.  It returns a new Type representation object
1511// with reference count equal to the number of Types pointing at it.
1512// Caller should wrap a Types around it.
1513const Type *TypeLong::xmeet( const Type *t ) const {
1514  // Perform a fast test for common case; meeting the same types together.
1515  if( this == t ) return this;  // Meeting same type?
1516
1517  // Currently "this->_base" is a TypeLong
1518  switch (t->base()) {          // Switch on original type
1519  case AnyPtr:                  // Mixing with oops happens when javac
1520  case RawPtr:                  // reuses local variables
1521  case OopPtr:
1522  case InstPtr:
1523  case AryPtr:
1524  case MetadataPtr:
1525  case KlassPtr:
1526  case NarrowOop:
1527  case NarrowKlass:
1528  case Int:
1529  case FloatTop:
1530  case FloatCon:
1531  case FloatBot:
1532  case DoubleTop:
1533  case DoubleCon:
1534  case DoubleBot:
1535  case Bottom:                  // Ye Olde Default
1536    return Type::BOTTOM;
1537  default:                      // All else is a mistake
1538    typerr(t);
1539  case Top:                     // No change
1540    return this;
1541  case Long:                    // Long vs Long?
1542    break;
1543  }
1544
1545  // Expand covered set
1546  const TypeLong *r = t->is_long(); // Turn into a TypeLong
1547  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1548}
1549
1550//------------------------------xdual------------------------------------------
1551// Dual: reverse hi & lo; flip widen
1552const Type *TypeLong::xdual() const {
1553  int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1554  return new TypeLong(_hi,_lo,w);
1555}
1556
1557//------------------------------widen------------------------------------------
1558// Only happens for optimistic top-down optimizations.
1559const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1560  // Coming from TOP or such; no widening
1561  if( old->base() != Long ) return this;
1562  const TypeLong *ot = old->is_long();
1563
1564  // If new guy is equal to old guy, no widening
1565  if( _lo == ot->_lo && _hi == ot->_hi )
1566    return old;
1567
1568  // If new guy contains old, then we widened
1569  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1570    // New contains old
1571    // If new guy is already wider than old, no widening
1572    if( _widen > ot->_widen ) return this;
1573    // If old guy was a constant, do not bother
1574    if (ot->_lo == ot->_hi)  return this;
1575    // Now widen new guy.
1576    // Check for widening too far
1577    if (_widen == WidenMax) {
1578      jlong max = max_jlong;
1579      jlong min = min_jlong;
1580      if (limit->isa_long()) {
1581        max = limit->is_long()->_hi;
1582        min = limit->is_long()->_lo;
1583      }
1584      if (min < _lo && _hi < max) {
1585        // If neither endpoint is extremal yet, push out the endpoint
1586        // which is closer to its respective limit.
1587        if (_lo >= 0 ||                 // easy common case
1588            ((julong)_lo - min) >= ((julong)max - _hi)) {
1589          // Try to widen to an unsigned range type of 32/63 bits:
1590          if (max >= max_juint && _hi < max_juint)
1591            return make(_lo, max_juint, WidenMax);
1592          else
1593            return make(_lo, max, WidenMax);
1594        } else {
1595          return make(min, _hi, WidenMax);
1596        }
1597      }
1598      return TypeLong::LONG;
1599    }
1600    // Returned widened new guy
1601    return make(_lo,_hi,_widen+1);
1602  }
1603
1604  // If old guy contains new, then we probably widened too far & dropped to
1605  // bottom.  Return the wider fellow.
1606  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1607    return old;
1608
1609  //  fatal("Long value range is not subset");
1610  // return this;
1611  return TypeLong::LONG;
1612}
1613
1614//------------------------------narrow----------------------------------------
1615// Only happens for pessimistic optimizations.
1616const Type *TypeLong::narrow( const Type *old ) const {
1617  if (_lo >= _hi)  return this;   // already narrow enough
1618  if (old == NULL)  return this;
1619  const TypeLong* ot = old->isa_long();
1620  if (ot == NULL)  return this;
1621  jlong olo = ot->_lo;
1622  jlong ohi = ot->_hi;
1623
1624  // If new guy is equal to old guy, no narrowing
1625  if (_lo == olo && _hi == ohi)  return old;
1626
1627  // If old guy was maximum range, allow the narrowing
1628  if (olo == min_jlong && ohi == max_jlong)  return this;
1629
1630  if (_lo < olo || _hi > ohi)
1631    return this;                // doesn't narrow; pretty wierd
1632
1633  // The new type narrows the old type, so look for a "death march".
1634  // See comments on PhaseTransform::saturate.
1635  julong nrange = _hi - _lo;
1636  julong orange = ohi - olo;
1637  if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1638    // Use the new type only if the range shrinks a lot.
1639    // We do not want the optimizer computing 2^31 point by point.
1640    return old;
1641  }
1642
1643  return this;
1644}
1645
1646//-----------------------------filter------------------------------------------
1647const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1648  const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1649  if (ft == NULL || ft->empty())
1650    return Type::TOP;           // Canonical empty value
1651  if (ft->_widen < this->_widen) {
1652    // Do not allow the value of kill->_widen to affect the outcome.
1653    // The widen bits must be allowed to run freely through the graph.
1654    ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1655  }
1656  return ft;
1657}
1658
1659//------------------------------eq---------------------------------------------
1660// Structural equality check for Type representations
1661bool TypeLong::eq( const Type *t ) const {
1662  const TypeLong *r = t->is_long(); // Handy access
1663  return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1664}
1665
1666//------------------------------hash-------------------------------------------
1667// Type-specific hashing function.
1668int TypeLong::hash(void) const {
1669  return (int)(_lo+_hi+_widen+(int)Type::Long);
1670}
1671
1672//------------------------------is_finite--------------------------------------
1673// Has a finite value
1674bool TypeLong::is_finite() const {
1675  return true;
1676}
1677
1678//------------------------------dump2------------------------------------------
1679// Dump TypeLong
1680#ifndef PRODUCT
1681static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1682  if (n > x) {
1683    if (n >= x + 10000)  return NULL;
1684    sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1685  } else if (n < x) {
1686    if (n <= x - 10000)  return NULL;
1687    sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1688  } else {
1689    return xname;
1690  }
1691  return buf;
1692}
1693
1694static const char* longname(char* buf, jlong n) {
1695  const char* str;
1696  if (n == min_jlong)
1697    return "min";
1698  else if (n < min_jlong + 10000)
1699    sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1700  else if (n == max_jlong)
1701    return "max";
1702  else if (n > max_jlong - 10000)
1703    sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1704  else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1705    return str;
1706  else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1707    return str;
1708  else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1709    return str;
1710  else
1711    sprintf(buf, JLONG_FORMAT, n);
1712  return buf;
1713}
1714
1715void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1716  char buf[80], buf2[80];
1717  if (_lo == min_jlong && _hi == max_jlong)
1718    st->print("long");
1719  else if (is_con())
1720    st->print("long:%s", longname(buf, get_con()));
1721  else if (_hi == max_jlong)
1722    st->print("long:>=%s", longname(buf, _lo));
1723  else if (_lo == min_jlong)
1724    st->print("long:<=%s", longname(buf, _hi));
1725  else
1726    st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1727
1728  if (_widen != 0 && this != TypeLong::LONG)
1729    st->print(":%.*s", _widen, "wwww");
1730}
1731#endif
1732
1733//------------------------------singleton--------------------------------------
1734// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1735// constants
1736bool TypeLong::singleton(void) const {
1737  return _lo >= _hi;
1738}
1739
1740bool TypeLong::empty(void) const {
1741  return _lo > _hi;
1742}
1743
1744//=============================================================================
1745// Convenience common pre-built types.
1746const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1747const TypeTuple *TypeTuple::IFFALSE;
1748const TypeTuple *TypeTuple::IFTRUE;
1749const TypeTuple *TypeTuple::IFNEITHER;
1750const TypeTuple *TypeTuple::LOOPBODY;
1751const TypeTuple *TypeTuple::MEMBAR;
1752const TypeTuple *TypeTuple::STORECONDITIONAL;
1753const TypeTuple *TypeTuple::START_I2C;
1754const TypeTuple *TypeTuple::INT_PAIR;
1755const TypeTuple *TypeTuple::LONG_PAIR;
1756const TypeTuple *TypeTuple::INT_CC_PAIR;
1757const TypeTuple *TypeTuple::LONG_CC_PAIR;
1758
1759
1760//------------------------------make-------------------------------------------
1761// Make a TypeTuple from the range of a method signature
1762const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1763  ciType* return_type = sig->return_type();
1764  uint arg_cnt = return_type->size();
1765  const Type **field_array = fields(arg_cnt);
1766  switch (return_type->basic_type()) {
1767  case T_LONG:
1768    field_array[TypeFunc::Parms]   = TypeLong::LONG;
1769    field_array[TypeFunc::Parms+1] = Type::HALF;
1770    break;
1771  case T_DOUBLE:
1772    field_array[TypeFunc::Parms]   = Type::DOUBLE;
1773    field_array[TypeFunc::Parms+1] = Type::HALF;
1774    break;
1775  case T_OBJECT:
1776  case T_ARRAY:
1777  case T_BOOLEAN:
1778  case T_CHAR:
1779  case T_FLOAT:
1780  case T_BYTE:
1781  case T_SHORT:
1782  case T_INT:
1783    field_array[TypeFunc::Parms] = get_const_type(return_type);
1784    break;
1785  case T_VOID:
1786    break;
1787  default:
1788    ShouldNotReachHere();
1789  }
1790  return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1791}
1792
1793// Make a TypeTuple from the domain of a method signature
1794const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1795  uint arg_cnt = sig->size();
1796
1797  uint pos = TypeFunc::Parms;
1798  const Type **field_array;
1799  if (recv != NULL) {
1800    arg_cnt++;
1801    field_array = fields(arg_cnt);
1802    // Use get_const_type here because it respects UseUniqueSubclasses:
1803    field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1804  } else {
1805    field_array = fields(arg_cnt);
1806  }
1807
1808  int i = 0;
1809  while (pos < TypeFunc::Parms + arg_cnt) {
1810    ciType* type = sig->type_at(i);
1811
1812    switch (type->basic_type()) {
1813    case T_LONG:
1814      field_array[pos++] = TypeLong::LONG;
1815      field_array[pos++] = Type::HALF;
1816      break;
1817    case T_DOUBLE:
1818      field_array[pos++] = Type::DOUBLE;
1819      field_array[pos++] = Type::HALF;
1820      break;
1821    case T_OBJECT:
1822    case T_ARRAY:
1823    case T_BOOLEAN:
1824    case T_CHAR:
1825    case T_FLOAT:
1826    case T_BYTE:
1827    case T_SHORT:
1828    case T_INT:
1829      field_array[pos++] = get_const_type(type);
1830      break;
1831    default:
1832      ShouldNotReachHere();
1833    }
1834    i++;
1835  }
1836
1837  return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1838}
1839
1840const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1841  return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1842}
1843
1844//------------------------------fields-----------------------------------------
1845// Subroutine call type with space allocated for argument types
1846// Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1847const Type **TypeTuple::fields( uint arg_cnt ) {
1848  const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1849  flds[TypeFunc::Control  ] = Type::CONTROL;
1850  flds[TypeFunc::I_O      ] = Type::ABIO;
1851  flds[TypeFunc::Memory   ] = Type::MEMORY;
1852  flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1853  flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1854
1855  return flds;
1856}
1857
1858//------------------------------meet-------------------------------------------
1859// Compute the MEET of two types.  It returns a new Type object.
1860const Type *TypeTuple::xmeet( const Type *t ) const {
1861  // Perform a fast test for common case; meeting the same types together.
1862  if( this == t ) return this;  // Meeting same type-rep?
1863
1864  // Current "this->_base" is Tuple
1865  switch (t->base()) {          // switch on original type
1866
1867  case Bottom:                  // Ye Olde Default
1868    return t;
1869
1870  default:                      // All else is a mistake
1871    typerr(t);
1872
1873  case Tuple: {                 // Meeting 2 signatures?
1874    const TypeTuple *x = t->is_tuple();
1875    assert( _cnt == x->_cnt, "" );
1876    const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1877    for( uint i=0; i<_cnt; i++ )
1878      fields[i] = field_at(i)->xmeet( x->field_at(i) );
1879    return TypeTuple::make(_cnt,fields);
1880  }
1881  case Top:
1882    break;
1883  }
1884  return this;                  // Return the double constant
1885}
1886
1887//------------------------------xdual------------------------------------------
1888// Dual: compute field-by-field dual
1889const Type *TypeTuple::xdual() const {
1890  const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1891  for( uint i=0; i<_cnt; i++ )
1892    fields[i] = _fields[i]->dual();
1893  return new TypeTuple(_cnt,fields);
1894}
1895
1896//------------------------------eq---------------------------------------------
1897// Structural equality check for Type representations
1898bool TypeTuple::eq( const Type *t ) const {
1899  const TypeTuple *s = (const TypeTuple *)t;
1900  if (_cnt != s->_cnt)  return false;  // Unequal field counts
1901  for (uint i = 0; i < _cnt; i++)
1902    if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1903      return false;             // Missed
1904  return true;
1905}
1906
1907//------------------------------hash-------------------------------------------
1908// Type-specific hashing function.
1909int TypeTuple::hash(void) const {
1910  intptr_t sum = _cnt;
1911  for( uint i=0; i<_cnt; i++ )
1912    sum += (intptr_t)_fields[i];     // Hash on pointers directly
1913  return sum;
1914}
1915
1916//------------------------------dump2------------------------------------------
1917// Dump signature Type
1918#ifndef PRODUCT
1919void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1920  st->print("{");
1921  if( !depth || d[this] ) {     // Check for recursive print
1922    st->print("...}");
1923    return;
1924  }
1925  d.Insert((void*)this, (void*)this);   // Stop recursion
1926  if( _cnt ) {
1927    uint i;
1928    for( i=0; i<_cnt-1; i++ ) {
1929      st->print("%d:", i);
1930      _fields[i]->dump2(d, depth-1, st);
1931      st->print(", ");
1932    }
1933    st->print("%d:", i);
1934    _fields[i]->dump2(d, depth-1, st);
1935  }
1936  st->print("}");
1937}
1938#endif
1939
1940//------------------------------singleton--------------------------------------
1941// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1942// constants (Ldi nodes).  Singletons are integer, float or double constants
1943// or a single symbol.
1944bool TypeTuple::singleton(void) const {
1945  return false;                 // Never a singleton
1946}
1947
1948bool TypeTuple::empty(void) const {
1949  for( uint i=0; i<_cnt; i++ ) {
1950    if (_fields[i]->empty())  return true;
1951  }
1952  return false;
1953}
1954
1955//=============================================================================
1956// Convenience common pre-built types.
1957
1958inline const TypeInt* normalize_array_size(const TypeInt* size) {
1959  // Certain normalizations keep us sane when comparing types.
1960  // We do not want arrayOop variables to differ only by the wideness
1961  // of their index types.  Pick minimum wideness, since that is the
1962  // forced wideness of small ranges anyway.
1963  if (size->_widen != Type::WidenMin)
1964    return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1965  else
1966    return size;
1967}
1968
1969//------------------------------make-------------------------------------------
1970const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1971  if (UseCompressedOops && elem->isa_oopptr()) {
1972    elem = elem->make_narrowoop();
1973  }
1974  size = normalize_array_size(size);
1975  return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1976}
1977
1978//------------------------------meet-------------------------------------------
1979// Compute the MEET of two types.  It returns a new Type object.
1980const Type *TypeAry::xmeet( const Type *t ) const {
1981  // Perform a fast test for common case; meeting the same types together.
1982  if( this == t ) return this;  // Meeting same type-rep?
1983
1984  // Current "this->_base" is Ary
1985  switch (t->base()) {          // switch on original type
1986
1987  case Bottom:                  // Ye Olde Default
1988    return t;
1989
1990  default:                      // All else is a mistake
1991    typerr(t);
1992
1993  case Array: {                 // Meeting 2 arrays?
1994    const TypeAry *a = t->is_ary();
1995    return TypeAry::make(_elem->meet_speculative(a->_elem),
1996                         _size->xmeet(a->_size)->is_int(),
1997                         _stable & a->_stable);
1998  }
1999  case Top:
2000    break;
2001  }
2002  return this;                  // Return the double constant
2003}
2004
2005//------------------------------xdual------------------------------------------
2006// Dual: compute field-by-field dual
2007const Type *TypeAry::xdual() const {
2008  const TypeInt* size_dual = _size->dual()->is_int();
2009  size_dual = normalize_array_size(size_dual);
2010  return new TypeAry(_elem->dual(), size_dual, !_stable);
2011}
2012
2013//------------------------------eq---------------------------------------------
2014// Structural equality check for Type representations
2015bool TypeAry::eq( const Type *t ) const {
2016  const TypeAry *a = (const TypeAry*)t;
2017  return _elem == a->_elem &&
2018    _stable == a->_stable &&
2019    _size == a->_size;
2020}
2021
2022//------------------------------hash-------------------------------------------
2023// Type-specific hashing function.
2024int TypeAry::hash(void) const {
2025  return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2026}
2027
2028/**
2029 * Return same type without a speculative part in the element
2030 */
2031const Type* TypeAry::remove_speculative() const {
2032  return make(_elem->remove_speculative(), _size, _stable);
2033}
2034
2035/**
2036 * Return same type with cleaned up speculative part of element
2037 */
2038const Type* TypeAry::cleanup_speculative() const {
2039  return make(_elem->cleanup_speculative(), _size, _stable);
2040}
2041
2042/**
2043 * Return same type but with a different inline depth (used for speculation)
2044 *
2045 * @param depth  depth to meet with
2046 */
2047const TypePtr* TypePtr::with_inline_depth(int depth) const {
2048  if (!UseInlineDepthForSpeculativeTypes) {
2049    return this;
2050  }
2051  return make(AnyPtr, _ptr, _offset, _speculative, depth);
2052}
2053
2054//----------------------interface_vs_oop---------------------------------------
2055#ifdef ASSERT
2056bool TypeAry::interface_vs_oop(const Type *t) const {
2057  const TypeAry* t_ary = t->is_ary();
2058  if (t_ary) {
2059    const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2060    const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2061    if(this_ptr != NULL && t_ptr != NULL) {
2062      return this_ptr->interface_vs_oop(t_ptr);
2063    }
2064  }
2065  return false;
2066}
2067#endif
2068
2069//------------------------------dump2------------------------------------------
2070#ifndef PRODUCT
2071void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2072  if (_stable)  st->print("stable:");
2073  _elem->dump2(d, depth, st);
2074  st->print("[");
2075  _size->dump2(d, depth, st);
2076  st->print("]");
2077}
2078#endif
2079
2080//------------------------------singleton--------------------------------------
2081// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2082// constants (Ldi nodes).  Singletons are integer, float or double constants
2083// or a single symbol.
2084bool TypeAry::singleton(void) const {
2085  return false;                 // Never a singleton
2086}
2087
2088bool TypeAry::empty(void) const {
2089  return _elem->empty() || _size->empty();
2090}
2091
2092//--------------------------ary_must_be_exact----------------------------------
2093bool TypeAry::ary_must_be_exact() const {
2094  if (!UseExactTypes)       return false;
2095  // This logic looks at the element type of an array, and returns true
2096  // if the element type is either a primitive or a final instance class.
2097  // In such cases, an array built on this ary must have no subclasses.
2098  if (_elem == BOTTOM)      return false;  // general array not exact
2099  if (_elem == TOP   )      return false;  // inverted general array not exact
2100  const TypeOopPtr*  toop = NULL;
2101  if (UseCompressedOops && _elem->isa_narrowoop()) {
2102    toop = _elem->make_ptr()->isa_oopptr();
2103  } else {
2104    toop = _elem->isa_oopptr();
2105  }
2106  if (!toop)                return true;   // a primitive type, like int
2107  ciKlass* tklass = toop->klass();
2108  if (tklass == NULL)       return false;  // unloaded class
2109  if (!tklass->is_loaded()) return false;  // unloaded class
2110  const TypeInstPtr* tinst;
2111  if (_elem->isa_narrowoop())
2112    tinst = _elem->make_ptr()->isa_instptr();
2113  else
2114    tinst = _elem->isa_instptr();
2115  if (tinst)
2116    return tklass->as_instance_klass()->is_final();
2117  const TypeAryPtr*  tap;
2118  if (_elem->isa_narrowoop())
2119    tap = _elem->make_ptr()->isa_aryptr();
2120  else
2121    tap = _elem->isa_aryptr();
2122  if (tap)
2123    return tap->ary()->ary_must_be_exact();
2124  return false;
2125}
2126
2127//==============================TypeVect=======================================
2128// Convenience common pre-built types.
2129const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2130const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2131const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2132const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2133const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2134
2135//------------------------------make-------------------------------------------
2136const TypeVect* TypeVect::make(const Type *elem, uint length) {
2137  BasicType elem_bt = elem->array_element_basic_type();
2138  assert(is_java_primitive(elem_bt), "only primitive types in vector");
2139  assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2140  assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2141  int size = length * type2aelembytes(elem_bt);
2142  switch (Matcher::vector_ideal_reg(size)) {
2143  case Op_VecS:
2144    return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2145  case Op_RegL:
2146  case Op_VecD:
2147  case Op_RegD:
2148    return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2149  case Op_VecX:
2150    return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2151  case Op_VecY:
2152    return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2153  case Op_VecZ:
2154    return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2155  }
2156 ShouldNotReachHere();
2157  return NULL;
2158}
2159
2160//------------------------------meet-------------------------------------------
2161// Compute the MEET of two types.  It returns a new Type object.
2162const Type *TypeVect::xmeet( const Type *t ) const {
2163  // Perform a fast test for common case; meeting the same types together.
2164  if( this == t ) return this;  // Meeting same type-rep?
2165
2166  // Current "this->_base" is Vector
2167  switch (t->base()) {          // switch on original type
2168
2169  case Bottom:                  // Ye Olde Default
2170    return t;
2171
2172  default:                      // All else is a mistake
2173    typerr(t);
2174
2175  case VectorS:
2176  case VectorD:
2177  case VectorX:
2178  case VectorY:
2179  case VectorZ: {                // Meeting 2 vectors?
2180    const TypeVect* v = t->is_vect();
2181    assert(  base() == v->base(), "");
2182    assert(length() == v->length(), "");
2183    assert(element_basic_type() == v->element_basic_type(), "");
2184    return TypeVect::make(_elem->xmeet(v->_elem), _length);
2185  }
2186  case Top:
2187    break;
2188  }
2189  return this;
2190}
2191
2192//------------------------------xdual------------------------------------------
2193// Dual: compute field-by-field dual
2194const Type *TypeVect::xdual() const {
2195  return new TypeVect(base(), _elem->dual(), _length);
2196}
2197
2198//------------------------------eq---------------------------------------------
2199// Structural equality check for Type representations
2200bool TypeVect::eq(const Type *t) const {
2201  const TypeVect *v = t->is_vect();
2202  return (_elem == v->_elem) && (_length == v->_length);
2203}
2204
2205//------------------------------hash-------------------------------------------
2206// Type-specific hashing function.
2207int TypeVect::hash(void) const {
2208  return (intptr_t)_elem + (intptr_t)_length;
2209}
2210
2211//------------------------------singleton--------------------------------------
2212// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2213// constants (Ldi nodes).  Vector is singleton if all elements are the same
2214// constant value (when vector is created with Replicate code).
2215bool TypeVect::singleton(void) const {
2216// There is no Con node for vectors yet.
2217//  return _elem->singleton();
2218  return false;
2219}
2220
2221bool TypeVect::empty(void) const {
2222  return _elem->empty();
2223}
2224
2225//------------------------------dump2------------------------------------------
2226#ifndef PRODUCT
2227void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2228  switch (base()) {
2229  case VectorS:
2230    st->print("vectors["); break;
2231  case VectorD:
2232    st->print("vectord["); break;
2233  case VectorX:
2234    st->print("vectorx["); break;
2235  case VectorY:
2236    st->print("vectory["); break;
2237  case VectorZ:
2238    st->print("vectorz["); break;
2239  default:
2240    ShouldNotReachHere();
2241  }
2242  st->print("%d]:{", _length);
2243  _elem->dump2(d, depth, st);
2244  st->print("}");
2245}
2246#endif
2247
2248
2249//=============================================================================
2250// Convenience common pre-built types.
2251const TypePtr *TypePtr::NULL_PTR;
2252const TypePtr *TypePtr::NOTNULL;
2253const TypePtr *TypePtr::BOTTOM;
2254
2255//------------------------------meet-------------------------------------------
2256// Meet over the PTR enum
2257const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2258  //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2259  { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2260  { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2261  { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2262  { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2263  { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2264  { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2265};
2266
2267//------------------------------make-------------------------------------------
2268const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2269  return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2270}
2271
2272//------------------------------cast_to_ptr_type-------------------------------
2273const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2274  assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2275  if( ptr == _ptr ) return this;
2276  return make(_base, ptr, _offset, _speculative, _inline_depth);
2277}
2278
2279//------------------------------get_con----------------------------------------
2280intptr_t TypePtr::get_con() const {
2281  assert( _ptr == Null, "" );
2282  return _offset;
2283}
2284
2285//------------------------------meet-------------------------------------------
2286// Compute the MEET of two types.  It returns a new Type object.
2287const Type *TypePtr::xmeet(const Type *t) const {
2288  const Type* res = xmeet_helper(t);
2289  if (res->isa_ptr() == NULL) {
2290    return res;
2291  }
2292
2293  const TypePtr* res_ptr = res->is_ptr();
2294  if (res_ptr->speculative() != NULL) {
2295    // type->speculative() == NULL means that speculation is no better
2296    // than type, i.e. type->speculative() == type. So there are 2
2297    // ways to represent the fact that we have no useful speculative
2298    // data and we should use a single one to be able to test for
2299    // equality between types. Check whether type->speculative() ==
2300    // type and set speculative to NULL if it is the case.
2301    if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2302      return res_ptr->remove_speculative();
2303    }
2304  }
2305
2306  return res;
2307}
2308
2309const Type *TypePtr::xmeet_helper(const Type *t) const {
2310  // Perform a fast test for common case; meeting the same types together.
2311  if( this == t ) return this;  // Meeting same type-rep?
2312
2313  // Current "this->_base" is AnyPtr
2314  switch (t->base()) {          // switch on original type
2315  case Int:                     // Mixing ints & oops happens when javac
2316  case Long:                    // reuses local variables
2317  case FloatTop:
2318  case FloatCon:
2319  case FloatBot:
2320  case DoubleTop:
2321  case DoubleCon:
2322  case DoubleBot:
2323  case NarrowOop:
2324  case NarrowKlass:
2325  case Bottom:                  // Ye Olde Default
2326    return Type::BOTTOM;
2327  case Top:
2328    return this;
2329
2330  case AnyPtr: {                // Meeting to AnyPtrs
2331    const TypePtr *tp = t->is_ptr();
2332    const TypePtr* speculative = xmeet_speculative(tp);
2333    int depth = meet_inline_depth(tp->inline_depth());
2334    return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2335  }
2336  case RawPtr:                  // For these, flip the call around to cut down
2337  case OopPtr:
2338  case InstPtr:                 // on the cases I have to handle.
2339  case AryPtr:
2340  case MetadataPtr:
2341  case KlassPtr:
2342    return t->xmeet(this);      // Call in reverse direction
2343  default:                      // All else is a mistake
2344    typerr(t);
2345
2346  }
2347  return this;
2348}
2349
2350//------------------------------meet_offset------------------------------------
2351int TypePtr::meet_offset( int offset ) const {
2352  // Either is 'TOP' offset?  Return the other offset!
2353  if( _offset == OffsetTop ) return offset;
2354  if( offset == OffsetTop ) return _offset;
2355  // If either is different, return 'BOTTOM' offset
2356  if( _offset != offset ) return OffsetBot;
2357  return _offset;
2358}
2359
2360//------------------------------dual_offset------------------------------------
2361int TypePtr::dual_offset( ) const {
2362  if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2363  if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2364  return _offset;               // Map everything else into self
2365}
2366
2367//------------------------------xdual------------------------------------------
2368// Dual: compute field-by-field dual
2369const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2370  BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2371};
2372const Type *TypePtr::xdual() const {
2373  return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2374}
2375
2376//------------------------------xadd_offset------------------------------------
2377int TypePtr::xadd_offset( intptr_t offset ) const {
2378  // Adding to 'TOP' offset?  Return 'TOP'!
2379  if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2380  // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2381  if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2382  // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2383  offset += (intptr_t)_offset;
2384  if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2385
2386  // assert( _offset >= 0 && _offset+offset >= 0, "" );
2387  // It is possible to construct a negative offset during PhaseCCP
2388
2389  return (int)offset;        // Sum valid offsets
2390}
2391
2392//------------------------------add_offset-------------------------------------
2393const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2394  return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2395}
2396
2397//------------------------------eq---------------------------------------------
2398// Structural equality check for Type representations
2399bool TypePtr::eq( const Type *t ) const {
2400  const TypePtr *a = (const TypePtr*)t;
2401  return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2402}
2403
2404//------------------------------hash-------------------------------------------
2405// Type-specific hashing function.
2406int TypePtr::hash(void) const {
2407  return java_add(java_add(_ptr, _offset), java_add( hash_speculative(), _inline_depth));
2408;
2409}
2410
2411/**
2412 * Return same type without a speculative part
2413 */
2414const Type* TypePtr::remove_speculative() const {
2415  if (_speculative == NULL) {
2416    return this;
2417  }
2418  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2419  return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2420}
2421
2422/**
2423 * Return same type but drop speculative part if we know we won't use
2424 * it
2425 */
2426const Type* TypePtr::cleanup_speculative() const {
2427  if (speculative() == NULL) {
2428    return this;
2429  }
2430  const Type* no_spec = remove_speculative();
2431  // If this is NULL_PTR then we don't need the speculative type
2432  // (with_inline_depth in case the current type inline depth is
2433  // InlineDepthTop)
2434  if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2435    return no_spec;
2436  }
2437  if (above_centerline(speculative()->ptr())) {
2438    return no_spec;
2439  }
2440  const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2441  // If the speculative may be null and is an inexact klass then it
2442  // doesn't help
2443  if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2444    return no_spec;
2445  }
2446  return this;
2447}
2448
2449/**
2450 * dual of the speculative part of the type
2451 */
2452const TypePtr* TypePtr::dual_speculative() const {
2453  if (_speculative == NULL) {
2454    return NULL;
2455  }
2456  return _speculative->dual()->is_ptr();
2457}
2458
2459/**
2460 * meet of the speculative parts of 2 types
2461 *
2462 * @param other  type to meet with
2463 */
2464const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2465  bool this_has_spec = (_speculative != NULL);
2466  bool other_has_spec = (other->speculative() != NULL);
2467
2468  if (!this_has_spec && !other_has_spec) {
2469    return NULL;
2470  }
2471
2472  // If we are at a point where control flow meets and one branch has
2473  // a speculative type and the other has not, we meet the speculative
2474  // type of one branch with the actual type of the other. If the
2475  // actual type is exact and the speculative is as well, then the
2476  // result is a speculative type which is exact and we can continue
2477  // speculation further.
2478  const TypePtr* this_spec = _speculative;
2479  const TypePtr* other_spec = other->speculative();
2480
2481  if (!this_has_spec) {
2482    this_spec = this;
2483  }
2484
2485  if (!other_has_spec) {
2486    other_spec = other;
2487  }
2488
2489  return this_spec->meet(other_spec)->is_ptr();
2490}
2491
2492/**
2493 * dual of the inline depth for this type (used for speculation)
2494 */
2495int TypePtr::dual_inline_depth() const {
2496  return -inline_depth();
2497}
2498
2499/**
2500 * meet of 2 inline depths (used for speculation)
2501 *
2502 * @param depth  depth to meet with
2503 */
2504int TypePtr::meet_inline_depth(int depth) const {
2505  return MAX2(inline_depth(), depth);
2506}
2507
2508/**
2509 * Are the speculative parts of 2 types equal?
2510 *
2511 * @param other  type to compare this one to
2512 */
2513bool TypePtr::eq_speculative(const TypePtr* other) const {
2514  if (_speculative == NULL || other->speculative() == NULL) {
2515    return _speculative == other->speculative();
2516  }
2517
2518  if (_speculative->base() != other->speculative()->base()) {
2519    return false;
2520  }
2521
2522  return _speculative->eq(other->speculative());
2523}
2524
2525/**
2526 * Hash of the speculative part of the type
2527 */
2528int TypePtr::hash_speculative() const {
2529  if (_speculative == NULL) {
2530    return 0;
2531  }
2532
2533  return _speculative->hash();
2534}
2535
2536/**
2537 * add offset to the speculative part of the type
2538 *
2539 * @param offset  offset to add
2540 */
2541const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2542  if (_speculative == NULL) {
2543    return NULL;
2544  }
2545  return _speculative->add_offset(offset)->is_ptr();
2546}
2547
2548/**
2549 * return exact klass from the speculative type if there's one
2550 */
2551ciKlass* TypePtr::speculative_type() const {
2552  if (_speculative != NULL && _speculative->isa_oopptr()) {
2553    const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2554    if (speculative->klass_is_exact()) {
2555      return speculative->klass();
2556    }
2557  }
2558  return NULL;
2559}
2560
2561/**
2562 * return true if speculative type may be null
2563 */
2564bool TypePtr::speculative_maybe_null() const {
2565  if (_speculative != NULL) {
2566    const TypePtr* speculative = _speculative->join(this)->is_ptr();
2567    return speculative->maybe_null();
2568  }
2569  return true;
2570}
2571
2572/**
2573 * Same as TypePtr::speculative_type() but return the klass only if
2574 * the speculative tells us is not null
2575 */
2576ciKlass* TypePtr::speculative_type_not_null() const {
2577  if (speculative_maybe_null()) {
2578    return NULL;
2579  }
2580  return speculative_type();
2581}
2582
2583/**
2584 * Check whether new profiling would improve speculative type
2585 *
2586 * @param   exact_kls    class from profiling
2587 * @param   inline_depth inlining depth of profile point
2588 *
2589 * @return  true if type profile is valuable
2590 */
2591bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2592  // no profiling?
2593  if (exact_kls == NULL) {
2594    return false;
2595  }
2596  // no speculative type or non exact speculative type?
2597  if (speculative_type() == NULL) {
2598    return true;
2599  }
2600  // If the node already has an exact speculative type keep it,
2601  // unless it was provided by profiling that is at a deeper
2602  // inlining level. Profiling at a higher inlining depth is
2603  // expected to be less accurate.
2604  if (_speculative->inline_depth() == InlineDepthBottom) {
2605    return false;
2606  }
2607  assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2608  return inline_depth < _speculative->inline_depth();
2609}
2610
2611/**
2612 * Check whether new profiling would improve ptr (= tells us it is non
2613 * null)
2614 *
2615 * @param   maybe_null true if profiling tells the ptr may be null
2616 *
2617 * @return  true if ptr profile is valuable
2618 */
2619bool TypePtr::would_improve_ptr(bool maybe_null) const {
2620  // profiling doesn't tell us anything useful
2621  if (maybe_null) {
2622    return false;
2623  }
2624  // We already know this is not be null
2625  if (!this->maybe_null()) {
2626    return false;
2627  }
2628  // We already know the speculative type cannot be null
2629  if (!speculative_maybe_null()) {
2630    return false;
2631  }
2632  return true;
2633}
2634
2635//------------------------------dump2------------------------------------------
2636const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2637  "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2638};
2639
2640#ifndef PRODUCT
2641void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2642  if( _ptr == Null ) st->print("NULL");
2643  else st->print("%s *", ptr_msg[_ptr]);
2644  if( _offset == OffsetTop ) st->print("+top");
2645  else if( _offset == OffsetBot ) st->print("+bot");
2646  else if( _offset ) st->print("+%d", _offset);
2647  dump_inline_depth(st);
2648  dump_speculative(st);
2649}
2650
2651/**
2652 *dump the speculative part of the type
2653 */
2654void TypePtr::dump_speculative(outputStream *st) const {
2655  if (_speculative != NULL) {
2656    st->print(" (speculative=");
2657    _speculative->dump_on(st);
2658    st->print(")");
2659  }
2660}
2661
2662/**
2663 *dump the inline depth of the type
2664 */
2665void TypePtr::dump_inline_depth(outputStream *st) const {
2666  if (_inline_depth != InlineDepthBottom) {
2667    if (_inline_depth == InlineDepthTop) {
2668      st->print(" (inline_depth=InlineDepthTop)");
2669    } else {
2670      st->print(" (inline_depth=%d)", _inline_depth);
2671    }
2672  }
2673}
2674#endif
2675
2676//------------------------------singleton--------------------------------------
2677// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2678// constants
2679bool TypePtr::singleton(void) const {
2680  // TopPTR, Null, AnyNull, Constant are all singletons
2681  return (_offset != OffsetBot) && !below_centerline(_ptr);
2682}
2683
2684bool TypePtr::empty(void) const {
2685  return (_offset == OffsetTop) || above_centerline(_ptr);
2686}
2687
2688//=============================================================================
2689// Convenience common pre-built types.
2690const TypeRawPtr *TypeRawPtr::BOTTOM;
2691const TypeRawPtr *TypeRawPtr::NOTNULL;
2692
2693//------------------------------make-------------------------------------------
2694const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2695  assert( ptr != Constant, "what is the constant?" );
2696  assert( ptr != Null, "Use TypePtr for NULL" );
2697  return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2698}
2699
2700const TypeRawPtr *TypeRawPtr::make( address bits ) {
2701  assert( bits, "Use TypePtr for NULL" );
2702  return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2703}
2704
2705//------------------------------cast_to_ptr_type-------------------------------
2706const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2707  assert( ptr != Constant, "what is the constant?" );
2708  assert( ptr != Null, "Use TypePtr for NULL" );
2709  assert( _bits==0, "Why cast a constant address?");
2710  if( ptr == _ptr ) return this;
2711  return make(ptr);
2712}
2713
2714//------------------------------get_con----------------------------------------
2715intptr_t TypeRawPtr::get_con() const {
2716  assert( _ptr == Null || _ptr == Constant, "" );
2717  return (intptr_t)_bits;
2718}
2719
2720//------------------------------meet-------------------------------------------
2721// Compute the MEET of two types.  It returns a new Type object.
2722const Type *TypeRawPtr::xmeet( const Type *t ) const {
2723  // Perform a fast test for common case; meeting the same types together.
2724  if( this == t ) return this;  // Meeting same type-rep?
2725
2726  // Current "this->_base" is RawPtr
2727  switch( t->base() ) {         // switch on original type
2728  case Bottom:                  // Ye Olde Default
2729    return t;
2730  case Top:
2731    return this;
2732  case AnyPtr:                  // Meeting to AnyPtrs
2733    break;
2734  case RawPtr: {                // might be top, bot, any/not or constant
2735    enum PTR tptr = t->is_ptr()->ptr();
2736    enum PTR ptr = meet_ptr( tptr );
2737    if( ptr == Constant ) {     // Cannot be equal constants, so...
2738      if( tptr == Constant && _ptr != Constant)  return t;
2739      if( _ptr == Constant && tptr != Constant)  return this;
2740      ptr = NotNull;            // Fall down in lattice
2741    }
2742    return make( ptr );
2743  }
2744
2745  case OopPtr:
2746  case InstPtr:
2747  case AryPtr:
2748  case MetadataPtr:
2749  case KlassPtr:
2750    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2751  default:                      // All else is a mistake
2752    typerr(t);
2753  }
2754
2755  // Found an AnyPtr type vs self-RawPtr type
2756  const TypePtr *tp = t->is_ptr();
2757  switch (tp->ptr()) {
2758  case TypePtr::TopPTR:  return this;
2759  case TypePtr::BotPTR:  return t;
2760  case TypePtr::Null:
2761    if( _ptr == TypePtr::TopPTR ) return t;
2762    return TypeRawPtr::BOTTOM;
2763  case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2764  case TypePtr::AnyNull:
2765    if( _ptr == TypePtr::Constant) return this;
2766    return make( meet_ptr(TypePtr::AnyNull) );
2767  default: ShouldNotReachHere();
2768  }
2769  return this;
2770}
2771
2772//------------------------------xdual------------------------------------------
2773// Dual: compute field-by-field dual
2774const Type *TypeRawPtr::xdual() const {
2775  return new TypeRawPtr( dual_ptr(), _bits );
2776}
2777
2778//------------------------------add_offset-------------------------------------
2779const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2780  if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2781  if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2782  if( offset == 0 ) return this; // No change
2783  switch (_ptr) {
2784  case TypePtr::TopPTR:
2785  case TypePtr::BotPTR:
2786  case TypePtr::NotNull:
2787    return this;
2788  case TypePtr::Null:
2789  case TypePtr::Constant: {
2790    address bits = _bits+offset;
2791    if ( bits == 0 ) return TypePtr::NULL_PTR;
2792    return make( bits );
2793  }
2794  default:  ShouldNotReachHere();
2795  }
2796  return NULL;                  // Lint noise
2797}
2798
2799//------------------------------eq---------------------------------------------
2800// Structural equality check for Type representations
2801bool TypeRawPtr::eq( const Type *t ) const {
2802  const TypeRawPtr *a = (const TypeRawPtr*)t;
2803  return _bits == a->_bits && TypePtr::eq(t);
2804}
2805
2806//------------------------------hash-------------------------------------------
2807// Type-specific hashing function.
2808int TypeRawPtr::hash(void) const {
2809  return (intptr_t)_bits + TypePtr::hash();
2810}
2811
2812//------------------------------dump2------------------------------------------
2813#ifndef PRODUCT
2814void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2815  if( _ptr == Constant )
2816    st->print(INTPTR_FORMAT, p2i(_bits));
2817  else
2818    st->print("rawptr:%s", ptr_msg[_ptr]);
2819}
2820#endif
2821
2822//=============================================================================
2823// Convenience common pre-built type.
2824const TypeOopPtr *TypeOopPtr::BOTTOM;
2825
2826//------------------------------TypeOopPtr-------------------------------------
2827TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2828                       int instance_id, const TypePtr* speculative, int inline_depth)
2829  : TypePtr(t, ptr, offset, speculative, inline_depth),
2830    _const_oop(o), _klass(k),
2831    _klass_is_exact(xk),
2832    _is_ptr_to_narrowoop(false),
2833    _is_ptr_to_narrowklass(false),
2834    _is_ptr_to_boxed_value(false),
2835    _instance_id(instance_id) {
2836  if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2837      (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2838    _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2839  }
2840#ifdef _LP64
2841  if (_offset != 0) {
2842    if (_offset == oopDesc::klass_offset_in_bytes()) {
2843      _is_ptr_to_narrowklass = UseCompressedClassPointers;
2844    } else if (klass() == NULL) {
2845      // Array with unknown body type
2846      assert(this->isa_aryptr(), "only arrays without klass");
2847      _is_ptr_to_narrowoop = UseCompressedOops;
2848    } else if (this->isa_aryptr()) {
2849      _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2850                             _offset != arrayOopDesc::length_offset_in_bytes());
2851    } else if (klass()->is_instance_klass()) {
2852      ciInstanceKlass* ik = klass()->as_instance_klass();
2853      ciField* field = NULL;
2854      if (this->isa_klassptr()) {
2855        // Perm objects don't use compressed references
2856      } else if (_offset == OffsetBot || _offset == OffsetTop) {
2857        // unsafe access
2858        _is_ptr_to_narrowoop = UseCompressedOops;
2859      } else { // exclude unsafe ops
2860        assert(this->isa_instptr(), "must be an instance ptr.");
2861
2862        if (klass() == ciEnv::current()->Class_klass() &&
2863            (_offset == java_lang_Class::klass_offset_in_bytes() ||
2864             _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2865          // Special hidden fields from the Class.
2866          assert(this->isa_instptr(), "must be an instance ptr.");
2867          _is_ptr_to_narrowoop = false;
2868        } else if (klass() == ciEnv::current()->Class_klass() &&
2869                   _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2870          // Static fields
2871          assert(o != NULL, "must be constant");
2872          ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2873          ciField* field = k->get_field_by_offset(_offset, true);
2874          assert(field != NULL, "missing field");
2875          BasicType basic_elem_type = field->layout_type();
2876          _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2877                                                       basic_elem_type == T_ARRAY);
2878        } else {
2879          // Instance fields which contains a compressed oop references.
2880          field = ik->get_field_by_offset(_offset, false);
2881          if (field != NULL) {
2882            BasicType basic_elem_type = field->layout_type();
2883            _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2884                                                         basic_elem_type == T_ARRAY);
2885          } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2886            // Compile::find_alias_type() cast exactness on all types to verify
2887            // that it does not affect alias type.
2888            _is_ptr_to_narrowoop = UseCompressedOops;
2889          } else {
2890            // Type for the copy start in LibraryCallKit::inline_native_clone().
2891            _is_ptr_to_narrowoop = UseCompressedOops;
2892          }
2893        }
2894      }
2895    }
2896  }
2897#endif
2898}
2899
2900//------------------------------make-------------------------------------------
2901const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2902                                     const TypePtr* speculative, int inline_depth) {
2903  assert(ptr != Constant, "no constant generic pointers");
2904  ciKlass*  k = Compile::current()->env()->Object_klass();
2905  bool      xk = false;
2906  ciObject* o = NULL;
2907  return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2908}
2909
2910
2911//------------------------------cast_to_ptr_type-------------------------------
2912const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2913  assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2914  if( ptr == _ptr ) return this;
2915  return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2916}
2917
2918//-----------------------------cast_to_instance_id----------------------------
2919const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2920  // There are no instances of a general oop.
2921  // Return self unchanged.
2922  return this;
2923}
2924
2925//-----------------------------cast_to_exactness-------------------------------
2926const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2927  // There is no such thing as an exact general oop.
2928  // Return self unchanged.
2929  return this;
2930}
2931
2932
2933//------------------------------as_klass_type----------------------------------
2934// Return the klass type corresponding to this instance or array type.
2935// It is the type that is loaded from an object of this type.
2936const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2937  ciKlass* k = klass();
2938  bool    xk = klass_is_exact();
2939  if (k == NULL)
2940    return TypeKlassPtr::OBJECT;
2941  else
2942    return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2943}
2944
2945//------------------------------meet-------------------------------------------
2946// Compute the MEET of two types.  It returns a new Type object.
2947const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2948  // Perform a fast test for common case; meeting the same types together.
2949  if( this == t ) return this;  // Meeting same type-rep?
2950
2951  // Current "this->_base" is OopPtr
2952  switch (t->base()) {          // switch on original type
2953
2954  case Int:                     // Mixing ints & oops happens when javac
2955  case Long:                    // reuses local variables
2956  case FloatTop:
2957  case FloatCon:
2958  case FloatBot:
2959  case DoubleTop:
2960  case DoubleCon:
2961  case DoubleBot:
2962  case NarrowOop:
2963  case NarrowKlass:
2964  case Bottom:                  // Ye Olde Default
2965    return Type::BOTTOM;
2966  case Top:
2967    return this;
2968
2969  default:                      // All else is a mistake
2970    typerr(t);
2971
2972  case RawPtr:
2973  case MetadataPtr:
2974  case KlassPtr:
2975    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2976
2977  case AnyPtr: {
2978    // Found an AnyPtr type vs self-OopPtr type
2979    const TypePtr *tp = t->is_ptr();
2980    int offset = meet_offset(tp->offset());
2981    PTR ptr = meet_ptr(tp->ptr());
2982    const TypePtr* speculative = xmeet_speculative(tp);
2983    int depth = meet_inline_depth(tp->inline_depth());
2984    switch (tp->ptr()) {
2985    case Null:
2986      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2987      // else fall through:
2988    case TopPTR:
2989    case AnyNull: {
2990      int instance_id = meet_instance_id(InstanceTop);
2991      return make(ptr, offset, instance_id, speculative, depth);
2992    }
2993    case BotPTR:
2994    case NotNull:
2995      return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2996    default: typerr(t);
2997    }
2998  }
2999
3000  case OopPtr: {                 // Meeting to other OopPtrs
3001    const TypeOopPtr *tp = t->is_oopptr();
3002    int instance_id = meet_instance_id(tp->instance_id());
3003    const TypePtr* speculative = xmeet_speculative(tp);
3004    int depth = meet_inline_depth(tp->inline_depth());
3005    return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3006  }
3007
3008  case InstPtr:                  // For these, flip the call around to cut down
3009  case AryPtr:
3010    return t->xmeet(this);      // Call in reverse direction
3011
3012  } // End of switch
3013  return this;                  // Return the double constant
3014}
3015
3016
3017//------------------------------xdual------------------------------------------
3018// Dual of a pure heap pointer.  No relevant klass or oop information.
3019const Type *TypeOopPtr::xdual() const {
3020  assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3021  assert(const_oop() == NULL,             "no constants here");
3022  return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3023}
3024
3025//--------------------------make_from_klass_common-----------------------------
3026// Computes the element-type given a klass.
3027const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3028  if (klass->is_instance_klass()) {
3029    Compile* C = Compile::current();
3030    Dependencies* deps = C->dependencies();
3031    assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3032    // Element is an instance
3033    bool klass_is_exact = false;
3034    if (klass->is_loaded()) {
3035      // Try to set klass_is_exact.
3036      ciInstanceKlass* ik = klass->as_instance_klass();
3037      klass_is_exact = ik->is_final();
3038      if (!klass_is_exact && klass_change
3039          && deps != NULL && UseUniqueSubclasses) {
3040        ciInstanceKlass* sub = ik->unique_concrete_subklass();
3041        if (sub != NULL) {
3042          deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3043          klass = ik = sub;
3044          klass_is_exact = sub->is_final();
3045        }
3046      }
3047      if (!klass_is_exact && try_for_exact
3048          && deps != NULL && UseExactTypes) {
3049        if (!ik->is_interface() && !ik->has_subklass()) {
3050          // Add a dependence; if concrete subclass added we need to recompile
3051          deps->assert_leaf_type(ik);
3052          klass_is_exact = true;
3053        }
3054      }
3055    }
3056    return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3057  } else if (klass->is_obj_array_klass()) {
3058    // Element is an object array. Recursively call ourself.
3059    const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3060    bool xk = etype->klass_is_exact();
3061    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3062    // We used to pass NotNull in here, asserting that the sub-arrays
3063    // are all not-null.  This is not true in generally, as code can
3064    // slam NULLs down in the subarrays.
3065    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3066    return arr;
3067  } else if (klass->is_type_array_klass()) {
3068    // Element is an typeArray
3069    const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3070    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3071    // We used to pass NotNull in here, asserting that the array pointer
3072    // is not-null. That was not true in general.
3073    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3074    return arr;
3075  } else {
3076    ShouldNotReachHere();
3077    return NULL;
3078  }
3079}
3080
3081//------------------------------make_from_constant-----------------------------
3082// Make a java pointer from an oop constant
3083const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3084  assert(!o->is_null_object(), "null object not yet handled here.");
3085  ciKlass* klass = o->klass();
3086  if (klass->is_instance_klass()) {
3087    // Element is an instance
3088    if (require_constant) {
3089      if (!o->can_be_constant())  return NULL;
3090    } else if (!o->should_be_constant()) {
3091      return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3092    }
3093    return TypeInstPtr::make(o);
3094  } else if (klass->is_obj_array_klass()) {
3095    // Element is an object array. Recursively call ourself.
3096    const TypeOopPtr *etype =
3097      TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3098    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3099    // We used to pass NotNull in here, asserting that the sub-arrays
3100    // are all not-null.  This is not true in generally, as code can
3101    // slam NULLs down in the subarrays.
3102    if (require_constant) {
3103      if (!o->can_be_constant())  return NULL;
3104    } else if (!o->should_be_constant()) {
3105      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3106    }
3107    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3108    return arr;
3109  } else if (klass->is_type_array_klass()) {
3110    // Element is an typeArray
3111    const Type* etype =
3112      (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3113    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3114    // We used to pass NotNull in here, asserting that the array pointer
3115    // is not-null. That was not true in general.
3116    if (require_constant) {
3117      if (!o->can_be_constant())  return NULL;
3118    } else if (!o->should_be_constant()) {
3119      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3120    }
3121    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3122    return arr;
3123  }
3124
3125  fatal("unhandled object type");
3126  return NULL;
3127}
3128
3129//------------------------------get_con----------------------------------------
3130intptr_t TypeOopPtr::get_con() const {
3131  assert( _ptr == Null || _ptr == Constant, "" );
3132  assert( _offset >= 0, "" );
3133
3134  if (_offset != 0) {
3135    // After being ported to the compiler interface, the compiler no longer
3136    // directly manipulates the addresses of oops.  Rather, it only has a pointer
3137    // to a handle at compile time.  This handle is embedded in the generated
3138    // code and dereferenced at the time the nmethod is made.  Until that time,
3139    // it is not reasonable to do arithmetic with the addresses of oops (we don't
3140    // have access to the addresses!).  This does not seem to currently happen,
3141    // but this assertion here is to help prevent its occurence.
3142    tty->print_cr("Found oop constant with non-zero offset");
3143    ShouldNotReachHere();
3144  }
3145
3146  return (intptr_t)const_oop()->constant_encoding();
3147}
3148
3149
3150//-----------------------------filter------------------------------------------
3151// Do not allow interface-vs.-noninterface joins to collapse to top.
3152const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3153
3154  const Type* ft = join_helper(kills, include_speculative);
3155  const TypeInstPtr* ftip = ft->isa_instptr();
3156  const TypeInstPtr* ktip = kills->isa_instptr();
3157
3158  if (ft->empty()) {
3159    // Check for evil case of 'this' being a class and 'kills' expecting an
3160    // interface.  This can happen because the bytecodes do not contain
3161    // enough type info to distinguish a Java-level interface variable
3162    // from a Java-level object variable.  If we meet 2 classes which
3163    // both implement interface I, but their meet is at 'j/l/O' which
3164    // doesn't implement I, we have no way to tell if the result should
3165    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3166    // into a Phi which "knows" it's an Interface type we'll have to
3167    // uplift the type.
3168    if (!empty()) {
3169      if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3170        return kills;           // Uplift to interface
3171      }
3172      // Also check for evil cases of 'this' being a class array
3173      // and 'kills' expecting an array of interfaces.
3174      Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3175      if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3176        return kills;           // Uplift to array of interface
3177      }
3178    }
3179
3180    return Type::TOP;           // Canonical empty value
3181  }
3182
3183  // If we have an interface-typed Phi or cast and we narrow to a class type,
3184  // the join should report back the class.  However, if we have a J/L/Object
3185  // class-typed Phi and an interface flows in, it's possible that the meet &
3186  // join report an interface back out.  This isn't possible but happens
3187  // because the type system doesn't interact well with interfaces.
3188  if (ftip != NULL && ktip != NULL &&
3189      ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3190      ktip->is_loaded() && !ktip->klass()->is_interface()) {
3191    assert(!ftip->klass_is_exact(), "interface could not be exact");
3192    return ktip->cast_to_ptr_type(ftip->ptr());
3193  }
3194
3195  return ft;
3196}
3197
3198//------------------------------eq---------------------------------------------
3199// Structural equality check for Type representations
3200bool TypeOopPtr::eq( const Type *t ) const {
3201  const TypeOopPtr *a = (const TypeOopPtr*)t;
3202  if (_klass_is_exact != a->_klass_is_exact ||
3203      _instance_id != a->_instance_id)  return false;
3204  ciObject* one = const_oop();
3205  ciObject* two = a->const_oop();
3206  if (one == NULL || two == NULL) {
3207    return (one == two) && TypePtr::eq(t);
3208  } else {
3209    return one->equals(two) && TypePtr::eq(t);
3210  }
3211}
3212
3213//------------------------------hash-------------------------------------------
3214// Type-specific hashing function.
3215int TypeOopPtr::hash(void) const {
3216  return
3217    java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3218             java_add(_instance_id, TypePtr::hash()));
3219}
3220
3221//------------------------------dump2------------------------------------------
3222#ifndef PRODUCT
3223void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3224  st->print("oopptr:%s", ptr_msg[_ptr]);
3225  if( _klass_is_exact ) st->print(":exact");
3226  if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3227  switch( _offset ) {
3228  case OffsetTop: st->print("+top"); break;
3229  case OffsetBot: st->print("+any"); break;
3230  case         0: break;
3231  default:        st->print("+%d",_offset); break;
3232  }
3233  if (_instance_id == InstanceTop)
3234    st->print(",iid=top");
3235  else if (_instance_id != InstanceBot)
3236    st->print(",iid=%d",_instance_id);
3237
3238  dump_inline_depth(st);
3239  dump_speculative(st);
3240}
3241#endif
3242
3243//------------------------------singleton--------------------------------------
3244// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3245// constants
3246bool TypeOopPtr::singleton(void) const {
3247  // detune optimizer to not generate constant oop + constant offset as a constant!
3248  // TopPTR, Null, AnyNull, Constant are all singletons
3249  return (_offset == 0) && !below_centerline(_ptr);
3250}
3251
3252//------------------------------add_offset-------------------------------------
3253const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3254  return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3255}
3256
3257/**
3258 * Return same type without a speculative part
3259 */
3260const Type* TypeOopPtr::remove_speculative() const {
3261  if (_speculative == NULL) {
3262    return this;
3263  }
3264  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3265  return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3266}
3267
3268/**
3269 * Return same type but drop speculative part if we know we won't use
3270 * it
3271 */
3272const Type* TypeOopPtr::cleanup_speculative() const {
3273  // If the klass is exact and the ptr is not null then there's
3274  // nothing that the speculative type can help us with
3275  if (klass_is_exact() && !maybe_null()) {
3276    return remove_speculative();
3277  }
3278  return TypePtr::cleanup_speculative();
3279}
3280
3281/**
3282 * Return same type but with a different inline depth (used for speculation)
3283 *
3284 * @param depth  depth to meet with
3285 */
3286const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3287  if (!UseInlineDepthForSpeculativeTypes) {
3288    return this;
3289  }
3290  return make(_ptr, _offset, _instance_id, _speculative, depth);
3291}
3292
3293//------------------------------meet_instance_id--------------------------------
3294int TypeOopPtr::meet_instance_id( int instance_id ) const {
3295  // Either is 'TOP' instance?  Return the other instance!
3296  if( _instance_id == InstanceTop ) return  instance_id;
3297  if(  instance_id == InstanceTop ) return _instance_id;
3298  // If either is different, return 'BOTTOM' instance
3299  if( _instance_id != instance_id ) return InstanceBot;
3300  return _instance_id;
3301}
3302
3303//------------------------------dual_instance_id--------------------------------
3304int TypeOopPtr::dual_instance_id( ) const {
3305  if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3306  if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3307  return _instance_id;              // Map everything else into self
3308}
3309
3310/**
3311 * Check whether new profiling would improve speculative type
3312 *
3313 * @param   exact_kls    class from profiling
3314 * @param   inline_depth inlining depth of profile point
3315 *
3316 * @return  true if type profile is valuable
3317 */
3318bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3319  // no way to improve an already exact type
3320  if (klass_is_exact()) {
3321    return false;
3322  }
3323  return TypePtr::would_improve_type(exact_kls, inline_depth);
3324}
3325
3326//=============================================================================
3327// Convenience common pre-built types.
3328const TypeInstPtr *TypeInstPtr::NOTNULL;
3329const TypeInstPtr *TypeInstPtr::BOTTOM;
3330const TypeInstPtr *TypeInstPtr::MIRROR;
3331const TypeInstPtr *TypeInstPtr::MARK;
3332const TypeInstPtr *TypeInstPtr::KLASS;
3333
3334//------------------------------TypeInstPtr-------------------------------------
3335TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3336                         int instance_id, const TypePtr* speculative, int inline_depth)
3337  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3338    _name(k->name()) {
3339   assert(k != NULL &&
3340          (k->is_loaded() || o == NULL),
3341          "cannot have constants with non-loaded klass");
3342};
3343
3344//------------------------------make-------------------------------------------
3345const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3346                                     ciKlass* k,
3347                                     bool xk,
3348                                     ciObject* o,
3349                                     int offset,
3350                                     int instance_id,
3351                                     const TypePtr* speculative,
3352                                     int inline_depth) {
3353  assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3354  // Either const_oop() is NULL or else ptr is Constant
3355  assert( (!o && ptr != Constant) || (o && ptr == Constant),
3356          "constant pointers must have a value supplied" );
3357  // Ptr is never Null
3358  assert( ptr != Null, "NULL pointers are not typed" );
3359
3360  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3361  if (!UseExactTypes)  xk = false;
3362  if (ptr == Constant) {
3363    // Note:  This case includes meta-object constants, such as methods.
3364    xk = true;
3365  } else if (k->is_loaded()) {
3366    ciInstanceKlass* ik = k->as_instance_klass();
3367    if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3368    if (xk && ik->is_interface())  xk = false;  // no exact interface
3369  }
3370
3371  // Now hash this baby
3372  TypeInstPtr *result =
3373    (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3374
3375  return result;
3376}
3377
3378/**
3379 *  Create constant type for a constant boxed value
3380 */
3381const Type* TypeInstPtr::get_const_boxed_value() const {
3382  assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3383  assert((const_oop() != NULL), "should be called only for constant object");
3384  ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3385  BasicType bt = constant.basic_type();
3386  switch (bt) {
3387    case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3388    case T_INT:      return TypeInt::make(constant.as_int());
3389    case T_CHAR:     return TypeInt::make(constant.as_char());
3390    case T_BYTE:     return TypeInt::make(constant.as_byte());
3391    case T_SHORT:    return TypeInt::make(constant.as_short());
3392    case T_FLOAT:    return TypeF::make(constant.as_float());
3393    case T_DOUBLE:   return TypeD::make(constant.as_double());
3394    case T_LONG:     return TypeLong::make(constant.as_long());
3395    default:         break;
3396  }
3397  fatal("Invalid boxed value type '%s'", type2name(bt));
3398  return NULL;
3399}
3400
3401//------------------------------cast_to_ptr_type-------------------------------
3402const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3403  if( ptr == _ptr ) return this;
3404  // Reconstruct _sig info here since not a problem with later lazy
3405  // construction, _sig will show up on demand.
3406  return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3407}
3408
3409
3410//-----------------------------cast_to_exactness-------------------------------
3411const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3412  if( klass_is_exact == _klass_is_exact ) return this;
3413  if (!UseExactTypes)  return this;
3414  if (!_klass->is_loaded())  return this;
3415  ciInstanceKlass* ik = _klass->as_instance_klass();
3416  if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3417  if( ik->is_interface() )              return this;  // cannot set xk
3418  return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3419}
3420
3421//-----------------------------cast_to_instance_id----------------------------
3422const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3423  if( instance_id == _instance_id ) return this;
3424  return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3425}
3426
3427//------------------------------xmeet_unloaded---------------------------------
3428// Compute the MEET of two InstPtrs when at least one is unloaded.
3429// Assume classes are different since called after check for same name/class-loader
3430const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3431    int off = meet_offset(tinst->offset());
3432    PTR ptr = meet_ptr(tinst->ptr());
3433    int instance_id = meet_instance_id(tinst->instance_id());
3434    const TypePtr* speculative = xmeet_speculative(tinst);
3435    int depth = meet_inline_depth(tinst->inline_depth());
3436
3437    const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3438    const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3439    if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3440      //
3441      // Meet unloaded class with java/lang/Object
3442      //
3443      // Meet
3444      //          |                     Unloaded Class
3445      //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3446      //  ===================================================================
3447      //   TOP    | ..........................Unloaded......................|
3448      //  AnyNull |  U-AN    |................Unloaded......................|
3449      // Constant | ... O-NN .................................. |   O-BOT   |
3450      //  NotNull | ... O-NN .................................. |   O-BOT   |
3451      //  BOTTOM  | ........................Object-BOTTOM ..................|
3452      //
3453      assert(loaded->ptr() != TypePtr::Null, "insanity check");
3454      //
3455      if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3456      else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3457      else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3458      else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3459        if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3460        else                                      { return TypeInstPtr::NOTNULL; }
3461      }
3462      else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3463
3464      return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3465    }
3466
3467    // Both are unloaded, not the same class, not Object
3468    // Or meet unloaded with a different loaded class, not java/lang/Object
3469    if( ptr != TypePtr::BotPTR ) {
3470      return TypeInstPtr::NOTNULL;
3471    }
3472    return TypeInstPtr::BOTTOM;
3473}
3474
3475
3476//------------------------------meet-------------------------------------------
3477// Compute the MEET of two types.  It returns a new Type object.
3478const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3479  // Perform a fast test for common case; meeting the same types together.
3480  if( this == t ) return this;  // Meeting same type-rep?
3481
3482  // Current "this->_base" is Pointer
3483  switch (t->base()) {          // switch on original type
3484
3485  case Int:                     // Mixing ints & oops happens when javac
3486  case Long:                    // reuses local variables
3487  case FloatTop:
3488  case FloatCon:
3489  case FloatBot:
3490  case DoubleTop:
3491  case DoubleCon:
3492  case DoubleBot:
3493  case NarrowOop:
3494  case NarrowKlass:
3495  case Bottom:                  // Ye Olde Default
3496    return Type::BOTTOM;
3497  case Top:
3498    return this;
3499
3500  default:                      // All else is a mistake
3501    typerr(t);
3502
3503  case MetadataPtr:
3504  case KlassPtr:
3505  case RawPtr: return TypePtr::BOTTOM;
3506
3507  case AryPtr: {                // All arrays inherit from Object class
3508    const TypeAryPtr *tp = t->is_aryptr();
3509    int offset = meet_offset(tp->offset());
3510    PTR ptr = meet_ptr(tp->ptr());
3511    int instance_id = meet_instance_id(tp->instance_id());
3512    const TypePtr* speculative = xmeet_speculative(tp);
3513    int depth = meet_inline_depth(tp->inline_depth());
3514    switch (ptr) {
3515    case TopPTR:
3516    case AnyNull:                // Fall 'down' to dual of object klass
3517      // For instances when a subclass meets a superclass we fall
3518      // below the centerline when the superclass is exact. We need to
3519      // do the same here.
3520      if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3521        return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3522      } else {
3523        // cannot subclass, so the meet has to fall badly below the centerline
3524        ptr = NotNull;
3525        instance_id = InstanceBot;
3526        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3527      }
3528    case Constant:
3529    case NotNull:
3530    case BotPTR:                // Fall down to object klass
3531      // LCA is object_klass, but if we subclass from the top we can do better
3532      if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3533        // If 'this' (InstPtr) is above the centerline and it is Object class
3534        // then we can subclass in the Java class hierarchy.
3535        // For instances when a subclass meets a superclass we fall
3536        // below the centerline when the superclass is exact. We need
3537        // to do the same here.
3538        if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3539          // that is, tp's array type is a subtype of my klass
3540          return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3541                                  tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3542        }
3543      }
3544      // The other case cannot happen, since I cannot be a subtype of an array.
3545      // The meet falls down to Object class below centerline.
3546      if( ptr == Constant )
3547         ptr = NotNull;
3548      instance_id = InstanceBot;
3549      return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3550    default: typerr(t);
3551    }
3552  }
3553
3554  case OopPtr: {                // Meeting to OopPtrs
3555    // Found a OopPtr type vs self-InstPtr type
3556    const TypeOopPtr *tp = t->is_oopptr();
3557    int offset = meet_offset(tp->offset());
3558    PTR ptr = meet_ptr(tp->ptr());
3559    switch (tp->ptr()) {
3560    case TopPTR:
3561    case AnyNull: {
3562      int instance_id = meet_instance_id(InstanceTop);
3563      const TypePtr* speculative = xmeet_speculative(tp);
3564      int depth = meet_inline_depth(tp->inline_depth());
3565      return make(ptr, klass(), klass_is_exact(),
3566                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3567    }
3568    case NotNull:
3569    case BotPTR: {
3570      int instance_id = meet_instance_id(tp->instance_id());
3571      const TypePtr* speculative = xmeet_speculative(tp);
3572      int depth = meet_inline_depth(tp->inline_depth());
3573      return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3574    }
3575    default: typerr(t);
3576    }
3577  }
3578
3579  case AnyPtr: {                // Meeting to AnyPtrs
3580    // Found an AnyPtr type vs self-InstPtr type
3581    const TypePtr *tp = t->is_ptr();
3582    int offset = meet_offset(tp->offset());
3583    PTR ptr = meet_ptr(tp->ptr());
3584    int instance_id = meet_instance_id(InstanceTop);
3585    const TypePtr* speculative = xmeet_speculative(tp);
3586    int depth = meet_inline_depth(tp->inline_depth());
3587    switch (tp->ptr()) {
3588    case Null:
3589      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3590      // else fall through to AnyNull
3591    case TopPTR:
3592    case AnyNull: {
3593      return make(ptr, klass(), klass_is_exact(),
3594                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3595    }
3596    case NotNull:
3597    case BotPTR:
3598      return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3599    default: typerr(t);
3600    }
3601  }
3602
3603  /*
3604                 A-top         }
3605               /   |   \       }  Tops
3606           B-top A-any C-top   }
3607              | /  |  \ |      }  Any-nulls
3608           B-any   |   C-any   }
3609              |    |    |
3610           B-con A-con C-con   } constants; not comparable across classes
3611              |    |    |
3612           B-not   |   C-not   }
3613              | \  |  / |      }  not-nulls
3614           B-bot A-not C-bot   }
3615               \   |   /       }  Bottoms
3616                 A-bot         }
3617  */
3618
3619  case InstPtr: {                // Meeting 2 Oops?
3620    // Found an InstPtr sub-type vs self-InstPtr type
3621    const TypeInstPtr *tinst = t->is_instptr();
3622    int off = meet_offset( tinst->offset() );
3623    PTR ptr = meet_ptr( tinst->ptr() );
3624    int instance_id = meet_instance_id(tinst->instance_id());
3625    const TypePtr* speculative = xmeet_speculative(tinst);
3626    int depth = meet_inline_depth(tinst->inline_depth());
3627
3628    // Check for easy case; klasses are equal (and perhaps not loaded!)
3629    // If we have constants, then we created oops so classes are loaded
3630    // and we can handle the constants further down.  This case handles
3631    // both-not-loaded or both-loaded classes
3632    if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3633      return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3634    }
3635
3636    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3637    ciKlass* tinst_klass = tinst->klass();
3638    ciKlass* this_klass  = this->klass();
3639    bool tinst_xk = tinst->klass_is_exact();
3640    bool this_xk  = this->klass_is_exact();
3641    if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3642      // One of these classes has not been loaded
3643      const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3644#ifndef PRODUCT
3645      if( PrintOpto && Verbose ) {
3646        tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3647        tty->print("  this == "); this->dump(); tty->cr();
3648        tty->print(" tinst == "); tinst->dump(); tty->cr();
3649      }
3650#endif
3651      return unloaded_meet;
3652    }
3653
3654    // Handle mixing oops and interfaces first.
3655    if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3656                                        tinst_klass == ciEnv::current()->Object_klass())) {
3657      ciKlass *tmp = tinst_klass; // Swap interface around
3658      tinst_klass = this_klass;
3659      this_klass = tmp;
3660      bool tmp2 = tinst_xk;
3661      tinst_xk = this_xk;
3662      this_xk = tmp2;
3663    }
3664    if (tinst_klass->is_interface() &&
3665        !(this_klass->is_interface() ||
3666          // Treat java/lang/Object as an honorary interface,
3667          // because we need a bottom for the interface hierarchy.
3668          this_klass == ciEnv::current()->Object_klass())) {
3669      // Oop meets interface!
3670
3671      // See if the oop subtypes (implements) interface.
3672      ciKlass *k;
3673      bool xk;
3674      if( this_klass->is_subtype_of( tinst_klass ) ) {
3675        // Oop indeed subtypes.  Now keep oop or interface depending
3676        // on whether we are both above the centerline or either is
3677        // below the centerline.  If we are on the centerline
3678        // (e.g., Constant vs. AnyNull interface), use the constant.
3679        k  = below_centerline(ptr) ? tinst_klass : this_klass;
3680        // If we are keeping this_klass, keep its exactness too.
3681        xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3682      } else {                  // Does not implement, fall to Object
3683        // Oop does not implement interface, so mixing falls to Object
3684        // just like the verifier does (if both are above the
3685        // centerline fall to interface)
3686        k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3687        xk = above_centerline(ptr) ? tinst_xk : false;
3688        // Watch out for Constant vs. AnyNull interface.
3689        if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3690        instance_id = InstanceBot;
3691      }
3692      ciObject* o = NULL;  // the Constant value, if any
3693      if (ptr == Constant) {
3694        // Find out which constant.
3695        o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3696      }
3697      return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3698    }
3699
3700    // Either oop vs oop or interface vs interface or interface vs Object
3701
3702    // !!! Here's how the symmetry requirement breaks down into invariants:
3703    // If we split one up & one down AND they subtype, take the down man.
3704    // If we split one up & one down AND they do NOT subtype, "fall hard".
3705    // If both are up and they subtype, take the subtype class.
3706    // If both are up and they do NOT subtype, "fall hard".
3707    // If both are down and they subtype, take the supertype class.
3708    // If both are down and they do NOT subtype, "fall hard".
3709    // Constants treated as down.
3710
3711    // Now, reorder the above list; observe that both-down+subtype is also
3712    // "fall hard"; "fall hard" becomes the default case:
3713    // If we split one up & one down AND they subtype, take the down man.
3714    // If both are up and they subtype, take the subtype class.
3715
3716    // If both are down and they subtype, "fall hard".
3717    // If both are down and they do NOT subtype, "fall hard".
3718    // If both are up and they do NOT subtype, "fall hard".
3719    // If we split one up & one down AND they do NOT subtype, "fall hard".
3720
3721    // If a proper subtype is exact, and we return it, we return it exactly.
3722    // If a proper supertype is exact, there can be no subtyping relationship!
3723    // If both types are equal to the subtype, exactness is and-ed below the
3724    // centerline and or-ed above it.  (N.B. Constants are always exact.)
3725
3726    // Check for subtyping:
3727    ciKlass *subtype = NULL;
3728    bool subtype_exact = false;
3729    if( tinst_klass->equals(this_klass) ) {
3730      subtype = this_klass;
3731      subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3732    } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3733      subtype = this_klass;     // Pick subtyping class
3734      subtype_exact = this_xk;
3735    } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3736      subtype = tinst_klass;    // Pick subtyping class
3737      subtype_exact = tinst_xk;
3738    }
3739
3740    if( subtype ) {
3741      if( above_centerline(ptr) ) { // both are up?
3742        this_klass = tinst_klass = subtype;
3743        this_xk = tinst_xk = subtype_exact;
3744      } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3745        this_klass = tinst_klass; // tinst is down; keep down man
3746        this_xk = tinst_xk;
3747      } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3748        tinst_klass = this_klass; // this is down; keep down man
3749        tinst_xk = this_xk;
3750      } else {
3751        this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3752      }
3753    }
3754
3755    // Check for classes now being equal
3756    if (tinst_klass->equals(this_klass)) {
3757      // If the klasses are equal, the constants may still differ.  Fall to
3758      // NotNull if they do (neither constant is NULL; that is a special case
3759      // handled elsewhere).
3760      ciObject* o = NULL;             // Assume not constant when done
3761      ciObject* this_oop  = const_oop();
3762      ciObject* tinst_oop = tinst->const_oop();
3763      if( ptr == Constant ) {
3764        if (this_oop != NULL && tinst_oop != NULL &&
3765            this_oop->equals(tinst_oop) )
3766          o = this_oop;
3767        else if (above_centerline(this ->_ptr))
3768          o = tinst_oop;
3769        else if (above_centerline(tinst ->_ptr))
3770          o = this_oop;
3771        else
3772          ptr = NotNull;
3773      }
3774      return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3775    } // Else classes are not equal
3776
3777    // Since klasses are different, we require a LCA in the Java
3778    // class hierarchy - which means we have to fall to at least NotNull.
3779    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3780      ptr = NotNull;
3781
3782    instance_id = InstanceBot;
3783
3784    // Now we find the LCA of Java classes
3785    ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3786    return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3787  } // End of case InstPtr
3788
3789  } // End of switch
3790  return this;                  // Return the double constant
3791}
3792
3793
3794//------------------------java_mirror_type--------------------------------------
3795ciType* TypeInstPtr::java_mirror_type() const {
3796  // must be a singleton type
3797  if( const_oop() == NULL )  return NULL;
3798
3799  // must be of type java.lang.Class
3800  if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3801
3802  return const_oop()->as_instance()->java_mirror_type();
3803}
3804
3805
3806//------------------------------xdual------------------------------------------
3807// Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3808// inheritance mechanism.
3809const Type *TypeInstPtr::xdual() const {
3810  return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3811}
3812
3813//------------------------------eq---------------------------------------------
3814// Structural equality check for Type representations
3815bool TypeInstPtr::eq( const Type *t ) const {
3816  const TypeInstPtr *p = t->is_instptr();
3817  return
3818    klass()->equals(p->klass()) &&
3819    TypeOopPtr::eq(p);          // Check sub-type stuff
3820}
3821
3822//------------------------------hash-------------------------------------------
3823// Type-specific hashing function.
3824int TypeInstPtr::hash(void) const {
3825  int hash = java_add(klass()->hash(), TypeOopPtr::hash());
3826  return hash;
3827}
3828
3829//------------------------------dump2------------------------------------------
3830// Dump oop Type
3831#ifndef PRODUCT
3832void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3833  // Print the name of the klass.
3834  klass()->print_name_on(st);
3835
3836  switch( _ptr ) {
3837  case Constant:
3838    // TO DO: Make CI print the hex address of the underlying oop.
3839    if (WizardMode || Verbose) {
3840      const_oop()->print_oop(st);
3841    }
3842  case BotPTR:
3843    if (!WizardMode && !Verbose) {
3844      if( _klass_is_exact ) st->print(":exact");
3845      break;
3846    }
3847  case TopPTR:
3848  case AnyNull:
3849  case NotNull:
3850    st->print(":%s", ptr_msg[_ptr]);
3851    if( _klass_is_exact ) st->print(":exact");
3852    break;
3853  }
3854
3855  if( _offset ) {               // Dump offset, if any
3856    if( _offset == OffsetBot )      st->print("+any");
3857    else if( _offset == OffsetTop ) st->print("+unknown");
3858    else st->print("+%d", _offset);
3859  }
3860
3861  st->print(" *");
3862  if (_instance_id == InstanceTop)
3863    st->print(",iid=top");
3864  else if (_instance_id != InstanceBot)
3865    st->print(",iid=%d",_instance_id);
3866
3867  dump_inline_depth(st);
3868  dump_speculative(st);
3869}
3870#endif
3871
3872//------------------------------add_offset-------------------------------------
3873const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3874  return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3875              _instance_id, add_offset_speculative(offset), _inline_depth);
3876}
3877
3878const Type *TypeInstPtr::remove_speculative() const {
3879  if (_speculative == NULL) {
3880    return this;
3881  }
3882  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3883  return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3884              _instance_id, NULL, _inline_depth);
3885}
3886
3887const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3888  if (!UseInlineDepthForSpeculativeTypes) {
3889    return this;
3890  }
3891  return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3892}
3893
3894//=============================================================================
3895// Convenience common pre-built types.
3896const TypeAryPtr *TypeAryPtr::RANGE;
3897const TypeAryPtr *TypeAryPtr::OOPS;
3898const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3899const TypeAryPtr *TypeAryPtr::BYTES;
3900const TypeAryPtr *TypeAryPtr::SHORTS;
3901const TypeAryPtr *TypeAryPtr::CHARS;
3902const TypeAryPtr *TypeAryPtr::INTS;
3903const TypeAryPtr *TypeAryPtr::LONGS;
3904const TypeAryPtr *TypeAryPtr::FLOATS;
3905const TypeAryPtr *TypeAryPtr::DOUBLES;
3906
3907//------------------------------make-------------------------------------------
3908const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3909                                   int instance_id, const TypePtr* speculative, int inline_depth) {
3910  assert(!(k == NULL && ary->_elem->isa_int()),
3911         "integral arrays must be pre-equipped with a class");
3912  if (!xk)  xk = ary->ary_must_be_exact();
3913  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3914  if (!UseExactTypes)  xk = (ptr == Constant);
3915  return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3916}
3917
3918//------------------------------make-------------------------------------------
3919const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3920                                   int instance_id, const TypePtr* speculative, int inline_depth,
3921                                   bool is_autobox_cache) {
3922  assert(!(k == NULL && ary->_elem->isa_int()),
3923         "integral arrays must be pre-equipped with a class");
3924  assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3925  if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3926  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3927  if (!UseExactTypes)  xk = (ptr == Constant);
3928  return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3929}
3930
3931//------------------------------cast_to_ptr_type-------------------------------
3932const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3933  if( ptr == _ptr ) return this;
3934  return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3935}
3936
3937
3938//-----------------------------cast_to_exactness-------------------------------
3939const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3940  if( klass_is_exact == _klass_is_exact ) return this;
3941  if (!UseExactTypes)  return this;
3942  if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3943  return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3944}
3945
3946//-----------------------------cast_to_instance_id----------------------------
3947const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3948  if( instance_id == _instance_id ) return this;
3949  return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3950}
3951
3952//-----------------------------narrow_size_type-------------------------------
3953// Local cache for arrayOopDesc::max_array_length(etype),
3954// which is kind of slow (and cached elsewhere by other users).
3955static jint max_array_length_cache[T_CONFLICT+1];
3956static jint max_array_length(BasicType etype) {
3957  jint& cache = max_array_length_cache[etype];
3958  jint res = cache;
3959  if (res == 0) {
3960    switch (etype) {
3961    case T_NARROWOOP:
3962      etype = T_OBJECT;
3963      break;
3964    case T_NARROWKLASS:
3965    case T_CONFLICT:
3966    case T_ILLEGAL:
3967    case T_VOID:
3968      etype = T_BYTE;           // will produce conservatively high value
3969    }
3970    cache = res = arrayOopDesc::max_array_length(etype);
3971  }
3972  return res;
3973}
3974
3975// Narrow the given size type to the index range for the given array base type.
3976// Return NULL if the resulting int type becomes empty.
3977const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3978  jint hi = size->_hi;
3979  jint lo = size->_lo;
3980  jint min_lo = 0;
3981  jint max_hi = max_array_length(elem()->basic_type());
3982  //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3983  bool chg = false;
3984  if (lo < min_lo) {
3985    lo = min_lo;
3986    if (size->is_con()) {
3987      hi = lo;
3988    }
3989    chg = true;
3990  }
3991  if (hi > max_hi) {
3992    hi = max_hi;
3993    if (size->is_con()) {
3994      lo = hi;
3995    }
3996    chg = true;
3997  }
3998  // Negative length arrays will produce weird intermediate dead fast-path code
3999  if (lo > hi)
4000    return TypeInt::ZERO;
4001  if (!chg)
4002    return size;
4003  return TypeInt::make(lo, hi, Type::WidenMin);
4004}
4005
4006//-------------------------------cast_to_size----------------------------------
4007const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4008  assert(new_size != NULL, "");
4009  new_size = narrow_size_type(new_size);
4010  if (new_size == size())  return this;
4011  const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4012  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4013}
4014
4015//------------------------------cast_to_stable---------------------------------
4016const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4017  if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4018    return this;
4019
4020  const Type* elem = this->elem();
4021  const TypePtr* elem_ptr = elem->make_ptr();
4022
4023  if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4024    // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4025    elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4026  }
4027
4028  const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4029
4030  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4031}
4032
4033//-----------------------------stable_dimension--------------------------------
4034int TypeAryPtr::stable_dimension() const {
4035  if (!is_stable())  return 0;
4036  int dim = 1;
4037  const TypePtr* elem_ptr = elem()->make_ptr();
4038  if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4039    dim += elem_ptr->is_aryptr()->stable_dimension();
4040  return dim;
4041}
4042
4043//----------------------cast_to_autobox_cache-----------------------------------
4044const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4045  if (is_autobox_cache() == cache)  return this;
4046  const TypeOopPtr* etype = elem()->make_oopptr();
4047  if (etype == NULL)  return this;
4048  // The pointers in the autobox arrays are always non-null.
4049  TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4050  etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4051  const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4052  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4053}
4054
4055//------------------------------eq---------------------------------------------
4056// Structural equality check for Type representations
4057bool TypeAryPtr::eq( const Type *t ) const {
4058  const TypeAryPtr *p = t->is_aryptr();
4059  return
4060    _ary == p->_ary &&  // Check array
4061    TypeOopPtr::eq(p);  // Check sub-parts
4062}
4063
4064//------------------------------hash-------------------------------------------
4065// Type-specific hashing function.
4066int TypeAryPtr::hash(void) const {
4067  return (intptr_t)_ary + TypeOopPtr::hash();
4068}
4069
4070//------------------------------meet-------------------------------------------
4071// Compute the MEET of two types.  It returns a new Type object.
4072const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4073  // Perform a fast test for common case; meeting the same types together.
4074  if( this == t ) return this;  // Meeting same type-rep?
4075  // Current "this->_base" is Pointer
4076  switch (t->base()) {          // switch on original type
4077
4078  // Mixing ints & oops happens when javac reuses local variables
4079  case Int:
4080  case Long:
4081  case FloatTop:
4082  case FloatCon:
4083  case FloatBot:
4084  case DoubleTop:
4085  case DoubleCon:
4086  case DoubleBot:
4087  case NarrowOop:
4088  case NarrowKlass:
4089  case Bottom:                  // Ye Olde Default
4090    return Type::BOTTOM;
4091  case Top:
4092    return this;
4093
4094  default:                      // All else is a mistake
4095    typerr(t);
4096
4097  case OopPtr: {                // Meeting to OopPtrs
4098    // Found a OopPtr type vs self-AryPtr type
4099    const TypeOopPtr *tp = t->is_oopptr();
4100    int offset = meet_offset(tp->offset());
4101    PTR ptr = meet_ptr(tp->ptr());
4102    int depth = meet_inline_depth(tp->inline_depth());
4103    const TypePtr* speculative = xmeet_speculative(tp);
4104    switch (tp->ptr()) {
4105    case TopPTR:
4106    case AnyNull: {
4107      int instance_id = meet_instance_id(InstanceTop);
4108      return make(ptr, (ptr == Constant ? const_oop() : NULL),
4109                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4110    }
4111    case BotPTR:
4112    case NotNull: {
4113      int instance_id = meet_instance_id(tp->instance_id());
4114      return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4115    }
4116    default: ShouldNotReachHere();
4117    }
4118  }
4119
4120  case AnyPtr: {                // Meeting two AnyPtrs
4121    // Found an AnyPtr type vs self-AryPtr type
4122    const TypePtr *tp = t->is_ptr();
4123    int offset = meet_offset(tp->offset());
4124    PTR ptr = meet_ptr(tp->ptr());
4125    const TypePtr* speculative = xmeet_speculative(tp);
4126    int depth = meet_inline_depth(tp->inline_depth());
4127    switch (tp->ptr()) {
4128    case TopPTR:
4129      return this;
4130    case BotPTR:
4131    case NotNull:
4132      return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4133    case Null:
4134      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4135      // else fall through to AnyNull
4136    case AnyNull: {
4137      int instance_id = meet_instance_id(InstanceTop);
4138      return make(ptr, (ptr == Constant ? const_oop() : NULL),
4139                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4140    }
4141    default: ShouldNotReachHere();
4142    }
4143  }
4144
4145  case MetadataPtr:
4146  case KlassPtr:
4147  case RawPtr: return TypePtr::BOTTOM;
4148
4149  case AryPtr: {                // Meeting 2 references?
4150    const TypeAryPtr *tap = t->is_aryptr();
4151    int off = meet_offset(tap->offset());
4152    const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4153    PTR ptr = meet_ptr(tap->ptr());
4154    int instance_id = meet_instance_id(tap->instance_id());
4155    const TypePtr* speculative = xmeet_speculative(tap);
4156    int depth = meet_inline_depth(tap->inline_depth());
4157    ciKlass* lazy_klass = NULL;
4158    if (tary->_elem->isa_int()) {
4159      // Integral array element types have irrelevant lattice relations.
4160      // It is the klass that determines array layout, not the element type.
4161      if (_klass == NULL)
4162        lazy_klass = tap->_klass;
4163      else if (tap->_klass == NULL || tap->_klass == _klass) {
4164        lazy_klass = _klass;
4165      } else {
4166        // Something like byte[int+] meets char[int+].
4167        // This must fall to bottom, not (int[-128..65535])[int+].
4168        instance_id = InstanceBot;
4169        tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4170      }
4171    } else // Non integral arrays.
4172      // Must fall to bottom if exact klasses in upper lattice
4173      // are not equal or super klass is exact.
4174      if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4175          // meet with top[] and bottom[] are processed further down:
4176          tap->_klass != NULL  && this->_klass != NULL   &&
4177          // both are exact and not equal:
4178          ((tap->_klass_is_exact && this->_klass_is_exact) ||
4179           // 'tap'  is exact and super or unrelated:
4180           (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4181           // 'this' is exact and super or unrelated:
4182           (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4183      if (above_centerline(ptr)) {
4184        tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4185      }
4186      return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4187    }
4188
4189    bool xk = false;
4190    switch (tap->ptr()) {
4191    case AnyNull:
4192    case TopPTR:
4193      // Compute new klass on demand, do not use tap->_klass
4194      if (below_centerline(this->_ptr)) {
4195        xk = this->_klass_is_exact;
4196      } else {
4197        xk = (tap->_klass_is_exact | this->_klass_is_exact);
4198      }
4199      return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4200    case Constant: {
4201      ciObject* o = const_oop();
4202      if( _ptr == Constant ) {
4203        if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4204          xk = (klass() == tap->klass());
4205          ptr = NotNull;
4206          o = NULL;
4207          instance_id = InstanceBot;
4208        } else {
4209          xk = true;
4210        }
4211      } else if(above_centerline(_ptr)) {
4212        o = tap->const_oop();
4213        xk = true;
4214      } else {
4215        // Only precise for identical arrays
4216        xk = this->_klass_is_exact && (klass() == tap->klass());
4217      }
4218      return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4219    }
4220    case NotNull:
4221    case BotPTR:
4222      // Compute new klass on demand, do not use tap->_klass
4223      if (above_centerline(this->_ptr))
4224            xk = tap->_klass_is_exact;
4225      else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4226              (klass() == tap->klass()); // Only precise for identical arrays
4227      return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4228    default: ShouldNotReachHere();
4229    }
4230  }
4231
4232  // All arrays inherit from Object class
4233  case InstPtr: {
4234    const TypeInstPtr *tp = t->is_instptr();
4235    int offset = meet_offset(tp->offset());
4236    PTR ptr = meet_ptr(tp->ptr());
4237    int instance_id = meet_instance_id(tp->instance_id());
4238    const TypePtr* speculative = xmeet_speculative(tp);
4239    int depth = meet_inline_depth(tp->inline_depth());
4240    switch (ptr) {
4241    case TopPTR:
4242    case AnyNull:                // Fall 'down' to dual of object klass
4243      // For instances when a subclass meets a superclass we fall
4244      // below the centerline when the superclass is exact. We need to
4245      // do the same here.
4246      if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4247        return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4248      } else {
4249        // cannot subclass, so the meet has to fall badly below the centerline
4250        ptr = NotNull;
4251        instance_id = InstanceBot;
4252        return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4253      }
4254    case Constant:
4255    case NotNull:
4256    case BotPTR:                // Fall down to object klass
4257      // LCA is object_klass, but if we subclass from the top we can do better
4258      if (above_centerline(tp->ptr())) {
4259        // If 'tp'  is above the centerline and it is Object class
4260        // then we can subclass in the Java class hierarchy.
4261        // For instances when a subclass meets a superclass we fall
4262        // below the centerline when the superclass is exact. We need
4263        // to do the same here.
4264        if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4265          // that is, my array type is a subtype of 'tp' klass
4266          return make(ptr, (ptr == Constant ? const_oop() : NULL),
4267                      _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4268        }
4269      }
4270      // The other case cannot happen, since t cannot be a subtype of an array.
4271      // The meet falls down to Object class below centerline.
4272      if( ptr == Constant )
4273         ptr = NotNull;
4274      instance_id = InstanceBot;
4275      return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4276    default: typerr(t);
4277    }
4278  }
4279  }
4280  return this;                  // Lint noise
4281}
4282
4283//------------------------------xdual------------------------------------------
4284// Dual: compute field-by-field dual
4285const Type *TypeAryPtr::xdual() const {
4286  return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4287}
4288
4289//----------------------interface_vs_oop---------------------------------------
4290#ifdef ASSERT
4291bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4292  const TypeAryPtr* t_aryptr = t->isa_aryptr();
4293  if (t_aryptr) {
4294    return _ary->interface_vs_oop(t_aryptr->_ary);
4295  }
4296  return false;
4297}
4298#endif
4299
4300//------------------------------dump2------------------------------------------
4301#ifndef PRODUCT
4302void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4303  _ary->dump2(d,depth,st);
4304  switch( _ptr ) {
4305  case Constant:
4306    const_oop()->print(st);
4307    break;
4308  case BotPTR:
4309    if (!WizardMode && !Verbose) {
4310      if( _klass_is_exact ) st->print(":exact");
4311      break;
4312    }
4313  case TopPTR:
4314  case AnyNull:
4315  case NotNull:
4316    st->print(":%s", ptr_msg[_ptr]);
4317    if( _klass_is_exact ) st->print(":exact");
4318    break;
4319  }
4320
4321  if( _offset != 0 ) {
4322    int header_size = objArrayOopDesc::header_size() * wordSize;
4323    if( _offset == OffsetTop )       st->print("+undefined");
4324    else if( _offset == OffsetBot )  st->print("+any");
4325    else if( _offset < header_size ) st->print("+%d", _offset);
4326    else {
4327      BasicType basic_elem_type = elem()->basic_type();
4328      int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4329      int elem_size = type2aelembytes(basic_elem_type);
4330      st->print("[%d]", (_offset - array_base)/elem_size);
4331    }
4332  }
4333  st->print(" *");
4334  if (_instance_id == InstanceTop)
4335    st->print(",iid=top");
4336  else if (_instance_id != InstanceBot)
4337    st->print(",iid=%d",_instance_id);
4338
4339  dump_inline_depth(st);
4340  dump_speculative(st);
4341}
4342#endif
4343
4344bool TypeAryPtr::empty(void) const {
4345  if (_ary->empty())       return true;
4346  return TypeOopPtr::empty();
4347}
4348
4349//------------------------------add_offset-------------------------------------
4350const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4351  return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4352}
4353
4354const Type *TypeAryPtr::remove_speculative() const {
4355  if (_speculative == NULL) {
4356    return this;
4357  }
4358  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4359  return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4360}
4361
4362const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4363  if (!UseInlineDepthForSpeculativeTypes) {
4364    return this;
4365  }
4366  return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4367}
4368
4369//=============================================================================
4370
4371//------------------------------hash-------------------------------------------
4372// Type-specific hashing function.
4373int TypeNarrowPtr::hash(void) const {
4374  return _ptrtype->hash() + 7;
4375}
4376
4377bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4378  return _ptrtype->singleton();
4379}
4380
4381bool TypeNarrowPtr::empty(void) const {
4382  return _ptrtype->empty();
4383}
4384
4385intptr_t TypeNarrowPtr::get_con() const {
4386  return _ptrtype->get_con();
4387}
4388
4389bool TypeNarrowPtr::eq( const Type *t ) const {
4390  const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4391  if (tc != NULL) {
4392    if (_ptrtype->base() != tc->_ptrtype->base()) {
4393      return false;
4394    }
4395    return tc->_ptrtype->eq(_ptrtype);
4396  }
4397  return false;
4398}
4399
4400const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4401  const TypePtr* odual = _ptrtype->dual()->is_ptr();
4402  return make_same_narrowptr(odual);
4403}
4404
4405
4406const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4407  if (isa_same_narrowptr(kills)) {
4408    const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4409    if (ft->empty())
4410      return Type::TOP;           // Canonical empty value
4411    if (ft->isa_ptr()) {
4412      return make_hash_same_narrowptr(ft->isa_ptr());
4413    }
4414    return ft;
4415  } else if (kills->isa_ptr()) {
4416    const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4417    if (ft->empty())
4418      return Type::TOP;           // Canonical empty value
4419    return ft;
4420  } else {
4421    return Type::TOP;
4422  }
4423}
4424
4425//------------------------------xmeet------------------------------------------
4426// Compute the MEET of two types.  It returns a new Type object.
4427const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4428  // Perform a fast test for common case; meeting the same types together.
4429  if( this == t ) return this;  // Meeting same type-rep?
4430
4431  if (t->base() == base()) {
4432    const Type* result = _ptrtype->xmeet(t->make_ptr());
4433    if (result->isa_ptr()) {
4434      return make_hash_same_narrowptr(result->is_ptr());
4435    }
4436    return result;
4437  }
4438
4439  // Current "this->_base" is NarrowKlass or NarrowOop
4440  switch (t->base()) {          // switch on original type
4441
4442  case Int:                     // Mixing ints & oops happens when javac
4443  case Long:                    // reuses local variables
4444  case FloatTop:
4445  case FloatCon:
4446  case FloatBot:
4447  case DoubleTop:
4448  case DoubleCon:
4449  case DoubleBot:
4450  case AnyPtr:
4451  case RawPtr:
4452  case OopPtr:
4453  case InstPtr:
4454  case AryPtr:
4455  case MetadataPtr:
4456  case KlassPtr:
4457  case NarrowOop:
4458  case NarrowKlass:
4459
4460  case Bottom:                  // Ye Olde Default
4461    return Type::BOTTOM;
4462  case Top:
4463    return this;
4464
4465  default:                      // All else is a mistake
4466    typerr(t);
4467
4468  } // End of switch
4469
4470  return this;
4471}
4472
4473#ifndef PRODUCT
4474void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4475  _ptrtype->dump2(d, depth, st);
4476}
4477#endif
4478
4479const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4480const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4481
4482
4483const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4484  return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4485}
4486
4487const Type* TypeNarrowOop::remove_speculative() const {
4488  return make(_ptrtype->remove_speculative()->is_ptr());
4489}
4490
4491const Type* TypeNarrowOop::cleanup_speculative() const {
4492  return make(_ptrtype->cleanup_speculative()->is_ptr());
4493}
4494
4495#ifndef PRODUCT
4496void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4497  st->print("narrowoop: ");
4498  TypeNarrowPtr::dump2(d, depth, st);
4499}
4500#endif
4501
4502const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4503
4504const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4505  return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4506}
4507
4508#ifndef PRODUCT
4509void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4510  st->print("narrowklass: ");
4511  TypeNarrowPtr::dump2(d, depth, st);
4512}
4513#endif
4514
4515
4516//------------------------------eq---------------------------------------------
4517// Structural equality check for Type representations
4518bool TypeMetadataPtr::eq( const Type *t ) const {
4519  const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4520  ciMetadata* one = metadata();
4521  ciMetadata* two = a->metadata();
4522  if (one == NULL || two == NULL) {
4523    return (one == two) && TypePtr::eq(t);
4524  } else {
4525    return one->equals(two) && TypePtr::eq(t);
4526  }
4527}
4528
4529//------------------------------hash-------------------------------------------
4530// Type-specific hashing function.
4531int TypeMetadataPtr::hash(void) const {
4532  return
4533    (metadata() ? metadata()->hash() : 0) +
4534    TypePtr::hash();
4535}
4536
4537//------------------------------singleton--------------------------------------
4538// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4539// constants
4540bool TypeMetadataPtr::singleton(void) const {
4541  // detune optimizer to not generate constant metadata + constant offset as a constant!
4542  // TopPTR, Null, AnyNull, Constant are all singletons
4543  return (_offset == 0) && !below_centerline(_ptr);
4544}
4545
4546//------------------------------add_offset-------------------------------------
4547const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4548  return make( _ptr, _metadata, xadd_offset(offset));
4549}
4550
4551//-----------------------------filter------------------------------------------
4552// Do not allow interface-vs.-noninterface joins to collapse to top.
4553const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4554  const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4555  if (ft == NULL || ft->empty())
4556    return Type::TOP;           // Canonical empty value
4557  return ft;
4558}
4559
4560 //------------------------------get_con----------------------------------------
4561intptr_t TypeMetadataPtr::get_con() const {
4562  assert( _ptr == Null || _ptr == Constant, "" );
4563  assert( _offset >= 0, "" );
4564
4565  if (_offset != 0) {
4566    // After being ported to the compiler interface, the compiler no longer
4567    // directly manipulates the addresses of oops.  Rather, it only has a pointer
4568    // to a handle at compile time.  This handle is embedded in the generated
4569    // code and dereferenced at the time the nmethod is made.  Until that time,
4570    // it is not reasonable to do arithmetic with the addresses of oops (we don't
4571    // have access to the addresses!).  This does not seem to currently happen,
4572    // but this assertion here is to help prevent its occurence.
4573    tty->print_cr("Found oop constant with non-zero offset");
4574    ShouldNotReachHere();
4575  }
4576
4577  return (intptr_t)metadata()->constant_encoding();
4578}
4579
4580//------------------------------cast_to_ptr_type-------------------------------
4581const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4582  if( ptr == _ptr ) return this;
4583  return make(ptr, metadata(), _offset);
4584}
4585
4586//------------------------------meet-------------------------------------------
4587// Compute the MEET of two types.  It returns a new Type object.
4588const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4589  // Perform a fast test for common case; meeting the same types together.
4590  if( this == t ) return this;  // Meeting same type-rep?
4591
4592  // Current "this->_base" is OopPtr
4593  switch (t->base()) {          // switch on original type
4594
4595  case Int:                     // Mixing ints & oops happens when javac
4596  case Long:                    // reuses local variables
4597  case FloatTop:
4598  case FloatCon:
4599  case FloatBot:
4600  case DoubleTop:
4601  case DoubleCon:
4602  case DoubleBot:
4603  case NarrowOop:
4604  case NarrowKlass:
4605  case Bottom:                  // Ye Olde Default
4606    return Type::BOTTOM;
4607  case Top:
4608    return this;
4609
4610  default:                      // All else is a mistake
4611    typerr(t);
4612
4613  case AnyPtr: {
4614    // Found an AnyPtr type vs self-OopPtr type
4615    const TypePtr *tp = t->is_ptr();
4616    int offset = meet_offset(tp->offset());
4617    PTR ptr = meet_ptr(tp->ptr());
4618    switch (tp->ptr()) {
4619    case Null:
4620      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4621      // else fall through:
4622    case TopPTR:
4623    case AnyNull: {
4624      return make(ptr, _metadata, offset);
4625    }
4626    case BotPTR:
4627    case NotNull:
4628      return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4629    default: typerr(t);
4630    }
4631  }
4632
4633  case RawPtr:
4634  case KlassPtr:
4635  case OopPtr:
4636  case InstPtr:
4637  case AryPtr:
4638    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4639
4640  case MetadataPtr: {
4641    const TypeMetadataPtr *tp = t->is_metadataptr();
4642    int offset = meet_offset(tp->offset());
4643    PTR tptr = tp->ptr();
4644    PTR ptr = meet_ptr(tptr);
4645    ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4646    if (tptr == TopPTR || _ptr == TopPTR ||
4647        metadata()->equals(tp->metadata())) {
4648      return make(ptr, md, offset);
4649    }
4650    // metadata is different
4651    if( ptr == Constant ) {  // Cannot be equal constants, so...
4652      if( tptr == Constant && _ptr != Constant)  return t;
4653      if( _ptr == Constant && tptr != Constant)  return this;
4654      ptr = NotNull;            // Fall down in lattice
4655    }
4656    return make(ptr, NULL, offset);
4657    break;
4658  }
4659  } // End of switch
4660  return this;                  // Return the double constant
4661}
4662
4663
4664//------------------------------xdual------------------------------------------
4665// Dual of a pure metadata pointer.
4666const Type *TypeMetadataPtr::xdual() const {
4667  return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4668}
4669
4670//------------------------------dump2------------------------------------------
4671#ifndef PRODUCT
4672void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4673  st->print("metadataptr:%s", ptr_msg[_ptr]);
4674  if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4675  switch( _offset ) {
4676  case OffsetTop: st->print("+top"); break;
4677  case OffsetBot: st->print("+any"); break;
4678  case         0: break;
4679  default:        st->print("+%d",_offset); break;
4680  }
4681}
4682#endif
4683
4684
4685//=============================================================================
4686// Convenience common pre-built type.
4687const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4688
4689TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4690  TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4691}
4692
4693const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4694  return make(Constant, m, 0);
4695}
4696const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4697  return make(Constant, m, 0);
4698}
4699
4700//------------------------------make-------------------------------------------
4701// Create a meta data constant
4702const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4703  assert(m == NULL || !m->is_klass(), "wrong type");
4704  return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4705}
4706
4707
4708//=============================================================================
4709// Convenience common pre-built types.
4710
4711// Not-null object klass or below
4712const TypeKlassPtr *TypeKlassPtr::OBJECT;
4713const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4714
4715//------------------------------TypeKlassPtr-----------------------------------
4716TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4717  : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4718}
4719
4720//------------------------------make-------------------------------------------
4721// ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4722const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4723  assert( k != NULL, "Expect a non-NULL klass");
4724  assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4725  TypeKlassPtr *r =
4726    (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4727
4728  return r;
4729}
4730
4731//------------------------------eq---------------------------------------------
4732// Structural equality check for Type representations
4733bool TypeKlassPtr::eq( const Type *t ) const {
4734  const TypeKlassPtr *p = t->is_klassptr();
4735  return
4736    klass()->equals(p->klass()) &&
4737    TypePtr::eq(p);
4738}
4739
4740//------------------------------hash-------------------------------------------
4741// Type-specific hashing function.
4742int TypeKlassPtr::hash(void) const {
4743  return java_add(klass()->hash(), TypePtr::hash());
4744}
4745
4746//------------------------------singleton--------------------------------------
4747// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4748// constants
4749bool TypeKlassPtr::singleton(void) const {
4750  // detune optimizer to not generate constant klass + constant offset as a constant!
4751  // TopPTR, Null, AnyNull, Constant are all singletons
4752  return (_offset == 0) && !below_centerline(_ptr);
4753}
4754
4755// Do not allow interface-vs.-noninterface joins to collapse to top.
4756const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4757  // logic here mirrors the one from TypeOopPtr::filter. See comments
4758  // there.
4759  const Type* ft = join_helper(kills, include_speculative);
4760  const TypeKlassPtr* ftkp = ft->isa_klassptr();
4761  const TypeKlassPtr* ktkp = kills->isa_klassptr();
4762
4763  if (ft->empty()) {
4764    if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4765      return kills;             // Uplift to interface
4766
4767    return Type::TOP;           // Canonical empty value
4768  }
4769
4770  // Interface klass type could be exact in opposite to interface type,
4771  // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4772  if (ftkp != NULL && ktkp != NULL &&
4773      ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4774      !ftkp->klass_is_exact() && // Keep exact interface klass
4775      ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4776    return ktkp->cast_to_ptr_type(ftkp->ptr());
4777  }
4778
4779  return ft;
4780}
4781
4782//----------------------compute_klass------------------------------------------
4783// Compute the defining klass for this class
4784ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4785  // Compute _klass based on element type.
4786  ciKlass* k_ary = NULL;
4787  const TypeInstPtr *tinst;
4788  const TypeAryPtr *tary;
4789  const Type* el = elem();
4790  if (el->isa_narrowoop()) {
4791    el = el->make_ptr();
4792  }
4793
4794  // Get element klass
4795  if ((tinst = el->isa_instptr()) != NULL) {
4796    // Compute array klass from element klass
4797    k_ary = ciObjArrayKlass::make(tinst->klass());
4798  } else if ((tary = el->isa_aryptr()) != NULL) {
4799    // Compute array klass from element klass
4800    ciKlass* k_elem = tary->klass();
4801    // If element type is something like bottom[], k_elem will be null.
4802    if (k_elem != NULL)
4803      k_ary = ciObjArrayKlass::make(k_elem);
4804  } else if ((el->base() == Type::Top) ||
4805             (el->base() == Type::Bottom)) {
4806    // element type of Bottom occurs from meet of basic type
4807    // and object; Top occurs when doing join on Bottom.
4808    // Leave k_ary at NULL.
4809  } else {
4810    // Cannot compute array klass directly from basic type,
4811    // since subtypes of TypeInt all have basic type T_INT.
4812#ifdef ASSERT
4813    if (verify && el->isa_int()) {
4814      // Check simple cases when verifying klass.
4815      BasicType bt = T_ILLEGAL;
4816      if (el == TypeInt::BYTE) {
4817        bt = T_BYTE;
4818      } else if (el == TypeInt::SHORT) {
4819        bt = T_SHORT;
4820      } else if (el == TypeInt::CHAR) {
4821        bt = T_CHAR;
4822      } else if (el == TypeInt::INT) {
4823        bt = T_INT;
4824      } else {
4825        return _klass; // just return specified klass
4826      }
4827      return ciTypeArrayKlass::make(bt);
4828    }
4829#endif
4830    assert(!el->isa_int(),
4831           "integral arrays must be pre-equipped with a class");
4832    // Compute array klass directly from basic type
4833    k_ary = ciTypeArrayKlass::make(el->basic_type());
4834  }
4835  return k_ary;
4836}
4837
4838//------------------------------klass------------------------------------------
4839// Return the defining klass for this class
4840ciKlass* TypeAryPtr::klass() const {
4841  if( _klass ) return _klass;   // Return cached value, if possible
4842
4843  // Oops, need to compute _klass and cache it
4844  ciKlass* k_ary = compute_klass();
4845
4846  if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4847    // The _klass field acts as a cache of the underlying
4848    // ciKlass for this array type.  In order to set the field,
4849    // we need to cast away const-ness.
4850    //
4851    // IMPORTANT NOTE: we *never* set the _klass field for the
4852    // type TypeAryPtr::OOPS.  This Type is shared between all
4853    // active compilations.  However, the ciKlass which represents
4854    // this Type is *not* shared between compilations, so caching
4855    // this value would result in fetching a dangling pointer.
4856    //
4857    // Recomputing the underlying ciKlass for each request is
4858    // a bit less efficient than caching, but calls to
4859    // TypeAryPtr::OOPS->klass() are not common enough to matter.
4860    ((TypeAryPtr*)this)->_klass = k_ary;
4861    if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4862        _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4863      ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4864    }
4865  }
4866  return k_ary;
4867}
4868
4869
4870//------------------------------add_offset-------------------------------------
4871// Access internals of klass object
4872const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4873  return make( _ptr, klass(), xadd_offset(offset) );
4874}
4875
4876//------------------------------cast_to_ptr_type-------------------------------
4877const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4878  assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4879  if( ptr == _ptr ) return this;
4880  return make(ptr, _klass, _offset);
4881}
4882
4883
4884//-----------------------------cast_to_exactness-------------------------------
4885const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4886  if( klass_is_exact == _klass_is_exact ) return this;
4887  if (!UseExactTypes)  return this;
4888  return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4889}
4890
4891
4892//-----------------------------as_instance_type--------------------------------
4893// Corresponding type for an instance of the given class.
4894// It will be NotNull, and exact if and only if the klass type is exact.
4895const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4896  ciKlass* k = klass();
4897  bool    xk = klass_is_exact();
4898  //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4899  const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4900  guarantee(toop != NULL, "need type for given klass");
4901  toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4902  return toop->cast_to_exactness(xk)->is_oopptr();
4903}
4904
4905
4906//------------------------------xmeet------------------------------------------
4907// Compute the MEET of two types, return a new Type object.
4908const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4909  // Perform a fast test for common case; meeting the same types together.
4910  if( this == t ) return this;  // Meeting same type-rep?
4911
4912  // Current "this->_base" is Pointer
4913  switch (t->base()) {          // switch on original type
4914
4915  case Int:                     // Mixing ints & oops happens when javac
4916  case Long:                    // reuses local variables
4917  case FloatTop:
4918  case FloatCon:
4919  case FloatBot:
4920  case DoubleTop:
4921  case DoubleCon:
4922  case DoubleBot:
4923  case NarrowOop:
4924  case NarrowKlass:
4925  case Bottom:                  // Ye Olde Default
4926    return Type::BOTTOM;
4927  case Top:
4928    return this;
4929
4930  default:                      // All else is a mistake
4931    typerr(t);
4932
4933  case AnyPtr: {                // Meeting to AnyPtrs
4934    // Found an AnyPtr type vs self-KlassPtr type
4935    const TypePtr *tp = t->is_ptr();
4936    int offset = meet_offset(tp->offset());
4937    PTR ptr = meet_ptr(tp->ptr());
4938    switch (tp->ptr()) {
4939    case TopPTR:
4940      return this;
4941    case Null:
4942      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4943    case AnyNull:
4944      return make( ptr, klass(), offset );
4945    case BotPTR:
4946    case NotNull:
4947      return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4948    default: typerr(t);
4949    }
4950  }
4951
4952  case RawPtr:
4953  case MetadataPtr:
4954  case OopPtr:
4955  case AryPtr:                  // Meet with AryPtr
4956  case InstPtr:                 // Meet with InstPtr
4957    return TypePtr::BOTTOM;
4958
4959  //
4960  //             A-top         }
4961  //           /   |   \       }  Tops
4962  //       B-top A-any C-top   }
4963  //          | /  |  \ |      }  Any-nulls
4964  //       B-any   |   C-any   }
4965  //          |    |    |
4966  //       B-con A-con C-con   } constants; not comparable across classes
4967  //          |    |    |
4968  //       B-not   |   C-not   }
4969  //          | \  |  / |      }  not-nulls
4970  //       B-bot A-not C-bot   }
4971  //           \   |   /       }  Bottoms
4972  //             A-bot         }
4973  //
4974
4975  case KlassPtr: {  // Meet two KlassPtr types
4976    const TypeKlassPtr *tkls = t->is_klassptr();
4977    int  off     = meet_offset(tkls->offset());
4978    PTR  ptr     = meet_ptr(tkls->ptr());
4979
4980    // Check for easy case; klasses are equal (and perhaps not loaded!)
4981    // If we have constants, then we created oops so classes are loaded
4982    // and we can handle the constants further down.  This case handles
4983    // not-loaded classes
4984    if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4985      return make( ptr, klass(), off );
4986    }
4987
4988    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4989    ciKlass* tkls_klass = tkls->klass();
4990    ciKlass* this_klass = this->klass();
4991    assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4992    assert( this_klass->is_loaded(), "This class should have been loaded.");
4993
4994    // If 'this' type is above the centerline and is a superclass of the
4995    // other, we can treat 'this' as having the same type as the other.
4996    if ((above_centerline(this->ptr())) &&
4997        tkls_klass->is_subtype_of(this_klass)) {
4998      this_klass = tkls_klass;
4999    }
5000    // If 'tinst' type is above the centerline and is a superclass of the
5001    // other, we can treat 'tinst' as having the same type as the other.
5002    if ((above_centerline(tkls->ptr())) &&
5003        this_klass->is_subtype_of(tkls_klass)) {
5004      tkls_klass = this_klass;
5005    }
5006
5007    // Check for classes now being equal
5008    if (tkls_klass->equals(this_klass)) {
5009      // If the klasses are equal, the constants may still differ.  Fall to
5010      // NotNull if they do (neither constant is NULL; that is a special case
5011      // handled elsewhere).
5012      if( ptr == Constant ) {
5013        if (this->_ptr == Constant && tkls->_ptr == Constant &&
5014            this->klass()->equals(tkls->klass()));
5015        else if (above_centerline(this->ptr()));
5016        else if (above_centerline(tkls->ptr()));
5017        else
5018          ptr = NotNull;
5019      }
5020      return make( ptr, this_klass, off );
5021    } // Else classes are not equal
5022
5023    // Since klasses are different, we require the LCA in the Java
5024    // class hierarchy - which means we have to fall to at least NotNull.
5025    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5026      ptr = NotNull;
5027    // Now we find the LCA of Java classes
5028    ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5029    return   make( ptr, k, off );
5030  } // End of case KlassPtr
5031
5032  } // End of switch
5033  return this;                  // Return the double constant
5034}
5035
5036//------------------------------xdual------------------------------------------
5037// Dual: compute field-by-field dual
5038const Type    *TypeKlassPtr::xdual() const {
5039  return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5040}
5041
5042//------------------------------get_con----------------------------------------
5043intptr_t TypeKlassPtr::get_con() const {
5044  assert( _ptr == Null || _ptr == Constant, "" );
5045  assert( _offset >= 0, "" );
5046
5047  if (_offset != 0) {
5048    // After being ported to the compiler interface, the compiler no longer
5049    // directly manipulates the addresses of oops.  Rather, it only has a pointer
5050    // to a handle at compile time.  This handle is embedded in the generated
5051    // code and dereferenced at the time the nmethod is made.  Until that time,
5052    // it is not reasonable to do arithmetic with the addresses of oops (we don't
5053    // have access to the addresses!).  This does not seem to currently happen,
5054    // but this assertion here is to help prevent its occurence.
5055    tty->print_cr("Found oop constant with non-zero offset");
5056    ShouldNotReachHere();
5057  }
5058
5059  return (intptr_t)klass()->constant_encoding();
5060}
5061//------------------------------dump2------------------------------------------
5062// Dump Klass Type
5063#ifndef PRODUCT
5064void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5065  switch( _ptr ) {
5066  case Constant:
5067    st->print("precise ");
5068  case NotNull:
5069    {
5070      const char *name = klass()->name()->as_utf8();
5071      if( name ) {
5072        st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5073      } else {
5074        ShouldNotReachHere();
5075      }
5076    }
5077  case BotPTR:
5078    if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5079  case TopPTR:
5080  case AnyNull:
5081    st->print(":%s", ptr_msg[_ptr]);
5082    if( _klass_is_exact ) st->print(":exact");
5083    break;
5084  }
5085
5086  if( _offset ) {               // Dump offset, if any
5087    if( _offset == OffsetBot )      { st->print("+any"); }
5088    else if( _offset == OffsetTop ) { st->print("+unknown"); }
5089    else                            { st->print("+%d", _offset); }
5090  }
5091
5092  st->print(" *");
5093}
5094#endif
5095
5096
5097
5098//=============================================================================
5099// Convenience common pre-built types.
5100
5101//------------------------------make-------------------------------------------
5102const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5103  return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5104}
5105
5106//------------------------------make-------------------------------------------
5107const TypeFunc *TypeFunc::make(ciMethod* method) {
5108  Compile* C = Compile::current();
5109  const TypeFunc* tf = C->last_tf(method); // check cache
5110  if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5111  const TypeTuple *domain;
5112  if (method->is_static()) {
5113    domain = TypeTuple::make_domain(NULL, method->signature());
5114  } else {
5115    domain = TypeTuple::make_domain(method->holder(), method->signature());
5116  }
5117  const TypeTuple *range  = TypeTuple::make_range(method->signature());
5118  tf = TypeFunc::make(domain, range);
5119  C->set_last_tf(method, tf);  // fill cache
5120  return tf;
5121}
5122
5123//------------------------------meet-------------------------------------------
5124// Compute the MEET of two types.  It returns a new Type object.
5125const Type *TypeFunc::xmeet( const Type *t ) const {
5126  // Perform a fast test for common case; meeting the same types together.
5127  if( this == t ) return this;  // Meeting same type-rep?
5128
5129  // Current "this->_base" is Func
5130  switch (t->base()) {          // switch on original type
5131
5132  case Bottom:                  // Ye Olde Default
5133    return t;
5134
5135  default:                      // All else is a mistake
5136    typerr(t);
5137
5138  case Top:
5139    break;
5140  }
5141  return this;                  // Return the double constant
5142}
5143
5144//------------------------------xdual------------------------------------------
5145// Dual: compute field-by-field dual
5146const Type *TypeFunc::xdual() const {
5147  return this;
5148}
5149
5150//------------------------------eq---------------------------------------------
5151// Structural equality check for Type representations
5152bool TypeFunc::eq( const Type *t ) const {
5153  const TypeFunc *a = (const TypeFunc*)t;
5154  return _domain == a->_domain &&
5155    _range == a->_range;
5156}
5157
5158//------------------------------hash-------------------------------------------
5159// Type-specific hashing function.
5160int TypeFunc::hash(void) const {
5161  return (intptr_t)_domain + (intptr_t)_range;
5162}
5163
5164//------------------------------dump2------------------------------------------
5165// Dump Function Type
5166#ifndef PRODUCT
5167void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5168  if( _range->cnt() <= Parms )
5169    st->print("void");
5170  else {
5171    uint i;
5172    for (i = Parms; i < _range->cnt()-1; i++) {
5173      _range->field_at(i)->dump2(d,depth,st);
5174      st->print("/");
5175    }
5176    _range->field_at(i)->dump2(d,depth,st);
5177  }
5178  st->print(" ");
5179  st->print("( ");
5180  if( !depth || d[this] ) {     // Check for recursive dump
5181    st->print("...)");
5182    return;
5183  }
5184  d.Insert((void*)this,(void*)this);    // Stop recursion
5185  if (Parms < _domain->cnt())
5186    _domain->field_at(Parms)->dump2(d,depth-1,st);
5187  for (uint i = Parms+1; i < _domain->cnt(); i++) {
5188    st->print(", ");
5189    _domain->field_at(i)->dump2(d,depth-1,st);
5190  }
5191  st->print(" )");
5192}
5193#endif
5194
5195//------------------------------singleton--------------------------------------
5196// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5197// constants (Ldi nodes).  Singletons are integer, float or double constants
5198// or a single symbol.
5199bool TypeFunc::singleton(void) const {
5200  return false;                 // Never a singleton
5201}
5202
5203bool TypeFunc::empty(void) const {
5204  return false;                 // Never empty
5205}
5206
5207
5208BasicType TypeFunc::return_type() const{
5209  if (range()->cnt() == TypeFunc::Parms) {
5210    return T_VOID;
5211  }
5212  return range()->field_at(TypeFunc::Parms)->basic_type();
5213}
5214