1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "ci/ciTypeFlow.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "compiler/compileLog.hpp"
31#include "gc/shared/gcLocker.hpp"
32#include "libadt/dict.hpp"
33#include "memory/oopFactory.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/instanceKlass.hpp"
36#include "oops/instanceMirrorKlass.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "oops/typeArrayKlass.hpp"
39#include "opto/matcher.hpp"
40#include "opto/node.hpp"
41#include "opto/opcodes.hpp"
42#include "opto/type.hpp"
43
44// Portions of code courtesy of Clifford Click
45
46// Optimization - Graph Style
47
48// Dictionary of types shared among compilations.
49Dict* Type::_shared_type_dict = NULL;
50
51// Array which maps compiler types to Basic Types
52const Type::TypeInfo Type::_type_info[Type::lastype] = {
53  { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
54  { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
55  { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
56  { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
57  { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
58  { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
59  { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
60  { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
61  { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
62  { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
63
64#ifdef SPARC
65  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
66  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
67  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
68  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
69  { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
70#elif defined(PPC64) || defined(S390)
71  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
72  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
73  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
74  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
75  { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
76#else // all other
77  { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
78  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
79  { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
80  { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
81  { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
82#endif
83  { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
84  { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
85  { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
86  { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
87  { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
88  { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
89  { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
90  { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
91  { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
92  { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
93  { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
94  { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
95  { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
96  { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
97  { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
98  { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
99  { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
100  { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
101};
102
103// Map ideal registers (machine types) to ideal types
104const Type *Type::mreg2type[_last_machine_leaf];
105
106// Map basic types to canonical Type* pointers.
107const Type* Type::     _const_basic_type[T_CONFLICT+1];
108
109// Map basic types to constant-zero Types.
110const Type* Type::            _zero_type[T_CONFLICT+1];
111
112// Map basic types to array-body alias types.
113const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
114
115//=============================================================================
116// Convenience common pre-built types.
117const Type *Type::ABIO;         // State-of-machine only
118const Type *Type::BOTTOM;       // All values
119const Type *Type::CONTROL;      // Control only
120const Type *Type::DOUBLE;       // All doubles
121const Type *Type::FLOAT;        // All floats
122const Type *Type::HALF;         // Placeholder half of doublewide type
123const Type *Type::MEMORY;       // Abstract store only
124const Type *Type::RETURN_ADDRESS;
125const Type *Type::TOP;          // No values in set
126
127//------------------------------get_const_type---------------------------
128const Type* Type::get_const_type(ciType* type) {
129  if (type == NULL) {
130    return NULL;
131  } else if (type->is_primitive_type()) {
132    return get_const_basic_type(type->basic_type());
133  } else {
134    return TypeOopPtr::make_from_klass(type->as_klass());
135  }
136}
137
138//---------------------------array_element_basic_type---------------------------------
139// Mapping to the array element's basic type.
140BasicType Type::array_element_basic_type() const {
141  BasicType bt = basic_type();
142  if (bt == T_INT) {
143    if (this == TypeInt::INT)   return T_INT;
144    if (this == TypeInt::CHAR)  return T_CHAR;
145    if (this == TypeInt::BYTE)  return T_BYTE;
146    if (this == TypeInt::BOOL)  return T_BOOLEAN;
147    if (this == TypeInt::SHORT) return T_SHORT;
148    return T_VOID;
149  }
150  return bt;
151}
152
153// For two instance arrays of same dimension, return the base element types.
154// Otherwise or if the arrays have different dimensions, return NULL.
155void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
156                                    const TypeInstPtr **e1, const TypeInstPtr **e2) {
157
158  if (e1) *e1 = NULL;
159  if (e2) *e2 = NULL;
160  const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
161  const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
162
163  if (a1tap != NULL && a2tap != NULL) {
164    // Handle multidimensional arrays
165    const TypePtr* a1tp = a1tap->elem()->make_ptr();
166    const TypePtr* a2tp = a2tap->elem()->make_ptr();
167    while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
168      a1tap = a1tp->is_aryptr();
169      a2tap = a2tp->is_aryptr();
170      a1tp = a1tap->elem()->make_ptr();
171      a2tp = a2tap->elem()->make_ptr();
172    }
173    if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
174      if (e1) *e1 = a1tp->is_instptr();
175      if (e2) *e2 = a2tp->is_instptr();
176    }
177  }
178}
179
180//---------------------------get_typeflow_type---------------------------------
181// Import a type produced by ciTypeFlow.
182const Type* Type::get_typeflow_type(ciType* type) {
183  switch (type->basic_type()) {
184
185  case ciTypeFlow::StateVector::T_BOTTOM:
186    assert(type == ciTypeFlow::StateVector::bottom_type(), "");
187    return Type::BOTTOM;
188
189  case ciTypeFlow::StateVector::T_TOP:
190    assert(type == ciTypeFlow::StateVector::top_type(), "");
191    return Type::TOP;
192
193  case ciTypeFlow::StateVector::T_NULL:
194    assert(type == ciTypeFlow::StateVector::null_type(), "");
195    return TypePtr::NULL_PTR;
196
197  case ciTypeFlow::StateVector::T_LONG2:
198    // The ciTypeFlow pass pushes a long, then the half.
199    // We do the same.
200    assert(type == ciTypeFlow::StateVector::long2_type(), "");
201    return TypeInt::TOP;
202
203  case ciTypeFlow::StateVector::T_DOUBLE2:
204    // The ciTypeFlow pass pushes double, then the half.
205    // Our convention is the same.
206    assert(type == ciTypeFlow::StateVector::double2_type(), "");
207    return Type::TOP;
208
209  case T_ADDRESS:
210    assert(type->is_return_address(), "");
211    return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
212
213  default:
214    // make sure we did not mix up the cases:
215    assert(type != ciTypeFlow::StateVector::bottom_type(), "");
216    assert(type != ciTypeFlow::StateVector::top_type(), "");
217    assert(type != ciTypeFlow::StateVector::null_type(), "");
218    assert(type != ciTypeFlow::StateVector::long2_type(), "");
219    assert(type != ciTypeFlow::StateVector::double2_type(), "");
220    assert(!type->is_return_address(), "");
221
222    return Type::get_const_type(type);
223  }
224}
225
226
227//-----------------------make_from_constant------------------------------------
228const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
229                                     int stable_dimension, bool is_narrow_oop,
230                                     bool is_autobox_cache) {
231  switch (constant.basic_type()) {
232    case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
233    case T_CHAR:     return TypeInt::make(constant.as_char());
234    case T_BYTE:     return TypeInt::make(constant.as_byte());
235    case T_SHORT:    return TypeInt::make(constant.as_short());
236    case T_INT:      return TypeInt::make(constant.as_int());
237    case T_LONG:     return TypeLong::make(constant.as_long());
238    case T_FLOAT:    return TypeF::make(constant.as_float());
239    case T_DOUBLE:   return TypeD::make(constant.as_double());
240    case T_ARRAY:
241    case T_OBJECT: {
242        // cases:
243        //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
244        //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
245        // An oop is not scavengable if it is in the perm gen.
246        const Type* con_type = NULL;
247        ciObject* oop_constant = constant.as_object();
248        if (oop_constant->is_null_object()) {
249          con_type = Type::get_zero_type(T_OBJECT);
250        } else if (require_constant || oop_constant->should_be_constant()) {
251          con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
252          if (con_type != NULL) {
253            if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
254              con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
255            }
256            if (stable_dimension > 0) {
257              assert(FoldStableValues, "sanity");
258              assert(!con_type->is_zero_type(), "default value for stable field");
259              con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
260            }
261          }
262        }
263        if (is_narrow_oop) {
264          con_type = con_type->make_narrowoop();
265        }
266        return con_type;
267      }
268    case T_ILLEGAL:
269      // Invalid ciConstant returned due to OutOfMemoryError in the CI
270      assert(Compile::current()->env()->failing(), "otherwise should not see this");
271      return NULL;
272    default:
273      // Fall through to failure
274      return NULL;
275  }
276}
277
278static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
279  BasicType conbt = con.basic_type();
280  switch (conbt) {
281    case T_BOOLEAN: conbt = T_BYTE;   break;
282    case T_ARRAY:   conbt = T_OBJECT; break;
283    default:                          break;
284  }
285  switch (loadbt) {
286    case T_BOOLEAN:   loadbt = T_BYTE;   break;
287    case T_NARROWOOP: loadbt = T_OBJECT; break;
288    case T_ARRAY:     loadbt = T_OBJECT; break;
289    case T_ADDRESS:   loadbt = T_OBJECT; break;
290    default:                             break;
291  }
292  if (conbt == loadbt) {
293    if (is_unsigned && conbt == T_BYTE) {
294      // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
295      return ciConstant(T_INT, con.as_int() & 0xFF);
296    } else {
297      return con;
298    }
299  }
300  if (conbt == T_SHORT && loadbt == T_CHAR) {
301    // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
302    return ciConstant(T_INT, con.as_int() & 0xFFFF);
303  }
304  return ciConstant(); // T_ILLEGAL
305}
306
307// Try to constant-fold a stable array element.
308const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
309                                                   BasicType loadbt, bool is_unsigned_load) {
310  // Decode the results of GraphKit::array_element_address.
311  ciConstant element_value = array->element_value_by_offset(off);
312  if (element_value.basic_type() == T_ILLEGAL) {
313    return NULL; // wrong offset
314  }
315  ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
316
317  assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
318         type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
319
320  if (con.is_valid() &&          // not a mismatched access
321      !con.is_null_or_zero()) {  // not a default value
322    bool is_narrow_oop = (loadbt == T_NARROWOOP);
323    return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
324  }
325  return NULL;
326}
327
328const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
329  ciField* field;
330  ciType* type = holder->java_mirror_type();
331  if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
332    // Static field
333    field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
334  } else {
335    // Instance field
336    field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
337  }
338  if (field == NULL) {
339    return NULL; // Wrong offset
340  }
341  return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
342}
343
344const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
345                                           BasicType loadbt, bool is_unsigned_load) {
346  if (!field->is_constant()) {
347    return NULL; // Non-constant field
348  }
349  ciConstant field_value;
350  if (field->is_static()) {
351    // final static field
352    field_value = field->constant_value();
353  } else if (holder != NULL) {
354    // final or stable non-static field
355    // Treat final non-static fields of trusted classes (classes in
356    // java.lang.invoke and sun.invoke packages and subpackages) as
357    // compile time constants.
358    field_value = field->constant_value_of(holder);
359  }
360  if (!field_value.is_valid()) {
361    return NULL; // Not a constant
362  }
363
364  ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
365
366  assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
367         type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
368
369  bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
370  int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
371  bool is_narrow_oop = (loadbt == T_NARROWOOP);
372
373  const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
374                                            stable_dimension, is_narrow_oop,
375                                            field->is_autobox_cache());
376  if (con_type != NULL && field->is_call_site_target()) {
377    ciCallSite* call_site = holder->as_call_site();
378    if (!call_site->is_constant_call_site()) {
379      ciMethodHandle* target = con.as_object()->as_method_handle();
380      Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
381    }
382  }
383  return con_type;
384}
385
386//------------------------------make-------------------------------------------
387// Create a simple Type, with default empty symbol sets.  Then hashcons it
388// and look for an existing copy in the type dictionary.
389const Type *Type::make( enum TYPES t ) {
390  return (new Type(t))->hashcons();
391}
392
393//------------------------------cmp--------------------------------------------
394int Type::cmp( const Type *const t1, const Type *const t2 ) {
395  if( t1->_base != t2->_base )
396    return 1;                   // Missed badly
397  assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
398  return !t1->eq(t2);           // Return ZERO if equal
399}
400
401const Type* Type::maybe_remove_speculative(bool include_speculative) const {
402  if (!include_speculative) {
403    return remove_speculative();
404  }
405  return this;
406}
407
408//------------------------------hash-------------------------------------------
409int Type::uhash( const Type *const t ) {
410  return t->hash();
411}
412
413#define SMALLINT ((juint)3)  // a value too insignificant to consider widening
414
415//--------------------------Initialize_shared----------------------------------
416void Type::Initialize_shared(Compile* current) {
417  // This method does not need to be locked because the first system
418  // compilations (stub compilations) occur serially.  If they are
419  // changed to proceed in parallel, then this section will need
420  // locking.
421
422  Arena* save = current->type_arena();
423  Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
424
425  current->set_type_arena(shared_type_arena);
426  _shared_type_dict =
427    new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
428                                  shared_type_arena, 128 );
429  current->set_type_dict(_shared_type_dict);
430
431  // Make shared pre-built types.
432  CONTROL = make(Control);      // Control only
433  TOP     = make(Top);          // No values in set
434  MEMORY  = make(Memory);       // Abstract store only
435  ABIO    = make(Abio);         // State-of-machine only
436  RETURN_ADDRESS=make(Return_Address);
437  FLOAT   = make(FloatBot);     // All floats
438  DOUBLE  = make(DoubleBot);    // All doubles
439  BOTTOM  = make(Bottom);       // Everything
440  HALF    = make(Half);         // Placeholder half of doublewide type
441
442  TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
443  TypeF::ONE  = TypeF::make(1.0); // Float 1
444
445  TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
446  TypeD::ONE  = TypeD::make(1.0); // Double 1
447
448  TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
449  TypeInt::ZERO    = TypeInt::make( 0);  //  0
450  TypeInt::ONE     = TypeInt::make( 1);  //  1
451  TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
452  TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
453  TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
454  TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
455  TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
456  TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
457  TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
458  TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
459  TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
460  TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
461  TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
462  TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
463  TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
464  TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
465  TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
466  TypeInt::TYPE_DOMAIN  = TypeInt::INT;
467  // CmpL is overloaded both as the bytecode computation returning
468  // a trinary (-1,0,+1) integer result AND as an efficient long
469  // compare returning optimizer ideal-type flags.
470  assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
471  assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
472  assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
473  assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
474  assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
475
476  TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
477  TypeLong::ZERO    = TypeLong::make( 0);        //  0
478  TypeLong::ONE     = TypeLong::make( 1);        //  1
479  TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
480  TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
481  TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
482  TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
483  TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
484
485  const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
486  fboth[0] = Type::CONTROL;
487  fboth[1] = Type::CONTROL;
488  TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
489
490  const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
491  ffalse[0] = Type::CONTROL;
492  ffalse[1] = Type::TOP;
493  TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
494
495  const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
496  fneither[0] = Type::TOP;
497  fneither[1] = Type::TOP;
498  TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
499
500  const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
501  ftrue[0] = Type::TOP;
502  ftrue[1] = Type::CONTROL;
503  TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
504
505  const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
506  floop[0] = Type::CONTROL;
507  floop[1] = TypeInt::INT;
508  TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
509
510  TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
511  TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
512  TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
513
514  TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
515  TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
516
517  const Type **fmembar = TypeTuple::fields(0);
518  TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
519
520  const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
521  fsc[0] = TypeInt::CC;
522  fsc[1] = Type::MEMORY;
523  TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
524
525  TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
526  TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
527  TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
528  TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
529                                           false, 0, oopDesc::mark_offset_in_bytes());
530  TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
531                                           false, 0, oopDesc::klass_offset_in_bytes());
532  TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
533
534  TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
535
536  TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
537  TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
538
539  TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
540
541  mreg2type[Op_Node] = Type::BOTTOM;
542  mreg2type[Op_Set ] = 0;
543  mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
544  mreg2type[Op_RegI] = TypeInt::INT;
545  mreg2type[Op_RegP] = TypePtr::BOTTOM;
546  mreg2type[Op_RegF] = Type::FLOAT;
547  mreg2type[Op_RegD] = Type::DOUBLE;
548  mreg2type[Op_RegL] = TypeLong::LONG;
549  mreg2type[Op_RegFlags] = TypeInt::CC;
550
551  TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
552
553  TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
554
555#ifdef _LP64
556  if (UseCompressedOops) {
557    assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
558    TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
559  } else
560#endif
561  {
562    // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
563    TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
564  }
565  TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
566  TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
567  TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
568  TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
569  TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
570  TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
571  TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
572
573  // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
574  TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
575  TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
576  TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
577  TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
578  TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
579  TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
580  TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
581  TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
582  TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
583  TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
584  TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
585
586  TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
587  TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
588
589  const Type **fi2c = TypeTuple::fields(2);
590  fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
591  fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
592  TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
593
594  const Type **intpair = TypeTuple::fields(2);
595  intpair[0] = TypeInt::INT;
596  intpair[1] = TypeInt::INT;
597  TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
598
599  const Type **longpair = TypeTuple::fields(2);
600  longpair[0] = TypeLong::LONG;
601  longpair[1] = TypeLong::LONG;
602  TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
603
604  const Type **intccpair = TypeTuple::fields(2);
605  intccpair[0] = TypeInt::INT;
606  intccpair[1] = TypeInt::CC;
607  TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
608
609  const Type **longccpair = TypeTuple::fields(2);
610  longccpair[0] = TypeLong::LONG;
611  longccpair[1] = TypeInt::CC;
612  TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
613
614  _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
615  _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
616  _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
617  _const_basic_type[T_CHAR]        = TypeInt::CHAR;
618  _const_basic_type[T_BYTE]        = TypeInt::BYTE;
619  _const_basic_type[T_SHORT]       = TypeInt::SHORT;
620  _const_basic_type[T_INT]         = TypeInt::INT;
621  _const_basic_type[T_LONG]        = TypeLong::LONG;
622  _const_basic_type[T_FLOAT]       = Type::FLOAT;
623  _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
624  _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
625  _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
626  _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
627  _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
628  _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
629
630  _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
631  _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
632  _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
633  _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
634  _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
635  _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
636  _zero_type[T_INT]         = TypeInt::ZERO;
637  _zero_type[T_LONG]        = TypeLong::ZERO;
638  _zero_type[T_FLOAT]       = TypeF::ZERO;
639  _zero_type[T_DOUBLE]      = TypeD::ZERO;
640  _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
641  _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
642  _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
643  _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
644
645  // get_zero_type() should not happen for T_CONFLICT
646  _zero_type[T_CONFLICT]= NULL;
647
648  // Vector predefined types, it needs initialized _const_basic_type[].
649  if (Matcher::vector_size_supported(T_BYTE,4)) {
650    TypeVect::VECTS = TypeVect::make(T_BYTE,4);
651  }
652  if (Matcher::vector_size_supported(T_FLOAT,2)) {
653    TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
654  }
655  if (Matcher::vector_size_supported(T_FLOAT,4)) {
656    TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
657  }
658  if (Matcher::vector_size_supported(T_FLOAT,8)) {
659    TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
660  }
661  if (Matcher::vector_size_supported(T_FLOAT,16)) {
662    TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
663  }
664  mreg2type[Op_VecS] = TypeVect::VECTS;
665  mreg2type[Op_VecD] = TypeVect::VECTD;
666  mreg2type[Op_VecX] = TypeVect::VECTX;
667  mreg2type[Op_VecY] = TypeVect::VECTY;
668  mreg2type[Op_VecZ] = TypeVect::VECTZ;
669
670  // Restore working type arena.
671  current->set_type_arena(save);
672  current->set_type_dict(NULL);
673}
674
675//------------------------------Initialize-------------------------------------
676void Type::Initialize(Compile* current) {
677  assert(current->type_arena() != NULL, "must have created type arena");
678
679  if (_shared_type_dict == NULL) {
680    Initialize_shared(current);
681  }
682
683  Arena* type_arena = current->type_arena();
684
685  // Create the hash-cons'ing dictionary with top-level storage allocation
686  Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
687  current->set_type_dict(tdic);
688
689  // Transfer the shared types.
690  DictI i(_shared_type_dict);
691  for( ; i.test(); ++i ) {
692    Type* t = (Type*)i._value;
693    tdic->Insert(t,t);  // New Type, insert into Type table
694  }
695}
696
697//------------------------------hashcons---------------------------------------
698// Do the hash-cons trick.  If the Type already exists in the type table,
699// delete the current Type and return the existing Type.  Otherwise stick the
700// current Type in the Type table.
701const Type *Type::hashcons(void) {
702  debug_only(base());           // Check the assertion in Type::base().
703  // Look up the Type in the Type dictionary
704  Dict *tdic = type_dict();
705  Type* old = (Type*)(tdic->Insert(this, this, false));
706  if( old ) {                   // Pre-existing Type?
707    if( old != this )           // Yes, this guy is not the pre-existing?
708      delete this;              // Yes, Nuke this guy
709    assert( old->_dual, "" );
710    return old;                 // Return pre-existing
711  }
712
713  // Every type has a dual (to make my lattice symmetric).
714  // Since we just discovered a new Type, compute its dual right now.
715  assert( !_dual, "" );         // No dual yet
716  _dual = xdual();              // Compute the dual
717  if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
718    _dual = this;
719    return this;
720  }
721  assert( !_dual->_dual, "" );  // No reverse dual yet
722  assert( !(*tdic)[_dual], "" ); // Dual not in type system either
723  // New Type, insert into Type table
724  tdic->Insert((void*)_dual,(void*)_dual);
725  ((Type*)_dual)->_dual = this; // Finish up being symmetric
726#ifdef ASSERT
727  Type *dual_dual = (Type*)_dual->xdual();
728  assert( eq(dual_dual), "xdual(xdual()) should be identity" );
729  delete dual_dual;
730#endif
731  return this;                  // Return new Type
732}
733
734//------------------------------eq---------------------------------------------
735// Structural equality check for Type representations
736bool Type::eq( const Type * ) const {
737  return true;                  // Nothing else can go wrong
738}
739
740//------------------------------hash-------------------------------------------
741// Type-specific hashing function.
742int Type::hash(void) const {
743  return _base;
744}
745
746//------------------------------is_finite--------------------------------------
747// Has a finite value
748bool Type::is_finite() const {
749  return false;
750}
751
752//------------------------------is_nan-----------------------------------------
753// Is not a number (NaN)
754bool Type::is_nan()    const {
755  return false;
756}
757
758//----------------------interface_vs_oop---------------------------------------
759#ifdef ASSERT
760bool Type::interface_vs_oop_helper(const Type *t) const {
761  bool result = false;
762
763  const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
764  const TypePtr*    t_ptr =    t->make_ptr();
765  if( this_ptr == NULL || t_ptr == NULL )
766    return result;
767
768  const TypeInstPtr* this_inst = this_ptr->isa_instptr();
769  const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
770  if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
771    bool this_interface = this_inst->klass()->is_interface();
772    bool    t_interface =    t_inst->klass()->is_interface();
773    result = this_interface ^ t_interface;
774  }
775
776  return result;
777}
778
779bool Type::interface_vs_oop(const Type *t) const {
780  if (interface_vs_oop_helper(t)) {
781    return true;
782  }
783  // Now check the speculative parts as well
784  const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
785  const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
786  if (this_spec != NULL && t_spec != NULL) {
787    if (this_spec->interface_vs_oop_helper(t_spec)) {
788      return true;
789    }
790    return false;
791  }
792  if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
793    return true;
794  }
795  if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
796    return true;
797  }
798  return false;
799}
800
801#endif
802
803//------------------------------meet-------------------------------------------
804// Compute the MEET of two types.  NOT virtual.  It enforces that meet is
805// commutative and the lattice is symmetric.
806const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
807  if (isa_narrowoop() && t->isa_narrowoop()) {
808    const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
809    return result->make_narrowoop();
810  }
811  if (isa_narrowklass() && t->isa_narrowklass()) {
812    const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
813    return result->make_narrowklass();
814  }
815
816  const Type *this_t = maybe_remove_speculative(include_speculative);
817  t = t->maybe_remove_speculative(include_speculative);
818
819  const Type *mt = this_t->xmeet(t);
820  if (isa_narrowoop() || t->isa_narrowoop()) return mt;
821  if (isa_narrowklass() || t->isa_narrowklass()) return mt;
822#ifdef ASSERT
823  assert(mt == t->xmeet(this_t), "meet not commutative");
824  const Type* dual_join = mt->_dual;
825  const Type *t2t    = dual_join->xmeet(t->_dual);
826  const Type *t2this = dual_join->xmeet(this_t->_dual);
827
828  // Interface meet Oop is Not Symmetric:
829  // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
830  // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
831
832  if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
833    tty->print_cr("=== Meet Not Symmetric ===");
834    tty->print("t   =                   ");              t->dump(); tty->cr();
835    tty->print("this=                   ");         this_t->dump(); tty->cr();
836    tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
837
838    tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
839    tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
840    tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
841
842    tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
843    tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
844
845    fatal("meet not symmetric" );
846  }
847#endif
848  return mt;
849}
850
851//------------------------------xmeet------------------------------------------
852// Compute the MEET of two types.  It returns a new Type object.
853const Type *Type::xmeet( const Type *t ) const {
854  // Perform a fast test for common case; meeting the same types together.
855  if( this == t ) return this;  // Meeting same type-rep?
856
857  // Meeting TOP with anything?
858  if( _base == Top ) return t;
859
860  // Meeting BOTTOM with anything?
861  if( _base == Bottom ) return BOTTOM;
862
863  // Current "this->_base" is one of: Bad, Multi, Control, Top,
864  // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
865  switch (t->base()) {  // Switch on original type
866
867  // Cut in half the number of cases I must handle.  Only need cases for when
868  // the given enum "t->type" is less than or equal to the local enum "type".
869  case FloatCon:
870  case DoubleCon:
871  case Int:
872  case Long:
873    return t->xmeet(this);
874
875  case OopPtr:
876    return t->xmeet(this);
877
878  case InstPtr:
879    return t->xmeet(this);
880
881  case MetadataPtr:
882  case KlassPtr:
883    return t->xmeet(this);
884
885  case AryPtr:
886    return t->xmeet(this);
887
888  case NarrowOop:
889    return t->xmeet(this);
890
891  case NarrowKlass:
892    return t->xmeet(this);
893
894  case Bad:                     // Type check
895  default:                      // Bogus type not in lattice
896    typerr(t);
897    return Type::BOTTOM;
898
899  case Bottom:                  // Ye Olde Default
900    return t;
901
902  case FloatTop:
903    if( _base == FloatTop ) return this;
904  case FloatBot:                // Float
905    if( _base == FloatBot || _base == FloatTop ) return FLOAT;
906    if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
907    typerr(t);
908    return Type::BOTTOM;
909
910  case DoubleTop:
911    if( _base == DoubleTop ) return this;
912  case DoubleBot:               // Double
913    if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
914    if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
915    typerr(t);
916    return Type::BOTTOM;
917
918  // These next few cases must match exactly or it is a compile-time error.
919  case Control:                 // Control of code
920  case Abio:                    // State of world outside of program
921  case Memory:
922    if( _base == t->_base )  return this;
923    typerr(t);
924    return Type::BOTTOM;
925
926  case Top:                     // Top of the lattice
927    return this;
928  }
929
930  // The type is unchanged
931  return this;
932}
933
934//-----------------------------filter------------------------------------------
935const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
936  const Type* ft = join_helper(kills, include_speculative);
937  if (ft->empty())
938    return Type::TOP;           // Canonical empty value
939  return ft;
940}
941
942//------------------------------xdual------------------------------------------
943// Compute dual right now.
944const Type::TYPES Type::dual_type[Type::lastype] = {
945  Bad,          // Bad
946  Control,      // Control
947  Bottom,       // Top
948  Bad,          // Int - handled in v-call
949  Bad,          // Long - handled in v-call
950  Half,         // Half
951  Bad,          // NarrowOop - handled in v-call
952  Bad,          // NarrowKlass - handled in v-call
953
954  Bad,          // Tuple - handled in v-call
955  Bad,          // Array - handled in v-call
956  Bad,          // VectorS - handled in v-call
957  Bad,          // VectorD - handled in v-call
958  Bad,          // VectorX - handled in v-call
959  Bad,          // VectorY - handled in v-call
960  Bad,          // VectorZ - handled in v-call
961
962  Bad,          // AnyPtr - handled in v-call
963  Bad,          // RawPtr - handled in v-call
964  Bad,          // OopPtr - handled in v-call
965  Bad,          // InstPtr - handled in v-call
966  Bad,          // AryPtr - handled in v-call
967
968  Bad,          //  MetadataPtr - handled in v-call
969  Bad,          // KlassPtr - handled in v-call
970
971  Bad,          // Function - handled in v-call
972  Abio,         // Abio
973  Return_Address,// Return_Address
974  Memory,       // Memory
975  FloatBot,     // FloatTop
976  FloatCon,     // FloatCon
977  FloatTop,     // FloatBot
978  DoubleBot,    // DoubleTop
979  DoubleCon,    // DoubleCon
980  DoubleTop,    // DoubleBot
981  Top           // Bottom
982};
983
984const Type *Type::xdual() const {
985  // Note: the base() accessor asserts the sanity of _base.
986  assert(_type_info[base()].dual_type != Bad, "implement with v-call");
987  return new Type(_type_info[_base].dual_type);
988}
989
990//------------------------------has_memory-------------------------------------
991bool Type::has_memory() const {
992  Type::TYPES tx = base();
993  if (tx == Memory) return true;
994  if (tx == Tuple) {
995    const TypeTuple *t = is_tuple();
996    for (uint i=0; i < t->cnt(); i++) {
997      tx = t->field_at(i)->base();
998      if (tx == Memory)  return true;
999    }
1000  }
1001  return false;
1002}
1003
1004#ifndef PRODUCT
1005//------------------------------dump2------------------------------------------
1006void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1007  st->print("%s", _type_info[_base].msg);
1008}
1009
1010//------------------------------dump-------------------------------------------
1011void Type::dump_on(outputStream *st) const {
1012  ResourceMark rm;
1013  Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1014  dump2(d,1, st);
1015  if (is_ptr_to_narrowoop()) {
1016    st->print(" [narrow]");
1017  } else if (is_ptr_to_narrowklass()) {
1018    st->print(" [narrowklass]");
1019  }
1020}
1021
1022//-----------------------------------------------------------------------------
1023const char* Type::str(const Type* t) {
1024  stringStream ss;
1025  t->dump_on(&ss);
1026  return ss.as_string();
1027}
1028#endif
1029
1030//------------------------------singleton--------------------------------------
1031// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1032// constants (Ldi nodes).  Singletons are integer, float or double constants.
1033bool Type::singleton(void) const {
1034  return _base == Top || _base == Half;
1035}
1036
1037//------------------------------empty------------------------------------------
1038// TRUE if Type is a type with no values, FALSE otherwise.
1039bool Type::empty(void) const {
1040  switch (_base) {
1041  case DoubleTop:
1042  case FloatTop:
1043  case Top:
1044    return true;
1045
1046  case Half:
1047  case Abio:
1048  case Return_Address:
1049  case Memory:
1050  case Bottom:
1051  case FloatBot:
1052  case DoubleBot:
1053    return false;  // never a singleton, therefore never empty
1054
1055  default:
1056    ShouldNotReachHere();
1057    return false;
1058  }
1059}
1060
1061//------------------------------dump_stats-------------------------------------
1062// Dump collected statistics to stderr
1063#ifndef PRODUCT
1064void Type::dump_stats() {
1065  tty->print("Types made: %d\n", type_dict()->Size());
1066}
1067#endif
1068
1069//------------------------------typerr-----------------------------------------
1070void Type::typerr( const Type *t ) const {
1071#ifndef PRODUCT
1072  tty->print("\nError mixing types: ");
1073  dump();
1074  tty->print(" and ");
1075  t->dump();
1076  tty->print("\n");
1077#endif
1078  ShouldNotReachHere();
1079}
1080
1081
1082//=============================================================================
1083// Convenience common pre-built types.
1084const TypeF *TypeF::ZERO;       // Floating point zero
1085const TypeF *TypeF::ONE;        // Floating point one
1086
1087//------------------------------make-------------------------------------------
1088// Create a float constant
1089const TypeF *TypeF::make(float f) {
1090  return (TypeF*)(new TypeF(f))->hashcons();
1091}
1092
1093//------------------------------meet-------------------------------------------
1094// Compute the MEET of two types.  It returns a new Type object.
1095const Type *TypeF::xmeet( const Type *t ) const {
1096  // Perform a fast test for common case; meeting the same types together.
1097  if( this == t ) return this;  // Meeting same type-rep?
1098
1099  // Current "this->_base" is FloatCon
1100  switch (t->base()) {          // Switch on original type
1101  case AnyPtr:                  // Mixing with oops happens when javac
1102  case RawPtr:                  // reuses local variables
1103  case OopPtr:
1104  case InstPtr:
1105  case AryPtr:
1106  case MetadataPtr:
1107  case KlassPtr:
1108  case NarrowOop:
1109  case NarrowKlass:
1110  case Int:
1111  case Long:
1112  case DoubleTop:
1113  case DoubleCon:
1114  case DoubleBot:
1115  case Bottom:                  // Ye Olde Default
1116    return Type::BOTTOM;
1117
1118  case FloatBot:
1119    return t;
1120
1121  default:                      // All else is a mistake
1122    typerr(t);
1123
1124  case FloatCon:                // Float-constant vs Float-constant?
1125    if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1126                                // must compare bitwise as positive zero, negative zero and NaN have
1127                                // all the same representation in C++
1128      return FLOAT;             // Return generic float
1129                                // Equal constants
1130  case Top:
1131  case FloatTop:
1132    break;                      // Return the float constant
1133  }
1134  return this;                  // Return the float constant
1135}
1136
1137//------------------------------xdual------------------------------------------
1138// Dual: symmetric
1139const Type *TypeF::xdual() const {
1140  return this;
1141}
1142
1143//------------------------------eq---------------------------------------------
1144// Structural equality check for Type representations
1145bool TypeF::eq(const Type *t) const {
1146  // Bitwise comparison to distinguish between +/-0. These values must be treated
1147  // as different to be consistent with C1 and the interpreter.
1148  return (jint_cast(_f) == jint_cast(t->getf()));
1149}
1150
1151//------------------------------hash-------------------------------------------
1152// Type-specific hashing function.
1153int TypeF::hash(void) const {
1154  return *(int*)(&_f);
1155}
1156
1157//------------------------------is_finite--------------------------------------
1158// Has a finite value
1159bool TypeF::is_finite() const {
1160  return g_isfinite(getf()) != 0;
1161}
1162
1163//------------------------------is_nan-----------------------------------------
1164// Is not a number (NaN)
1165bool TypeF::is_nan()    const {
1166  return g_isnan(getf()) != 0;
1167}
1168
1169//------------------------------dump2------------------------------------------
1170// Dump float constant Type
1171#ifndef PRODUCT
1172void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1173  Type::dump2(d,depth, st);
1174  st->print("%f", _f);
1175}
1176#endif
1177
1178//------------------------------singleton--------------------------------------
1179// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1180// constants (Ldi nodes).  Singletons are integer, float or double constants
1181// or a single symbol.
1182bool TypeF::singleton(void) const {
1183  return true;                  // Always a singleton
1184}
1185
1186bool TypeF::empty(void) const {
1187  return false;                 // always exactly a singleton
1188}
1189
1190//=============================================================================
1191// Convenience common pre-built types.
1192const TypeD *TypeD::ZERO;       // Floating point zero
1193const TypeD *TypeD::ONE;        // Floating point one
1194
1195//------------------------------make-------------------------------------------
1196const TypeD *TypeD::make(double d) {
1197  return (TypeD*)(new TypeD(d))->hashcons();
1198}
1199
1200//------------------------------meet-------------------------------------------
1201// Compute the MEET of two types.  It returns a new Type object.
1202const Type *TypeD::xmeet( const Type *t ) const {
1203  // Perform a fast test for common case; meeting the same types together.
1204  if( this == t ) return this;  // Meeting same type-rep?
1205
1206  // Current "this->_base" is DoubleCon
1207  switch (t->base()) {          // Switch on original type
1208  case AnyPtr:                  // Mixing with oops happens when javac
1209  case RawPtr:                  // reuses local variables
1210  case OopPtr:
1211  case InstPtr:
1212  case AryPtr:
1213  case MetadataPtr:
1214  case KlassPtr:
1215  case NarrowOop:
1216  case NarrowKlass:
1217  case Int:
1218  case Long:
1219  case FloatTop:
1220  case FloatCon:
1221  case FloatBot:
1222  case Bottom:                  // Ye Olde Default
1223    return Type::BOTTOM;
1224
1225  case DoubleBot:
1226    return t;
1227
1228  default:                      // All else is a mistake
1229    typerr(t);
1230
1231  case DoubleCon:               // Double-constant vs Double-constant?
1232    if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1233      return DOUBLE;            // Return generic double
1234  case Top:
1235  case DoubleTop:
1236    break;
1237  }
1238  return this;                  // Return the double constant
1239}
1240
1241//------------------------------xdual------------------------------------------
1242// Dual: symmetric
1243const Type *TypeD::xdual() const {
1244  return this;
1245}
1246
1247//------------------------------eq---------------------------------------------
1248// Structural equality check for Type representations
1249bool TypeD::eq(const Type *t) const {
1250  // Bitwise comparison to distinguish between +/-0. These values must be treated
1251  // as different to be consistent with C1 and the interpreter.
1252  return (jlong_cast(_d) == jlong_cast(t->getd()));
1253}
1254
1255//------------------------------hash-------------------------------------------
1256// Type-specific hashing function.
1257int TypeD::hash(void) const {
1258  return *(int*)(&_d);
1259}
1260
1261//------------------------------is_finite--------------------------------------
1262// Has a finite value
1263bool TypeD::is_finite() const {
1264  return g_isfinite(getd()) != 0;
1265}
1266
1267//------------------------------is_nan-----------------------------------------
1268// Is not a number (NaN)
1269bool TypeD::is_nan()    const {
1270  return g_isnan(getd()) != 0;
1271}
1272
1273//------------------------------dump2------------------------------------------
1274// Dump double constant Type
1275#ifndef PRODUCT
1276void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1277  Type::dump2(d,depth,st);
1278  st->print("%f", _d);
1279}
1280#endif
1281
1282//------------------------------singleton--------------------------------------
1283// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1284// constants (Ldi nodes).  Singletons are integer, float or double constants
1285// or a single symbol.
1286bool TypeD::singleton(void) const {
1287  return true;                  // Always a singleton
1288}
1289
1290bool TypeD::empty(void) const {
1291  return false;                 // always exactly a singleton
1292}
1293
1294//=============================================================================
1295// Convience common pre-built types.
1296const TypeInt *TypeInt::MINUS_1;// -1
1297const TypeInt *TypeInt::ZERO;   // 0
1298const TypeInt *TypeInt::ONE;    // 1
1299const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1300const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1301const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1302const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1303const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1304const TypeInt *TypeInt::CC_LE;  // [-1,0]
1305const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1306const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1307const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1308const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1309const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1310const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1311const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1312const TypeInt *TypeInt::INT;    // 32-bit integers
1313const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1314const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1315
1316//------------------------------TypeInt----------------------------------------
1317TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1318}
1319
1320//------------------------------make-------------------------------------------
1321const TypeInt *TypeInt::make( jint lo ) {
1322  return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1323}
1324
1325static int normalize_int_widen( jint lo, jint hi, int w ) {
1326  // Certain normalizations keep us sane when comparing types.
1327  // The 'SMALLINT' covers constants and also CC and its relatives.
1328  if (lo <= hi) {
1329    if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1330    if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1331  } else {
1332    if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1333    if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1334  }
1335  return w;
1336}
1337
1338const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1339  w = normalize_int_widen(lo, hi, w);
1340  return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1341}
1342
1343//------------------------------meet-------------------------------------------
1344// Compute the MEET of two types.  It returns a new Type representation object
1345// with reference count equal to the number of Types pointing at it.
1346// Caller should wrap a Types around it.
1347const Type *TypeInt::xmeet( const Type *t ) const {
1348  // Perform a fast test for common case; meeting the same types together.
1349  if( this == t ) return this;  // Meeting same type?
1350
1351  // Currently "this->_base" is a TypeInt
1352  switch (t->base()) {          // Switch on original type
1353  case AnyPtr:                  // Mixing with oops happens when javac
1354  case RawPtr:                  // reuses local variables
1355  case OopPtr:
1356  case InstPtr:
1357  case AryPtr:
1358  case MetadataPtr:
1359  case KlassPtr:
1360  case NarrowOop:
1361  case NarrowKlass:
1362  case Long:
1363  case FloatTop:
1364  case FloatCon:
1365  case FloatBot:
1366  case DoubleTop:
1367  case DoubleCon:
1368  case DoubleBot:
1369  case Bottom:                  // Ye Olde Default
1370    return Type::BOTTOM;
1371  default:                      // All else is a mistake
1372    typerr(t);
1373  case Top:                     // No change
1374    return this;
1375  case Int:                     // Int vs Int?
1376    break;
1377  }
1378
1379  // Expand covered set
1380  const TypeInt *r = t->is_int();
1381  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1382}
1383
1384//------------------------------xdual------------------------------------------
1385// Dual: reverse hi & lo; flip widen
1386const Type *TypeInt::xdual() const {
1387  int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1388  return new TypeInt(_hi,_lo,w);
1389}
1390
1391//------------------------------widen------------------------------------------
1392// Only happens for optimistic top-down optimizations.
1393const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1394  // Coming from TOP or such; no widening
1395  if( old->base() != Int ) return this;
1396  const TypeInt *ot = old->is_int();
1397
1398  // If new guy is equal to old guy, no widening
1399  if( _lo == ot->_lo && _hi == ot->_hi )
1400    return old;
1401
1402  // If new guy contains old, then we widened
1403  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1404    // New contains old
1405    // If new guy is already wider than old, no widening
1406    if( _widen > ot->_widen ) return this;
1407    // If old guy was a constant, do not bother
1408    if (ot->_lo == ot->_hi)  return this;
1409    // Now widen new guy.
1410    // Check for widening too far
1411    if (_widen == WidenMax) {
1412      int max = max_jint;
1413      int min = min_jint;
1414      if (limit->isa_int()) {
1415        max = limit->is_int()->_hi;
1416        min = limit->is_int()->_lo;
1417      }
1418      if (min < _lo && _hi < max) {
1419        // If neither endpoint is extremal yet, push out the endpoint
1420        // which is closer to its respective limit.
1421        if (_lo >= 0 ||                 // easy common case
1422            (juint)(_lo - min) >= (juint)(max - _hi)) {
1423          // Try to widen to an unsigned range type of 31 bits:
1424          return make(_lo, max, WidenMax);
1425        } else {
1426          return make(min, _hi, WidenMax);
1427        }
1428      }
1429      return TypeInt::INT;
1430    }
1431    // Returned widened new guy
1432    return make(_lo,_hi,_widen+1);
1433  }
1434
1435  // If old guy contains new, then we probably widened too far & dropped to
1436  // bottom.  Return the wider fellow.
1437  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1438    return old;
1439
1440  //fatal("Integer value range is not subset");
1441  //return this;
1442  return TypeInt::INT;
1443}
1444
1445//------------------------------narrow---------------------------------------
1446// Only happens for pessimistic optimizations.
1447const Type *TypeInt::narrow( const Type *old ) const {
1448  if (_lo >= _hi)  return this;   // already narrow enough
1449  if (old == NULL)  return this;
1450  const TypeInt* ot = old->isa_int();
1451  if (ot == NULL)  return this;
1452  jint olo = ot->_lo;
1453  jint ohi = ot->_hi;
1454
1455  // If new guy is equal to old guy, no narrowing
1456  if (_lo == olo && _hi == ohi)  return old;
1457
1458  // If old guy was maximum range, allow the narrowing
1459  if (olo == min_jint && ohi == max_jint)  return this;
1460
1461  if (_lo < olo || _hi > ohi)
1462    return this;                // doesn't narrow; pretty wierd
1463
1464  // The new type narrows the old type, so look for a "death march".
1465  // See comments on PhaseTransform::saturate.
1466  juint nrange = (juint)_hi - _lo;
1467  juint orange = (juint)ohi - olo;
1468  if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1469    // Use the new type only if the range shrinks a lot.
1470    // We do not want the optimizer computing 2^31 point by point.
1471    return old;
1472  }
1473
1474  return this;
1475}
1476
1477//-----------------------------filter------------------------------------------
1478const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1479  const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1480  if (ft == NULL || ft->empty())
1481    return Type::TOP;           // Canonical empty value
1482  if (ft->_widen < this->_widen) {
1483    // Do not allow the value of kill->_widen to affect the outcome.
1484    // The widen bits must be allowed to run freely through the graph.
1485    ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1486  }
1487  return ft;
1488}
1489
1490//------------------------------eq---------------------------------------------
1491// Structural equality check for Type representations
1492bool TypeInt::eq( const Type *t ) const {
1493  const TypeInt *r = t->is_int(); // Handy access
1494  return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1495}
1496
1497//------------------------------hash-------------------------------------------
1498// Type-specific hashing function.
1499int TypeInt::hash(void) const {
1500  return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1501}
1502
1503//------------------------------is_finite--------------------------------------
1504// Has a finite value
1505bool TypeInt::is_finite() const {
1506  return true;
1507}
1508
1509//------------------------------dump2------------------------------------------
1510// Dump TypeInt
1511#ifndef PRODUCT
1512static const char* intname(char* buf, jint n) {
1513  if (n == min_jint)
1514    return "min";
1515  else if (n < min_jint + 10000)
1516    sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1517  else if (n == max_jint)
1518    return "max";
1519  else if (n > max_jint - 10000)
1520    sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1521  else
1522    sprintf(buf, INT32_FORMAT, n);
1523  return buf;
1524}
1525
1526void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1527  char buf[40], buf2[40];
1528  if (_lo == min_jint && _hi == max_jint)
1529    st->print("int");
1530  else if (is_con())
1531    st->print("int:%s", intname(buf, get_con()));
1532  else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1533    st->print("bool");
1534  else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1535    st->print("byte");
1536  else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1537    st->print("char");
1538  else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1539    st->print("short");
1540  else if (_hi == max_jint)
1541    st->print("int:>=%s", intname(buf, _lo));
1542  else if (_lo == min_jint)
1543    st->print("int:<=%s", intname(buf, _hi));
1544  else
1545    st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1546
1547  if (_widen != 0 && this != TypeInt::INT)
1548    st->print(":%.*s", _widen, "wwww");
1549}
1550#endif
1551
1552//------------------------------singleton--------------------------------------
1553// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1554// constants.
1555bool TypeInt::singleton(void) const {
1556  return _lo >= _hi;
1557}
1558
1559bool TypeInt::empty(void) const {
1560  return _lo > _hi;
1561}
1562
1563//=============================================================================
1564// Convenience common pre-built types.
1565const TypeLong *TypeLong::MINUS_1;// -1
1566const TypeLong *TypeLong::ZERO; // 0
1567const TypeLong *TypeLong::ONE;  // 1
1568const TypeLong *TypeLong::POS;  // >=0
1569const TypeLong *TypeLong::LONG; // 64-bit integers
1570const TypeLong *TypeLong::INT;  // 32-bit subrange
1571const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1572const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1573
1574//------------------------------TypeLong---------------------------------------
1575TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1576}
1577
1578//------------------------------make-------------------------------------------
1579const TypeLong *TypeLong::make( jlong lo ) {
1580  return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1581}
1582
1583static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1584  // Certain normalizations keep us sane when comparing types.
1585  // The 'SMALLINT' covers constants.
1586  if (lo <= hi) {
1587    if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1588    if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1589  } else {
1590    if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1591    if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1592  }
1593  return w;
1594}
1595
1596const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1597  w = normalize_long_widen(lo, hi, w);
1598  return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1599}
1600
1601
1602//------------------------------meet-------------------------------------------
1603// Compute the MEET of two types.  It returns a new Type representation object
1604// with reference count equal to the number of Types pointing at it.
1605// Caller should wrap a Types around it.
1606const Type *TypeLong::xmeet( const Type *t ) const {
1607  // Perform a fast test for common case; meeting the same types together.
1608  if( this == t ) return this;  // Meeting same type?
1609
1610  // Currently "this->_base" is a TypeLong
1611  switch (t->base()) {          // Switch on original type
1612  case AnyPtr:                  // Mixing with oops happens when javac
1613  case RawPtr:                  // reuses local variables
1614  case OopPtr:
1615  case InstPtr:
1616  case AryPtr:
1617  case MetadataPtr:
1618  case KlassPtr:
1619  case NarrowOop:
1620  case NarrowKlass:
1621  case Int:
1622  case FloatTop:
1623  case FloatCon:
1624  case FloatBot:
1625  case DoubleTop:
1626  case DoubleCon:
1627  case DoubleBot:
1628  case Bottom:                  // Ye Olde Default
1629    return Type::BOTTOM;
1630  default:                      // All else is a mistake
1631    typerr(t);
1632  case Top:                     // No change
1633    return this;
1634  case Long:                    // Long vs Long?
1635    break;
1636  }
1637
1638  // Expand covered set
1639  const TypeLong *r = t->is_long(); // Turn into a TypeLong
1640  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1641}
1642
1643//------------------------------xdual------------------------------------------
1644// Dual: reverse hi & lo; flip widen
1645const Type *TypeLong::xdual() const {
1646  int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1647  return new TypeLong(_hi,_lo,w);
1648}
1649
1650//------------------------------widen------------------------------------------
1651// Only happens for optimistic top-down optimizations.
1652const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1653  // Coming from TOP or such; no widening
1654  if( old->base() != Long ) return this;
1655  const TypeLong *ot = old->is_long();
1656
1657  // If new guy is equal to old guy, no widening
1658  if( _lo == ot->_lo && _hi == ot->_hi )
1659    return old;
1660
1661  // If new guy contains old, then we widened
1662  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1663    // New contains old
1664    // If new guy is already wider than old, no widening
1665    if( _widen > ot->_widen ) return this;
1666    // If old guy was a constant, do not bother
1667    if (ot->_lo == ot->_hi)  return this;
1668    // Now widen new guy.
1669    // Check for widening too far
1670    if (_widen == WidenMax) {
1671      jlong max = max_jlong;
1672      jlong min = min_jlong;
1673      if (limit->isa_long()) {
1674        max = limit->is_long()->_hi;
1675        min = limit->is_long()->_lo;
1676      }
1677      if (min < _lo && _hi < max) {
1678        // If neither endpoint is extremal yet, push out the endpoint
1679        // which is closer to its respective limit.
1680        if (_lo >= 0 ||                 // easy common case
1681            ((julong)_lo - min) >= ((julong)max - _hi)) {
1682          // Try to widen to an unsigned range type of 32/63 bits:
1683          if (max >= max_juint && _hi < max_juint)
1684            return make(_lo, max_juint, WidenMax);
1685          else
1686            return make(_lo, max, WidenMax);
1687        } else {
1688          return make(min, _hi, WidenMax);
1689        }
1690      }
1691      return TypeLong::LONG;
1692    }
1693    // Returned widened new guy
1694    return make(_lo,_hi,_widen+1);
1695  }
1696
1697  // If old guy contains new, then we probably widened too far & dropped to
1698  // bottom.  Return the wider fellow.
1699  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1700    return old;
1701
1702  //  fatal("Long value range is not subset");
1703  // return this;
1704  return TypeLong::LONG;
1705}
1706
1707//------------------------------narrow----------------------------------------
1708// Only happens for pessimistic optimizations.
1709const Type *TypeLong::narrow( const Type *old ) const {
1710  if (_lo >= _hi)  return this;   // already narrow enough
1711  if (old == NULL)  return this;
1712  const TypeLong* ot = old->isa_long();
1713  if (ot == NULL)  return this;
1714  jlong olo = ot->_lo;
1715  jlong ohi = ot->_hi;
1716
1717  // If new guy is equal to old guy, no narrowing
1718  if (_lo == olo && _hi == ohi)  return old;
1719
1720  // If old guy was maximum range, allow the narrowing
1721  if (olo == min_jlong && ohi == max_jlong)  return this;
1722
1723  if (_lo < olo || _hi > ohi)
1724    return this;                // doesn't narrow; pretty wierd
1725
1726  // The new type narrows the old type, so look for a "death march".
1727  // See comments on PhaseTransform::saturate.
1728  julong nrange = _hi - _lo;
1729  julong orange = ohi - olo;
1730  if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1731    // Use the new type only if the range shrinks a lot.
1732    // We do not want the optimizer computing 2^31 point by point.
1733    return old;
1734  }
1735
1736  return this;
1737}
1738
1739//-----------------------------filter------------------------------------------
1740const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1741  const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1742  if (ft == NULL || ft->empty())
1743    return Type::TOP;           // Canonical empty value
1744  if (ft->_widen < this->_widen) {
1745    // Do not allow the value of kill->_widen to affect the outcome.
1746    // The widen bits must be allowed to run freely through the graph.
1747    ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1748  }
1749  return ft;
1750}
1751
1752//------------------------------eq---------------------------------------------
1753// Structural equality check for Type representations
1754bool TypeLong::eq( const Type *t ) const {
1755  const TypeLong *r = t->is_long(); // Handy access
1756  return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1757}
1758
1759//------------------------------hash-------------------------------------------
1760// Type-specific hashing function.
1761int TypeLong::hash(void) const {
1762  return (int)(_lo+_hi+_widen+(int)Type::Long);
1763}
1764
1765//------------------------------is_finite--------------------------------------
1766// Has a finite value
1767bool TypeLong::is_finite() const {
1768  return true;
1769}
1770
1771//------------------------------dump2------------------------------------------
1772// Dump TypeLong
1773#ifndef PRODUCT
1774static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1775  if (n > x) {
1776    if (n >= x + 10000)  return NULL;
1777    sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1778  } else if (n < x) {
1779    if (n <= x - 10000)  return NULL;
1780    sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1781  } else {
1782    return xname;
1783  }
1784  return buf;
1785}
1786
1787static const char* longname(char* buf, jlong n) {
1788  const char* str;
1789  if (n == min_jlong)
1790    return "min";
1791  else if (n < min_jlong + 10000)
1792    sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1793  else if (n == max_jlong)
1794    return "max";
1795  else if (n > max_jlong - 10000)
1796    sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1797  else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1798    return str;
1799  else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1800    return str;
1801  else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1802    return str;
1803  else
1804    sprintf(buf, JLONG_FORMAT, n);
1805  return buf;
1806}
1807
1808void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1809  char buf[80], buf2[80];
1810  if (_lo == min_jlong && _hi == max_jlong)
1811    st->print("long");
1812  else if (is_con())
1813    st->print("long:%s", longname(buf, get_con()));
1814  else if (_hi == max_jlong)
1815    st->print("long:>=%s", longname(buf, _lo));
1816  else if (_lo == min_jlong)
1817    st->print("long:<=%s", longname(buf, _hi));
1818  else
1819    st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1820
1821  if (_widen != 0 && this != TypeLong::LONG)
1822    st->print(":%.*s", _widen, "wwww");
1823}
1824#endif
1825
1826//------------------------------singleton--------------------------------------
1827// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1828// constants
1829bool TypeLong::singleton(void) const {
1830  return _lo >= _hi;
1831}
1832
1833bool TypeLong::empty(void) const {
1834  return _lo > _hi;
1835}
1836
1837//=============================================================================
1838// Convenience common pre-built types.
1839const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1840const TypeTuple *TypeTuple::IFFALSE;
1841const TypeTuple *TypeTuple::IFTRUE;
1842const TypeTuple *TypeTuple::IFNEITHER;
1843const TypeTuple *TypeTuple::LOOPBODY;
1844const TypeTuple *TypeTuple::MEMBAR;
1845const TypeTuple *TypeTuple::STORECONDITIONAL;
1846const TypeTuple *TypeTuple::START_I2C;
1847const TypeTuple *TypeTuple::INT_PAIR;
1848const TypeTuple *TypeTuple::LONG_PAIR;
1849const TypeTuple *TypeTuple::INT_CC_PAIR;
1850const TypeTuple *TypeTuple::LONG_CC_PAIR;
1851
1852
1853//------------------------------make-------------------------------------------
1854// Make a TypeTuple from the range of a method signature
1855const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1856  ciType* return_type = sig->return_type();
1857  uint arg_cnt = return_type->size();
1858  const Type **field_array = fields(arg_cnt);
1859  switch (return_type->basic_type()) {
1860  case T_LONG:
1861    field_array[TypeFunc::Parms]   = TypeLong::LONG;
1862    field_array[TypeFunc::Parms+1] = Type::HALF;
1863    break;
1864  case T_DOUBLE:
1865    field_array[TypeFunc::Parms]   = Type::DOUBLE;
1866    field_array[TypeFunc::Parms+1] = Type::HALF;
1867    break;
1868  case T_OBJECT:
1869  case T_ARRAY:
1870  case T_BOOLEAN:
1871  case T_CHAR:
1872  case T_FLOAT:
1873  case T_BYTE:
1874  case T_SHORT:
1875  case T_INT:
1876    field_array[TypeFunc::Parms] = get_const_type(return_type);
1877    break;
1878  case T_VOID:
1879    break;
1880  default:
1881    ShouldNotReachHere();
1882  }
1883  return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1884}
1885
1886// Make a TypeTuple from the domain of a method signature
1887const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1888  uint arg_cnt = sig->size();
1889
1890  uint pos = TypeFunc::Parms;
1891  const Type **field_array;
1892  if (recv != NULL) {
1893    arg_cnt++;
1894    field_array = fields(arg_cnt);
1895    // Use get_const_type here because it respects UseUniqueSubclasses:
1896    field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1897  } else {
1898    field_array = fields(arg_cnt);
1899  }
1900
1901  int i = 0;
1902  while (pos < TypeFunc::Parms + arg_cnt) {
1903    ciType* type = sig->type_at(i);
1904
1905    switch (type->basic_type()) {
1906    case T_LONG:
1907      field_array[pos++] = TypeLong::LONG;
1908      field_array[pos++] = Type::HALF;
1909      break;
1910    case T_DOUBLE:
1911      field_array[pos++] = Type::DOUBLE;
1912      field_array[pos++] = Type::HALF;
1913      break;
1914    case T_OBJECT:
1915    case T_ARRAY:
1916    case T_FLOAT:
1917    case T_INT:
1918      field_array[pos++] = get_const_type(type);
1919      break;
1920    case T_BOOLEAN:
1921    case T_CHAR:
1922    case T_BYTE:
1923    case T_SHORT:
1924      field_array[pos++] = TypeInt::INT;
1925      break;
1926    default:
1927      ShouldNotReachHere();
1928    }
1929    i++;
1930  }
1931
1932  return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1933}
1934
1935const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1936  return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1937}
1938
1939//------------------------------fields-----------------------------------------
1940// Subroutine call type with space allocated for argument types
1941// Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1942const Type **TypeTuple::fields( uint arg_cnt ) {
1943  const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1944  flds[TypeFunc::Control  ] = Type::CONTROL;
1945  flds[TypeFunc::I_O      ] = Type::ABIO;
1946  flds[TypeFunc::Memory   ] = Type::MEMORY;
1947  flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1948  flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1949
1950  return flds;
1951}
1952
1953//------------------------------meet-------------------------------------------
1954// Compute the MEET of two types.  It returns a new Type object.
1955const Type *TypeTuple::xmeet( const Type *t ) const {
1956  // Perform a fast test for common case; meeting the same types together.
1957  if( this == t ) return this;  // Meeting same type-rep?
1958
1959  // Current "this->_base" is Tuple
1960  switch (t->base()) {          // switch on original type
1961
1962  case Bottom:                  // Ye Olde Default
1963    return t;
1964
1965  default:                      // All else is a mistake
1966    typerr(t);
1967
1968  case Tuple: {                 // Meeting 2 signatures?
1969    const TypeTuple *x = t->is_tuple();
1970    assert( _cnt == x->_cnt, "" );
1971    const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1972    for( uint i=0; i<_cnt; i++ )
1973      fields[i] = field_at(i)->xmeet( x->field_at(i) );
1974    return TypeTuple::make(_cnt,fields);
1975  }
1976  case Top:
1977    break;
1978  }
1979  return this;                  // Return the double constant
1980}
1981
1982//------------------------------xdual------------------------------------------
1983// Dual: compute field-by-field dual
1984const Type *TypeTuple::xdual() const {
1985  const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1986  for( uint i=0; i<_cnt; i++ )
1987    fields[i] = _fields[i]->dual();
1988  return new TypeTuple(_cnt,fields);
1989}
1990
1991//------------------------------eq---------------------------------------------
1992// Structural equality check for Type representations
1993bool TypeTuple::eq( const Type *t ) const {
1994  const TypeTuple *s = (const TypeTuple *)t;
1995  if (_cnt != s->_cnt)  return false;  // Unequal field counts
1996  for (uint i = 0; i < _cnt; i++)
1997    if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1998      return false;             // Missed
1999  return true;
2000}
2001
2002//------------------------------hash-------------------------------------------
2003// Type-specific hashing function.
2004int TypeTuple::hash(void) const {
2005  intptr_t sum = _cnt;
2006  for( uint i=0; i<_cnt; i++ )
2007    sum += (intptr_t)_fields[i];     // Hash on pointers directly
2008  return sum;
2009}
2010
2011//------------------------------dump2------------------------------------------
2012// Dump signature Type
2013#ifndef PRODUCT
2014void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2015  st->print("{");
2016  if( !depth || d[this] ) {     // Check for recursive print
2017    st->print("...}");
2018    return;
2019  }
2020  d.Insert((void*)this, (void*)this);   // Stop recursion
2021  if( _cnt ) {
2022    uint i;
2023    for( i=0; i<_cnt-1; i++ ) {
2024      st->print("%d:", i);
2025      _fields[i]->dump2(d, depth-1, st);
2026      st->print(", ");
2027    }
2028    st->print("%d:", i);
2029    _fields[i]->dump2(d, depth-1, st);
2030  }
2031  st->print("}");
2032}
2033#endif
2034
2035//------------------------------singleton--------------------------------------
2036// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2037// constants (Ldi nodes).  Singletons are integer, float or double constants
2038// or a single symbol.
2039bool TypeTuple::singleton(void) const {
2040  return false;                 // Never a singleton
2041}
2042
2043bool TypeTuple::empty(void) const {
2044  for( uint i=0; i<_cnt; i++ ) {
2045    if (_fields[i]->empty())  return true;
2046  }
2047  return false;
2048}
2049
2050//=============================================================================
2051// Convenience common pre-built types.
2052
2053inline const TypeInt* normalize_array_size(const TypeInt* size) {
2054  // Certain normalizations keep us sane when comparing types.
2055  // We do not want arrayOop variables to differ only by the wideness
2056  // of their index types.  Pick minimum wideness, since that is the
2057  // forced wideness of small ranges anyway.
2058  if (size->_widen != Type::WidenMin)
2059    return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2060  else
2061    return size;
2062}
2063
2064//------------------------------make-------------------------------------------
2065const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2066  if (UseCompressedOops && elem->isa_oopptr()) {
2067    elem = elem->make_narrowoop();
2068  }
2069  size = normalize_array_size(size);
2070  return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2071}
2072
2073//------------------------------meet-------------------------------------------
2074// Compute the MEET of two types.  It returns a new Type object.
2075const Type *TypeAry::xmeet( const Type *t ) const {
2076  // Perform a fast test for common case; meeting the same types together.
2077  if( this == t ) return this;  // Meeting same type-rep?
2078
2079  // Current "this->_base" is Ary
2080  switch (t->base()) {          // switch on original type
2081
2082  case Bottom:                  // Ye Olde Default
2083    return t;
2084
2085  default:                      // All else is a mistake
2086    typerr(t);
2087
2088  case Array: {                 // Meeting 2 arrays?
2089    const TypeAry *a = t->is_ary();
2090    return TypeAry::make(_elem->meet_speculative(a->_elem),
2091                         _size->xmeet(a->_size)->is_int(),
2092                         _stable & a->_stable);
2093  }
2094  case Top:
2095    break;
2096  }
2097  return this;                  // Return the double constant
2098}
2099
2100//------------------------------xdual------------------------------------------
2101// Dual: compute field-by-field dual
2102const Type *TypeAry::xdual() const {
2103  const TypeInt* size_dual = _size->dual()->is_int();
2104  size_dual = normalize_array_size(size_dual);
2105  return new TypeAry(_elem->dual(), size_dual, !_stable);
2106}
2107
2108//------------------------------eq---------------------------------------------
2109// Structural equality check for Type representations
2110bool TypeAry::eq( const Type *t ) const {
2111  const TypeAry *a = (const TypeAry*)t;
2112  return _elem == a->_elem &&
2113    _stable == a->_stable &&
2114    _size == a->_size;
2115}
2116
2117//------------------------------hash-------------------------------------------
2118// Type-specific hashing function.
2119int TypeAry::hash(void) const {
2120  return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2121}
2122
2123/**
2124 * Return same type without a speculative part in the element
2125 */
2126const Type* TypeAry::remove_speculative() const {
2127  return make(_elem->remove_speculative(), _size, _stable);
2128}
2129
2130/**
2131 * Return same type with cleaned up speculative part of element
2132 */
2133const Type* TypeAry::cleanup_speculative() const {
2134  return make(_elem->cleanup_speculative(), _size, _stable);
2135}
2136
2137/**
2138 * Return same type but with a different inline depth (used for speculation)
2139 *
2140 * @param depth  depth to meet with
2141 */
2142const TypePtr* TypePtr::with_inline_depth(int depth) const {
2143  if (!UseInlineDepthForSpeculativeTypes) {
2144    return this;
2145  }
2146  return make(AnyPtr, _ptr, _offset, _speculative, depth);
2147}
2148
2149//----------------------interface_vs_oop---------------------------------------
2150#ifdef ASSERT
2151bool TypeAry::interface_vs_oop(const Type *t) const {
2152  const TypeAry* t_ary = t->is_ary();
2153  if (t_ary) {
2154    const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2155    const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2156    if(this_ptr != NULL && t_ptr != NULL) {
2157      return this_ptr->interface_vs_oop(t_ptr);
2158    }
2159  }
2160  return false;
2161}
2162#endif
2163
2164//------------------------------dump2------------------------------------------
2165#ifndef PRODUCT
2166void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2167  if (_stable)  st->print("stable:");
2168  _elem->dump2(d, depth, st);
2169  st->print("[");
2170  _size->dump2(d, depth, st);
2171  st->print("]");
2172}
2173#endif
2174
2175//------------------------------singleton--------------------------------------
2176// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2177// constants (Ldi nodes).  Singletons are integer, float or double constants
2178// or a single symbol.
2179bool TypeAry::singleton(void) const {
2180  return false;                 // Never a singleton
2181}
2182
2183bool TypeAry::empty(void) const {
2184  return _elem->empty() || _size->empty();
2185}
2186
2187//--------------------------ary_must_be_exact----------------------------------
2188bool TypeAry::ary_must_be_exact() const {
2189  if (!UseExactTypes)       return false;
2190  // This logic looks at the element type of an array, and returns true
2191  // if the element type is either a primitive or a final instance class.
2192  // In such cases, an array built on this ary must have no subclasses.
2193  if (_elem == BOTTOM)      return false;  // general array not exact
2194  if (_elem == TOP   )      return false;  // inverted general array not exact
2195  const TypeOopPtr*  toop = NULL;
2196  if (UseCompressedOops && _elem->isa_narrowoop()) {
2197    toop = _elem->make_ptr()->isa_oopptr();
2198  } else {
2199    toop = _elem->isa_oopptr();
2200  }
2201  if (!toop)                return true;   // a primitive type, like int
2202  ciKlass* tklass = toop->klass();
2203  if (tklass == NULL)       return false;  // unloaded class
2204  if (!tklass->is_loaded()) return false;  // unloaded class
2205  const TypeInstPtr* tinst;
2206  if (_elem->isa_narrowoop())
2207    tinst = _elem->make_ptr()->isa_instptr();
2208  else
2209    tinst = _elem->isa_instptr();
2210  if (tinst)
2211    return tklass->as_instance_klass()->is_final();
2212  const TypeAryPtr*  tap;
2213  if (_elem->isa_narrowoop())
2214    tap = _elem->make_ptr()->isa_aryptr();
2215  else
2216    tap = _elem->isa_aryptr();
2217  if (tap)
2218    return tap->ary()->ary_must_be_exact();
2219  return false;
2220}
2221
2222//==============================TypeVect=======================================
2223// Convenience common pre-built types.
2224const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2225const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2226const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2227const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2228const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2229
2230//------------------------------make-------------------------------------------
2231const TypeVect* TypeVect::make(const Type *elem, uint length) {
2232  BasicType elem_bt = elem->array_element_basic_type();
2233  assert(is_java_primitive(elem_bt), "only primitive types in vector");
2234  assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2235  assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2236  int size = length * type2aelembytes(elem_bt);
2237  switch (Matcher::vector_ideal_reg(size)) {
2238  case Op_VecS:
2239    return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2240  case Op_RegL:
2241  case Op_VecD:
2242  case Op_RegD:
2243    return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2244  case Op_VecX:
2245    return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2246  case Op_VecY:
2247    return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2248  case Op_VecZ:
2249    return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2250  }
2251 ShouldNotReachHere();
2252  return NULL;
2253}
2254
2255//------------------------------meet-------------------------------------------
2256// Compute the MEET of two types.  It returns a new Type object.
2257const Type *TypeVect::xmeet( const Type *t ) const {
2258  // Perform a fast test for common case; meeting the same types together.
2259  if( this == t ) return this;  // Meeting same type-rep?
2260
2261  // Current "this->_base" is Vector
2262  switch (t->base()) {          // switch on original type
2263
2264  case Bottom:                  // Ye Olde Default
2265    return t;
2266
2267  default:                      // All else is a mistake
2268    typerr(t);
2269
2270  case VectorS:
2271  case VectorD:
2272  case VectorX:
2273  case VectorY:
2274  case VectorZ: {                // Meeting 2 vectors?
2275    const TypeVect* v = t->is_vect();
2276    assert(  base() == v->base(), "");
2277    assert(length() == v->length(), "");
2278    assert(element_basic_type() == v->element_basic_type(), "");
2279    return TypeVect::make(_elem->xmeet(v->_elem), _length);
2280  }
2281  case Top:
2282    break;
2283  }
2284  return this;
2285}
2286
2287//------------------------------xdual------------------------------------------
2288// Dual: compute field-by-field dual
2289const Type *TypeVect::xdual() const {
2290  return new TypeVect(base(), _elem->dual(), _length);
2291}
2292
2293//------------------------------eq---------------------------------------------
2294// Structural equality check for Type representations
2295bool TypeVect::eq(const Type *t) const {
2296  const TypeVect *v = t->is_vect();
2297  return (_elem == v->_elem) && (_length == v->_length);
2298}
2299
2300//------------------------------hash-------------------------------------------
2301// Type-specific hashing function.
2302int TypeVect::hash(void) const {
2303  return (intptr_t)_elem + (intptr_t)_length;
2304}
2305
2306//------------------------------singleton--------------------------------------
2307// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2308// constants (Ldi nodes).  Vector is singleton if all elements are the same
2309// constant value (when vector is created with Replicate code).
2310bool TypeVect::singleton(void) const {
2311// There is no Con node for vectors yet.
2312//  return _elem->singleton();
2313  return false;
2314}
2315
2316bool TypeVect::empty(void) const {
2317  return _elem->empty();
2318}
2319
2320//------------------------------dump2------------------------------------------
2321#ifndef PRODUCT
2322void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2323  switch (base()) {
2324  case VectorS:
2325    st->print("vectors["); break;
2326  case VectorD:
2327    st->print("vectord["); break;
2328  case VectorX:
2329    st->print("vectorx["); break;
2330  case VectorY:
2331    st->print("vectory["); break;
2332  case VectorZ:
2333    st->print("vectorz["); break;
2334  default:
2335    ShouldNotReachHere();
2336  }
2337  st->print("%d]:{", _length);
2338  _elem->dump2(d, depth, st);
2339  st->print("}");
2340}
2341#endif
2342
2343
2344//=============================================================================
2345// Convenience common pre-built types.
2346const TypePtr *TypePtr::NULL_PTR;
2347const TypePtr *TypePtr::NOTNULL;
2348const TypePtr *TypePtr::BOTTOM;
2349
2350//------------------------------meet-------------------------------------------
2351// Meet over the PTR enum
2352const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2353  //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2354  { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2355  { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2356  { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2357  { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2358  { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2359  { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2360};
2361
2362//------------------------------make-------------------------------------------
2363const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2364  return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2365}
2366
2367//------------------------------cast_to_ptr_type-------------------------------
2368const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2369  assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2370  if( ptr == _ptr ) return this;
2371  return make(_base, ptr, _offset, _speculative, _inline_depth);
2372}
2373
2374//------------------------------get_con----------------------------------------
2375intptr_t TypePtr::get_con() const {
2376  assert( _ptr == Null, "" );
2377  return _offset;
2378}
2379
2380//------------------------------meet-------------------------------------------
2381// Compute the MEET of two types.  It returns a new Type object.
2382const Type *TypePtr::xmeet(const Type *t) const {
2383  const Type* res = xmeet_helper(t);
2384  if (res->isa_ptr() == NULL) {
2385    return res;
2386  }
2387
2388  const TypePtr* res_ptr = res->is_ptr();
2389  if (res_ptr->speculative() != NULL) {
2390    // type->speculative() == NULL means that speculation is no better
2391    // than type, i.e. type->speculative() == type. So there are 2
2392    // ways to represent the fact that we have no useful speculative
2393    // data and we should use a single one to be able to test for
2394    // equality between types. Check whether type->speculative() ==
2395    // type and set speculative to NULL if it is the case.
2396    if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2397      return res_ptr->remove_speculative();
2398    }
2399  }
2400
2401  return res;
2402}
2403
2404const Type *TypePtr::xmeet_helper(const Type *t) const {
2405  // Perform a fast test for common case; meeting the same types together.
2406  if( this == t ) return this;  // Meeting same type-rep?
2407
2408  // Current "this->_base" is AnyPtr
2409  switch (t->base()) {          // switch on original type
2410  case Int:                     // Mixing ints & oops happens when javac
2411  case Long:                    // reuses local variables
2412  case FloatTop:
2413  case FloatCon:
2414  case FloatBot:
2415  case DoubleTop:
2416  case DoubleCon:
2417  case DoubleBot:
2418  case NarrowOop:
2419  case NarrowKlass:
2420  case Bottom:                  // Ye Olde Default
2421    return Type::BOTTOM;
2422  case Top:
2423    return this;
2424
2425  case AnyPtr: {                // Meeting to AnyPtrs
2426    const TypePtr *tp = t->is_ptr();
2427    const TypePtr* speculative = xmeet_speculative(tp);
2428    int depth = meet_inline_depth(tp->inline_depth());
2429    return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2430  }
2431  case RawPtr:                  // For these, flip the call around to cut down
2432  case OopPtr:
2433  case InstPtr:                 // on the cases I have to handle.
2434  case AryPtr:
2435  case MetadataPtr:
2436  case KlassPtr:
2437    return t->xmeet(this);      // Call in reverse direction
2438  default:                      // All else is a mistake
2439    typerr(t);
2440
2441  }
2442  return this;
2443}
2444
2445//------------------------------meet_offset------------------------------------
2446int TypePtr::meet_offset( int offset ) const {
2447  // Either is 'TOP' offset?  Return the other offset!
2448  if( _offset == OffsetTop ) return offset;
2449  if( offset == OffsetTop ) return _offset;
2450  // If either is different, return 'BOTTOM' offset
2451  if( _offset != offset ) return OffsetBot;
2452  return _offset;
2453}
2454
2455//------------------------------dual_offset------------------------------------
2456int TypePtr::dual_offset( ) const {
2457  if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2458  if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2459  return _offset;               // Map everything else into self
2460}
2461
2462//------------------------------xdual------------------------------------------
2463// Dual: compute field-by-field dual
2464const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2465  BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2466};
2467const Type *TypePtr::xdual() const {
2468  return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2469}
2470
2471//------------------------------xadd_offset------------------------------------
2472int TypePtr::xadd_offset( intptr_t offset ) const {
2473  // Adding to 'TOP' offset?  Return 'TOP'!
2474  if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2475  // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2476  if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2477  // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2478  offset += (intptr_t)_offset;
2479  if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2480
2481  // assert( _offset >= 0 && _offset+offset >= 0, "" );
2482  // It is possible to construct a negative offset during PhaseCCP
2483
2484  return (int)offset;        // Sum valid offsets
2485}
2486
2487//------------------------------add_offset-------------------------------------
2488const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2489  return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2490}
2491
2492//------------------------------eq---------------------------------------------
2493// Structural equality check for Type representations
2494bool TypePtr::eq( const Type *t ) const {
2495  const TypePtr *a = (const TypePtr*)t;
2496  return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2497}
2498
2499//------------------------------hash-------------------------------------------
2500// Type-specific hashing function.
2501int TypePtr::hash(void) const {
2502  return java_add(java_add(_ptr, _offset), java_add( hash_speculative(), _inline_depth));
2503;
2504}
2505
2506/**
2507 * Return same type without a speculative part
2508 */
2509const Type* TypePtr::remove_speculative() const {
2510  if (_speculative == NULL) {
2511    return this;
2512  }
2513  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2514  return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2515}
2516
2517/**
2518 * Return same type but drop speculative part if we know we won't use
2519 * it
2520 */
2521const Type* TypePtr::cleanup_speculative() const {
2522  if (speculative() == NULL) {
2523    return this;
2524  }
2525  const Type* no_spec = remove_speculative();
2526  // If this is NULL_PTR then we don't need the speculative type
2527  // (with_inline_depth in case the current type inline depth is
2528  // InlineDepthTop)
2529  if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2530    return no_spec;
2531  }
2532  if (above_centerline(speculative()->ptr())) {
2533    return no_spec;
2534  }
2535  const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2536  // If the speculative may be null and is an inexact klass then it
2537  // doesn't help
2538  if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2539      (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2540    return no_spec;
2541  }
2542  return this;
2543}
2544
2545/**
2546 * dual of the speculative part of the type
2547 */
2548const TypePtr* TypePtr::dual_speculative() const {
2549  if (_speculative == NULL) {
2550    return NULL;
2551  }
2552  return _speculative->dual()->is_ptr();
2553}
2554
2555/**
2556 * meet of the speculative parts of 2 types
2557 *
2558 * @param other  type to meet with
2559 */
2560const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2561  bool this_has_spec = (_speculative != NULL);
2562  bool other_has_spec = (other->speculative() != NULL);
2563
2564  if (!this_has_spec && !other_has_spec) {
2565    return NULL;
2566  }
2567
2568  // If we are at a point where control flow meets and one branch has
2569  // a speculative type and the other has not, we meet the speculative
2570  // type of one branch with the actual type of the other. If the
2571  // actual type is exact and the speculative is as well, then the
2572  // result is a speculative type which is exact and we can continue
2573  // speculation further.
2574  const TypePtr* this_spec = _speculative;
2575  const TypePtr* other_spec = other->speculative();
2576
2577  if (!this_has_spec) {
2578    this_spec = this;
2579  }
2580
2581  if (!other_has_spec) {
2582    other_spec = other;
2583  }
2584
2585  return this_spec->meet(other_spec)->is_ptr();
2586}
2587
2588/**
2589 * dual of the inline depth for this type (used for speculation)
2590 */
2591int TypePtr::dual_inline_depth() const {
2592  return -inline_depth();
2593}
2594
2595/**
2596 * meet of 2 inline depths (used for speculation)
2597 *
2598 * @param depth  depth to meet with
2599 */
2600int TypePtr::meet_inline_depth(int depth) const {
2601  return MAX2(inline_depth(), depth);
2602}
2603
2604/**
2605 * Are the speculative parts of 2 types equal?
2606 *
2607 * @param other  type to compare this one to
2608 */
2609bool TypePtr::eq_speculative(const TypePtr* other) const {
2610  if (_speculative == NULL || other->speculative() == NULL) {
2611    return _speculative == other->speculative();
2612  }
2613
2614  if (_speculative->base() != other->speculative()->base()) {
2615    return false;
2616  }
2617
2618  return _speculative->eq(other->speculative());
2619}
2620
2621/**
2622 * Hash of the speculative part of the type
2623 */
2624int TypePtr::hash_speculative() const {
2625  if (_speculative == NULL) {
2626    return 0;
2627  }
2628
2629  return _speculative->hash();
2630}
2631
2632/**
2633 * add offset to the speculative part of the type
2634 *
2635 * @param offset  offset to add
2636 */
2637const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2638  if (_speculative == NULL) {
2639    return NULL;
2640  }
2641  return _speculative->add_offset(offset)->is_ptr();
2642}
2643
2644/**
2645 * return exact klass from the speculative type if there's one
2646 */
2647ciKlass* TypePtr::speculative_type() const {
2648  if (_speculative != NULL && _speculative->isa_oopptr()) {
2649    const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2650    if (speculative->klass_is_exact()) {
2651      return speculative->klass();
2652    }
2653  }
2654  return NULL;
2655}
2656
2657/**
2658 * return true if speculative type may be null
2659 */
2660bool TypePtr::speculative_maybe_null() const {
2661  if (_speculative != NULL) {
2662    const TypePtr* speculative = _speculative->join(this)->is_ptr();
2663    return speculative->maybe_null();
2664  }
2665  return true;
2666}
2667
2668bool TypePtr::speculative_always_null() const {
2669  if (_speculative != NULL) {
2670    const TypePtr* speculative = _speculative->join(this)->is_ptr();
2671    return speculative == TypePtr::NULL_PTR;
2672  }
2673  return false;
2674}
2675
2676/**
2677 * Same as TypePtr::speculative_type() but return the klass only if
2678 * the speculative tells us is not null
2679 */
2680ciKlass* TypePtr::speculative_type_not_null() const {
2681  if (speculative_maybe_null()) {
2682    return NULL;
2683  }
2684  return speculative_type();
2685}
2686
2687/**
2688 * Check whether new profiling would improve speculative type
2689 *
2690 * @param   exact_kls    class from profiling
2691 * @param   inline_depth inlining depth of profile point
2692 *
2693 * @return  true if type profile is valuable
2694 */
2695bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2696  // no profiling?
2697  if (exact_kls == NULL) {
2698    return false;
2699  }
2700  if (speculative() == TypePtr::NULL_PTR) {
2701    return false;
2702  }
2703  // no speculative type or non exact speculative type?
2704  if (speculative_type() == NULL) {
2705    return true;
2706  }
2707  // If the node already has an exact speculative type keep it,
2708  // unless it was provided by profiling that is at a deeper
2709  // inlining level. Profiling at a higher inlining depth is
2710  // expected to be less accurate.
2711  if (_speculative->inline_depth() == InlineDepthBottom) {
2712    return false;
2713  }
2714  assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2715  return inline_depth < _speculative->inline_depth();
2716}
2717
2718/**
2719 * Check whether new profiling would improve ptr (= tells us it is non
2720 * null)
2721 *
2722 * @param   ptr_kind always null or not null?
2723 *
2724 * @return  true if ptr profile is valuable
2725 */
2726bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2727  // profiling doesn't tell us anything useful
2728  if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2729    return false;
2730  }
2731  // We already know this is not null
2732  if (!this->maybe_null()) {
2733    return false;
2734  }
2735  // We already know the speculative type cannot be null
2736  if (!speculative_maybe_null()) {
2737    return false;
2738  }
2739  // We already know this is always null
2740  if (this == TypePtr::NULL_PTR) {
2741    return false;
2742  }
2743  // We already know the speculative type is always null
2744  if (speculative_always_null()) {
2745    return false;
2746  }
2747  if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2748    return false;
2749  }
2750  return true;
2751}
2752
2753//------------------------------dump2------------------------------------------
2754const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2755  "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2756};
2757
2758#ifndef PRODUCT
2759void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2760  if( _ptr == Null ) st->print("NULL");
2761  else st->print("%s *", ptr_msg[_ptr]);
2762  if( _offset == OffsetTop ) st->print("+top");
2763  else if( _offset == OffsetBot ) st->print("+bot");
2764  else if( _offset ) st->print("+%d", _offset);
2765  dump_inline_depth(st);
2766  dump_speculative(st);
2767}
2768
2769/**
2770 *dump the speculative part of the type
2771 */
2772void TypePtr::dump_speculative(outputStream *st) const {
2773  if (_speculative != NULL) {
2774    st->print(" (speculative=");
2775    _speculative->dump_on(st);
2776    st->print(")");
2777  }
2778}
2779
2780/**
2781 *dump the inline depth of the type
2782 */
2783void TypePtr::dump_inline_depth(outputStream *st) const {
2784  if (_inline_depth != InlineDepthBottom) {
2785    if (_inline_depth == InlineDepthTop) {
2786      st->print(" (inline_depth=InlineDepthTop)");
2787    } else {
2788      st->print(" (inline_depth=%d)", _inline_depth);
2789    }
2790  }
2791}
2792#endif
2793
2794//------------------------------singleton--------------------------------------
2795// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2796// constants
2797bool TypePtr::singleton(void) const {
2798  // TopPTR, Null, AnyNull, Constant are all singletons
2799  return (_offset != OffsetBot) && !below_centerline(_ptr);
2800}
2801
2802bool TypePtr::empty(void) const {
2803  return (_offset == OffsetTop) || above_centerline(_ptr);
2804}
2805
2806//=============================================================================
2807// Convenience common pre-built types.
2808const TypeRawPtr *TypeRawPtr::BOTTOM;
2809const TypeRawPtr *TypeRawPtr::NOTNULL;
2810
2811//------------------------------make-------------------------------------------
2812const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2813  assert( ptr != Constant, "what is the constant?" );
2814  assert( ptr != Null, "Use TypePtr for NULL" );
2815  return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2816}
2817
2818const TypeRawPtr *TypeRawPtr::make( address bits ) {
2819  assert( bits, "Use TypePtr for NULL" );
2820  return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2821}
2822
2823//------------------------------cast_to_ptr_type-------------------------------
2824const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2825  assert( ptr != Constant, "what is the constant?" );
2826  assert( ptr != Null, "Use TypePtr for NULL" );
2827  assert( _bits==0, "Why cast a constant address?");
2828  if( ptr == _ptr ) return this;
2829  return make(ptr);
2830}
2831
2832//------------------------------get_con----------------------------------------
2833intptr_t TypeRawPtr::get_con() const {
2834  assert( _ptr == Null || _ptr == Constant, "" );
2835  return (intptr_t)_bits;
2836}
2837
2838//------------------------------meet-------------------------------------------
2839// Compute the MEET of two types.  It returns a new Type object.
2840const Type *TypeRawPtr::xmeet( const Type *t ) const {
2841  // Perform a fast test for common case; meeting the same types together.
2842  if( this == t ) return this;  // Meeting same type-rep?
2843
2844  // Current "this->_base" is RawPtr
2845  switch( t->base() ) {         // switch on original type
2846  case Bottom:                  // Ye Olde Default
2847    return t;
2848  case Top:
2849    return this;
2850  case AnyPtr:                  // Meeting to AnyPtrs
2851    break;
2852  case RawPtr: {                // might be top, bot, any/not or constant
2853    enum PTR tptr = t->is_ptr()->ptr();
2854    enum PTR ptr = meet_ptr( tptr );
2855    if( ptr == Constant ) {     // Cannot be equal constants, so...
2856      if( tptr == Constant && _ptr != Constant)  return t;
2857      if( _ptr == Constant && tptr != Constant)  return this;
2858      ptr = NotNull;            // Fall down in lattice
2859    }
2860    return make( ptr );
2861  }
2862
2863  case OopPtr:
2864  case InstPtr:
2865  case AryPtr:
2866  case MetadataPtr:
2867  case KlassPtr:
2868    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2869  default:                      // All else is a mistake
2870    typerr(t);
2871  }
2872
2873  // Found an AnyPtr type vs self-RawPtr type
2874  const TypePtr *tp = t->is_ptr();
2875  switch (tp->ptr()) {
2876  case TypePtr::TopPTR:  return this;
2877  case TypePtr::BotPTR:  return t;
2878  case TypePtr::Null:
2879    if( _ptr == TypePtr::TopPTR ) return t;
2880    return TypeRawPtr::BOTTOM;
2881  case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2882  case TypePtr::AnyNull:
2883    if( _ptr == TypePtr::Constant) return this;
2884    return make( meet_ptr(TypePtr::AnyNull) );
2885  default: ShouldNotReachHere();
2886  }
2887  return this;
2888}
2889
2890//------------------------------xdual------------------------------------------
2891// Dual: compute field-by-field dual
2892const Type *TypeRawPtr::xdual() const {
2893  return new TypeRawPtr( dual_ptr(), _bits );
2894}
2895
2896//------------------------------add_offset-------------------------------------
2897const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2898  if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2899  if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2900  if( offset == 0 ) return this; // No change
2901  switch (_ptr) {
2902  case TypePtr::TopPTR:
2903  case TypePtr::BotPTR:
2904  case TypePtr::NotNull:
2905    return this;
2906  case TypePtr::Null:
2907  case TypePtr::Constant: {
2908    address bits = _bits+offset;
2909    if ( bits == 0 ) return TypePtr::NULL_PTR;
2910    return make( bits );
2911  }
2912  default:  ShouldNotReachHere();
2913  }
2914  return NULL;                  // Lint noise
2915}
2916
2917//------------------------------eq---------------------------------------------
2918// Structural equality check for Type representations
2919bool TypeRawPtr::eq( const Type *t ) const {
2920  const TypeRawPtr *a = (const TypeRawPtr*)t;
2921  return _bits == a->_bits && TypePtr::eq(t);
2922}
2923
2924//------------------------------hash-------------------------------------------
2925// Type-specific hashing function.
2926int TypeRawPtr::hash(void) const {
2927  return (intptr_t)_bits + TypePtr::hash();
2928}
2929
2930//------------------------------dump2------------------------------------------
2931#ifndef PRODUCT
2932void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2933  if( _ptr == Constant )
2934    st->print(INTPTR_FORMAT, p2i(_bits));
2935  else
2936    st->print("rawptr:%s", ptr_msg[_ptr]);
2937}
2938#endif
2939
2940//=============================================================================
2941// Convenience common pre-built type.
2942const TypeOopPtr *TypeOopPtr::BOTTOM;
2943
2944//------------------------------TypeOopPtr-------------------------------------
2945TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2946                       int instance_id, const TypePtr* speculative, int inline_depth)
2947  : TypePtr(t, ptr, offset, speculative, inline_depth),
2948    _const_oop(o), _klass(k),
2949    _klass_is_exact(xk),
2950    _is_ptr_to_narrowoop(false),
2951    _is_ptr_to_narrowklass(false),
2952    _is_ptr_to_boxed_value(false),
2953    _instance_id(instance_id) {
2954  if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2955      (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2956    _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2957  }
2958#ifdef _LP64
2959  if (_offset != 0) {
2960    if (_offset == oopDesc::klass_offset_in_bytes()) {
2961      _is_ptr_to_narrowklass = UseCompressedClassPointers;
2962    } else if (klass() == NULL) {
2963      // Array with unknown body type
2964      assert(this->isa_aryptr(), "only arrays without klass");
2965      _is_ptr_to_narrowoop = UseCompressedOops;
2966    } else if (this->isa_aryptr()) {
2967      _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2968                             _offset != arrayOopDesc::length_offset_in_bytes());
2969    } else if (klass()->is_instance_klass()) {
2970      ciInstanceKlass* ik = klass()->as_instance_klass();
2971      ciField* field = NULL;
2972      if (this->isa_klassptr()) {
2973        // Perm objects don't use compressed references
2974      } else if (_offset == OffsetBot || _offset == OffsetTop) {
2975        // unsafe access
2976        _is_ptr_to_narrowoop = UseCompressedOops;
2977      } else { // exclude unsafe ops
2978        assert(this->isa_instptr(), "must be an instance ptr.");
2979
2980        if (klass() == ciEnv::current()->Class_klass() &&
2981            (_offset == java_lang_Class::klass_offset_in_bytes() ||
2982             _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2983          // Special hidden fields from the Class.
2984          assert(this->isa_instptr(), "must be an instance ptr.");
2985          _is_ptr_to_narrowoop = false;
2986        } else if (klass() == ciEnv::current()->Class_klass() &&
2987                   _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2988          // Static fields
2989          assert(o != NULL, "must be constant");
2990          ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2991          ciField* field = k->get_field_by_offset(_offset, true);
2992          assert(field != NULL, "missing field");
2993          BasicType basic_elem_type = field->layout_type();
2994          _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2995                                                       basic_elem_type == T_ARRAY);
2996        } else {
2997          // Instance fields which contains a compressed oop references.
2998          field = ik->get_field_by_offset(_offset, false);
2999          if (field != NULL) {
3000            BasicType basic_elem_type = field->layout_type();
3001            _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3002                                                         basic_elem_type == T_ARRAY);
3003          } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3004            // Compile::find_alias_type() cast exactness on all types to verify
3005            // that it does not affect alias type.
3006            _is_ptr_to_narrowoop = UseCompressedOops;
3007          } else {
3008            // Type for the copy start in LibraryCallKit::inline_native_clone().
3009            _is_ptr_to_narrowoop = UseCompressedOops;
3010          }
3011        }
3012      }
3013    }
3014  }
3015#endif
3016}
3017
3018//------------------------------make-------------------------------------------
3019const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3020                                     const TypePtr* speculative, int inline_depth) {
3021  assert(ptr != Constant, "no constant generic pointers");
3022  ciKlass*  k = Compile::current()->env()->Object_klass();
3023  bool      xk = false;
3024  ciObject* o = NULL;
3025  return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3026}
3027
3028
3029//------------------------------cast_to_ptr_type-------------------------------
3030const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3031  assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3032  if( ptr == _ptr ) return this;
3033  return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3034}
3035
3036//-----------------------------cast_to_instance_id----------------------------
3037const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3038  // There are no instances of a general oop.
3039  // Return self unchanged.
3040  return this;
3041}
3042
3043//-----------------------------cast_to_exactness-------------------------------
3044const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3045  // There is no such thing as an exact general oop.
3046  // Return self unchanged.
3047  return this;
3048}
3049
3050
3051//------------------------------as_klass_type----------------------------------
3052// Return the klass type corresponding to this instance or array type.
3053// It is the type that is loaded from an object of this type.
3054const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3055  ciKlass* k = klass();
3056  bool    xk = klass_is_exact();
3057  if (k == NULL)
3058    return TypeKlassPtr::OBJECT;
3059  else
3060    return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3061}
3062
3063//------------------------------meet-------------------------------------------
3064// Compute the MEET of two types.  It returns a new Type object.
3065const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3066  // Perform a fast test for common case; meeting the same types together.
3067  if( this == t ) return this;  // Meeting same type-rep?
3068
3069  // Current "this->_base" is OopPtr
3070  switch (t->base()) {          // switch on original type
3071
3072  case Int:                     // Mixing ints & oops happens when javac
3073  case Long:                    // reuses local variables
3074  case FloatTop:
3075  case FloatCon:
3076  case FloatBot:
3077  case DoubleTop:
3078  case DoubleCon:
3079  case DoubleBot:
3080  case NarrowOop:
3081  case NarrowKlass:
3082  case Bottom:                  // Ye Olde Default
3083    return Type::BOTTOM;
3084  case Top:
3085    return this;
3086
3087  default:                      // All else is a mistake
3088    typerr(t);
3089
3090  case RawPtr:
3091  case MetadataPtr:
3092  case KlassPtr:
3093    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3094
3095  case AnyPtr: {
3096    // Found an AnyPtr type vs self-OopPtr type
3097    const TypePtr *tp = t->is_ptr();
3098    int offset = meet_offset(tp->offset());
3099    PTR ptr = meet_ptr(tp->ptr());
3100    const TypePtr* speculative = xmeet_speculative(tp);
3101    int depth = meet_inline_depth(tp->inline_depth());
3102    switch (tp->ptr()) {
3103    case Null:
3104      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3105      // else fall through:
3106    case TopPTR:
3107    case AnyNull: {
3108      int instance_id = meet_instance_id(InstanceTop);
3109      return make(ptr, offset, instance_id, speculative, depth);
3110    }
3111    case BotPTR:
3112    case NotNull:
3113      return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3114    default: typerr(t);
3115    }
3116  }
3117
3118  case OopPtr: {                 // Meeting to other OopPtrs
3119    const TypeOopPtr *tp = t->is_oopptr();
3120    int instance_id = meet_instance_id(tp->instance_id());
3121    const TypePtr* speculative = xmeet_speculative(tp);
3122    int depth = meet_inline_depth(tp->inline_depth());
3123    return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3124  }
3125
3126  case InstPtr:                  // For these, flip the call around to cut down
3127  case AryPtr:
3128    return t->xmeet(this);      // Call in reverse direction
3129
3130  } // End of switch
3131  return this;                  // Return the double constant
3132}
3133
3134
3135//------------------------------xdual------------------------------------------
3136// Dual of a pure heap pointer.  No relevant klass or oop information.
3137const Type *TypeOopPtr::xdual() const {
3138  assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3139  assert(const_oop() == NULL,             "no constants here");
3140  return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3141}
3142
3143//--------------------------make_from_klass_common-----------------------------
3144// Computes the element-type given a klass.
3145const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3146  if (klass->is_instance_klass()) {
3147    Compile* C = Compile::current();
3148    Dependencies* deps = C->dependencies();
3149    assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3150    // Element is an instance
3151    bool klass_is_exact = false;
3152    if (klass->is_loaded()) {
3153      // Try to set klass_is_exact.
3154      ciInstanceKlass* ik = klass->as_instance_klass();
3155      klass_is_exact = ik->is_final();
3156      if (!klass_is_exact && klass_change
3157          && deps != NULL && UseUniqueSubclasses) {
3158        ciInstanceKlass* sub = ik->unique_concrete_subklass();
3159        if (sub != NULL) {
3160          deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3161          klass = ik = sub;
3162          klass_is_exact = sub->is_final();
3163        }
3164      }
3165      if (!klass_is_exact && try_for_exact
3166          && deps != NULL && UseExactTypes) {
3167        if (!ik->is_interface() && !ik->has_subklass()) {
3168          // Add a dependence; if concrete subclass added we need to recompile
3169          deps->assert_leaf_type(ik);
3170          klass_is_exact = true;
3171        }
3172      }
3173    }
3174    return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3175  } else if (klass->is_obj_array_klass()) {
3176    // Element is an object array. Recursively call ourself.
3177    const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3178    bool xk = etype->klass_is_exact();
3179    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3180    // We used to pass NotNull in here, asserting that the sub-arrays
3181    // are all not-null.  This is not true in generally, as code can
3182    // slam NULLs down in the subarrays.
3183    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3184    return arr;
3185  } else if (klass->is_type_array_klass()) {
3186    // Element is an typeArray
3187    const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3188    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3189    // We used to pass NotNull in here, asserting that the array pointer
3190    // is not-null. That was not true in general.
3191    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3192    return arr;
3193  } else {
3194    ShouldNotReachHere();
3195    return NULL;
3196  }
3197}
3198
3199//------------------------------make_from_constant-----------------------------
3200// Make a java pointer from an oop constant
3201const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3202  assert(!o->is_null_object(), "null object not yet handled here.");
3203  ciKlass* klass = o->klass();
3204  if (klass->is_instance_klass()) {
3205    // Element is an instance
3206    if (require_constant) {
3207      if (!o->can_be_constant())  return NULL;
3208    } else if (!o->should_be_constant()) {
3209      return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3210    }
3211    return TypeInstPtr::make(o);
3212  } else if (klass->is_obj_array_klass()) {
3213    // Element is an object array. Recursively call ourself.
3214    const TypeOopPtr *etype =
3215      TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3216    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3217    // We used to pass NotNull in here, asserting that the sub-arrays
3218    // are all not-null.  This is not true in generally, as code can
3219    // slam NULLs down in the subarrays.
3220    if (require_constant) {
3221      if (!o->can_be_constant())  return NULL;
3222    } else if (!o->should_be_constant()) {
3223      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3224    }
3225    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3226    return arr;
3227  } else if (klass->is_type_array_klass()) {
3228    // Element is an typeArray
3229    const Type* etype =
3230      (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3231    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3232    // We used to pass NotNull in here, asserting that the array pointer
3233    // is not-null. That was not true in general.
3234    if (require_constant) {
3235      if (!o->can_be_constant())  return NULL;
3236    } else if (!o->should_be_constant()) {
3237      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3238    }
3239    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3240    return arr;
3241  }
3242
3243  fatal("unhandled object type");
3244  return NULL;
3245}
3246
3247//------------------------------get_con----------------------------------------
3248intptr_t TypeOopPtr::get_con() const {
3249  assert( _ptr == Null || _ptr == Constant, "" );
3250  assert( _offset >= 0, "" );
3251
3252  if (_offset != 0) {
3253    // After being ported to the compiler interface, the compiler no longer
3254    // directly manipulates the addresses of oops.  Rather, it only has a pointer
3255    // to a handle at compile time.  This handle is embedded in the generated
3256    // code and dereferenced at the time the nmethod is made.  Until that time,
3257    // it is not reasonable to do arithmetic with the addresses of oops (we don't
3258    // have access to the addresses!).  This does not seem to currently happen,
3259    // but this assertion here is to help prevent its occurence.
3260    tty->print_cr("Found oop constant with non-zero offset");
3261    ShouldNotReachHere();
3262  }
3263
3264  return (intptr_t)const_oop()->constant_encoding();
3265}
3266
3267
3268//-----------------------------filter------------------------------------------
3269// Do not allow interface-vs.-noninterface joins to collapse to top.
3270const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3271
3272  const Type* ft = join_helper(kills, include_speculative);
3273  const TypeInstPtr* ftip = ft->isa_instptr();
3274  const TypeInstPtr* ktip = kills->isa_instptr();
3275
3276  if (ft->empty()) {
3277    // Check for evil case of 'this' being a class and 'kills' expecting an
3278    // interface.  This can happen because the bytecodes do not contain
3279    // enough type info to distinguish a Java-level interface variable
3280    // from a Java-level object variable.  If we meet 2 classes which
3281    // both implement interface I, but their meet is at 'j/l/O' which
3282    // doesn't implement I, we have no way to tell if the result should
3283    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3284    // into a Phi which "knows" it's an Interface type we'll have to
3285    // uplift the type.
3286    if (!empty()) {
3287      if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3288        return kills;           // Uplift to interface
3289      }
3290      // Also check for evil cases of 'this' being a class array
3291      // and 'kills' expecting an array of interfaces.
3292      Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3293      if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3294        return kills;           // Uplift to array of interface
3295      }
3296    }
3297
3298    return Type::TOP;           // Canonical empty value
3299  }
3300
3301  // If we have an interface-typed Phi or cast and we narrow to a class type,
3302  // the join should report back the class.  However, if we have a J/L/Object
3303  // class-typed Phi and an interface flows in, it's possible that the meet &
3304  // join report an interface back out.  This isn't possible but happens
3305  // because the type system doesn't interact well with interfaces.
3306  if (ftip != NULL && ktip != NULL &&
3307      ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3308      ktip->is_loaded() && !ktip->klass()->is_interface()) {
3309    assert(!ftip->klass_is_exact(), "interface could not be exact");
3310    return ktip->cast_to_ptr_type(ftip->ptr());
3311  }
3312
3313  return ft;
3314}
3315
3316//------------------------------eq---------------------------------------------
3317// Structural equality check for Type representations
3318bool TypeOopPtr::eq( const Type *t ) const {
3319  const TypeOopPtr *a = (const TypeOopPtr*)t;
3320  if (_klass_is_exact != a->_klass_is_exact ||
3321      _instance_id != a->_instance_id)  return false;
3322  ciObject* one = const_oop();
3323  ciObject* two = a->const_oop();
3324  if (one == NULL || two == NULL) {
3325    return (one == two) && TypePtr::eq(t);
3326  } else {
3327    return one->equals(two) && TypePtr::eq(t);
3328  }
3329}
3330
3331//------------------------------hash-------------------------------------------
3332// Type-specific hashing function.
3333int TypeOopPtr::hash(void) const {
3334  return
3335    java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3336             java_add(_instance_id, TypePtr::hash()));
3337}
3338
3339//------------------------------dump2------------------------------------------
3340#ifndef PRODUCT
3341void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3342  st->print("oopptr:%s", ptr_msg[_ptr]);
3343  if( _klass_is_exact ) st->print(":exact");
3344  if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3345  switch( _offset ) {
3346  case OffsetTop: st->print("+top"); break;
3347  case OffsetBot: st->print("+any"); break;
3348  case         0: break;
3349  default:        st->print("+%d",_offset); break;
3350  }
3351  if (_instance_id == InstanceTop)
3352    st->print(",iid=top");
3353  else if (_instance_id != InstanceBot)
3354    st->print(",iid=%d",_instance_id);
3355
3356  dump_inline_depth(st);
3357  dump_speculative(st);
3358}
3359#endif
3360
3361//------------------------------singleton--------------------------------------
3362// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3363// constants
3364bool TypeOopPtr::singleton(void) const {
3365  // detune optimizer to not generate constant oop + constant offset as a constant!
3366  // TopPTR, Null, AnyNull, Constant are all singletons
3367  return (_offset == 0) && !below_centerline(_ptr);
3368}
3369
3370//------------------------------add_offset-------------------------------------
3371const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3372  return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3373}
3374
3375/**
3376 * Return same type without a speculative part
3377 */
3378const Type* TypeOopPtr::remove_speculative() const {
3379  if (_speculative == NULL) {
3380    return this;
3381  }
3382  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3383  return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3384}
3385
3386/**
3387 * Return same type but drop speculative part if we know we won't use
3388 * it
3389 */
3390const Type* TypeOopPtr::cleanup_speculative() const {
3391  // If the klass is exact and the ptr is not null then there's
3392  // nothing that the speculative type can help us with
3393  if (klass_is_exact() && !maybe_null()) {
3394    return remove_speculative();
3395  }
3396  return TypePtr::cleanup_speculative();
3397}
3398
3399/**
3400 * Return same type but with a different inline depth (used for speculation)
3401 *
3402 * @param depth  depth to meet with
3403 */
3404const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3405  if (!UseInlineDepthForSpeculativeTypes) {
3406    return this;
3407  }
3408  return make(_ptr, _offset, _instance_id, _speculative, depth);
3409}
3410
3411//------------------------------meet_instance_id--------------------------------
3412int TypeOopPtr::meet_instance_id( int instance_id ) const {
3413  // Either is 'TOP' instance?  Return the other instance!
3414  if( _instance_id == InstanceTop ) return  instance_id;
3415  if(  instance_id == InstanceTop ) return _instance_id;
3416  // If either is different, return 'BOTTOM' instance
3417  if( _instance_id != instance_id ) return InstanceBot;
3418  return _instance_id;
3419}
3420
3421//------------------------------dual_instance_id--------------------------------
3422int TypeOopPtr::dual_instance_id( ) const {
3423  if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3424  if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3425  return _instance_id;              // Map everything else into self
3426}
3427
3428/**
3429 * Check whether new profiling would improve speculative type
3430 *
3431 * @param   exact_kls    class from profiling
3432 * @param   inline_depth inlining depth of profile point
3433 *
3434 * @return  true if type profile is valuable
3435 */
3436bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3437  // no way to improve an already exact type
3438  if (klass_is_exact()) {
3439    return false;
3440  }
3441  return TypePtr::would_improve_type(exact_kls, inline_depth);
3442}
3443
3444//=============================================================================
3445// Convenience common pre-built types.
3446const TypeInstPtr *TypeInstPtr::NOTNULL;
3447const TypeInstPtr *TypeInstPtr::BOTTOM;
3448const TypeInstPtr *TypeInstPtr::MIRROR;
3449const TypeInstPtr *TypeInstPtr::MARK;
3450const TypeInstPtr *TypeInstPtr::KLASS;
3451
3452//------------------------------TypeInstPtr-------------------------------------
3453TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3454                         int instance_id, const TypePtr* speculative, int inline_depth)
3455  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3456    _name(k->name()) {
3457   assert(k != NULL &&
3458          (k->is_loaded() || o == NULL),
3459          "cannot have constants with non-loaded klass");
3460};
3461
3462//------------------------------make-------------------------------------------
3463const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3464                                     ciKlass* k,
3465                                     bool xk,
3466                                     ciObject* o,
3467                                     int offset,
3468                                     int instance_id,
3469                                     const TypePtr* speculative,
3470                                     int inline_depth) {
3471  assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3472  // Either const_oop() is NULL or else ptr is Constant
3473  assert( (!o && ptr != Constant) || (o && ptr == Constant),
3474          "constant pointers must have a value supplied" );
3475  // Ptr is never Null
3476  assert( ptr != Null, "NULL pointers are not typed" );
3477
3478  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3479  if (!UseExactTypes)  xk = false;
3480  if (ptr == Constant) {
3481    // Note:  This case includes meta-object constants, such as methods.
3482    xk = true;
3483  } else if (k->is_loaded()) {
3484    ciInstanceKlass* ik = k->as_instance_klass();
3485    if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3486    if (xk && ik->is_interface())  xk = false;  // no exact interface
3487  }
3488
3489  // Now hash this baby
3490  TypeInstPtr *result =
3491    (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3492
3493  return result;
3494}
3495
3496/**
3497 *  Create constant type for a constant boxed value
3498 */
3499const Type* TypeInstPtr::get_const_boxed_value() const {
3500  assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3501  assert((const_oop() != NULL), "should be called only for constant object");
3502  ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3503  BasicType bt = constant.basic_type();
3504  switch (bt) {
3505    case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3506    case T_INT:      return TypeInt::make(constant.as_int());
3507    case T_CHAR:     return TypeInt::make(constant.as_char());
3508    case T_BYTE:     return TypeInt::make(constant.as_byte());
3509    case T_SHORT:    return TypeInt::make(constant.as_short());
3510    case T_FLOAT:    return TypeF::make(constant.as_float());
3511    case T_DOUBLE:   return TypeD::make(constant.as_double());
3512    case T_LONG:     return TypeLong::make(constant.as_long());
3513    default:         break;
3514  }
3515  fatal("Invalid boxed value type '%s'", type2name(bt));
3516  return NULL;
3517}
3518
3519//------------------------------cast_to_ptr_type-------------------------------
3520const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3521  if( ptr == _ptr ) return this;
3522  // Reconstruct _sig info here since not a problem with later lazy
3523  // construction, _sig will show up on demand.
3524  return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3525}
3526
3527
3528//-----------------------------cast_to_exactness-------------------------------
3529const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3530  if( klass_is_exact == _klass_is_exact ) return this;
3531  if (!UseExactTypes)  return this;
3532  if (!_klass->is_loaded())  return this;
3533  ciInstanceKlass* ik = _klass->as_instance_klass();
3534  if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3535  if( ik->is_interface() )              return this;  // cannot set xk
3536  return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3537}
3538
3539//-----------------------------cast_to_instance_id----------------------------
3540const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3541  if( instance_id == _instance_id ) return this;
3542  return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3543}
3544
3545//------------------------------xmeet_unloaded---------------------------------
3546// Compute the MEET of two InstPtrs when at least one is unloaded.
3547// Assume classes are different since called after check for same name/class-loader
3548const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3549    int off = meet_offset(tinst->offset());
3550    PTR ptr = meet_ptr(tinst->ptr());
3551    int instance_id = meet_instance_id(tinst->instance_id());
3552    const TypePtr* speculative = xmeet_speculative(tinst);
3553    int depth = meet_inline_depth(tinst->inline_depth());
3554
3555    const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3556    const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3557    if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3558      //
3559      // Meet unloaded class with java/lang/Object
3560      //
3561      // Meet
3562      //          |                     Unloaded Class
3563      //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3564      //  ===================================================================
3565      //   TOP    | ..........................Unloaded......................|
3566      //  AnyNull |  U-AN    |................Unloaded......................|
3567      // Constant | ... O-NN .................................. |   O-BOT   |
3568      //  NotNull | ... O-NN .................................. |   O-BOT   |
3569      //  BOTTOM  | ........................Object-BOTTOM ..................|
3570      //
3571      assert(loaded->ptr() != TypePtr::Null, "insanity check");
3572      //
3573      if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3574      else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3575      else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3576      else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3577        if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3578        else                                      { return TypeInstPtr::NOTNULL; }
3579      }
3580      else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3581
3582      return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3583    }
3584
3585    // Both are unloaded, not the same class, not Object
3586    // Or meet unloaded with a different loaded class, not java/lang/Object
3587    if( ptr != TypePtr::BotPTR ) {
3588      return TypeInstPtr::NOTNULL;
3589    }
3590    return TypeInstPtr::BOTTOM;
3591}
3592
3593
3594//------------------------------meet-------------------------------------------
3595// Compute the MEET of two types.  It returns a new Type object.
3596const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3597  // Perform a fast test for common case; meeting the same types together.
3598  if( this == t ) return this;  // Meeting same type-rep?
3599
3600  // Current "this->_base" is Pointer
3601  switch (t->base()) {          // switch on original type
3602
3603  case Int:                     // Mixing ints & oops happens when javac
3604  case Long:                    // reuses local variables
3605  case FloatTop:
3606  case FloatCon:
3607  case FloatBot:
3608  case DoubleTop:
3609  case DoubleCon:
3610  case DoubleBot:
3611  case NarrowOop:
3612  case NarrowKlass:
3613  case Bottom:                  // Ye Olde Default
3614    return Type::BOTTOM;
3615  case Top:
3616    return this;
3617
3618  default:                      // All else is a mistake
3619    typerr(t);
3620
3621  case MetadataPtr:
3622  case KlassPtr:
3623  case RawPtr: return TypePtr::BOTTOM;
3624
3625  case AryPtr: {                // All arrays inherit from Object class
3626    const TypeAryPtr *tp = t->is_aryptr();
3627    int offset = meet_offset(tp->offset());
3628    PTR ptr = meet_ptr(tp->ptr());
3629    int instance_id = meet_instance_id(tp->instance_id());
3630    const TypePtr* speculative = xmeet_speculative(tp);
3631    int depth = meet_inline_depth(tp->inline_depth());
3632    switch (ptr) {
3633    case TopPTR:
3634    case AnyNull:                // Fall 'down' to dual of object klass
3635      // For instances when a subclass meets a superclass we fall
3636      // below the centerline when the superclass is exact. We need to
3637      // do the same here.
3638      if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3639        return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3640      } else {
3641        // cannot subclass, so the meet has to fall badly below the centerline
3642        ptr = NotNull;
3643        instance_id = InstanceBot;
3644        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3645      }
3646    case Constant:
3647    case NotNull:
3648    case BotPTR:                // Fall down to object klass
3649      // LCA is object_klass, but if we subclass from the top we can do better
3650      if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3651        // If 'this' (InstPtr) is above the centerline and it is Object class
3652        // then we can subclass in the Java class hierarchy.
3653        // For instances when a subclass meets a superclass we fall
3654        // below the centerline when the superclass is exact. We need
3655        // to do the same here.
3656        if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3657          // that is, tp's array type is a subtype of my klass
3658          return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3659                                  tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3660        }
3661      }
3662      // The other case cannot happen, since I cannot be a subtype of an array.
3663      // The meet falls down to Object class below centerline.
3664      if( ptr == Constant )
3665         ptr = NotNull;
3666      instance_id = InstanceBot;
3667      return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3668    default: typerr(t);
3669    }
3670  }
3671
3672  case OopPtr: {                // Meeting to OopPtrs
3673    // Found a OopPtr type vs self-InstPtr type
3674    const TypeOopPtr *tp = t->is_oopptr();
3675    int offset = meet_offset(tp->offset());
3676    PTR ptr = meet_ptr(tp->ptr());
3677    switch (tp->ptr()) {
3678    case TopPTR:
3679    case AnyNull: {
3680      int instance_id = meet_instance_id(InstanceTop);
3681      const TypePtr* speculative = xmeet_speculative(tp);
3682      int depth = meet_inline_depth(tp->inline_depth());
3683      return make(ptr, klass(), klass_is_exact(),
3684                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3685    }
3686    case NotNull:
3687    case BotPTR: {
3688      int instance_id = meet_instance_id(tp->instance_id());
3689      const TypePtr* speculative = xmeet_speculative(tp);
3690      int depth = meet_inline_depth(tp->inline_depth());
3691      return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3692    }
3693    default: typerr(t);
3694    }
3695  }
3696
3697  case AnyPtr: {                // Meeting to AnyPtrs
3698    // Found an AnyPtr type vs self-InstPtr type
3699    const TypePtr *tp = t->is_ptr();
3700    int offset = meet_offset(tp->offset());
3701    PTR ptr = meet_ptr(tp->ptr());
3702    int instance_id = meet_instance_id(InstanceTop);
3703    const TypePtr* speculative = xmeet_speculative(tp);
3704    int depth = meet_inline_depth(tp->inline_depth());
3705    switch (tp->ptr()) {
3706    case Null:
3707      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3708      // else fall through to AnyNull
3709    case TopPTR:
3710    case AnyNull: {
3711      return make(ptr, klass(), klass_is_exact(),
3712                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3713    }
3714    case NotNull:
3715    case BotPTR:
3716      return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3717    default: typerr(t);
3718    }
3719  }
3720
3721  /*
3722                 A-top         }
3723               /   |   \       }  Tops
3724           B-top A-any C-top   }
3725              | /  |  \ |      }  Any-nulls
3726           B-any   |   C-any   }
3727              |    |    |
3728           B-con A-con C-con   } constants; not comparable across classes
3729              |    |    |
3730           B-not   |   C-not   }
3731              | \  |  / |      }  not-nulls
3732           B-bot A-not C-bot   }
3733               \   |   /       }  Bottoms
3734                 A-bot         }
3735  */
3736
3737  case InstPtr: {                // Meeting 2 Oops?
3738    // Found an InstPtr sub-type vs self-InstPtr type
3739    const TypeInstPtr *tinst = t->is_instptr();
3740    int off = meet_offset( tinst->offset() );
3741    PTR ptr = meet_ptr( tinst->ptr() );
3742    int instance_id = meet_instance_id(tinst->instance_id());
3743    const TypePtr* speculative = xmeet_speculative(tinst);
3744    int depth = meet_inline_depth(tinst->inline_depth());
3745
3746    // Check for easy case; klasses are equal (and perhaps not loaded!)
3747    // If we have constants, then we created oops so classes are loaded
3748    // and we can handle the constants further down.  This case handles
3749    // both-not-loaded or both-loaded classes
3750    if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3751      return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3752    }
3753
3754    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3755    ciKlass* tinst_klass = tinst->klass();
3756    ciKlass* this_klass  = this->klass();
3757    bool tinst_xk = tinst->klass_is_exact();
3758    bool this_xk  = this->klass_is_exact();
3759    if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3760      // One of these classes has not been loaded
3761      const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3762#ifndef PRODUCT
3763      if( PrintOpto && Verbose ) {
3764        tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3765        tty->print("  this == "); this->dump(); tty->cr();
3766        tty->print(" tinst == "); tinst->dump(); tty->cr();
3767      }
3768#endif
3769      return unloaded_meet;
3770    }
3771
3772    // Handle mixing oops and interfaces first.
3773    if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3774                                        tinst_klass == ciEnv::current()->Object_klass())) {
3775      ciKlass *tmp = tinst_klass; // Swap interface around
3776      tinst_klass = this_klass;
3777      this_klass = tmp;
3778      bool tmp2 = tinst_xk;
3779      tinst_xk = this_xk;
3780      this_xk = tmp2;
3781    }
3782    if (tinst_klass->is_interface() &&
3783        !(this_klass->is_interface() ||
3784          // Treat java/lang/Object as an honorary interface,
3785          // because we need a bottom for the interface hierarchy.
3786          this_klass == ciEnv::current()->Object_klass())) {
3787      // Oop meets interface!
3788
3789      // See if the oop subtypes (implements) interface.
3790      ciKlass *k;
3791      bool xk;
3792      if( this_klass->is_subtype_of( tinst_klass ) ) {
3793        // Oop indeed subtypes.  Now keep oop or interface depending
3794        // on whether we are both above the centerline or either is
3795        // below the centerline.  If we are on the centerline
3796        // (e.g., Constant vs. AnyNull interface), use the constant.
3797        k  = below_centerline(ptr) ? tinst_klass : this_klass;
3798        // If we are keeping this_klass, keep its exactness too.
3799        xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3800      } else {                  // Does not implement, fall to Object
3801        // Oop does not implement interface, so mixing falls to Object
3802        // just like the verifier does (if both are above the
3803        // centerline fall to interface)
3804        k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3805        xk = above_centerline(ptr) ? tinst_xk : false;
3806        // Watch out for Constant vs. AnyNull interface.
3807        if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3808        instance_id = InstanceBot;
3809      }
3810      ciObject* o = NULL;  // the Constant value, if any
3811      if (ptr == Constant) {
3812        // Find out which constant.
3813        o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3814      }
3815      return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3816    }
3817
3818    // Either oop vs oop or interface vs interface or interface vs Object
3819
3820    // !!! Here's how the symmetry requirement breaks down into invariants:
3821    // If we split one up & one down AND they subtype, take the down man.
3822    // If we split one up & one down AND they do NOT subtype, "fall hard".
3823    // If both are up and they subtype, take the subtype class.
3824    // If both are up and they do NOT subtype, "fall hard".
3825    // If both are down and they subtype, take the supertype class.
3826    // If both are down and they do NOT subtype, "fall hard".
3827    // Constants treated as down.
3828
3829    // Now, reorder the above list; observe that both-down+subtype is also
3830    // "fall hard"; "fall hard" becomes the default case:
3831    // If we split one up & one down AND they subtype, take the down man.
3832    // If both are up and they subtype, take the subtype class.
3833
3834    // If both are down and they subtype, "fall hard".
3835    // If both are down and they do NOT subtype, "fall hard".
3836    // If both are up and they do NOT subtype, "fall hard".
3837    // If we split one up & one down AND they do NOT subtype, "fall hard".
3838
3839    // If a proper subtype is exact, and we return it, we return it exactly.
3840    // If a proper supertype is exact, there can be no subtyping relationship!
3841    // If both types are equal to the subtype, exactness is and-ed below the
3842    // centerline and or-ed above it.  (N.B. Constants are always exact.)
3843
3844    // Check for subtyping:
3845    ciKlass *subtype = NULL;
3846    bool subtype_exact = false;
3847    if( tinst_klass->equals(this_klass) ) {
3848      subtype = this_klass;
3849      subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3850    } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3851      subtype = this_klass;     // Pick subtyping class
3852      subtype_exact = this_xk;
3853    } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3854      subtype = tinst_klass;    // Pick subtyping class
3855      subtype_exact = tinst_xk;
3856    }
3857
3858    if( subtype ) {
3859      if( above_centerline(ptr) ) { // both are up?
3860        this_klass = tinst_klass = subtype;
3861        this_xk = tinst_xk = subtype_exact;
3862      } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3863        this_klass = tinst_klass; // tinst is down; keep down man
3864        this_xk = tinst_xk;
3865      } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3866        tinst_klass = this_klass; // this is down; keep down man
3867        tinst_xk = this_xk;
3868      } else {
3869        this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3870      }
3871    }
3872
3873    // Check for classes now being equal
3874    if (tinst_klass->equals(this_klass)) {
3875      // If the klasses are equal, the constants may still differ.  Fall to
3876      // NotNull if they do (neither constant is NULL; that is a special case
3877      // handled elsewhere).
3878      ciObject* o = NULL;             // Assume not constant when done
3879      ciObject* this_oop  = const_oop();
3880      ciObject* tinst_oop = tinst->const_oop();
3881      if( ptr == Constant ) {
3882        if (this_oop != NULL && tinst_oop != NULL &&
3883            this_oop->equals(tinst_oop) )
3884          o = this_oop;
3885        else if (above_centerline(this ->_ptr))
3886          o = tinst_oop;
3887        else if (above_centerline(tinst ->_ptr))
3888          o = this_oop;
3889        else
3890          ptr = NotNull;
3891      }
3892      return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3893    } // Else classes are not equal
3894
3895    // Since klasses are different, we require a LCA in the Java
3896    // class hierarchy - which means we have to fall to at least NotNull.
3897    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3898      ptr = NotNull;
3899
3900    instance_id = InstanceBot;
3901
3902    // Now we find the LCA of Java classes
3903    ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3904    return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3905  } // End of case InstPtr
3906
3907  } // End of switch
3908  return this;                  // Return the double constant
3909}
3910
3911
3912//------------------------java_mirror_type--------------------------------------
3913ciType* TypeInstPtr::java_mirror_type() const {
3914  // must be a singleton type
3915  if( const_oop() == NULL )  return NULL;
3916
3917  // must be of type java.lang.Class
3918  if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3919
3920  return const_oop()->as_instance()->java_mirror_type();
3921}
3922
3923
3924//------------------------------xdual------------------------------------------
3925// Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3926// inheritance mechanism.
3927const Type *TypeInstPtr::xdual() const {
3928  return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3929}
3930
3931//------------------------------eq---------------------------------------------
3932// Structural equality check for Type representations
3933bool TypeInstPtr::eq( const Type *t ) const {
3934  const TypeInstPtr *p = t->is_instptr();
3935  return
3936    klass()->equals(p->klass()) &&
3937    TypeOopPtr::eq(p);          // Check sub-type stuff
3938}
3939
3940//------------------------------hash-------------------------------------------
3941// Type-specific hashing function.
3942int TypeInstPtr::hash(void) const {
3943  int hash = java_add(klass()->hash(), TypeOopPtr::hash());
3944  return hash;
3945}
3946
3947//------------------------------dump2------------------------------------------
3948// Dump oop Type
3949#ifndef PRODUCT
3950void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3951  // Print the name of the klass.
3952  klass()->print_name_on(st);
3953
3954  switch( _ptr ) {
3955  case Constant:
3956    // TO DO: Make CI print the hex address of the underlying oop.
3957    if (WizardMode || Verbose) {
3958      const_oop()->print_oop(st);
3959    }
3960  case BotPTR:
3961    if (!WizardMode && !Verbose) {
3962      if( _klass_is_exact ) st->print(":exact");
3963      break;
3964    }
3965  case TopPTR:
3966  case AnyNull:
3967  case NotNull:
3968    st->print(":%s", ptr_msg[_ptr]);
3969    if( _klass_is_exact ) st->print(":exact");
3970    break;
3971  default:
3972    break;
3973  }
3974
3975  if( _offset ) {               // Dump offset, if any
3976    if( _offset == OffsetBot )      st->print("+any");
3977    else if( _offset == OffsetTop ) st->print("+unknown");
3978    else st->print("+%d", _offset);
3979  }
3980
3981  st->print(" *");
3982  if (_instance_id == InstanceTop)
3983    st->print(",iid=top");
3984  else if (_instance_id != InstanceBot)
3985    st->print(",iid=%d",_instance_id);
3986
3987  dump_inline_depth(st);
3988  dump_speculative(st);
3989}
3990#endif
3991
3992//------------------------------add_offset-------------------------------------
3993const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3994  return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3995              _instance_id, add_offset_speculative(offset), _inline_depth);
3996}
3997
3998const Type *TypeInstPtr::remove_speculative() const {
3999  if (_speculative == NULL) {
4000    return this;
4001  }
4002  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4003  return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4004              _instance_id, NULL, _inline_depth);
4005}
4006
4007const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4008  if (!UseInlineDepthForSpeculativeTypes) {
4009    return this;
4010  }
4011  return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4012}
4013
4014//=============================================================================
4015// Convenience common pre-built types.
4016const TypeAryPtr *TypeAryPtr::RANGE;
4017const TypeAryPtr *TypeAryPtr::OOPS;
4018const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4019const TypeAryPtr *TypeAryPtr::BYTES;
4020const TypeAryPtr *TypeAryPtr::SHORTS;
4021const TypeAryPtr *TypeAryPtr::CHARS;
4022const TypeAryPtr *TypeAryPtr::INTS;
4023const TypeAryPtr *TypeAryPtr::LONGS;
4024const TypeAryPtr *TypeAryPtr::FLOATS;
4025const TypeAryPtr *TypeAryPtr::DOUBLES;
4026
4027//------------------------------make-------------------------------------------
4028const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4029                                   int instance_id, const TypePtr* speculative, int inline_depth) {
4030  assert(!(k == NULL && ary->_elem->isa_int()),
4031         "integral arrays must be pre-equipped with a class");
4032  if (!xk)  xk = ary->ary_must_be_exact();
4033  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4034  if (!UseExactTypes)  xk = (ptr == Constant);
4035  return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4036}
4037
4038//------------------------------make-------------------------------------------
4039const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4040                                   int instance_id, const TypePtr* speculative, int inline_depth,
4041                                   bool is_autobox_cache) {
4042  assert(!(k == NULL && ary->_elem->isa_int()),
4043         "integral arrays must be pre-equipped with a class");
4044  assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4045  if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4046  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4047  if (!UseExactTypes)  xk = (ptr == Constant);
4048  return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4049}
4050
4051//------------------------------cast_to_ptr_type-------------------------------
4052const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4053  if( ptr == _ptr ) return this;
4054  return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4055}
4056
4057
4058//-----------------------------cast_to_exactness-------------------------------
4059const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4060  if( klass_is_exact == _klass_is_exact ) return this;
4061  if (!UseExactTypes)  return this;
4062  if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4063  return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4064}
4065
4066//-----------------------------cast_to_instance_id----------------------------
4067const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4068  if( instance_id == _instance_id ) return this;
4069  return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4070}
4071
4072//-----------------------------narrow_size_type-------------------------------
4073// Local cache for arrayOopDesc::max_array_length(etype),
4074// which is kind of slow (and cached elsewhere by other users).
4075static jint max_array_length_cache[T_CONFLICT+1];
4076static jint max_array_length(BasicType etype) {
4077  jint& cache = max_array_length_cache[etype];
4078  jint res = cache;
4079  if (res == 0) {
4080    switch (etype) {
4081    case T_NARROWOOP:
4082      etype = T_OBJECT;
4083      break;
4084    case T_NARROWKLASS:
4085    case T_CONFLICT:
4086    case T_ILLEGAL:
4087    case T_VOID:
4088      etype = T_BYTE;           // will produce conservatively high value
4089      break;
4090    default:
4091      break;
4092    }
4093    cache = res = arrayOopDesc::max_array_length(etype);
4094  }
4095  return res;
4096}
4097
4098// Narrow the given size type to the index range for the given array base type.
4099// Return NULL if the resulting int type becomes empty.
4100const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4101  jint hi = size->_hi;
4102  jint lo = size->_lo;
4103  jint min_lo = 0;
4104  jint max_hi = max_array_length(elem()->basic_type());
4105  //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4106  bool chg = false;
4107  if (lo < min_lo) {
4108    lo = min_lo;
4109    if (size->is_con()) {
4110      hi = lo;
4111    }
4112    chg = true;
4113  }
4114  if (hi > max_hi) {
4115    hi = max_hi;
4116    if (size->is_con()) {
4117      lo = hi;
4118    }
4119    chg = true;
4120  }
4121  // Negative length arrays will produce weird intermediate dead fast-path code
4122  if (lo > hi)
4123    return TypeInt::ZERO;
4124  if (!chg)
4125    return size;
4126  return TypeInt::make(lo, hi, Type::WidenMin);
4127}
4128
4129//-------------------------------cast_to_size----------------------------------
4130const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4131  assert(new_size != NULL, "");
4132  new_size = narrow_size_type(new_size);
4133  if (new_size == size())  return this;
4134  const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4135  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4136}
4137
4138//------------------------------cast_to_stable---------------------------------
4139const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4140  if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4141    return this;
4142
4143  const Type* elem = this->elem();
4144  const TypePtr* elem_ptr = elem->make_ptr();
4145
4146  if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4147    // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4148    elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4149  }
4150
4151  const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4152
4153  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4154}
4155
4156//-----------------------------stable_dimension--------------------------------
4157int TypeAryPtr::stable_dimension() const {
4158  if (!is_stable())  return 0;
4159  int dim = 1;
4160  const TypePtr* elem_ptr = elem()->make_ptr();
4161  if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4162    dim += elem_ptr->is_aryptr()->stable_dimension();
4163  return dim;
4164}
4165
4166//----------------------cast_to_autobox_cache-----------------------------------
4167const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4168  if (is_autobox_cache() == cache)  return this;
4169  const TypeOopPtr* etype = elem()->make_oopptr();
4170  if (etype == NULL)  return this;
4171  // The pointers in the autobox arrays are always non-null.
4172  TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4173  etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4174  const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4175  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4176}
4177
4178//------------------------------eq---------------------------------------------
4179// Structural equality check for Type representations
4180bool TypeAryPtr::eq( const Type *t ) const {
4181  const TypeAryPtr *p = t->is_aryptr();
4182  return
4183    _ary == p->_ary &&  // Check array
4184    TypeOopPtr::eq(p);  // Check sub-parts
4185}
4186
4187//------------------------------hash-------------------------------------------
4188// Type-specific hashing function.
4189int TypeAryPtr::hash(void) const {
4190  return (intptr_t)_ary + TypeOopPtr::hash();
4191}
4192
4193//------------------------------meet-------------------------------------------
4194// Compute the MEET of two types.  It returns a new Type object.
4195const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4196  // Perform a fast test for common case; meeting the same types together.
4197  if( this == t ) return this;  // Meeting same type-rep?
4198  // Current "this->_base" is Pointer
4199  switch (t->base()) {          // switch on original type
4200
4201  // Mixing ints & oops happens when javac reuses local variables
4202  case Int:
4203  case Long:
4204  case FloatTop:
4205  case FloatCon:
4206  case FloatBot:
4207  case DoubleTop:
4208  case DoubleCon:
4209  case DoubleBot:
4210  case NarrowOop:
4211  case NarrowKlass:
4212  case Bottom:                  // Ye Olde Default
4213    return Type::BOTTOM;
4214  case Top:
4215    return this;
4216
4217  default:                      // All else is a mistake
4218    typerr(t);
4219
4220  case OopPtr: {                // Meeting to OopPtrs
4221    // Found a OopPtr type vs self-AryPtr type
4222    const TypeOopPtr *tp = t->is_oopptr();
4223    int offset = meet_offset(tp->offset());
4224    PTR ptr = meet_ptr(tp->ptr());
4225    int depth = meet_inline_depth(tp->inline_depth());
4226    const TypePtr* speculative = xmeet_speculative(tp);
4227    switch (tp->ptr()) {
4228    case TopPTR:
4229    case AnyNull: {
4230      int instance_id = meet_instance_id(InstanceTop);
4231      return make(ptr, (ptr == Constant ? const_oop() : NULL),
4232                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4233    }
4234    case BotPTR:
4235    case NotNull: {
4236      int instance_id = meet_instance_id(tp->instance_id());
4237      return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4238    }
4239    default: ShouldNotReachHere();
4240    }
4241  }
4242
4243  case AnyPtr: {                // Meeting two AnyPtrs
4244    // Found an AnyPtr type vs self-AryPtr type
4245    const TypePtr *tp = t->is_ptr();
4246    int offset = meet_offset(tp->offset());
4247    PTR ptr = meet_ptr(tp->ptr());
4248    const TypePtr* speculative = xmeet_speculative(tp);
4249    int depth = meet_inline_depth(tp->inline_depth());
4250    switch (tp->ptr()) {
4251    case TopPTR:
4252      return this;
4253    case BotPTR:
4254    case NotNull:
4255      return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4256    case Null:
4257      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4258      // else fall through to AnyNull
4259    case AnyNull: {
4260      int instance_id = meet_instance_id(InstanceTop);
4261      return make(ptr, (ptr == Constant ? const_oop() : NULL),
4262                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4263    }
4264    default: ShouldNotReachHere();
4265    }
4266  }
4267
4268  case MetadataPtr:
4269  case KlassPtr:
4270  case RawPtr: return TypePtr::BOTTOM;
4271
4272  case AryPtr: {                // Meeting 2 references?
4273    const TypeAryPtr *tap = t->is_aryptr();
4274    int off = meet_offset(tap->offset());
4275    const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4276    PTR ptr = meet_ptr(tap->ptr());
4277    int instance_id = meet_instance_id(tap->instance_id());
4278    const TypePtr* speculative = xmeet_speculative(tap);
4279    int depth = meet_inline_depth(tap->inline_depth());
4280    ciKlass* lazy_klass = NULL;
4281    if (tary->_elem->isa_int()) {
4282      // Integral array element types have irrelevant lattice relations.
4283      // It is the klass that determines array layout, not the element type.
4284      if (_klass == NULL)
4285        lazy_klass = tap->_klass;
4286      else if (tap->_klass == NULL || tap->_klass == _klass) {
4287        lazy_klass = _klass;
4288      } else {
4289        // Something like byte[int+] meets char[int+].
4290        // This must fall to bottom, not (int[-128..65535])[int+].
4291        instance_id = InstanceBot;
4292        tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4293      }
4294    } else // Non integral arrays.
4295      // Must fall to bottom if exact klasses in upper lattice
4296      // are not equal or super klass is exact.
4297      if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4298          // meet with top[] and bottom[] are processed further down:
4299          tap->_klass != NULL  && this->_klass != NULL   &&
4300          // both are exact and not equal:
4301          ((tap->_klass_is_exact && this->_klass_is_exact) ||
4302           // 'tap'  is exact and super or unrelated:
4303           (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4304           // 'this' is exact and super or unrelated:
4305           (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4306      if (above_centerline(ptr)) {
4307        tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4308      }
4309      return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4310    }
4311
4312    bool xk = false;
4313    switch (tap->ptr()) {
4314    case AnyNull:
4315    case TopPTR:
4316      // Compute new klass on demand, do not use tap->_klass
4317      if (below_centerline(this->_ptr)) {
4318        xk = this->_klass_is_exact;
4319      } else {
4320        xk = (tap->_klass_is_exact | this->_klass_is_exact);
4321      }
4322      return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4323    case Constant: {
4324      ciObject* o = const_oop();
4325      if( _ptr == Constant ) {
4326        if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4327          xk = (klass() == tap->klass());
4328          ptr = NotNull;
4329          o = NULL;
4330          instance_id = InstanceBot;
4331        } else {
4332          xk = true;
4333        }
4334      } else if(above_centerline(_ptr)) {
4335        o = tap->const_oop();
4336        xk = true;
4337      } else {
4338        // Only precise for identical arrays
4339        xk = this->_klass_is_exact && (klass() == tap->klass());
4340      }
4341      return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4342    }
4343    case NotNull:
4344    case BotPTR:
4345      // Compute new klass on demand, do not use tap->_klass
4346      if (above_centerline(this->_ptr))
4347            xk = tap->_klass_is_exact;
4348      else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4349              (klass() == tap->klass()); // Only precise for identical arrays
4350      return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4351    default: ShouldNotReachHere();
4352    }
4353  }
4354
4355  // All arrays inherit from Object class
4356  case InstPtr: {
4357    const TypeInstPtr *tp = t->is_instptr();
4358    int offset = meet_offset(tp->offset());
4359    PTR ptr = meet_ptr(tp->ptr());
4360    int instance_id = meet_instance_id(tp->instance_id());
4361    const TypePtr* speculative = xmeet_speculative(tp);
4362    int depth = meet_inline_depth(tp->inline_depth());
4363    switch (ptr) {
4364    case TopPTR:
4365    case AnyNull:                // Fall 'down' to dual of object klass
4366      // For instances when a subclass meets a superclass we fall
4367      // below the centerline when the superclass is exact. We need to
4368      // do the same here.
4369      if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4370        return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4371      } else {
4372        // cannot subclass, so the meet has to fall badly below the centerline
4373        ptr = NotNull;
4374        instance_id = InstanceBot;
4375        return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4376      }
4377    case Constant:
4378    case NotNull:
4379    case BotPTR:                // Fall down to object klass
4380      // LCA is object_klass, but if we subclass from the top we can do better
4381      if (above_centerline(tp->ptr())) {
4382        // If 'tp'  is above the centerline and it is Object class
4383        // then we can subclass in the Java class hierarchy.
4384        // For instances when a subclass meets a superclass we fall
4385        // below the centerline when the superclass is exact. We need
4386        // to do the same here.
4387        if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4388          // that is, my array type is a subtype of 'tp' klass
4389          return make(ptr, (ptr == Constant ? const_oop() : NULL),
4390                      _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4391        }
4392      }
4393      // The other case cannot happen, since t cannot be a subtype of an array.
4394      // The meet falls down to Object class below centerline.
4395      if( ptr == Constant )
4396         ptr = NotNull;
4397      instance_id = InstanceBot;
4398      return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4399    default: typerr(t);
4400    }
4401  }
4402  }
4403  return this;                  // Lint noise
4404}
4405
4406//------------------------------xdual------------------------------------------
4407// Dual: compute field-by-field dual
4408const Type *TypeAryPtr::xdual() const {
4409  return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4410}
4411
4412//----------------------interface_vs_oop---------------------------------------
4413#ifdef ASSERT
4414bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4415  const TypeAryPtr* t_aryptr = t->isa_aryptr();
4416  if (t_aryptr) {
4417    return _ary->interface_vs_oop(t_aryptr->_ary);
4418  }
4419  return false;
4420}
4421#endif
4422
4423//------------------------------dump2------------------------------------------
4424#ifndef PRODUCT
4425void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4426  _ary->dump2(d,depth,st);
4427  switch( _ptr ) {
4428  case Constant:
4429    const_oop()->print(st);
4430    break;
4431  case BotPTR:
4432    if (!WizardMode && !Verbose) {
4433      if( _klass_is_exact ) st->print(":exact");
4434      break;
4435    }
4436  case TopPTR:
4437  case AnyNull:
4438  case NotNull:
4439    st->print(":%s", ptr_msg[_ptr]);
4440    if( _klass_is_exact ) st->print(":exact");
4441    break;
4442  default:
4443    break;
4444  }
4445
4446  if( _offset != 0 ) {
4447    int header_size = objArrayOopDesc::header_size() * wordSize;
4448    if( _offset == OffsetTop )       st->print("+undefined");
4449    else if( _offset == OffsetBot )  st->print("+any");
4450    else if( _offset < header_size ) st->print("+%d", _offset);
4451    else {
4452      BasicType basic_elem_type = elem()->basic_type();
4453      int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4454      int elem_size = type2aelembytes(basic_elem_type);
4455      st->print("[%d]", (_offset - array_base)/elem_size);
4456    }
4457  }
4458  st->print(" *");
4459  if (_instance_id == InstanceTop)
4460    st->print(",iid=top");
4461  else if (_instance_id != InstanceBot)
4462    st->print(",iid=%d",_instance_id);
4463
4464  dump_inline_depth(st);
4465  dump_speculative(st);
4466}
4467#endif
4468
4469bool TypeAryPtr::empty(void) const {
4470  if (_ary->empty())       return true;
4471  return TypeOopPtr::empty();
4472}
4473
4474//------------------------------add_offset-------------------------------------
4475const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4476  return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4477}
4478
4479const Type *TypeAryPtr::remove_speculative() const {
4480  if (_speculative == NULL) {
4481    return this;
4482  }
4483  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4484  return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4485}
4486
4487const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4488  if (!UseInlineDepthForSpeculativeTypes) {
4489    return this;
4490  }
4491  return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4492}
4493
4494//=============================================================================
4495
4496//------------------------------hash-------------------------------------------
4497// Type-specific hashing function.
4498int TypeNarrowPtr::hash(void) const {
4499  return _ptrtype->hash() + 7;
4500}
4501
4502bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4503  return _ptrtype->singleton();
4504}
4505
4506bool TypeNarrowPtr::empty(void) const {
4507  return _ptrtype->empty();
4508}
4509
4510intptr_t TypeNarrowPtr::get_con() const {
4511  return _ptrtype->get_con();
4512}
4513
4514bool TypeNarrowPtr::eq( const Type *t ) const {
4515  const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4516  if (tc != NULL) {
4517    if (_ptrtype->base() != tc->_ptrtype->base()) {
4518      return false;
4519    }
4520    return tc->_ptrtype->eq(_ptrtype);
4521  }
4522  return false;
4523}
4524
4525const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4526  const TypePtr* odual = _ptrtype->dual()->is_ptr();
4527  return make_same_narrowptr(odual);
4528}
4529
4530
4531const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4532  if (isa_same_narrowptr(kills)) {
4533    const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4534    if (ft->empty())
4535      return Type::TOP;           // Canonical empty value
4536    if (ft->isa_ptr()) {
4537      return make_hash_same_narrowptr(ft->isa_ptr());
4538    }
4539    return ft;
4540  } else if (kills->isa_ptr()) {
4541    const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4542    if (ft->empty())
4543      return Type::TOP;           // Canonical empty value
4544    return ft;
4545  } else {
4546    return Type::TOP;
4547  }
4548}
4549
4550//------------------------------xmeet------------------------------------------
4551// Compute the MEET of two types.  It returns a new Type object.
4552const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4553  // Perform a fast test for common case; meeting the same types together.
4554  if( this == t ) return this;  // Meeting same type-rep?
4555
4556  if (t->base() == base()) {
4557    const Type* result = _ptrtype->xmeet(t->make_ptr());
4558    if (result->isa_ptr()) {
4559      return make_hash_same_narrowptr(result->is_ptr());
4560    }
4561    return result;
4562  }
4563
4564  // Current "this->_base" is NarrowKlass or NarrowOop
4565  switch (t->base()) {          // switch on original type
4566
4567  case Int:                     // Mixing ints & oops happens when javac
4568  case Long:                    // reuses local variables
4569  case FloatTop:
4570  case FloatCon:
4571  case FloatBot:
4572  case DoubleTop:
4573  case DoubleCon:
4574  case DoubleBot:
4575  case AnyPtr:
4576  case RawPtr:
4577  case OopPtr:
4578  case InstPtr:
4579  case AryPtr:
4580  case MetadataPtr:
4581  case KlassPtr:
4582  case NarrowOop:
4583  case NarrowKlass:
4584
4585  case Bottom:                  // Ye Olde Default
4586    return Type::BOTTOM;
4587  case Top:
4588    return this;
4589
4590  default:                      // All else is a mistake
4591    typerr(t);
4592
4593  } // End of switch
4594
4595  return this;
4596}
4597
4598#ifndef PRODUCT
4599void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4600  _ptrtype->dump2(d, depth, st);
4601}
4602#endif
4603
4604const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4605const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4606
4607
4608const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4609  return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4610}
4611
4612const Type* TypeNarrowOop::remove_speculative() const {
4613  return make(_ptrtype->remove_speculative()->is_ptr());
4614}
4615
4616const Type* TypeNarrowOop::cleanup_speculative() const {
4617  return make(_ptrtype->cleanup_speculative()->is_ptr());
4618}
4619
4620#ifndef PRODUCT
4621void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4622  st->print("narrowoop: ");
4623  TypeNarrowPtr::dump2(d, depth, st);
4624}
4625#endif
4626
4627const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4628
4629const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4630  return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4631}
4632
4633#ifndef PRODUCT
4634void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4635  st->print("narrowklass: ");
4636  TypeNarrowPtr::dump2(d, depth, st);
4637}
4638#endif
4639
4640
4641//------------------------------eq---------------------------------------------
4642// Structural equality check for Type representations
4643bool TypeMetadataPtr::eq( const Type *t ) const {
4644  const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4645  ciMetadata* one = metadata();
4646  ciMetadata* two = a->metadata();
4647  if (one == NULL || two == NULL) {
4648    return (one == two) && TypePtr::eq(t);
4649  } else {
4650    return one->equals(two) && TypePtr::eq(t);
4651  }
4652}
4653
4654//------------------------------hash-------------------------------------------
4655// Type-specific hashing function.
4656int TypeMetadataPtr::hash(void) const {
4657  return
4658    (metadata() ? metadata()->hash() : 0) +
4659    TypePtr::hash();
4660}
4661
4662//------------------------------singleton--------------------------------------
4663// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4664// constants
4665bool TypeMetadataPtr::singleton(void) const {
4666  // detune optimizer to not generate constant metadata + constant offset as a constant!
4667  // TopPTR, Null, AnyNull, Constant are all singletons
4668  return (_offset == 0) && !below_centerline(_ptr);
4669}
4670
4671//------------------------------add_offset-------------------------------------
4672const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4673  return make( _ptr, _metadata, xadd_offset(offset));
4674}
4675
4676//-----------------------------filter------------------------------------------
4677// Do not allow interface-vs.-noninterface joins to collapse to top.
4678const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4679  const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4680  if (ft == NULL || ft->empty())
4681    return Type::TOP;           // Canonical empty value
4682  return ft;
4683}
4684
4685 //------------------------------get_con----------------------------------------
4686intptr_t TypeMetadataPtr::get_con() const {
4687  assert( _ptr == Null || _ptr == Constant, "" );
4688  assert( _offset >= 0, "" );
4689
4690  if (_offset != 0) {
4691    // After being ported to the compiler interface, the compiler no longer
4692    // directly manipulates the addresses of oops.  Rather, it only has a pointer
4693    // to a handle at compile time.  This handle is embedded in the generated
4694    // code and dereferenced at the time the nmethod is made.  Until that time,
4695    // it is not reasonable to do arithmetic with the addresses of oops (we don't
4696    // have access to the addresses!).  This does not seem to currently happen,
4697    // but this assertion here is to help prevent its occurence.
4698    tty->print_cr("Found oop constant with non-zero offset");
4699    ShouldNotReachHere();
4700  }
4701
4702  return (intptr_t)metadata()->constant_encoding();
4703}
4704
4705//------------------------------cast_to_ptr_type-------------------------------
4706const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4707  if( ptr == _ptr ) return this;
4708  return make(ptr, metadata(), _offset);
4709}
4710
4711//------------------------------meet-------------------------------------------
4712// Compute the MEET of two types.  It returns a new Type object.
4713const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4714  // Perform a fast test for common case; meeting the same types together.
4715  if( this == t ) return this;  // Meeting same type-rep?
4716
4717  // Current "this->_base" is OopPtr
4718  switch (t->base()) {          // switch on original type
4719
4720  case Int:                     // Mixing ints & oops happens when javac
4721  case Long:                    // reuses local variables
4722  case FloatTop:
4723  case FloatCon:
4724  case FloatBot:
4725  case DoubleTop:
4726  case DoubleCon:
4727  case DoubleBot:
4728  case NarrowOop:
4729  case NarrowKlass:
4730  case Bottom:                  // Ye Olde Default
4731    return Type::BOTTOM;
4732  case Top:
4733    return this;
4734
4735  default:                      // All else is a mistake
4736    typerr(t);
4737
4738  case AnyPtr: {
4739    // Found an AnyPtr type vs self-OopPtr type
4740    const TypePtr *tp = t->is_ptr();
4741    int offset = meet_offset(tp->offset());
4742    PTR ptr = meet_ptr(tp->ptr());
4743    switch (tp->ptr()) {
4744    case Null:
4745      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4746      // else fall through:
4747    case TopPTR:
4748    case AnyNull: {
4749      return make(ptr, _metadata, offset);
4750    }
4751    case BotPTR:
4752    case NotNull:
4753      return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4754    default: typerr(t);
4755    }
4756  }
4757
4758  case RawPtr:
4759  case KlassPtr:
4760  case OopPtr:
4761  case InstPtr:
4762  case AryPtr:
4763    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4764
4765  case MetadataPtr: {
4766    const TypeMetadataPtr *tp = t->is_metadataptr();
4767    int offset = meet_offset(tp->offset());
4768    PTR tptr = tp->ptr();
4769    PTR ptr = meet_ptr(tptr);
4770    ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4771    if (tptr == TopPTR || _ptr == TopPTR ||
4772        metadata()->equals(tp->metadata())) {
4773      return make(ptr, md, offset);
4774    }
4775    // metadata is different
4776    if( ptr == Constant ) {  // Cannot be equal constants, so...
4777      if( tptr == Constant && _ptr != Constant)  return t;
4778      if( _ptr == Constant && tptr != Constant)  return this;
4779      ptr = NotNull;            // Fall down in lattice
4780    }
4781    return make(ptr, NULL, offset);
4782    break;
4783  }
4784  } // End of switch
4785  return this;                  // Return the double constant
4786}
4787
4788
4789//------------------------------xdual------------------------------------------
4790// Dual of a pure metadata pointer.
4791const Type *TypeMetadataPtr::xdual() const {
4792  return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4793}
4794
4795//------------------------------dump2------------------------------------------
4796#ifndef PRODUCT
4797void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4798  st->print("metadataptr:%s", ptr_msg[_ptr]);
4799  if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4800  switch( _offset ) {
4801  case OffsetTop: st->print("+top"); break;
4802  case OffsetBot: st->print("+any"); break;
4803  case         0: break;
4804  default:        st->print("+%d",_offset); break;
4805  }
4806}
4807#endif
4808
4809
4810//=============================================================================
4811// Convenience common pre-built type.
4812const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4813
4814TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4815  TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4816}
4817
4818const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4819  return make(Constant, m, 0);
4820}
4821const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4822  return make(Constant, m, 0);
4823}
4824
4825//------------------------------make-------------------------------------------
4826// Create a meta data constant
4827const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4828  assert(m == NULL || !m->is_klass(), "wrong type");
4829  return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4830}
4831
4832
4833//=============================================================================
4834// Convenience common pre-built types.
4835
4836// Not-null object klass or below
4837const TypeKlassPtr *TypeKlassPtr::OBJECT;
4838const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4839
4840//------------------------------TypeKlassPtr-----------------------------------
4841TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4842  : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4843}
4844
4845//------------------------------make-------------------------------------------
4846// ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4847const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4848  assert( k != NULL, "Expect a non-NULL klass");
4849  assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4850  TypeKlassPtr *r =
4851    (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4852
4853  return r;
4854}
4855
4856//------------------------------eq---------------------------------------------
4857// Structural equality check for Type representations
4858bool TypeKlassPtr::eq( const Type *t ) const {
4859  const TypeKlassPtr *p = t->is_klassptr();
4860  return
4861    klass()->equals(p->klass()) &&
4862    TypePtr::eq(p);
4863}
4864
4865//------------------------------hash-------------------------------------------
4866// Type-specific hashing function.
4867int TypeKlassPtr::hash(void) const {
4868  return java_add(klass()->hash(), TypePtr::hash());
4869}
4870
4871//------------------------------singleton--------------------------------------
4872// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4873// constants
4874bool TypeKlassPtr::singleton(void) const {
4875  // detune optimizer to not generate constant klass + constant offset as a constant!
4876  // TopPTR, Null, AnyNull, Constant are all singletons
4877  return (_offset == 0) && !below_centerline(_ptr);
4878}
4879
4880// Do not allow interface-vs.-noninterface joins to collapse to top.
4881const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4882  // logic here mirrors the one from TypeOopPtr::filter. See comments
4883  // there.
4884  const Type* ft = join_helper(kills, include_speculative);
4885  const TypeKlassPtr* ftkp = ft->isa_klassptr();
4886  const TypeKlassPtr* ktkp = kills->isa_klassptr();
4887
4888  if (ft->empty()) {
4889    if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4890      return kills;             // Uplift to interface
4891
4892    return Type::TOP;           // Canonical empty value
4893  }
4894
4895  // Interface klass type could be exact in opposite to interface type,
4896  // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4897  if (ftkp != NULL && ktkp != NULL &&
4898      ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4899      !ftkp->klass_is_exact() && // Keep exact interface klass
4900      ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4901    return ktkp->cast_to_ptr_type(ftkp->ptr());
4902  }
4903
4904  return ft;
4905}
4906
4907//----------------------compute_klass------------------------------------------
4908// Compute the defining klass for this class
4909ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4910  // Compute _klass based on element type.
4911  ciKlass* k_ary = NULL;
4912  const TypeInstPtr *tinst;
4913  const TypeAryPtr *tary;
4914  const Type* el = elem();
4915  if (el->isa_narrowoop()) {
4916    el = el->make_ptr();
4917  }
4918
4919  // Get element klass
4920  if ((tinst = el->isa_instptr()) != NULL) {
4921    // Compute array klass from element klass
4922    k_ary = ciObjArrayKlass::make(tinst->klass());
4923  } else if ((tary = el->isa_aryptr()) != NULL) {
4924    // Compute array klass from element klass
4925    ciKlass* k_elem = tary->klass();
4926    // If element type is something like bottom[], k_elem will be null.
4927    if (k_elem != NULL)
4928      k_ary = ciObjArrayKlass::make(k_elem);
4929  } else if ((el->base() == Type::Top) ||
4930             (el->base() == Type::Bottom)) {
4931    // element type of Bottom occurs from meet of basic type
4932    // and object; Top occurs when doing join on Bottom.
4933    // Leave k_ary at NULL.
4934  } else {
4935    // Cannot compute array klass directly from basic type,
4936    // since subtypes of TypeInt all have basic type T_INT.
4937#ifdef ASSERT
4938    if (verify && el->isa_int()) {
4939      // Check simple cases when verifying klass.
4940      BasicType bt = T_ILLEGAL;
4941      if (el == TypeInt::BYTE) {
4942        bt = T_BYTE;
4943      } else if (el == TypeInt::SHORT) {
4944        bt = T_SHORT;
4945      } else if (el == TypeInt::CHAR) {
4946        bt = T_CHAR;
4947      } else if (el == TypeInt::INT) {
4948        bt = T_INT;
4949      } else {
4950        return _klass; // just return specified klass
4951      }
4952      return ciTypeArrayKlass::make(bt);
4953    }
4954#endif
4955    assert(!el->isa_int(),
4956           "integral arrays must be pre-equipped with a class");
4957    // Compute array klass directly from basic type
4958    k_ary = ciTypeArrayKlass::make(el->basic_type());
4959  }
4960  return k_ary;
4961}
4962
4963//------------------------------klass------------------------------------------
4964// Return the defining klass for this class
4965ciKlass* TypeAryPtr::klass() const {
4966  if( _klass ) return _klass;   // Return cached value, if possible
4967
4968  // Oops, need to compute _klass and cache it
4969  ciKlass* k_ary = compute_klass();
4970
4971  if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4972    // The _klass field acts as a cache of the underlying
4973    // ciKlass for this array type.  In order to set the field,
4974    // we need to cast away const-ness.
4975    //
4976    // IMPORTANT NOTE: we *never* set the _klass field for the
4977    // type TypeAryPtr::OOPS.  This Type is shared between all
4978    // active compilations.  However, the ciKlass which represents
4979    // this Type is *not* shared between compilations, so caching
4980    // this value would result in fetching a dangling pointer.
4981    //
4982    // Recomputing the underlying ciKlass for each request is
4983    // a bit less efficient than caching, but calls to
4984    // TypeAryPtr::OOPS->klass() are not common enough to matter.
4985    ((TypeAryPtr*)this)->_klass = k_ary;
4986    if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4987        _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4988      ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4989    }
4990  }
4991  return k_ary;
4992}
4993
4994
4995//------------------------------add_offset-------------------------------------
4996// Access internals of klass object
4997const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4998  return make( _ptr, klass(), xadd_offset(offset) );
4999}
5000
5001//------------------------------cast_to_ptr_type-------------------------------
5002const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5003  assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5004  if( ptr == _ptr ) return this;
5005  return make(ptr, _klass, _offset);
5006}
5007
5008
5009//-----------------------------cast_to_exactness-------------------------------
5010const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5011  if( klass_is_exact == _klass_is_exact ) return this;
5012  if (!UseExactTypes)  return this;
5013  return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5014}
5015
5016
5017//-----------------------------as_instance_type--------------------------------
5018// Corresponding type for an instance of the given class.
5019// It will be NotNull, and exact if and only if the klass type is exact.
5020const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5021  ciKlass* k = klass();
5022  bool    xk = klass_is_exact();
5023  //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5024  const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5025  guarantee(toop != NULL, "need type for given klass");
5026  toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5027  return toop->cast_to_exactness(xk)->is_oopptr();
5028}
5029
5030
5031//------------------------------xmeet------------------------------------------
5032// Compute the MEET of two types, return a new Type object.
5033const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5034  // Perform a fast test for common case; meeting the same types together.
5035  if( this == t ) return this;  // Meeting same type-rep?
5036
5037  // Current "this->_base" is Pointer
5038  switch (t->base()) {          // switch on original type
5039
5040  case Int:                     // Mixing ints & oops happens when javac
5041  case Long:                    // reuses local variables
5042  case FloatTop:
5043  case FloatCon:
5044  case FloatBot:
5045  case DoubleTop:
5046  case DoubleCon:
5047  case DoubleBot:
5048  case NarrowOop:
5049  case NarrowKlass:
5050  case Bottom:                  // Ye Olde Default
5051    return Type::BOTTOM;
5052  case Top:
5053    return this;
5054
5055  default:                      // All else is a mistake
5056    typerr(t);
5057
5058  case AnyPtr: {                // Meeting to AnyPtrs
5059    // Found an AnyPtr type vs self-KlassPtr type
5060    const TypePtr *tp = t->is_ptr();
5061    int offset = meet_offset(tp->offset());
5062    PTR ptr = meet_ptr(tp->ptr());
5063    switch (tp->ptr()) {
5064    case TopPTR:
5065      return this;
5066    case Null:
5067      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5068    case AnyNull:
5069      return make( ptr, klass(), offset );
5070    case BotPTR:
5071    case NotNull:
5072      return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5073    default: typerr(t);
5074    }
5075  }
5076
5077  case RawPtr:
5078  case MetadataPtr:
5079  case OopPtr:
5080  case AryPtr:                  // Meet with AryPtr
5081  case InstPtr:                 // Meet with InstPtr
5082    return TypePtr::BOTTOM;
5083
5084  //
5085  //             A-top         }
5086  //           /   |   \       }  Tops
5087  //       B-top A-any C-top   }
5088  //          | /  |  \ |      }  Any-nulls
5089  //       B-any   |   C-any   }
5090  //          |    |    |
5091  //       B-con A-con C-con   } constants; not comparable across classes
5092  //          |    |    |
5093  //       B-not   |   C-not   }
5094  //          | \  |  / |      }  not-nulls
5095  //       B-bot A-not C-bot   }
5096  //           \   |   /       }  Bottoms
5097  //             A-bot         }
5098  //
5099
5100  case KlassPtr: {  // Meet two KlassPtr types
5101    const TypeKlassPtr *tkls = t->is_klassptr();
5102    int  off     = meet_offset(tkls->offset());
5103    PTR  ptr     = meet_ptr(tkls->ptr());
5104
5105    // Check for easy case; klasses are equal (and perhaps not loaded!)
5106    // If we have constants, then we created oops so classes are loaded
5107    // and we can handle the constants further down.  This case handles
5108    // not-loaded classes
5109    if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5110      return make( ptr, klass(), off );
5111    }
5112
5113    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5114    ciKlass* tkls_klass = tkls->klass();
5115    ciKlass* this_klass = this->klass();
5116    assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5117    assert( this_klass->is_loaded(), "This class should have been loaded.");
5118
5119    // If 'this' type is above the centerline and is a superclass of the
5120    // other, we can treat 'this' as having the same type as the other.
5121    if ((above_centerline(this->ptr())) &&
5122        tkls_klass->is_subtype_of(this_klass)) {
5123      this_klass = tkls_klass;
5124    }
5125    // If 'tinst' type is above the centerline and is a superclass of the
5126    // other, we can treat 'tinst' as having the same type as the other.
5127    if ((above_centerline(tkls->ptr())) &&
5128        this_klass->is_subtype_of(tkls_klass)) {
5129      tkls_klass = this_klass;
5130    }
5131
5132    // Check for classes now being equal
5133    if (tkls_klass->equals(this_klass)) {
5134      // If the klasses are equal, the constants may still differ.  Fall to
5135      // NotNull if they do (neither constant is NULL; that is a special case
5136      // handled elsewhere).
5137      if( ptr == Constant ) {
5138        if (this->_ptr == Constant && tkls->_ptr == Constant &&
5139            this->klass()->equals(tkls->klass()));
5140        else if (above_centerline(this->ptr()));
5141        else if (above_centerline(tkls->ptr()));
5142        else
5143          ptr = NotNull;
5144      }
5145      return make( ptr, this_klass, off );
5146    } // Else classes are not equal
5147
5148    // Since klasses are different, we require the LCA in the Java
5149    // class hierarchy - which means we have to fall to at least NotNull.
5150    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5151      ptr = NotNull;
5152    // Now we find the LCA of Java classes
5153    ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5154    return   make( ptr, k, off );
5155  } // End of case KlassPtr
5156
5157  } // End of switch
5158  return this;                  // Return the double constant
5159}
5160
5161//------------------------------xdual------------------------------------------
5162// Dual: compute field-by-field dual
5163const Type    *TypeKlassPtr::xdual() const {
5164  return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5165}
5166
5167//------------------------------get_con----------------------------------------
5168intptr_t TypeKlassPtr::get_con() const {
5169  assert( _ptr == Null || _ptr == Constant, "" );
5170  assert( _offset >= 0, "" );
5171
5172  if (_offset != 0) {
5173    // After being ported to the compiler interface, the compiler no longer
5174    // directly manipulates the addresses of oops.  Rather, it only has a pointer
5175    // to a handle at compile time.  This handle is embedded in the generated
5176    // code and dereferenced at the time the nmethod is made.  Until that time,
5177    // it is not reasonable to do arithmetic with the addresses of oops (we don't
5178    // have access to the addresses!).  This does not seem to currently happen,
5179    // but this assertion here is to help prevent its occurence.
5180    tty->print_cr("Found oop constant with non-zero offset");
5181    ShouldNotReachHere();
5182  }
5183
5184  return (intptr_t)klass()->constant_encoding();
5185}
5186//------------------------------dump2------------------------------------------
5187// Dump Klass Type
5188#ifndef PRODUCT
5189void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5190  switch( _ptr ) {
5191  case Constant:
5192    st->print("precise ");
5193  case NotNull:
5194    {
5195      const char *name = klass()->name()->as_utf8();
5196      if( name ) {
5197        st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5198      } else {
5199        ShouldNotReachHere();
5200      }
5201    }
5202  case BotPTR:
5203    if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5204  case TopPTR:
5205  case AnyNull:
5206    st->print(":%s", ptr_msg[_ptr]);
5207    if( _klass_is_exact ) st->print(":exact");
5208    break;
5209  default:
5210    break;
5211  }
5212
5213  if( _offset ) {               // Dump offset, if any
5214    if( _offset == OffsetBot )      { st->print("+any"); }
5215    else if( _offset == OffsetTop ) { st->print("+unknown"); }
5216    else                            { st->print("+%d", _offset); }
5217  }
5218
5219  st->print(" *");
5220}
5221#endif
5222
5223
5224
5225//=============================================================================
5226// Convenience common pre-built types.
5227
5228//------------------------------make-------------------------------------------
5229const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5230  return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5231}
5232
5233//------------------------------make-------------------------------------------
5234const TypeFunc *TypeFunc::make(ciMethod* method) {
5235  Compile* C = Compile::current();
5236  const TypeFunc* tf = C->last_tf(method); // check cache
5237  if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5238  const TypeTuple *domain;
5239  if (method->is_static()) {
5240    domain = TypeTuple::make_domain(NULL, method->signature());
5241  } else {
5242    domain = TypeTuple::make_domain(method->holder(), method->signature());
5243  }
5244  const TypeTuple *range  = TypeTuple::make_range(method->signature());
5245  tf = TypeFunc::make(domain, range);
5246  C->set_last_tf(method, tf);  // fill cache
5247  return tf;
5248}
5249
5250//------------------------------meet-------------------------------------------
5251// Compute the MEET of two types.  It returns a new Type object.
5252const Type *TypeFunc::xmeet( const Type *t ) const {
5253  // Perform a fast test for common case; meeting the same types together.
5254  if( this == t ) return this;  // Meeting same type-rep?
5255
5256  // Current "this->_base" is Func
5257  switch (t->base()) {          // switch on original type
5258
5259  case Bottom:                  // Ye Olde Default
5260    return t;
5261
5262  default:                      // All else is a mistake
5263    typerr(t);
5264
5265  case Top:
5266    break;
5267  }
5268  return this;                  // Return the double constant
5269}
5270
5271//------------------------------xdual------------------------------------------
5272// Dual: compute field-by-field dual
5273const Type *TypeFunc::xdual() const {
5274  return this;
5275}
5276
5277//------------------------------eq---------------------------------------------
5278// Structural equality check for Type representations
5279bool TypeFunc::eq( const Type *t ) const {
5280  const TypeFunc *a = (const TypeFunc*)t;
5281  return _domain == a->_domain &&
5282    _range == a->_range;
5283}
5284
5285//------------------------------hash-------------------------------------------
5286// Type-specific hashing function.
5287int TypeFunc::hash(void) const {
5288  return (intptr_t)_domain + (intptr_t)_range;
5289}
5290
5291//------------------------------dump2------------------------------------------
5292// Dump Function Type
5293#ifndef PRODUCT
5294void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5295  if( _range->cnt() <= Parms )
5296    st->print("void");
5297  else {
5298    uint i;
5299    for (i = Parms; i < _range->cnt()-1; i++) {
5300      _range->field_at(i)->dump2(d,depth,st);
5301      st->print("/");
5302    }
5303    _range->field_at(i)->dump2(d,depth,st);
5304  }
5305  st->print(" ");
5306  st->print("( ");
5307  if( !depth || d[this] ) {     // Check for recursive dump
5308    st->print("...)");
5309    return;
5310  }
5311  d.Insert((void*)this,(void*)this);    // Stop recursion
5312  if (Parms < _domain->cnt())
5313    _domain->field_at(Parms)->dump2(d,depth-1,st);
5314  for (uint i = Parms+1; i < _domain->cnt(); i++) {
5315    st->print(", ");
5316    _domain->field_at(i)->dump2(d,depth-1,st);
5317  }
5318  st->print(" )");
5319}
5320#endif
5321
5322//------------------------------singleton--------------------------------------
5323// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5324// constants (Ldi nodes).  Singletons are integer, float or double constants
5325// or a single symbol.
5326bool TypeFunc::singleton(void) const {
5327  return false;                 // Never a singleton
5328}
5329
5330bool TypeFunc::empty(void) const {
5331  return false;                 // Never empty
5332}
5333
5334
5335BasicType TypeFunc::return_type() const{
5336  if (range()->cnt() == TypeFunc::Parms) {
5337    return T_VOID;
5338  }
5339  return range()->field_at(TypeFunc::Parms)->basic_type();
5340}
5341