type.cpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "ci/ciTypeFlow.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "compiler/compileLog.hpp"
31#include "gc/shared/gcLocker.hpp"
32#include "libadt/dict.hpp"
33#include "memory/oopFactory.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/instanceKlass.hpp"
36#include "oops/instanceMirrorKlass.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "oops/typeArrayKlass.hpp"
39#include "opto/matcher.hpp"
40#include "opto/node.hpp"
41#include "opto/opcodes.hpp"
42#include "opto/type.hpp"
43
44PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
45
46// Portions of code courtesy of Clifford Click
47
48// Optimization - Graph Style
49
50// Dictionary of types shared among compilations.
51Dict* Type::_shared_type_dict = NULL;
52
53// Array which maps compiler types to Basic Types
54Type::TypeInfo Type::_type_info[Type::lastype] = {
55  { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
56  { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
57  { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
58  { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
59  { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
60  { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
61  { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
62  { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
63  { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
64  { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
65
66#ifdef SPARC
67  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
68  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
69  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
70  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
71  { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
72#elif defined(PPC64)
73  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
74  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
75  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
76  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
77  { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
78#else // all other
79  { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
80  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
81  { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
82  { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
83  { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
84#endif
85  { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
86  { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
87  { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
88  { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
89  { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
90  { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
91  { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
92  { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
93  { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
94  { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
95  { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
96  { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
97  { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
98  { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
99  { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
100  { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
101  { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
102  { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
103};
104
105// Map ideal registers (machine types) to ideal types
106const Type *Type::mreg2type[_last_machine_leaf];
107
108// Map basic types to canonical Type* pointers.
109const Type* Type::     _const_basic_type[T_CONFLICT+1];
110
111// Map basic types to constant-zero Types.
112const Type* Type::            _zero_type[T_CONFLICT+1];
113
114// Map basic types to array-body alias types.
115const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
116
117//=============================================================================
118// Convenience common pre-built types.
119const Type *Type::ABIO;         // State-of-machine only
120const Type *Type::BOTTOM;       // All values
121const Type *Type::CONTROL;      // Control only
122const Type *Type::DOUBLE;       // All doubles
123const Type *Type::FLOAT;        // All floats
124const Type *Type::HALF;         // Placeholder half of doublewide type
125const Type *Type::MEMORY;       // Abstract store only
126const Type *Type::RETURN_ADDRESS;
127const Type *Type::TOP;          // No values in set
128
129//------------------------------get_const_type---------------------------
130const Type* Type::get_const_type(ciType* type) {
131  if (type == NULL) {
132    return NULL;
133  } else if (type->is_primitive_type()) {
134    return get_const_basic_type(type->basic_type());
135  } else {
136    return TypeOopPtr::make_from_klass(type->as_klass());
137  }
138}
139
140//---------------------------array_element_basic_type---------------------------------
141// Mapping to the array element's basic type.
142BasicType Type::array_element_basic_type() const {
143  BasicType bt = basic_type();
144  if (bt == T_INT) {
145    if (this == TypeInt::INT)   return T_INT;
146    if (this == TypeInt::CHAR)  return T_CHAR;
147    if (this == TypeInt::BYTE)  return T_BYTE;
148    if (this == TypeInt::BOOL)  return T_BOOLEAN;
149    if (this == TypeInt::SHORT) return T_SHORT;
150    return T_VOID;
151  }
152  return bt;
153}
154
155//---------------------------get_typeflow_type---------------------------------
156// Import a type produced by ciTypeFlow.
157const Type* Type::get_typeflow_type(ciType* type) {
158  switch (type->basic_type()) {
159
160  case ciTypeFlow::StateVector::T_BOTTOM:
161    assert(type == ciTypeFlow::StateVector::bottom_type(), "");
162    return Type::BOTTOM;
163
164  case ciTypeFlow::StateVector::T_TOP:
165    assert(type == ciTypeFlow::StateVector::top_type(), "");
166    return Type::TOP;
167
168  case ciTypeFlow::StateVector::T_NULL:
169    assert(type == ciTypeFlow::StateVector::null_type(), "");
170    return TypePtr::NULL_PTR;
171
172  case ciTypeFlow::StateVector::T_LONG2:
173    // The ciTypeFlow pass pushes a long, then the half.
174    // We do the same.
175    assert(type == ciTypeFlow::StateVector::long2_type(), "");
176    return TypeInt::TOP;
177
178  case ciTypeFlow::StateVector::T_DOUBLE2:
179    // The ciTypeFlow pass pushes double, then the half.
180    // Our convention is the same.
181    assert(type == ciTypeFlow::StateVector::double2_type(), "");
182    return Type::TOP;
183
184  case T_ADDRESS:
185    assert(type->is_return_address(), "");
186    return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
187
188  default:
189    // make sure we did not mix up the cases:
190    assert(type != ciTypeFlow::StateVector::bottom_type(), "");
191    assert(type != ciTypeFlow::StateVector::top_type(), "");
192    assert(type != ciTypeFlow::StateVector::null_type(), "");
193    assert(type != ciTypeFlow::StateVector::long2_type(), "");
194    assert(type != ciTypeFlow::StateVector::double2_type(), "");
195    assert(!type->is_return_address(), "");
196
197    return Type::get_const_type(type);
198  }
199}
200
201
202//-----------------------make_from_constant------------------------------------
203const Type* Type::make_from_constant(ciConstant constant, bool require_constant) {
204  switch (constant.basic_type()) {
205  case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
206  case T_CHAR:     return TypeInt::make(constant.as_char());
207  case T_BYTE:     return TypeInt::make(constant.as_byte());
208  case T_SHORT:    return TypeInt::make(constant.as_short());
209  case T_INT:      return TypeInt::make(constant.as_int());
210  case T_LONG:     return TypeLong::make(constant.as_long());
211  case T_FLOAT:    return TypeF::make(constant.as_float());
212  case T_DOUBLE:   return TypeD::make(constant.as_double());
213  case T_ARRAY:
214  case T_OBJECT:
215    {
216      // cases:
217      //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
218      //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
219      // An oop is not scavengable if it is in the perm gen.
220      ciObject* oop_constant = constant.as_object();
221      if (oop_constant->is_null_object()) {
222        return Type::get_zero_type(T_OBJECT);
223      } else if (require_constant || oop_constant->should_be_constant()) {
224        return TypeOopPtr::make_from_constant(oop_constant, require_constant);
225      }
226    }
227  case T_ILLEGAL:
228    // Invalid ciConstant returned due to OutOfMemoryError in the CI
229    assert(Compile::current()->env()->failing(), "otherwise should not see this");
230    return NULL;
231  }
232  // Fall through to failure
233  return NULL;
234}
235
236
237const Type* Type::make_constant(ciField* field, Node* obj) {
238  if (!field->is_constant())  return NULL;
239
240  const Type* con_type = NULL;
241  if (field->is_static()) {
242    // final static field
243    con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true);
244    if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) {
245      con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
246    }
247  } else {
248    // final or stable non-static field
249    // Treat final non-static fields of trusted classes (classes in
250    // java.lang.invoke and sun.invoke packages and subpackages) as
251    // compile time constants.
252    if (obj->is_Con()) {
253      const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
254      ciObject* constant_oop = oop_ptr->const_oop();
255      ciConstant constant = field->constant_value_of(constant_oop);
256      con_type = Type::make_from_constant(constant, /*require_const=*/true);
257    }
258  }
259  if (FoldStableValues && field->is_stable() && con_type != NULL) {
260    if (con_type->is_zero_type()) {
261      return NULL; // the field hasn't been initialized yet
262    } else if (con_type->isa_oopptr()) {
263      const Type* stable_type = Type::get_const_type(field->type());
264      if (field->type()->is_array_klass()) {
265        int stable_dimension = field->type()->as_array_klass()->dimension();
266        stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
267      }
268      if (stable_type != NULL) {
269        con_type = con_type->join_speculative(stable_type);
270      }
271    }
272  }
273  return con_type;
274}
275
276//------------------------------make-------------------------------------------
277// Create a simple Type, with default empty symbol sets.  Then hashcons it
278// and look for an existing copy in the type dictionary.
279const Type *Type::make( enum TYPES t ) {
280  return (new Type(t))->hashcons();
281}
282
283//------------------------------cmp--------------------------------------------
284int Type::cmp( const Type *const t1, const Type *const t2 ) {
285  if( t1->_base != t2->_base )
286    return 1;                   // Missed badly
287  assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
288  return !t1->eq(t2);           // Return ZERO if equal
289}
290
291const Type* Type::maybe_remove_speculative(bool include_speculative) const {
292  if (!include_speculative) {
293    return remove_speculative();
294  }
295  return this;
296}
297
298//------------------------------hash-------------------------------------------
299int Type::uhash( const Type *const t ) {
300  return t->hash();
301}
302
303#define SMALLINT ((juint)3)  // a value too insignificant to consider widening
304
305//--------------------------Initialize_shared----------------------------------
306void Type::Initialize_shared(Compile* current) {
307  // This method does not need to be locked because the first system
308  // compilations (stub compilations) occur serially.  If they are
309  // changed to proceed in parallel, then this section will need
310  // locking.
311
312  Arena* save = current->type_arena();
313  Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
314
315  current->set_type_arena(shared_type_arena);
316  _shared_type_dict =
317    new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
318                                  shared_type_arena, 128 );
319  current->set_type_dict(_shared_type_dict);
320
321  // Make shared pre-built types.
322  CONTROL = make(Control);      // Control only
323  TOP     = make(Top);          // No values in set
324  MEMORY  = make(Memory);       // Abstract store only
325  ABIO    = make(Abio);         // State-of-machine only
326  RETURN_ADDRESS=make(Return_Address);
327  FLOAT   = make(FloatBot);     // All floats
328  DOUBLE  = make(DoubleBot);    // All doubles
329  BOTTOM  = make(Bottom);       // Everything
330  HALF    = make(Half);         // Placeholder half of doublewide type
331
332  TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
333  TypeF::ONE  = TypeF::make(1.0); // Float 1
334
335  TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
336  TypeD::ONE  = TypeD::make(1.0); // Double 1
337
338  TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
339  TypeInt::ZERO    = TypeInt::make( 0);  //  0
340  TypeInt::ONE     = TypeInt::make( 1);  //  1
341  TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
342  TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
343  TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
344  TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
345  TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
346  TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
347  TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
348  TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
349  TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
350  TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
351  TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
352  TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
353  TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
354  TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
355  TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
356  TypeInt::TYPE_DOMAIN  = TypeInt::INT;
357  // CmpL is overloaded both as the bytecode computation returning
358  // a trinary (-1,0,+1) integer result AND as an efficient long
359  // compare returning optimizer ideal-type flags.
360  assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
361  assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
362  assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
363  assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
364  assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
365
366  TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
367  TypeLong::ZERO    = TypeLong::make( 0);        //  0
368  TypeLong::ONE     = TypeLong::make( 1);        //  1
369  TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
370  TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
371  TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
372  TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
373  TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
374
375  const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
376  fboth[0] = Type::CONTROL;
377  fboth[1] = Type::CONTROL;
378  TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
379
380  const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
381  ffalse[0] = Type::CONTROL;
382  ffalse[1] = Type::TOP;
383  TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
384
385  const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
386  fneither[0] = Type::TOP;
387  fneither[1] = Type::TOP;
388  TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
389
390  const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
391  ftrue[0] = Type::TOP;
392  ftrue[1] = Type::CONTROL;
393  TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
394
395  const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
396  floop[0] = Type::CONTROL;
397  floop[1] = TypeInt::INT;
398  TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
399
400  TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
401  TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
402  TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
403
404  TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
405  TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
406
407  const Type **fmembar = TypeTuple::fields(0);
408  TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
409
410  const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
411  fsc[0] = TypeInt::CC;
412  fsc[1] = Type::MEMORY;
413  TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
414
415  TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
416  TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
417  TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
418  TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
419                                           false, 0, oopDesc::mark_offset_in_bytes());
420  TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
421                                           false, 0, oopDesc::klass_offset_in_bytes());
422  TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
423
424  TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
425
426  TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
427  TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
428
429  TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
430
431  mreg2type[Op_Node] = Type::BOTTOM;
432  mreg2type[Op_Set ] = 0;
433  mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
434  mreg2type[Op_RegI] = TypeInt::INT;
435  mreg2type[Op_RegP] = TypePtr::BOTTOM;
436  mreg2type[Op_RegF] = Type::FLOAT;
437  mreg2type[Op_RegD] = Type::DOUBLE;
438  mreg2type[Op_RegL] = TypeLong::LONG;
439  mreg2type[Op_RegFlags] = TypeInt::CC;
440
441  TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
442
443  TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
444
445#ifdef _LP64
446  if (UseCompressedOops) {
447    assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
448    TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
449  } else
450#endif
451  {
452    // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
453    TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
454  }
455  TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
456  TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
457  TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
458  TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
459  TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
460  TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
461  TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
462
463  // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
464  TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
465  TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
466  TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
467  TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
468  TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
469  TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
470  TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
471  TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
472  TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
473  TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
474  TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
475
476  TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
477  TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
478
479  const Type **fi2c = TypeTuple::fields(2);
480  fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
481  fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
482  TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
483
484  const Type **intpair = TypeTuple::fields(2);
485  intpair[0] = TypeInt::INT;
486  intpair[1] = TypeInt::INT;
487  TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
488
489  const Type **longpair = TypeTuple::fields(2);
490  longpair[0] = TypeLong::LONG;
491  longpair[1] = TypeLong::LONG;
492  TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
493
494  const Type **intccpair = TypeTuple::fields(2);
495  intccpair[0] = TypeInt::INT;
496  intccpair[1] = TypeInt::CC;
497  TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
498
499  const Type **longccpair = TypeTuple::fields(2);
500  longccpair[0] = TypeLong::LONG;
501  longccpair[1] = TypeInt::CC;
502  TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
503
504  _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
505  _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
506  _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
507  _const_basic_type[T_CHAR]        = TypeInt::CHAR;
508  _const_basic_type[T_BYTE]        = TypeInt::BYTE;
509  _const_basic_type[T_SHORT]       = TypeInt::SHORT;
510  _const_basic_type[T_INT]         = TypeInt::INT;
511  _const_basic_type[T_LONG]        = TypeLong::LONG;
512  _const_basic_type[T_FLOAT]       = Type::FLOAT;
513  _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
514  _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
515  _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
516  _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
517  _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
518  _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
519
520  _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
521  _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
522  _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
523  _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
524  _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
525  _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
526  _zero_type[T_INT]         = TypeInt::ZERO;
527  _zero_type[T_LONG]        = TypeLong::ZERO;
528  _zero_type[T_FLOAT]       = TypeF::ZERO;
529  _zero_type[T_DOUBLE]      = TypeD::ZERO;
530  _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
531  _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
532  _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
533  _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
534
535  // get_zero_type() should not happen for T_CONFLICT
536  _zero_type[T_CONFLICT]= NULL;
537
538  // Vector predefined types, it needs initialized _const_basic_type[].
539  if (Matcher::vector_size_supported(T_BYTE,4)) {
540    TypeVect::VECTS = TypeVect::make(T_BYTE,4);
541  }
542  if (Matcher::vector_size_supported(T_FLOAT,2)) {
543    TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
544  }
545  if (Matcher::vector_size_supported(T_FLOAT,4)) {
546    TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
547  }
548  if (Matcher::vector_size_supported(T_FLOAT,8)) {
549    TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
550  }
551  if (Matcher::vector_size_supported(T_FLOAT,16)) {
552    TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
553  }
554  mreg2type[Op_VecS] = TypeVect::VECTS;
555  mreg2type[Op_VecD] = TypeVect::VECTD;
556  mreg2type[Op_VecX] = TypeVect::VECTX;
557  mreg2type[Op_VecY] = TypeVect::VECTY;
558  mreg2type[Op_VecZ] = TypeVect::VECTZ;
559
560  // Restore working type arena.
561  current->set_type_arena(save);
562  current->set_type_dict(NULL);
563}
564
565//------------------------------Initialize-------------------------------------
566void Type::Initialize(Compile* current) {
567  assert(current->type_arena() != NULL, "must have created type arena");
568
569  if (_shared_type_dict == NULL) {
570    Initialize_shared(current);
571  }
572
573  Arena* type_arena = current->type_arena();
574
575  // Create the hash-cons'ing dictionary with top-level storage allocation
576  Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
577  current->set_type_dict(tdic);
578
579  // Transfer the shared types.
580  DictI i(_shared_type_dict);
581  for( ; i.test(); ++i ) {
582    Type* t = (Type*)i._value;
583    tdic->Insert(t,t);  // New Type, insert into Type table
584  }
585}
586
587//------------------------------hashcons---------------------------------------
588// Do the hash-cons trick.  If the Type already exists in the type table,
589// delete the current Type and return the existing Type.  Otherwise stick the
590// current Type in the Type table.
591const Type *Type::hashcons(void) {
592  debug_only(base());           // Check the assertion in Type::base().
593  // Look up the Type in the Type dictionary
594  Dict *tdic = type_dict();
595  Type* old = (Type*)(tdic->Insert(this, this, false));
596  if( old ) {                   // Pre-existing Type?
597    if( old != this )           // Yes, this guy is not the pre-existing?
598      delete this;              // Yes, Nuke this guy
599    assert( old->_dual, "" );
600    return old;                 // Return pre-existing
601  }
602
603  // Every type has a dual (to make my lattice symmetric).
604  // Since we just discovered a new Type, compute its dual right now.
605  assert( !_dual, "" );         // No dual yet
606  _dual = xdual();              // Compute the dual
607  if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
608    _dual = this;
609    return this;
610  }
611  assert( !_dual->_dual, "" );  // No reverse dual yet
612  assert( !(*tdic)[_dual], "" ); // Dual not in type system either
613  // New Type, insert into Type table
614  tdic->Insert((void*)_dual,(void*)_dual);
615  ((Type*)_dual)->_dual = this; // Finish up being symmetric
616#ifdef ASSERT
617  Type *dual_dual = (Type*)_dual->xdual();
618  assert( eq(dual_dual), "xdual(xdual()) should be identity" );
619  delete dual_dual;
620#endif
621  return this;                  // Return new Type
622}
623
624//------------------------------eq---------------------------------------------
625// Structural equality check for Type representations
626bool Type::eq( const Type * ) const {
627  return true;                  // Nothing else can go wrong
628}
629
630//------------------------------hash-------------------------------------------
631// Type-specific hashing function.
632int Type::hash(void) const {
633  return _base;
634}
635
636//------------------------------is_finite--------------------------------------
637// Has a finite value
638bool Type::is_finite() const {
639  return false;
640}
641
642//------------------------------is_nan-----------------------------------------
643// Is not a number (NaN)
644bool Type::is_nan()    const {
645  return false;
646}
647
648//----------------------interface_vs_oop---------------------------------------
649#ifdef ASSERT
650bool Type::interface_vs_oop_helper(const Type *t) const {
651  bool result = false;
652
653  const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
654  const TypePtr*    t_ptr =    t->make_ptr();
655  if( this_ptr == NULL || t_ptr == NULL )
656    return result;
657
658  const TypeInstPtr* this_inst = this_ptr->isa_instptr();
659  const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
660  if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
661    bool this_interface = this_inst->klass()->is_interface();
662    bool    t_interface =    t_inst->klass()->is_interface();
663    result = this_interface ^ t_interface;
664  }
665
666  return result;
667}
668
669bool Type::interface_vs_oop(const Type *t) const {
670  if (interface_vs_oop_helper(t)) {
671    return true;
672  }
673  // Now check the speculative parts as well
674  const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
675  const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
676  if (this_spec != NULL && t_spec != NULL) {
677    if (this_spec->interface_vs_oop_helper(t_spec)) {
678      return true;
679    }
680    return false;
681  }
682  if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
683    return true;
684  }
685  if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
686    return true;
687  }
688  return false;
689}
690
691#endif
692
693//------------------------------meet-------------------------------------------
694// Compute the MEET of two types.  NOT virtual.  It enforces that meet is
695// commutative and the lattice is symmetric.
696const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
697  if (isa_narrowoop() && t->isa_narrowoop()) {
698    const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
699    return result->make_narrowoop();
700  }
701  if (isa_narrowklass() && t->isa_narrowklass()) {
702    const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
703    return result->make_narrowklass();
704  }
705
706  const Type *this_t = maybe_remove_speculative(include_speculative);
707  t = t->maybe_remove_speculative(include_speculative);
708
709  const Type *mt = this_t->xmeet(t);
710  if (isa_narrowoop() || t->isa_narrowoop()) return mt;
711  if (isa_narrowklass() || t->isa_narrowklass()) return mt;
712#ifdef ASSERT
713  assert(mt == t->xmeet(this_t), "meet not commutative");
714  const Type* dual_join = mt->_dual;
715  const Type *t2t    = dual_join->xmeet(t->_dual);
716  const Type *t2this = dual_join->xmeet(this_t->_dual);
717
718  // Interface meet Oop is Not Symmetric:
719  // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
720  // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
721
722  if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
723    tty->print_cr("=== Meet Not Symmetric ===");
724    tty->print("t   =                   ");              t->dump(); tty->cr();
725    tty->print("this=                   ");         this_t->dump(); tty->cr();
726    tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
727
728    tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
729    tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
730    tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
731
732    tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
733    tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
734
735    fatal("meet not symmetric" );
736  }
737#endif
738  return mt;
739}
740
741//------------------------------xmeet------------------------------------------
742// Compute the MEET of two types.  It returns a new Type object.
743const Type *Type::xmeet( const Type *t ) const {
744  // Perform a fast test for common case; meeting the same types together.
745  if( this == t ) return this;  // Meeting same type-rep?
746
747  // Meeting TOP with anything?
748  if( _base == Top ) return t;
749
750  // Meeting BOTTOM with anything?
751  if( _base == Bottom ) return BOTTOM;
752
753  // Current "this->_base" is one of: Bad, Multi, Control, Top,
754  // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
755  switch (t->base()) {  // Switch on original type
756
757  // Cut in half the number of cases I must handle.  Only need cases for when
758  // the given enum "t->type" is less than or equal to the local enum "type".
759  case FloatCon:
760  case DoubleCon:
761  case Int:
762  case Long:
763    return t->xmeet(this);
764
765  case OopPtr:
766    return t->xmeet(this);
767
768  case InstPtr:
769    return t->xmeet(this);
770
771  case MetadataPtr:
772  case KlassPtr:
773    return t->xmeet(this);
774
775  case AryPtr:
776    return t->xmeet(this);
777
778  case NarrowOop:
779    return t->xmeet(this);
780
781  case NarrowKlass:
782    return t->xmeet(this);
783
784  case Bad:                     // Type check
785  default:                      // Bogus type not in lattice
786    typerr(t);
787    return Type::BOTTOM;
788
789  case Bottom:                  // Ye Olde Default
790    return t;
791
792  case FloatTop:
793    if( _base == FloatTop ) return this;
794  case FloatBot:                // Float
795    if( _base == FloatBot || _base == FloatTop ) return FLOAT;
796    if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
797    typerr(t);
798    return Type::BOTTOM;
799
800  case DoubleTop:
801    if( _base == DoubleTop ) return this;
802  case DoubleBot:               // Double
803    if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
804    if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
805    typerr(t);
806    return Type::BOTTOM;
807
808  // These next few cases must match exactly or it is a compile-time error.
809  case Control:                 // Control of code
810  case Abio:                    // State of world outside of program
811  case Memory:
812    if( _base == t->_base )  return this;
813    typerr(t);
814    return Type::BOTTOM;
815
816  case Top:                     // Top of the lattice
817    return this;
818  }
819
820  // The type is unchanged
821  return this;
822}
823
824//-----------------------------filter------------------------------------------
825const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
826  const Type* ft = join_helper(kills, include_speculative);
827  if (ft->empty())
828    return Type::TOP;           // Canonical empty value
829  return ft;
830}
831
832//------------------------------xdual------------------------------------------
833// Compute dual right now.
834const Type::TYPES Type::dual_type[Type::lastype] = {
835  Bad,          // Bad
836  Control,      // Control
837  Bottom,       // Top
838  Bad,          // Int - handled in v-call
839  Bad,          // Long - handled in v-call
840  Half,         // Half
841  Bad,          // NarrowOop - handled in v-call
842  Bad,          // NarrowKlass - handled in v-call
843
844  Bad,          // Tuple - handled in v-call
845  Bad,          // Array - handled in v-call
846  Bad,          // VectorS - handled in v-call
847  Bad,          // VectorD - handled in v-call
848  Bad,          // VectorX - handled in v-call
849  Bad,          // VectorY - handled in v-call
850  Bad,          // VectorZ - handled in v-call
851
852  Bad,          // AnyPtr - handled in v-call
853  Bad,          // RawPtr - handled in v-call
854  Bad,          // OopPtr - handled in v-call
855  Bad,          // InstPtr - handled in v-call
856  Bad,          // AryPtr - handled in v-call
857
858  Bad,          //  MetadataPtr - handled in v-call
859  Bad,          // KlassPtr - handled in v-call
860
861  Bad,          // Function - handled in v-call
862  Abio,         // Abio
863  Return_Address,// Return_Address
864  Memory,       // Memory
865  FloatBot,     // FloatTop
866  FloatCon,     // FloatCon
867  FloatTop,     // FloatBot
868  DoubleBot,    // DoubleTop
869  DoubleCon,    // DoubleCon
870  DoubleTop,    // DoubleBot
871  Top           // Bottom
872};
873
874const Type *Type::xdual() const {
875  // Note: the base() accessor asserts the sanity of _base.
876  assert(_type_info[base()].dual_type != Bad, "implement with v-call");
877  return new Type(_type_info[_base].dual_type);
878}
879
880//------------------------------has_memory-------------------------------------
881bool Type::has_memory() const {
882  Type::TYPES tx = base();
883  if (tx == Memory) return true;
884  if (tx == Tuple) {
885    const TypeTuple *t = is_tuple();
886    for (uint i=0; i < t->cnt(); i++) {
887      tx = t->field_at(i)->base();
888      if (tx == Memory)  return true;
889    }
890  }
891  return false;
892}
893
894#ifndef PRODUCT
895//------------------------------dump2------------------------------------------
896void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
897  st->print("%s", _type_info[_base].msg);
898}
899
900//------------------------------dump-------------------------------------------
901void Type::dump_on(outputStream *st) const {
902  ResourceMark rm;
903  Dict d(cmpkey,hashkey);       // Stop recursive type dumping
904  dump2(d,1, st);
905  if (is_ptr_to_narrowoop()) {
906    st->print(" [narrow]");
907  } else if (is_ptr_to_narrowklass()) {
908    st->print(" [narrowklass]");
909  }
910}
911#endif
912
913//------------------------------singleton--------------------------------------
914// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
915// constants (Ldi nodes).  Singletons are integer, float or double constants.
916bool Type::singleton(void) const {
917  return _base == Top || _base == Half;
918}
919
920//------------------------------empty------------------------------------------
921// TRUE if Type is a type with no values, FALSE otherwise.
922bool Type::empty(void) const {
923  switch (_base) {
924  case DoubleTop:
925  case FloatTop:
926  case Top:
927    return true;
928
929  case Half:
930  case Abio:
931  case Return_Address:
932  case Memory:
933  case Bottom:
934  case FloatBot:
935  case DoubleBot:
936    return false;  // never a singleton, therefore never empty
937  }
938
939  ShouldNotReachHere();
940  return false;
941}
942
943//------------------------------dump_stats-------------------------------------
944// Dump collected statistics to stderr
945#ifndef PRODUCT
946void Type::dump_stats() {
947  tty->print("Types made: %d\n", type_dict()->Size());
948}
949#endif
950
951//------------------------------typerr-----------------------------------------
952void Type::typerr( const Type *t ) const {
953#ifndef PRODUCT
954  tty->print("\nError mixing types: ");
955  dump();
956  tty->print(" and ");
957  t->dump();
958  tty->print("\n");
959#endif
960  ShouldNotReachHere();
961}
962
963
964//=============================================================================
965// Convenience common pre-built types.
966const TypeF *TypeF::ZERO;       // Floating point zero
967const TypeF *TypeF::ONE;        // Floating point one
968
969//------------------------------make-------------------------------------------
970// Create a float constant
971const TypeF *TypeF::make(float f) {
972  return (TypeF*)(new TypeF(f))->hashcons();
973}
974
975//------------------------------meet-------------------------------------------
976// Compute the MEET of two types.  It returns a new Type object.
977const Type *TypeF::xmeet( const Type *t ) const {
978  // Perform a fast test for common case; meeting the same types together.
979  if( this == t ) return this;  // Meeting same type-rep?
980
981  // Current "this->_base" is FloatCon
982  switch (t->base()) {          // Switch on original type
983  case AnyPtr:                  // Mixing with oops happens when javac
984  case RawPtr:                  // reuses local variables
985  case OopPtr:
986  case InstPtr:
987  case AryPtr:
988  case MetadataPtr:
989  case KlassPtr:
990  case NarrowOop:
991  case NarrowKlass:
992  case Int:
993  case Long:
994  case DoubleTop:
995  case DoubleCon:
996  case DoubleBot:
997  case Bottom:                  // Ye Olde Default
998    return Type::BOTTOM;
999
1000  case FloatBot:
1001    return t;
1002
1003  default:                      // All else is a mistake
1004    typerr(t);
1005
1006  case FloatCon:                // Float-constant vs Float-constant?
1007    if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1008                                // must compare bitwise as positive zero, negative zero and NaN have
1009                                // all the same representation in C++
1010      return FLOAT;             // Return generic float
1011                                // Equal constants
1012  case Top:
1013  case FloatTop:
1014    break;                      // Return the float constant
1015  }
1016  return this;                  // Return the float constant
1017}
1018
1019//------------------------------xdual------------------------------------------
1020// Dual: symmetric
1021const Type *TypeF::xdual() const {
1022  return this;
1023}
1024
1025//------------------------------eq---------------------------------------------
1026// Structural equality check for Type representations
1027bool TypeF::eq(const Type *t) const {
1028  // Bitwise comparison to distinguish between +/-0. These values must be treated
1029  // as different to be consistent with C1 and the interpreter.
1030  return (jint_cast(_f) == jint_cast(t->getf()));
1031}
1032
1033//------------------------------hash-------------------------------------------
1034// Type-specific hashing function.
1035int TypeF::hash(void) const {
1036  return *(int*)(&_f);
1037}
1038
1039//------------------------------is_finite--------------------------------------
1040// Has a finite value
1041bool TypeF::is_finite() const {
1042  return g_isfinite(getf()) != 0;
1043}
1044
1045//------------------------------is_nan-----------------------------------------
1046// Is not a number (NaN)
1047bool TypeF::is_nan()    const {
1048  return g_isnan(getf()) != 0;
1049}
1050
1051//------------------------------dump2------------------------------------------
1052// Dump float constant Type
1053#ifndef PRODUCT
1054void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1055  Type::dump2(d,depth, st);
1056  st->print("%f", _f);
1057}
1058#endif
1059
1060//------------------------------singleton--------------------------------------
1061// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1062// constants (Ldi nodes).  Singletons are integer, float or double constants
1063// or a single symbol.
1064bool TypeF::singleton(void) const {
1065  return true;                  // Always a singleton
1066}
1067
1068bool TypeF::empty(void) const {
1069  return false;                 // always exactly a singleton
1070}
1071
1072//=============================================================================
1073// Convenience common pre-built types.
1074const TypeD *TypeD::ZERO;       // Floating point zero
1075const TypeD *TypeD::ONE;        // Floating point one
1076
1077//------------------------------make-------------------------------------------
1078const TypeD *TypeD::make(double d) {
1079  return (TypeD*)(new TypeD(d))->hashcons();
1080}
1081
1082//------------------------------meet-------------------------------------------
1083// Compute the MEET of two types.  It returns a new Type object.
1084const Type *TypeD::xmeet( const Type *t ) const {
1085  // Perform a fast test for common case; meeting the same types together.
1086  if( this == t ) return this;  // Meeting same type-rep?
1087
1088  // Current "this->_base" is DoubleCon
1089  switch (t->base()) {          // Switch on original type
1090  case AnyPtr:                  // Mixing with oops happens when javac
1091  case RawPtr:                  // reuses local variables
1092  case OopPtr:
1093  case InstPtr:
1094  case AryPtr:
1095  case MetadataPtr:
1096  case KlassPtr:
1097  case NarrowOop:
1098  case NarrowKlass:
1099  case Int:
1100  case Long:
1101  case FloatTop:
1102  case FloatCon:
1103  case FloatBot:
1104  case Bottom:                  // Ye Olde Default
1105    return Type::BOTTOM;
1106
1107  case DoubleBot:
1108    return t;
1109
1110  default:                      // All else is a mistake
1111    typerr(t);
1112
1113  case DoubleCon:               // Double-constant vs Double-constant?
1114    if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1115      return DOUBLE;            // Return generic double
1116  case Top:
1117  case DoubleTop:
1118    break;
1119  }
1120  return this;                  // Return the double constant
1121}
1122
1123//------------------------------xdual------------------------------------------
1124// Dual: symmetric
1125const Type *TypeD::xdual() const {
1126  return this;
1127}
1128
1129//------------------------------eq---------------------------------------------
1130// Structural equality check for Type representations
1131bool TypeD::eq(const Type *t) const {
1132  // Bitwise comparison to distinguish between +/-0. These values must be treated
1133  // as different to be consistent with C1 and the interpreter.
1134  return (jlong_cast(_d) == jlong_cast(t->getd()));
1135}
1136
1137//------------------------------hash-------------------------------------------
1138// Type-specific hashing function.
1139int TypeD::hash(void) const {
1140  return *(int*)(&_d);
1141}
1142
1143//------------------------------is_finite--------------------------------------
1144// Has a finite value
1145bool TypeD::is_finite() const {
1146  return g_isfinite(getd()) != 0;
1147}
1148
1149//------------------------------is_nan-----------------------------------------
1150// Is not a number (NaN)
1151bool TypeD::is_nan()    const {
1152  return g_isnan(getd()) != 0;
1153}
1154
1155//------------------------------dump2------------------------------------------
1156// Dump double constant Type
1157#ifndef PRODUCT
1158void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1159  Type::dump2(d,depth,st);
1160  st->print("%f", _d);
1161}
1162#endif
1163
1164//------------------------------singleton--------------------------------------
1165// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1166// constants (Ldi nodes).  Singletons are integer, float or double constants
1167// or a single symbol.
1168bool TypeD::singleton(void) const {
1169  return true;                  // Always a singleton
1170}
1171
1172bool TypeD::empty(void) const {
1173  return false;                 // always exactly a singleton
1174}
1175
1176//=============================================================================
1177// Convience common pre-built types.
1178const TypeInt *TypeInt::MINUS_1;// -1
1179const TypeInt *TypeInt::ZERO;   // 0
1180const TypeInt *TypeInt::ONE;    // 1
1181const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1182const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1183const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1184const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1185const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1186const TypeInt *TypeInt::CC_LE;  // [-1,0]
1187const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1188const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1189const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1190const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1191const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1192const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1193const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1194const TypeInt *TypeInt::INT;    // 32-bit integers
1195const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1196const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1197
1198//------------------------------TypeInt----------------------------------------
1199TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1200}
1201
1202//------------------------------make-------------------------------------------
1203const TypeInt *TypeInt::make( jint lo ) {
1204  return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1205}
1206
1207static int normalize_int_widen( jint lo, jint hi, int w ) {
1208  // Certain normalizations keep us sane when comparing types.
1209  // The 'SMALLINT' covers constants and also CC and its relatives.
1210  if (lo <= hi) {
1211    if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1212    if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1213  } else {
1214    if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1215    if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1216  }
1217  return w;
1218}
1219
1220const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1221  w = normalize_int_widen(lo, hi, w);
1222  return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1223}
1224
1225//------------------------------meet-------------------------------------------
1226// Compute the MEET of two types.  It returns a new Type representation object
1227// with reference count equal to the number of Types pointing at it.
1228// Caller should wrap a Types around it.
1229const Type *TypeInt::xmeet( const Type *t ) const {
1230  // Perform a fast test for common case; meeting the same types together.
1231  if( this == t ) return this;  // Meeting same type?
1232
1233  // Currently "this->_base" is a TypeInt
1234  switch (t->base()) {          // Switch on original type
1235  case AnyPtr:                  // Mixing with oops happens when javac
1236  case RawPtr:                  // reuses local variables
1237  case OopPtr:
1238  case InstPtr:
1239  case AryPtr:
1240  case MetadataPtr:
1241  case KlassPtr:
1242  case NarrowOop:
1243  case NarrowKlass:
1244  case Long:
1245  case FloatTop:
1246  case FloatCon:
1247  case FloatBot:
1248  case DoubleTop:
1249  case DoubleCon:
1250  case DoubleBot:
1251  case Bottom:                  // Ye Olde Default
1252    return Type::BOTTOM;
1253  default:                      // All else is a mistake
1254    typerr(t);
1255  case Top:                     // No change
1256    return this;
1257  case Int:                     // Int vs Int?
1258    break;
1259  }
1260
1261  // Expand covered set
1262  const TypeInt *r = t->is_int();
1263  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1264}
1265
1266//------------------------------xdual------------------------------------------
1267// Dual: reverse hi & lo; flip widen
1268const Type *TypeInt::xdual() const {
1269  int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1270  return new TypeInt(_hi,_lo,w);
1271}
1272
1273//------------------------------widen------------------------------------------
1274// Only happens for optimistic top-down optimizations.
1275const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1276  // Coming from TOP or such; no widening
1277  if( old->base() != Int ) return this;
1278  const TypeInt *ot = old->is_int();
1279
1280  // If new guy is equal to old guy, no widening
1281  if( _lo == ot->_lo && _hi == ot->_hi )
1282    return old;
1283
1284  // If new guy contains old, then we widened
1285  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1286    // New contains old
1287    // If new guy is already wider than old, no widening
1288    if( _widen > ot->_widen ) return this;
1289    // If old guy was a constant, do not bother
1290    if (ot->_lo == ot->_hi)  return this;
1291    // Now widen new guy.
1292    // Check for widening too far
1293    if (_widen == WidenMax) {
1294      int max = max_jint;
1295      int min = min_jint;
1296      if (limit->isa_int()) {
1297        max = limit->is_int()->_hi;
1298        min = limit->is_int()->_lo;
1299      }
1300      if (min < _lo && _hi < max) {
1301        // If neither endpoint is extremal yet, push out the endpoint
1302        // which is closer to its respective limit.
1303        if (_lo >= 0 ||                 // easy common case
1304            (juint)(_lo - min) >= (juint)(max - _hi)) {
1305          // Try to widen to an unsigned range type of 31 bits:
1306          return make(_lo, max, WidenMax);
1307        } else {
1308          return make(min, _hi, WidenMax);
1309        }
1310      }
1311      return TypeInt::INT;
1312    }
1313    // Returned widened new guy
1314    return make(_lo,_hi,_widen+1);
1315  }
1316
1317  // If old guy contains new, then we probably widened too far & dropped to
1318  // bottom.  Return the wider fellow.
1319  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1320    return old;
1321
1322  //fatal("Integer value range is not subset");
1323  //return this;
1324  return TypeInt::INT;
1325}
1326
1327//------------------------------narrow---------------------------------------
1328// Only happens for pessimistic optimizations.
1329const Type *TypeInt::narrow( const Type *old ) const {
1330  if (_lo >= _hi)  return this;   // already narrow enough
1331  if (old == NULL)  return this;
1332  const TypeInt* ot = old->isa_int();
1333  if (ot == NULL)  return this;
1334  jint olo = ot->_lo;
1335  jint ohi = ot->_hi;
1336
1337  // If new guy is equal to old guy, no narrowing
1338  if (_lo == olo && _hi == ohi)  return old;
1339
1340  // If old guy was maximum range, allow the narrowing
1341  if (olo == min_jint && ohi == max_jint)  return this;
1342
1343  if (_lo < olo || _hi > ohi)
1344    return this;                // doesn't narrow; pretty wierd
1345
1346  // The new type narrows the old type, so look for a "death march".
1347  // See comments on PhaseTransform::saturate.
1348  juint nrange = _hi - _lo;
1349  juint orange = ohi - olo;
1350  if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1351    // Use the new type only if the range shrinks a lot.
1352    // We do not want the optimizer computing 2^31 point by point.
1353    return old;
1354  }
1355
1356  return this;
1357}
1358
1359//-----------------------------filter------------------------------------------
1360const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1361  const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1362  if (ft == NULL || ft->empty())
1363    return Type::TOP;           // Canonical empty value
1364  if (ft->_widen < this->_widen) {
1365    // Do not allow the value of kill->_widen to affect the outcome.
1366    // The widen bits must be allowed to run freely through the graph.
1367    ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1368  }
1369  return ft;
1370}
1371
1372//------------------------------eq---------------------------------------------
1373// Structural equality check for Type representations
1374bool TypeInt::eq( const Type *t ) const {
1375  const TypeInt *r = t->is_int(); // Handy access
1376  return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1377}
1378
1379//------------------------------hash-------------------------------------------
1380// Type-specific hashing function.
1381int TypeInt::hash(void) const {
1382  return _lo+_hi+_widen+(int)Type::Int;
1383}
1384
1385//------------------------------is_finite--------------------------------------
1386// Has a finite value
1387bool TypeInt::is_finite() const {
1388  return true;
1389}
1390
1391//------------------------------dump2------------------------------------------
1392// Dump TypeInt
1393#ifndef PRODUCT
1394static const char* intname(char* buf, jint n) {
1395  if (n == min_jint)
1396    return "min";
1397  else if (n < min_jint + 10000)
1398    sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1399  else if (n == max_jint)
1400    return "max";
1401  else if (n > max_jint - 10000)
1402    sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1403  else
1404    sprintf(buf, INT32_FORMAT, n);
1405  return buf;
1406}
1407
1408void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1409  char buf[40], buf2[40];
1410  if (_lo == min_jint && _hi == max_jint)
1411    st->print("int");
1412  else if (is_con())
1413    st->print("int:%s", intname(buf, get_con()));
1414  else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1415    st->print("bool");
1416  else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1417    st->print("byte");
1418  else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1419    st->print("char");
1420  else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1421    st->print("short");
1422  else if (_hi == max_jint)
1423    st->print("int:>=%s", intname(buf, _lo));
1424  else if (_lo == min_jint)
1425    st->print("int:<=%s", intname(buf, _hi));
1426  else
1427    st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1428
1429  if (_widen != 0 && this != TypeInt::INT)
1430    st->print(":%.*s", _widen, "wwww");
1431}
1432#endif
1433
1434//------------------------------singleton--------------------------------------
1435// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1436// constants.
1437bool TypeInt::singleton(void) const {
1438  return _lo >= _hi;
1439}
1440
1441bool TypeInt::empty(void) const {
1442  return _lo > _hi;
1443}
1444
1445//=============================================================================
1446// Convenience common pre-built types.
1447const TypeLong *TypeLong::MINUS_1;// -1
1448const TypeLong *TypeLong::ZERO; // 0
1449const TypeLong *TypeLong::ONE;  // 1
1450const TypeLong *TypeLong::POS;  // >=0
1451const TypeLong *TypeLong::LONG; // 64-bit integers
1452const TypeLong *TypeLong::INT;  // 32-bit subrange
1453const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1454const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1455
1456//------------------------------TypeLong---------------------------------------
1457TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1458}
1459
1460//------------------------------make-------------------------------------------
1461const TypeLong *TypeLong::make( jlong lo ) {
1462  return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1463}
1464
1465static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1466  // Certain normalizations keep us sane when comparing types.
1467  // The 'SMALLINT' covers constants.
1468  if (lo <= hi) {
1469    if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1470    if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1471  } else {
1472    if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1473    if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1474  }
1475  return w;
1476}
1477
1478const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1479  w = normalize_long_widen(lo, hi, w);
1480  return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1481}
1482
1483
1484//------------------------------meet-------------------------------------------
1485// Compute the MEET of two types.  It returns a new Type representation object
1486// with reference count equal to the number of Types pointing at it.
1487// Caller should wrap a Types around it.
1488const Type *TypeLong::xmeet( const Type *t ) const {
1489  // Perform a fast test for common case; meeting the same types together.
1490  if( this == t ) return this;  // Meeting same type?
1491
1492  // Currently "this->_base" is a TypeLong
1493  switch (t->base()) {          // Switch on original type
1494  case AnyPtr:                  // Mixing with oops happens when javac
1495  case RawPtr:                  // reuses local variables
1496  case OopPtr:
1497  case InstPtr:
1498  case AryPtr:
1499  case MetadataPtr:
1500  case KlassPtr:
1501  case NarrowOop:
1502  case NarrowKlass:
1503  case Int:
1504  case FloatTop:
1505  case FloatCon:
1506  case FloatBot:
1507  case DoubleTop:
1508  case DoubleCon:
1509  case DoubleBot:
1510  case Bottom:                  // Ye Olde Default
1511    return Type::BOTTOM;
1512  default:                      // All else is a mistake
1513    typerr(t);
1514  case Top:                     // No change
1515    return this;
1516  case Long:                    // Long vs Long?
1517    break;
1518  }
1519
1520  // Expand covered set
1521  const TypeLong *r = t->is_long(); // Turn into a TypeLong
1522  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1523}
1524
1525//------------------------------xdual------------------------------------------
1526// Dual: reverse hi & lo; flip widen
1527const Type *TypeLong::xdual() const {
1528  int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1529  return new TypeLong(_hi,_lo,w);
1530}
1531
1532//------------------------------widen------------------------------------------
1533// Only happens for optimistic top-down optimizations.
1534const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1535  // Coming from TOP or such; no widening
1536  if( old->base() != Long ) return this;
1537  const TypeLong *ot = old->is_long();
1538
1539  // If new guy is equal to old guy, no widening
1540  if( _lo == ot->_lo && _hi == ot->_hi )
1541    return old;
1542
1543  // If new guy contains old, then we widened
1544  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1545    // New contains old
1546    // If new guy is already wider than old, no widening
1547    if( _widen > ot->_widen ) return this;
1548    // If old guy was a constant, do not bother
1549    if (ot->_lo == ot->_hi)  return this;
1550    // Now widen new guy.
1551    // Check for widening too far
1552    if (_widen == WidenMax) {
1553      jlong max = max_jlong;
1554      jlong min = min_jlong;
1555      if (limit->isa_long()) {
1556        max = limit->is_long()->_hi;
1557        min = limit->is_long()->_lo;
1558      }
1559      if (min < _lo && _hi < max) {
1560        // If neither endpoint is extremal yet, push out the endpoint
1561        // which is closer to its respective limit.
1562        if (_lo >= 0 ||                 // easy common case
1563            (julong)(_lo - min) >= (julong)(max - _hi)) {
1564          // Try to widen to an unsigned range type of 32/63 bits:
1565          if (max >= max_juint && _hi < max_juint)
1566            return make(_lo, max_juint, WidenMax);
1567          else
1568            return make(_lo, max, WidenMax);
1569        } else {
1570          return make(min, _hi, WidenMax);
1571        }
1572      }
1573      return TypeLong::LONG;
1574    }
1575    // Returned widened new guy
1576    return make(_lo,_hi,_widen+1);
1577  }
1578
1579  // If old guy contains new, then we probably widened too far & dropped to
1580  // bottom.  Return the wider fellow.
1581  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1582    return old;
1583
1584  //  fatal("Long value range is not subset");
1585  // return this;
1586  return TypeLong::LONG;
1587}
1588
1589//------------------------------narrow----------------------------------------
1590// Only happens for pessimistic optimizations.
1591const Type *TypeLong::narrow( const Type *old ) const {
1592  if (_lo >= _hi)  return this;   // already narrow enough
1593  if (old == NULL)  return this;
1594  const TypeLong* ot = old->isa_long();
1595  if (ot == NULL)  return this;
1596  jlong olo = ot->_lo;
1597  jlong ohi = ot->_hi;
1598
1599  // If new guy is equal to old guy, no narrowing
1600  if (_lo == olo && _hi == ohi)  return old;
1601
1602  // If old guy was maximum range, allow the narrowing
1603  if (olo == min_jlong && ohi == max_jlong)  return this;
1604
1605  if (_lo < olo || _hi > ohi)
1606    return this;                // doesn't narrow; pretty wierd
1607
1608  // The new type narrows the old type, so look for a "death march".
1609  // See comments on PhaseTransform::saturate.
1610  julong nrange = _hi - _lo;
1611  julong orange = ohi - olo;
1612  if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1613    // Use the new type only if the range shrinks a lot.
1614    // We do not want the optimizer computing 2^31 point by point.
1615    return old;
1616  }
1617
1618  return this;
1619}
1620
1621//-----------------------------filter------------------------------------------
1622const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1623  const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1624  if (ft == NULL || ft->empty())
1625    return Type::TOP;           // Canonical empty value
1626  if (ft->_widen < this->_widen) {
1627    // Do not allow the value of kill->_widen to affect the outcome.
1628    // The widen bits must be allowed to run freely through the graph.
1629    ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1630  }
1631  return ft;
1632}
1633
1634//------------------------------eq---------------------------------------------
1635// Structural equality check for Type representations
1636bool TypeLong::eq( const Type *t ) const {
1637  const TypeLong *r = t->is_long(); // Handy access
1638  return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1639}
1640
1641//------------------------------hash-------------------------------------------
1642// Type-specific hashing function.
1643int TypeLong::hash(void) const {
1644  return (int)(_lo+_hi+_widen+(int)Type::Long);
1645}
1646
1647//------------------------------is_finite--------------------------------------
1648// Has a finite value
1649bool TypeLong::is_finite() const {
1650  return true;
1651}
1652
1653//------------------------------dump2------------------------------------------
1654// Dump TypeLong
1655#ifndef PRODUCT
1656static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1657  if (n > x) {
1658    if (n >= x + 10000)  return NULL;
1659    sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1660  } else if (n < x) {
1661    if (n <= x - 10000)  return NULL;
1662    sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1663  } else {
1664    return xname;
1665  }
1666  return buf;
1667}
1668
1669static const char* longname(char* buf, jlong n) {
1670  const char* str;
1671  if (n == min_jlong)
1672    return "min";
1673  else if (n < min_jlong + 10000)
1674    sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1675  else if (n == max_jlong)
1676    return "max";
1677  else if (n > max_jlong - 10000)
1678    sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1679  else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1680    return str;
1681  else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1682    return str;
1683  else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1684    return str;
1685  else
1686    sprintf(buf, JLONG_FORMAT, n);
1687  return buf;
1688}
1689
1690void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1691  char buf[80], buf2[80];
1692  if (_lo == min_jlong && _hi == max_jlong)
1693    st->print("long");
1694  else if (is_con())
1695    st->print("long:%s", longname(buf, get_con()));
1696  else if (_hi == max_jlong)
1697    st->print("long:>=%s", longname(buf, _lo));
1698  else if (_lo == min_jlong)
1699    st->print("long:<=%s", longname(buf, _hi));
1700  else
1701    st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1702
1703  if (_widen != 0 && this != TypeLong::LONG)
1704    st->print(":%.*s", _widen, "wwww");
1705}
1706#endif
1707
1708//------------------------------singleton--------------------------------------
1709// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1710// constants
1711bool TypeLong::singleton(void) const {
1712  return _lo >= _hi;
1713}
1714
1715bool TypeLong::empty(void) const {
1716  return _lo > _hi;
1717}
1718
1719//=============================================================================
1720// Convenience common pre-built types.
1721const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1722const TypeTuple *TypeTuple::IFFALSE;
1723const TypeTuple *TypeTuple::IFTRUE;
1724const TypeTuple *TypeTuple::IFNEITHER;
1725const TypeTuple *TypeTuple::LOOPBODY;
1726const TypeTuple *TypeTuple::MEMBAR;
1727const TypeTuple *TypeTuple::STORECONDITIONAL;
1728const TypeTuple *TypeTuple::START_I2C;
1729const TypeTuple *TypeTuple::INT_PAIR;
1730const TypeTuple *TypeTuple::LONG_PAIR;
1731const TypeTuple *TypeTuple::INT_CC_PAIR;
1732const TypeTuple *TypeTuple::LONG_CC_PAIR;
1733
1734
1735//------------------------------make-------------------------------------------
1736// Make a TypeTuple from the range of a method signature
1737const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1738  ciType* return_type = sig->return_type();
1739  uint arg_cnt = return_type->size();
1740  const Type **field_array = fields(arg_cnt);
1741  switch (return_type->basic_type()) {
1742  case T_LONG:
1743    field_array[TypeFunc::Parms]   = TypeLong::LONG;
1744    field_array[TypeFunc::Parms+1] = Type::HALF;
1745    break;
1746  case T_DOUBLE:
1747    field_array[TypeFunc::Parms]   = Type::DOUBLE;
1748    field_array[TypeFunc::Parms+1] = Type::HALF;
1749    break;
1750  case T_OBJECT:
1751  case T_ARRAY:
1752  case T_BOOLEAN:
1753  case T_CHAR:
1754  case T_FLOAT:
1755  case T_BYTE:
1756  case T_SHORT:
1757  case T_INT:
1758    field_array[TypeFunc::Parms] = get_const_type(return_type);
1759    break;
1760  case T_VOID:
1761    break;
1762  default:
1763    ShouldNotReachHere();
1764  }
1765  return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1766}
1767
1768// Make a TypeTuple from the domain of a method signature
1769const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1770  uint arg_cnt = sig->size();
1771
1772  uint pos = TypeFunc::Parms;
1773  const Type **field_array;
1774  if (recv != NULL) {
1775    arg_cnt++;
1776    field_array = fields(arg_cnt);
1777    // Use get_const_type here because it respects UseUniqueSubclasses:
1778    field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1779  } else {
1780    field_array = fields(arg_cnt);
1781  }
1782
1783  int i = 0;
1784  while (pos < TypeFunc::Parms + arg_cnt) {
1785    ciType* type = sig->type_at(i);
1786
1787    switch (type->basic_type()) {
1788    case T_LONG:
1789      field_array[pos++] = TypeLong::LONG;
1790      field_array[pos++] = Type::HALF;
1791      break;
1792    case T_DOUBLE:
1793      field_array[pos++] = Type::DOUBLE;
1794      field_array[pos++] = Type::HALF;
1795      break;
1796    case T_OBJECT:
1797    case T_ARRAY:
1798    case T_BOOLEAN:
1799    case T_CHAR:
1800    case T_FLOAT:
1801    case T_BYTE:
1802    case T_SHORT:
1803    case T_INT:
1804      field_array[pos++] = get_const_type(type);
1805      break;
1806    default:
1807      ShouldNotReachHere();
1808    }
1809    i++;
1810  }
1811
1812  return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1813}
1814
1815const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1816  return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1817}
1818
1819//------------------------------fields-----------------------------------------
1820// Subroutine call type with space allocated for argument types
1821// Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1822const Type **TypeTuple::fields( uint arg_cnt ) {
1823  const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1824  flds[TypeFunc::Control  ] = Type::CONTROL;
1825  flds[TypeFunc::I_O      ] = Type::ABIO;
1826  flds[TypeFunc::Memory   ] = Type::MEMORY;
1827  flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1828  flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1829
1830  return flds;
1831}
1832
1833//------------------------------meet-------------------------------------------
1834// Compute the MEET of two types.  It returns a new Type object.
1835const Type *TypeTuple::xmeet( const Type *t ) const {
1836  // Perform a fast test for common case; meeting the same types together.
1837  if( this == t ) return this;  // Meeting same type-rep?
1838
1839  // Current "this->_base" is Tuple
1840  switch (t->base()) {          // switch on original type
1841
1842  case Bottom:                  // Ye Olde Default
1843    return t;
1844
1845  default:                      // All else is a mistake
1846    typerr(t);
1847
1848  case Tuple: {                 // Meeting 2 signatures?
1849    const TypeTuple *x = t->is_tuple();
1850    assert( _cnt == x->_cnt, "" );
1851    const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1852    for( uint i=0; i<_cnt; i++ )
1853      fields[i] = field_at(i)->xmeet( x->field_at(i) );
1854    return TypeTuple::make(_cnt,fields);
1855  }
1856  case Top:
1857    break;
1858  }
1859  return this;                  // Return the double constant
1860}
1861
1862//------------------------------xdual------------------------------------------
1863// Dual: compute field-by-field dual
1864const Type *TypeTuple::xdual() const {
1865  const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1866  for( uint i=0; i<_cnt; i++ )
1867    fields[i] = _fields[i]->dual();
1868  return new TypeTuple(_cnt,fields);
1869}
1870
1871//------------------------------eq---------------------------------------------
1872// Structural equality check for Type representations
1873bool TypeTuple::eq( const Type *t ) const {
1874  const TypeTuple *s = (const TypeTuple *)t;
1875  if (_cnt != s->_cnt)  return false;  // Unequal field counts
1876  for (uint i = 0; i < _cnt; i++)
1877    if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1878      return false;             // Missed
1879  return true;
1880}
1881
1882//------------------------------hash-------------------------------------------
1883// Type-specific hashing function.
1884int TypeTuple::hash(void) const {
1885  intptr_t sum = _cnt;
1886  for( uint i=0; i<_cnt; i++ )
1887    sum += (intptr_t)_fields[i];     // Hash on pointers directly
1888  return sum;
1889}
1890
1891//------------------------------dump2------------------------------------------
1892// Dump signature Type
1893#ifndef PRODUCT
1894void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1895  st->print("{");
1896  if( !depth || d[this] ) {     // Check for recursive print
1897    st->print("...}");
1898    return;
1899  }
1900  d.Insert((void*)this, (void*)this);   // Stop recursion
1901  if( _cnt ) {
1902    uint i;
1903    for( i=0; i<_cnt-1; i++ ) {
1904      st->print("%d:", i);
1905      _fields[i]->dump2(d, depth-1, st);
1906      st->print(", ");
1907    }
1908    st->print("%d:", i);
1909    _fields[i]->dump2(d, depth-1, st);
1910  }
1911  st->print("}");
1912}
1913#endif
1914
1915//------------------------------singleton--------------------------------------
1916// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1917// constants (Ldi nodes).  Singletons are integer, float or double constants
1918// or a single symbol.
1919bool TypeTuple::singleton(void) const {
1920  return false;                 // Never a singleton
1921}
1922
1923bool TypeTuple::empty(void) const {
1924  for( uint i=0; i<_cnt; i++ ) {
1925    if (_fields[i]->empty())  return true;
1926  }
1927  return false;
1928}
1929
1930//=============================================================================
1931// Convenience common pre-built types.
1932
1933inline const TypeInt* normalize_array_size(const TypeInt* size) {
1934  // Certain normalizations keep us sane when comparing types.
1935  // We do not want arrayOop variables to differ only by the wideness
1936  // of their index types.  Pick minimum wideness, since that is the
1937  // forced wideness of small ranges anyway.
1938  if (size->_widen != Type::WidenMin)
1939    return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1940  else
1941    return size;
1942}
1943
1944//------------------------------make-------------------------------------------
1945const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1946  if (UseCompressedOops && elem->isa_oopptr()) {
1947    elem = elem->make_narrowoop();
1948  }
1949  size = normalize_array_size(size);
1950  return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1951}
1952
1953//------------------------------meet-------------------------------------------
1954// Compute the MEET of two types.  It returns a new Type object.
1955const Type *TypeAry::xmeet( const Type *t ) const {
1956  // Perform a fast test for common case; meeting the same types together.
1957  if( this == t ) return this;  // Meeting same type-rep?
1958
1959  // Current "this->_base" is Ary
1960  switch (t->base()) {          // switch on original type
1961
1962  case Bottom:                  // Ye Olde Default
1963    return t;
1964
1965  default:                      // All else is a mistake
1966    typerr(t);
1967
1968  case Array: {                 // Meeting 2 arrays?
1969    const TypeAry *a = t->is_ary();
1970    return TypeAry::make(_elem->meet_speculative(a->_elem),
1971                         _size->xmeet(a->_size)->is_int(),
1972                         _stable & a->_stable);
1973  }
1974  case Top:
1975    break;
1976  }
1977  return this;                  // Return the double constant
1978}
1979
1980//------------------------------xdual------------------------------------------
1981// Dual: compute field-by-field dual
1982const Type *TypeAry::xdual() const {
1983  const TypeInt* size_dual = _size->dual()->is_int();
1984  size_dual = normalize_array_size(size_dual);
1985  return new TypeAry(_elem->dual(), size_dual, !_stable);
1986}
1987
1988//------------------------------eq---------------------------------------------
1989// Structural equality check for Type representations
1990bool TypeAry::eq( const Type *t ) const {
1991  const TypeAry *a = (const TypeAry*)t;
1992  return _elem == a->_elem &&
1993    _stable == a->_stable &&
1994    _size == a->_size;
1995}
1996
1997//------------------------------hash-------------------------------------------
1998// Type-specific hashing function.
1999int TypeAry::hash(void) const {
2000  return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2001}
2002
2003/**
2004 * Return same type without a speculative part in the element
2005 */
2006const Type* TypeAry::remove_speculative() const {
2007  return make(_elem->remove_speculative(), _size, _stable);
2008}
2009
2010/**
2011 * Return same type with cleaned up speculative part of element
2012 */
2013const Type* TypeAry::cleanup_speculative() const {
2014  return make(_elem->cleanup_speculative(), _size, _stable);
2015}
2016
2017/**
2018 * Return same type but with a different inline depth (used for speculation)
2019 *
2020 * @param depth  depth to meet with
2021 */
2022const TypePtr* TypePtr::with_inline_depth(int depth) const {
2023  if (!UseInlineDepthForSpeculativeTypes) {
2024    return this;
2025  }
2026  return make(AnyPtr, _ptr, _offset, _speculative, depth);
2027}
2028
2029//----------------------interface_vs_oop---------------------------------------
2030#ifdef ASSERT
2031bool TypeAry::interface_vs_oop(const Type *t) const {
2032  const TypeAry* t_ary = t->is_ary();
2033  if (t_ary) {
2034    return _elem->interface_vs_oop(t_ary->_elem);
2035  }
2036  return false;
2037}
2038#endif
2039
2040//------------------------------dump2------------------------------------------
2041#ifndef PRODUCT
2042void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2043  if (_stable)  st->print("stable:");
2044  _elem->dump2(d, depth, st);
2045  st->print("[");
2046  _size->dump2(d, depth, st);
2047  st->print("]");
2048}
2049#endif
2050
2051//------------------------------singleton--------------------------------------
2052// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2053// constants (Ldi nodes).  Singletons are integer, float or double constants
2054// or a single symbol.
2055bool TypeAry::singleton(void) const {
2056  return false;                 // Never a singleton
2057}
2058
2059bool TypeAry::empty(void) const {
2060  return _elem->empty() || _size->empty();
2061}
2062
2063//--------------------------ary_must_be_exact----------------------------------
2064bool TypeAry::ary_must_be_exact() const {
2065  if (!UseExactTypes)       return false;
2066  // This logic looks at the element type of an array, and returns true
2067  // if the element type is either a primitive or a final instance class.
2068  // In such cases, an array built on this ary must have no subclasses.
2069  if (_elem == BOTTOM)      return false;  // general array not exact
2070  if (_elem == TOP   )      return false;  // inverted general array not exact
2071  const TypeOopPtr*  toop = NULL;
2072  if (UseCompressedOops && _elem->isa_narrowoop()) {
2073    toop = _elem->make_ptr()->isa_oopptr();
2074  } else {
2075    toop = _elem->isa_oopptr();
2076  }
2077  if (!toop)                return true;   // a primitive type, like int
2078  ciKlass* tklass = toop->klass();
2079  if (tklass == NULL)       return false;  // unloaded class
2080  if (!tklass->is_loaded()) return false;  // unloaded class
2081  const TypeInstPtr* tinst;
2082  if (_elem->isa_narrowoop())
2083    tinst = _elem->make_ptr()->isa_instptr();
2084  else
2085    tinst = _elem->isa_instptr();
2086  if (tinst)
2087    return tklass->as_instance_klass()->is_final();
2088  const TypeAryPtr*  tap;
2089  if (_elem->isa_narrowoop())
2090    tap = _elem->make_ptr()->isa_aryptr();
2091  else
2092    tap = _elem->isa_aryptr();
2093  if (tap)
2094    return tap->ary()->ary_must_be_exact();
2095  return false;
2096}
2097
2098//==============================TypeVect=======================================
2099// Convenience common pre-built types.
2100const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2101const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2102const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2103const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2104const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2105
2106//------------------------------make-------------------------------------------
2107const TypeVect* TypeVect::make(const Type *elem, uint length) {
2108  BasicType elem_bt = elem->array_element_basic_type();
2109  assert(is_java_primitive(elem_bt), "only primitive types in vector");
2110  assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2111  assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2112  int size = length * type2aelembytes(elem_bt);
2113  switch (Matcher::vector_ideal_reg(size)) {
2114  case Op_VecS:
2115    return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2116  case Op_RegL:
2117  case Op_VecD:
2118  case Op_RegD:
2119    return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2120  case Op_VecX:
2121    return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2122  case Op_VecY:
2123    return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2124  case Op_VecZ:
2125    return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2126  }
2127 ShouldNotReachHere();
2128  return NULL;
2129}
2130
2131//------------------------------meet-------------------------------------------
2132// Compute the MEET of two types.  It returns a new Type object.
2133const Type *TypeVect::xmeet( const Type *t ) const {
2134  // Perform a fast test for common case; meeting the same types together.
2135  if( this == t ) return this;  // Meeting same type-rep?
2136
2137  // Current "this->_base" is Vector
2138  switch (t->base()) {          // switch on original type
2139
2140  case Bottom:                  // Ye Olde Default
2141    return t;
2142
2143  default:                      // All else is a mistake
2144    typerr(t);
2145
2146  case VectorS:
2147  case VectorD:
2148  case VectorX:
2149  case VectorY:
2150  case VectorZ: {                // Meeting 2 vectors?
2151    const TypeVect* v = t->is_vect();
2152    assert(  base() == v->base(), "");
2153    assert(length() == v->length(), "");
2154    assert(element_basic_type() == v->element_basic_type(), "");
2155    return TypeVect::make(_elem->xmeet(v->_elem), _length);
2156  }
2157  case Top:
2158    break;
2159  }
2160  return this;
2161}
2162
2163//------------------------------xdual------------------------------------------
2164// Dual: compute field-by-field dual
2165const Type *TypeVect::xdual() const {
2166  return new TypeVect(base(), _elem->dual(), _length);
2167}
2168
2169//------------------------------eq---------------------------------------------
2170// Structural equality check for Type representations
2171bool TypeVect::eq(const Type *t) const {
2172  const TypeVect *v = t->is_vect();
2173  return (_elem == v->_elem) && (_length == v->_length);
2174}
2175
2176//------------------------------hash-------------------------------------------
2177// Type-specific hashing function.
2178int TypeVect::hash(void) const {
2179  return (intptr_t)_elem + (intptr_t)_length;
2180}
2181
2182//------------------------------singleton--------------------------------------
2183// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2184// constants (Ldi nodes).  Vector is singleton if all elements are the same
2185// constant value (when vector is created with Replicate code).
2186bool TypeVect::singleton(void) const {
2187// There is no Con node for vectors yet.
2188//  return _elem->singleton();
2189  return false;
2190}
2191
2192bool TypeVect::empty(void) const {
2193  return _elem->empty();
2194}
2195
2196//------------------------------dump2------------------------------------------
2197#ifndef PRODUCT
2198void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2199  switch (base()) {
2200  case VectorS:
2201    st->print("vectors["); break;
2202  case VectorD:
2203    st->print("vectord["); break;
2204  case VectorX:
2205    st->print("vectorx["); break;
2206  case VectorY:
2207    st->print("vectory["); break;
2208  case VectorZ:
2209    st->print("vectorz["); break;
2210  default:
2211    ShouldNotReachHere();
2212  }
2213  st->print("%d]:{", _length);
2214  _elem->dump2(d, depth, st);
2215  st->print("}");
2216}
2217#endif
2218
2219
2220//=============================================================================
2221// Convenience common pre-built types.
2222const TypePtr *TypePtr::NULL_PTR;
2223const TypePtr *TypePtr::NOTNULL;
2224const TypePtr *TypePtr::BOTTOM;
2225
2226//------------------------------meet-------------------------------------------
2227// Meet over the PTR enum
2228const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2229  //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2230  { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2231  { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2232  { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2233  { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2234  { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2235  { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2236};
2237
2238//------------------------------make-------------------------------------------
2239const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2240  return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2241}
2242
2243//------------------------------cast_to_ptr_type-------------------------------
2244const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2245  assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2246  if( ptr == _ptr ) return this;
2247  return make(_base, ptr, _offset, _speculative, _inline_depth);
2248}
2249
2250//------------------------------get_con----------------------------------------
2251intptr_t TypePtr::get_con() const {
2252  assert( _ptr == Null, "" );
2253  return _offset;
2254}
2255
2256//------------------------------meet-------------------------------------------
2257// Compute the MEET of two types.  It returns a new Type object.
2258const Type *TypePtr::xmeet(const Type *t) const {
2259  const Type* res = xmeet_helper(t);
2260  if (res->isa_ptr() == NULL) {
2261    return res;
2262  }
2263
2264  const TypePtr* res_ptr = res->is_ptr();
2265  if (res_ptr->speculative() != NULL) {
2266    // type->speculative() == NULL means that speculation is no better
2267    // than type, i.e. type->speculative() == type. So there are 2
2268    // ways to represent the fact that we have no useful speculative
2269    // data and we should use a single one to be able to test for
2270    // equality between types. Check whether type->speculative() ==
2271    // type and set speculative to NULL if it is the case.
2272    if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2273      return res_ptr->remove_speculative();
2274    }
2275  }
2276
2277  return res;
2278}
2279
2280const Type *TypePtr::xmeet_helper(const Type *t) const {
2281  // Perform a fast test for common case; meeting the same types together.
2282  if( this == t ) return this;  // Meeting same type-rep?
2283
2284  // Current "this->_base" is AnyPtr
2285  switch (t->base()) {          // switch on original type
2286  case Int:                     // Mixing ints & oops happens when javac
2287  case Long:                    // reuses local variables
2288  case FloatTop:
2289  case FloatCon:
2290  case FloatBot:
2291  case DoubleTop:
2292  case DoubleCon:
2293  case DoubleBot:
2294  case NarrowOop:
2295  case NarrowKlass:
2296  case Bottom:                  // Ye Olde Default
2297    return Type::BOTTOM;
2298  case Top:
2299    return this;
2300
2301  case AnyPtr: {                // Meeting to AnyPtrs
2302    const TypePtr *tp = t->is_ptr();
2303    const TypePtr* speculative = xmeet_speculative(tp);
2304    int depth = meet_inline_depth(tp->inline_depth());
2305    return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2306  }
2307  case RawPtr:                  // For these, flip the call around to cut down
2308  case OopPtr:
2309  case InstPtr:                 // on the cases I have to handle.
2310  case AryPtr:
2311  case MetadataPtr:
2312  case KlassPtr:
2313    return t->xmeet(this);      // Call in reverse direction
2314  default:                      // All else is a mistake
2315    typerr(t);
2316
2317  }
2318  return this;
2319}
2320
2321//------------------------------meet_offset------------------------------------
2322int TypePtr::meet_offset( int offset ) const {
2323  // Either is 'TOP' offset?  Return the other offset!
2324  if( _offset == OffsetTop ) return offset;
2325  if( offset == OffsetTop ) return _offset;
2326  // If either is different, return 'BOTTOM' offset
2327  if( _offset != offset ) return OffsetBot;
2328  return _offset;
2329}
2330
2331//------------------------------dual_offset------------------------------------
2332int TypePtr::dual_offset( ) const {
2333  if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2334  if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2335  return _offset;               // Map everything else into self
2336}
2337
2338//------------------------------xdual------------------------------------------
2339// Dual: compute field-by-field dual
2340const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2341  BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2342};
2343const Type *TypePtr::xdual() const {
2344  return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2345}
2346
2347//------------------------------xadd_offset------------------------------------
2348int TypePtr::xadd_offset( intptr_t offset ) const {
2349  // Adding to 'TOP' offset?  Return 'TOP'!
2350  if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2351  // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2352  if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2353  // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2354  offset += (intptr_t)_offset;
2355  if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2356
2357  // assert( _offset >= 0 && _offset+offset >= 0, "" );
2358  // It is possible to construct a negative offset during PhaseCCP
2359
2360  return (int)offset;        // Sum valid offsets
2361}
2362
2363//------------------------------add_offset-------------------------------------
2364const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2365  return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2366}
2367
2368//------------------------------eq---------------------------------------------
2369// Structural equality check for Type representations
2370bool TypePtr::eq( const Type *t ) const {
2371  const TypePtr *a = (const TypePtr*)t;
2372  return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2373}
2374
2375//------------------------------hash-------------------------------------------
2376// Type-specific hashing function.
2377int TypePtr::hash(void) const {
2378  return _ptr + _offset + hash_speculative() + _inline_depth;
2379;
2380}
2381
2382/**
2383 * Return same type without a speculative part
2384 */
2385const Type* TypePtr::remove_speculative() const {
2386  if (_speculative == NULL) {
2387    return this;
2388  }
2389  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2390  return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2391}
2392
2393/**
2394 * Return same type but drop speculative part if we know we won't use
2395 * it
2396 */
2397const Type* TypePtr::cleanup_speculative() const {
2398  if (speculative() == NULL) {
2399    return this;
2400  }
2401  const Type* no_spec = remove_speculative();
2402  // If this is NULL_PTR then we don't need the speculative type
2403  // (with_inline_depth in case the current type inline depth is
2404  // InlineDepthTop)
2405  if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2406    return no_spec;
2407  }
2408  if (above_centerline(speculative()->ptr())) {
2409    return no_spec;
2410  }
2411  const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2412  // If the speculative may be null and is an inexact klass then it
2413  // doesn't help
2414  if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2415    return no_spec;
2416  }
2417  return this;
2418}
2419
2420/**
2421 * dual of the speculative part of the type
2422 */
2423const TypePtr* TypePtr::dual_speculative() const {
2424  if (_speculative == NULL) {
2425    return NULL;
2426  }
2427  return _speculative->dual()->is_ptr();
2428}
2429
2430/**
2431 * meet of the speculative parts of 2 types
2432 *
2433 * @param other  type to meet with
2434 */
2435const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2436  bool this_has_spec = (_speculative != NULL);
2437  bool other_has_spec = (other->speculative() != NULL);
2438
2439  if (!this_has_spec && !other_has_spec) {
2440    return NULL;
2441  }
2442
2443  // If we are at a point where control flow meets and one branch has
2444  // a speculative type and the other has not, we meet the speculative
2445  // type of one branch with the actual type of the other. If the
2446  // actual type is exact and the speculative is as well, then the
2447  // result is a speculative type which is exact and we can continue
2448  // speculation further.
2449  const TypePtr* this_spec = _speculative;
2450  const TypePtr* other_spec = other->speculative();
2451
2452  if (!this_has_spec) {
2453    this_spec = this;
2454  }
2455
2456  if (!other_has_spec) {
2457    other_spec = other;
2458  }
2459
2460  return this_spec->meet(other_spec)->is_ptr();
2461}
2462
2463/**
2464 * dual of the inline depth for this type (used for speculation)
2465 */
2466int TypePtr::dual_inline_depth() const {
2467  return -inline_depth();
2468}
2469
2470/**
2471 * meet of 2 inline depths (used for speculation)
2472 *
2473 * @param depth  depth to meet with
2474 */
2475int TypePtr::meet_inline_depth(int depth) const {
2476  return MAX2(inline_depth(), depth);
2477}
2478
2479/**
2480 * Are the speculative parts of 2 types equal?
2481 *
2482 * @param other  type to compare this one to
2483 */
2484bool TypePtr::eq_speculative(const TypePtr* other) const {
2485  if (_speculative == NULL || other->speculative() == NULL) {
2486    return _speculative == other->speculative();
2487  }
2488
2489  if (_speculative->base() != other->speculative()->base()) {
2490    return false;
2491  }
2492
2493  return _speculative->eq(other->speculative());
2494}
2495
2496/**
2497 * Hash of the speculative part of the type
2498 */
2499int TypePtr::hash_speculative() const {
2500  if (_speculative == NULL) {
2501    return 0;
2502  }
2503
2504  return _speculative->hash();
2505}
2506
2507/**
2508 * add offset to the speculative part of the type
2509 *
2510 * @param offset  offset to add
2511 */
2512const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2513  if (_speculative == NULL) {
2514    return NULL;
2515  }
2516  return _speculative->add_offset(offset)->is_ptr();
2517}
2518
2519/**
2520 * return exact klass from the speculative type if there's one
2521 */
2522ciKlass* TypePtr::speculative_type() const {
2523  if (_speculative != NULL && _speculative->isa_oopptr()) {
2524    const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2525    if (speculative->klass_is_exact()) {
2526      return speculative->klass();
2527    }
2528  }
2529  return NULL;
2530}
2531
2532/**
2533 * return true if speculative type may be null
2534 */
2535bool TypePtr::speculative_maybe_null() const {
2536  if (_speculative != NULL) {
2537    const TypePtr* speculative = _speculative->join(this)->is_ptr();
2538    return speculative->maybe_null();
2539  }
2540  return true;
2541}
2542
2543/**
2544 * Same as TypePtr::speculative_type() but return the klass only if
2545 * the speculative tells us is not null
2546 */
2547ciKlass* TypePtr::speculative_type_not_null() const {
2548  if (speculative_maybe_null()) {
2549    return NULL;
2550  }
2551  return speculative_type();
2552}
2553
2554/**
2555 * Check whether new profiling would improve speculative type
2556 *
2557 * @param   exact_kls    class from profiling
2558 * @param   inline_depth inlining depth of profile point
2559 *
2560 * @return  true if type profile is valuable
2561 */
2562bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2563  // no profiling?
2564  if (exact_kls == NULL) {
2565    return false;
2566  }
2567  // no speculative type or non exact speculative type?
2568  if (speculative_type() == NULL) {
2569    return true;
2570  }
2571  // If the node already has an exact speculative type keep it,
2572  // unless it was provided by profiling that is at a deeper
2573  // inlining level. Profiling at a higher inlining depth is
2574  // expected to be less accurate.
2575  if (_speculative->inline_depth() == InlineDepthBottom) {
2576    return false;
2577  }
2578  assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2579  return inline_depth < _speculative->inline_depth();
2580}
2581
2582/**
2583 * Check whether new profiling would improve ptr (= tells us it is non
2584 * null)
2585 *
2586 * @param   maybe_null true if profiling tells the ptr may be null
2587 *
2588 * @return  true if ptr profile is valuable
2589 */
2590bool TypePtr::would_improve_ptr(bool maybe_null) const {
2591  // profiling doesn't tell us anything useful
2592  if (maybe_null) {
2593    return false;
2594  }
2595  // We already know this is not be null
2596  if (!this->maybe_null()) {
2597    return false;
2598  }
2599  // We already know the speculative type cannot be null
2600  if (!speculative_maybe_null()) {
2601    return false;
2602  }
2603  return true;
2604}
2605
2606//------------------------------dump2------------------------------------------
2607const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2608  "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2609};
2610
2611#ifndef PRODUCT
2612void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2613  if( _ptr == Null ) st->print("NULL");
2614  else st->print("%s *", ptr_msg[_ptr]);
2615  if( _offset == OffsetTop ) st->print("+top");
2616  else if( _offset == OffsetBot ) st->print("+bot");
2617  else if( _offset ) st->print("+%d", _offset);
2618  dump_inline_depth(st);
2619  dump_speculative(st);
2620}
2621
2622/**
2623 *dump the speculative part of the type
2624 */
2625void TypePtr::dump_speculative(outputStream *st) const {
2626  if (_speculative != NULL) {
2627    st->print(" (speculative=");
2628    _speculative->dump_on(st);
2629    st->print(")");
2630  }
2631}
2632
2633/**
2634 *dump the inline depth of the type
2635 */
2636void TypePtr::dump_inline_depth(outputStream *st) const {
2637  if (_inline_depth != InlineDepthBottom) {
2638    if (_inline_depth == InlineDepthTop) {
2639      st->print(" (inline_depth=InlineDepthTop)");
2640    } else {
2641      st->print(" (inline_depth=%d)", _inline_depth);
2642    }
2643  }
2644}
2645#endif
2646
2647//------------------------------singleton--------------------------------------
2648// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2649// constants
2650bool TypePtr::singleton(void) const {
2651  // TopPTR, Null, AnyNull, Constant are all singletons
2652  return (_offset != OffsetBot) && !below_centerline(_ptr);
2653}
2654
2655bool TypePtr::empty(void) const {
2656  return (_offset == OffsetTop) || above_centerline(_ptr);
2657}
2658
2659//=============================================================================
2660// Convenience common pre-built types.
2661const TypeRawPtr *TypeRawPtr::BOTTOM;
2662const TypeRawPtr *TypeRawPtr::NOTNULL;
2663
2664//------------------------------make-------------------------------------------
2665const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2666  assert( ptr != Constant, "what is the constant?" );
2667  assert( ptr != Null, "Use TypePtr for NULL" );
2668  return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2669}
2670
2671const TypeRawPtr *TypeRawPtr::make( address bits ) {
2672  assert( bits, "Use TypePtr for NULL" );
2673  return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2674}
2675
2676//------------------------------cast_to_ptr_type-------------------------------
2677const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2678  assert( ptr != Constant, "what is the constant?" );
2679  assert( ptr != Null, "Use TypePtr for NULL" );
2680  assert( _bits==0, "Why cast a constant address?");
2681  if( ptr == _ptr ) return this;
2682  return make(ptr);
2683}
2684
2685//------------------------------get_con----------------------------------------
2686intptr_t TypeRawPtr::get_con() const {
2687  assert( _ptr == Null || _ptr == Constant, "" );
2688  return (intptr_t)_bits;
2689}
2690
2691//------------------------------meet-------------------------------------------
2692// Compute the MEET of two types.  It returns a new Type object.
2693const Type *TypeRawPtr::xmeet( const Type *t ) const {
2694  // Perform a fast test for common case; meeting the same types together.
2695  if( this == t ) return this;  // Meeting same type-rep?
2696
2697  // Current "this->_base" is RawPtr
2698  switch( t->base() ) {         // switch on original type
2699  case Bottom:                  // Ye Olde Default
2700    return t;
2701  case Top:
2702    return this;
2703  case AnyPtr:                  // Meeting to AnyPtrs
2704    break;
2705  case RawPtr: {                // might be top, bot, any/not or constant
2706    enum PTR tptr = t->is_ptr()->ptr();
2707    enum PTR ptr = meet_ptr( tptr );
2708    if( ptr == Constant ) {     // Cannot be equal constants, so...
2709      if( tptr == Constant && _ptr != Constant)  return t;
2710      if( _ptr == Constant && tptr != Constant)  return this;
2711      ptr = NotNull;            // Fall down in lattice
2712    }
2713    return make( ptr );
2714  }
2715
2716  case OopPtr:
2717  case InstPtr:
2718  case AryPtr:
2719  case MetadataPtr:
2720  case KlassPtr:
2721    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2722  default:                      // All else is a mistake
2723    typerr(t);
2724  }
2725
2726  // Found an AnyPtr type vs self-RawPtr type
2727  const TypePtr *tp = t->is_ptr();
2728  switch (tp->ptr()) {
2729  case TypePtr::TopPTR:  return this;
2730  case TypePtr::BotPTR:  return t;
2731  case TypePtr::Null:
2732    if( _ptr == TypePtr::TopPTR ) return t;
2733    return TypeRawPtr::BOTTOM;
2734  case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2735  case TypePtr::AnyNull:
2736    if( _ptr == TypePtr::Constant) return this;
2737    return make( meet_ptr(TypePtr::AnyNull) );
2738  default: ShouldNotReachHere();
2739  }
2740  return this;
2741}
2742
2743//------------------------------xdual------------------------------------------
2744// Dual: compute field-by-field dual
2745const Type *TypeRawPtr::xdual() const {
2746  return new TypeRawPtr( dual_ptr(), _bits );
2747}
2748
2749//------------------------------add_offset-------------------------------------
2750const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2751  if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2752  if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2753  if( offset == 0 ) return this; // No change
2754  switch (_ptr) {
2755  case TypePtr::TopPTR:
2756  case TypePtr::BotPTR:
2757  case TypePtr::NotNull:
2758    return this;
2759  case TypePtr::Null:
2760  case TypePtr::Constant: {
2761    address bits = _bits+offset;
2762    if ( bits == 0 ) return TypePtr::NULL_PTR;
2763    return make( bits );
2764  }
2765  default:  ShouldNotReachHere();
2766  }
2767  return NULL;                  // Lint noise
2768}
2769
2770//------------------------------eq---------------------------------------------
2771// Structural equality check for Type representations
2772bool TypeRawPtr::eq( const Type *t ) const {
2773  const TypeRawPtr *a = (const TypeRawPtr*)t;
2774  return _bits == a->_bits && TypePtr::eq(t);
2775}
2776
2777//------------------------------hash-------------------------------------------
2778// Type-specific hashing function.
2779int TypeRawPtr::hash(void) const {
2780  return (intptr_t)_bits + TypePtr::hash();
2781}
2782
2783//------------------------------dump2------------------------------------------
2784#ifndef PRODUCT
2785void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2786  if( _ptr == Constant )
2787    st->print(INTPTR_FORMAT, _bits);
2788  else
2789    st->print("rawptr:%s", ptr_msg[_ptr]);
2790}
2791#endif
2792
2793//=============================================================================
2794// Convenience common pre-built type.
2795const TypeOopPtr *TypeOopPtr::BOTTOM;
2796
2797//------------------------------TypeOopPtr-------------------------------------
2798TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2799                       int instance_id, const TypePtr* speculative, int inline_depth)
2800  : TypePtr(t, ptr, offset, speculative, inline_depth),
2801    _const_oop(o), _klass(k),
2802    _klass_is_exact(xk),
2803    _is_ptr_to_narrowoop(false),
2804    _is_ptr_to_narrowklass(false),
2805    _is_ptr_to_boxed_value(false),
2806    _instance_id(instance_id) {
2807  if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2808      (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2809    _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2810  }
2811#ifdef _LP64
2812  if (_offset != 0) {
2813    if (_offset == oopDesc::klass_offset_in_bytes()) {
2814      _is_ptr_to_narrowklass = UseCompressedClassPointers;
2815    } else if (klass() == NULL) {
2816      // Array with unknown body type
2817      assert(this->isa_aryptr(), "only arrays without klass");
2818      _is_ptr_to_narrowoop = UseCompressedOops;
2819    } else if (this->isa_aryptr()) {
2820      _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2821                             _offset != arrayOopDesc::length_offset_in_bytes());
2822    } else if (klass()->is_instance_klass()) {
2823      ciInstanceKlass* ik = klass()->as_instance_klass();
2824      ciField* field = NULL;
2825      if (this->isa_klassptr()) {
2826        // Perm objects don't use compressed references
2827      } else if (_offset == OffsetBot || _offset == OffsetTop) {
2828        // unsafe access
2829        _is_ptr_to_narrowoop = UseCompressedOops;
2830      } else { // exclude unsafe ops
2831        assert(this->isa_instptr(), "must be an instance ptr.");
2832
2833        if (klass() == ciEnv::current()->Class_klass() &&
2834            (_offset == java_lang_Class::klass_offset_in_bytes() ||
2835             _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2836          // Special hidden fields from the Class.
2837          assert(this->isa_instptr(), "must be an instance ptr.");
2838          _is_ptr_to_narrowoop = false;
2839        } else if (klass() == ciEnv::current()->Class_klass() &&
2840                   _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2841          // Static fields
2842          assert(o != NULL, "must be constant");
2843          ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2844          ciField* field = k->get_field_by_offset(_offset, true);
2845          assert(field != NULL, "missing field");
2846          BasicType basic_elem_type = field->layout_type();
2847          _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2848                                                       basic_elem_type == T_ARRAY);
2849        } else {
2850          // Instance fields which contains a compressed oop references.
2851          field = ik->get_field_by_offset(_offset, false);
2852          if (field != NULL) {
2853            BasicType basic_elem_type = field->layout_type();
2854            _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2855                                                         basic_elem_type == T_ARRAY);
2856          } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2857            // Compile::find_alias_type() cast exactness on all types to verify
2858            // that it does not affect alias type.
2859            _is_ptr_to_narrowoop = UseCompressedOops;
2860          } else {
2861            // Type for the copy start in LibraryCallKit::inline_native_clone().
2862            _is_ptr_to_narrowoop = UseCompressedOops;
2863          }
2864        }
2865      }
2866    }
2867  }
2868#endif
2869}
2870
2871//------------------------------make-------------------------------------------
2872const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2873                                     const TypePtr* speculative, int inline_depth) {
2874  assert(ptr != Constant, "no constant generic pointers");
2875  ciKlass*  k = Compile::current()->env()->Object_klass();
2876  bool      xk = false;
2877  ciObject* o = NULL;
2878  return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2879}
2880
2881
2882//------------------------------cast_to_ptr_type-------------------------------
2883const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2884  assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2885  if( ptr == _ptr ) return this;
2886  return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2887}
2888
2889//-----------------------------cast_to_instance_id----------------------------
2890const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2891  // There are no instances of a general oop.
2892  // Return self unchanged.
2893  return this;
2894}
2895
2896//-----------------------------cast_to_exactness-------------------------------
2897const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2898  // There is no such thing as an exact general oop.
2899  // Return self unchanged.
2900  return this;
2901}
2902
2903
2904//------------------------------as_klass_type----------------------------------
2905// Return the klass type corresponding to this instance or array type.
2906// It is the type that is loaded from an object of this type.
2907const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2908  ciKlass* k = klass();
2909  bool    xk = klass_is_exact();
2910  if (k == NULL)
2911    return TypeKlassPtr::OBJECT;
2912  else
2913    return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2914}
2915
2916//------------------------------meet-------------------------------------------
2917// Compute the MEET of two types.  It returns a new Type object.
2918const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2919  // Perform a fast test for common case; meeting the same types together.
2920  if( this == t ) return this;  // Meeting same type-rep?
2921
2922  // Current "this->_base" is OopPtr
2923  switch (t->base()) {          // switch on original type
2924
2925  case Int:                     // Mixing ints & oops happens when javac
2926  case Long:                    // reuses local variables
2927  case FloatTop:
2928  case FloatCon:
2929  case FloatBot:
2930  case DoubleTop:
2931  case DoubleCon:
2932  case DoubleBot:
2933  case NarrowOop:
2934  case NarrowKlass:
2935  case Bottom:                  // Ye Olde Default
2936    return Type::BOTTOM;
2937  case Top:
2938    return this;
2939
2940  default:                      // All else is a mistake
2941    typerr(t);
2942
2943  case RawPtr:
2944  case MetadataPtr:
2945  case KlassPtr:
2946    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2947
2948  case AnyPtr: {
2949    // Found an AnyPtr type vs self-OopPtr type
2950    const TypePtr *tp = t->is_ptr();
2951    int offset = meet_offset(tp->offset());
2952    PTR ptr = meet_ptr(tp->ptr());
2953    const TypePtr* speculative = xmeet_speculative(tp);
2954    int depth = meet_inline_depth(tp->inline_depth());
2955    switch (tp->ptr()) {
2956    case Null:
2957      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2958      // else fall through:
2959    case TopPTR:
2960    case AnyNull: {
2961      int instance_id = meet_instance_id(InstanceTop);
2962      return make(ptr, offset, instance_id, speculative, depth);
2963    }
2964    case BotPTR:
2965    case NotNull:
2966      return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2967    default: typerr(t);
2968    }
2969  }
2970
2971  case OopPtr: {                 // Meeting to other OopPtrs
2972    const TypeOopPtr *tp = t->is_oopptr();
2973    int instance_id = meet_instance_id(tp->instance_id());
2974    const TypePtr* speculative = xmeet_speculative(tp);
2975    int depth = meet_inline_depth(tp->inline_depth());
2976    return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2977  }
2978
2979  case InstPtr:                  // For these, flip the call around to cut down
2980  case AryPtr:
2981    return t->xmeet(this);      // Call in reverse direction
2982
2983  } // End of switch
2984  return this;                  // Return the double constant
2985}
2986
2987
2988//------------------------------xdual------------------------------------------
2989// Dual of a pure heap pointer.  No relevant klass or oop information.
2990const Type *TypeOopPtr::xdual() const {
2991  assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2992  assert(const_oop() == NULL,             "no constants here");
2993  return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2994}
2995
2996//--------------------------make_from_klass_common-----------------------------
2997// Computes the element-type given a klass.
2998const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2999  if (klass->is_instance_klass()) {
3000    Compile* C = Compile::current();
3001    Dependencies* deps = C->dependencies();
3002    assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3003    // Element is an instance
3004    bool klass_is_exact = false;
3005    if (klass->is_loaded()) {
3006      // Try to set klass_is_exact.
3007      ciInstanceKlass* ik = klass->as_instance_klass();
3008      klass_is_exact = ik->is_final();
3009      if (!klass_is_exact && klass_change
3010          && deps != NULL && UseUniqueSubclasses) {
3011        ciInstanceKlass* sub = ik->unique_concrete_subklass();
3012        if (sub != NULL) {
3013          deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3014          klass = ik = sub;
3015          klass_is_exact = sub->is_final();
3016        }
3017      }
3018      if (!klass_is_exact && try_for_exact
3019          && deps != NULL && UseExactTypes) {
3020        if (!ik->is_interface() && !ik->has_subklass()) {
3021          // Add a dependence; if concrete subclass added we need to recompile
3022          deps->assert_leaf_type(ik);
3023          klass_is_exact = true;
3024        }
3025      }
3026    }
3027    return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3028  } else if (klass->is_obj_array_klass()) {
3029    // Element is an object array. Recursively call ourself.
3030    const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3031    bool xk = etype->klass_is_exact();
3032    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3033    // We used to pass NotNull in here, asserting that the sub-arrays
3034    // are all not-null.  This is not true in generally, as code can
3035    // slam NULLs down in the subarrays.
3036    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3037    return arr;
3038  } else if (klass->is_type_array_klass()) {
3039    // Element is an typeArray
3040    const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3041    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3042    // We used to pass NotNull in here, asserting that the array pointer
3043    // is not-null. That was not true in general.
3044    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3045    return arr;
3046  } else {
3047    ShouldNotReachHere();
3048    return NULL;
3049  }
3050}
3051
3052//------------------------------make_from_constant-----------------------------
3053// Make a java pointer from an oop constant
3054const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3055  assert(!o->is_null_object(), "null object not yet handled here.");
3056  ciKlass* klass = o->klass();
3057  if (klass->is_instance_klass()) {
3058    // Element is an instance
3059    if (require_constant) {
3060      if (!o->can_be_constant())  return NULL;
3061    } else if (!o->should_be_constant()) {
3062      return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3063    }
3064    return TypeInstPtr::make(o);
3065  } else if (klass->is_obj_array_klass()) {
3066    // Element is an object array. Recursively call ourself.
3067    const TypeOopPtr *etype =
3068      TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3069    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3070    // We used to pass NotNull in here, asserting that the sub-arrays
3071    // are all not-null.  This is not true in generally, as code can
3072    // slam NULLs down in the subarrays.
3073    if (require_constant) {
3074      if (!o->can_be_constant())  return NULL;
3075    } else if (!o->should_be_constant()) {
3076      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3077    }
3078    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3079    return arr;
3080  } else if (klass->is_type_array_klass()) {
3081    // Element is an typeArray
3082    const Type* etype =
3083      (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3084    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3085    // We used to pass NotNull in here, asserting that the array pointer
3086    // is not-null. That was not true in general.
3087    if (require_constant) {
3088      if (!o->can_be_constant())  return NULL;
3089    } else if (!o->should_be_constant()) {
3090      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3091    }
3092    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3093    return arr;
3094  }
3095
3096  fatal("unhandled object type");
3097  return NULL;
3098}
3099
3100//------------------------------get_con----------------------------------------
3101intptr_t TypeOopPtr::get_con() const {
3102  assert( _ptr == Null || _ptr == Constant, "" );
3103  assert( _offset >= 0, "" );
3104
3105  if (_offset != 0) {
3106    // After being ported to the compiler interface, the compiler no longer
3107    // directly manipulates the addresses of oops.  Rather, it only has a pointer
3108    // to a handle at compile time.  This handle is embedded in the generated
3109    // code and dereferenced at the time the nmethod is made.  Until that time,
3110    // it is not reasonable to do arithmetic with the addresses of oops (we don't
3111    // have access to the addresses!).  This does not seem to currently happen,
3112    // but this assertion here is to help prevent its occurence.
3113    tty->print_cr("Found oop constant with non-zero offset");
3114    ShouldNotReachHere();
3115  }
3116
3117  return (intptr_t)const_oop()->constant_encoding();
3118}
3119
3120
3121//-----------------------------filter------------------------------------------
3122// Do not allow interface-vs.-noninterface joins to collapse to top.
3123const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3124
3125  const Type* ft = join_helper(kills, include_speculative);
3126  const TypeInstPtr* ftip = ft->isa_instptr();
3127  const TypeInstPtr* ktip = kills->isa_instptr();
3128
3129  if (ft->empty()) {
3130    // Check for evil case of 'this' being a class and 'kills' expecting an
3131    // interface.  This can happen because the bytecodes do not contain
3132    // enough type info to distinguish a Java-level interface variable
3133    // from a Java-level object variable.  If we meet 2 classes which
3134    // both implement interface I, but their meet is at 'j/l/O' which
3135    // doesn't implement I, we have no way to tell if the result should
3136    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3137    // into a Phi which "knows" it's an Interface type we'll have to
3138    // uplift the type.
3139    if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
3140      return kills;             // Uplift to interface
3141
3142    return Type::TOP;           // Canonical empty value
3143  }
3144
3145  // If we have an interface-typed Phi or cast and we narrow to a class type,
3146  // the join should report back the class.  However, if we have a J/L/Object
3147  // class-typed Phi and an interface flows in, it's possible that the meet &
3148  // join report an interface back out.  This isn't possible but happens
3149  // because the type system doesn't interact well with interfaces.
3150  if (ftip != NULL && ktip != NULL &&
3151      ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3152      ktip->is_loaded() && !ktip->klass()->is_interface()) {
3153    assert(!ftip->klass_is_exact(), "interface could not be exact");
3154    return ktip->cast_to_ptr_type(ftip->ptr());
3155  }
3156
3157  return ft;
3158}
3159
3160//------------------------------eq---------------------------------------------
3161// Structural equality check for Type representations
3162bool TypeOopPtr::eq( const Type *t ) const {
3163  const TypeOopPtr *a = (const TypeOopPtr*)t;
3164  if (_klass_is_exact != a->_klass_is_exact ||
3165      _instance_id != a->_instance_id)  return false;
3166  ciObject* one = const_oop();
3167  ciObject* two = a->const_oop();
3168  if (one == NULL || two == NULL) {
3169    return (one == two) && TypePtr::eq(t);
3170  } else {
3171    return one->equals(two) && TypePtr::eq(t);
3172  }
3173}
3174
3175//------------------------------hash-------------------------------------------
3176// Type-specific hashing function.
3177int TypeOopPtr::hash(void) const {
3178  return
3179    (const_oop() ? const_oop()->hash() : 0) +
3180    _klass_is_exact +
3181    _instance_id +
3182    TypePtr::hash();
3183}
3184
3185//------------------------------dump2------------------------------------------
3186#ifndef PRODUCT
3187void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3188  st->print("oopptr:%s", ptr_msg[_ptr]);
3189  if( _klass_is_exact ) st->print(":exact");
3190  if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
3191  switch( _offset ) {
3192  case OffsetTop: st->print("+top"); break;
3193  case OffsetBot: st->print("+any"); break;
3194  case         0: break;
3195  default:        st->print("+%d",_offset); break;
3196  }
3197  if (_instance_id == InstanceTop)
3198    st->print(",iid=top");
3199  else if (_instance_id != InstanceBot)
3200    st->print(",iid=%d",_instance_id);
3201
3202  dump_inline_depth(st);
3203  dump_speculative(st);
3204}
3205#endif
3206
3207//------------------------------singleton--------------------------------------
3208// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3209// constants
3210bool TypeOopPtr::singleton(void) const {
3211  // detune optimizer to not generate constant oop + constant offset as a constant!
3212  // TopPTR, Null, AnyNull, Constant are all singletons
3213  return (_offset == 0) && !below_centerline(_ptr);
3214}
3215
3216//------------------------------add_offset-------------------------------------
3217const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3218  return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3219}
3220
3221/**
3222 * Return same type without a speculative part
3223 */
3224const Type* TypeOopPtr::remove_speculative() const {
3225  if (_speculative == NULL) {
3226    return this;
3227  }
3228  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3229  return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3230}
3231
3232/**
3233 * Return same type but drop speculative part if we know we won't use
3234 * it
3235 */
3236const Type* TypeOopPtr::cleanup_speculative() const {
3237  // If the klass is exact and the ptr is not null then there's
3238  // nothing that the speculative type can help us with
3239  if (klass_is_exact() && !maybe_null()) {
3240    return remove_speculative();
3241  }
3242  return TypePtr::cleanup_speculative();
3243}
3244
3245/**
3246 * Return same type but with a different inline depth (used for speculation)
3247 *
3248 * @param depth  depth to meet with
3249 */
3250const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3251  if (!UseInlineDepthForSpeculativeTypes) {
3252    return this;
3253  }
3254  return make(_ptr, _offset, _instance_id, _speculative, depth);
3255}
3256
3257//------------------------------meet_instance_id--------------------------------
3258int TypeOopPtr::meet_instance_id( int instance_id ) const {
3259  // Either is 'TOP' instance?  Return the other instance!
3260  if( _instance_id == InstanceTop ) return  instance_id;
3261  if(  instance_id == InstanceTop ) return _instance_id;
3262  // If either is different, return 'BOTTOM' instance
3263  if( _instance_id != instance_id ) return InstanceBot;
3264  return _instance_id;
3265}
3266
3267//------------------------------dual_instance_id--------------------------------
3268int TypeOopPtr::dual_instance_id( ) const {
3269  if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3270  if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3271  return _instance_id;              // Map everything else into self
3272}
3273
3274/**
3275 * Check whether new profiling would improve speculative type
3276 *
3277 * @param   exact_kls    class from profiling
3278 * @param   inline_depth inlining depth of profile point
3279 *
3280 * @return  true if type profile is valuable
3281 */
3282bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3283  // no way to improve an already exact type
3284  if (klass_is_exact()) {
3285    return false;
3286  }
3287  return TypePtr::would_improve_type(exact_kls, inline_depth);
3288}
3289
3290//=============================================================================
3291// Convenience common pre-built types.
3292const TypeInstPtr *TypeInstPtr::NOTNULL;
3293const TypeInstPtr *TypeInstPtr::BOTTOM;
3294const TypeInstPtr *TypeInstPtr::MIRROR;
3295const TypeInstPtr *TypeInstPtr::MARK;
3296const TypeInstPtr *TypeInstPtr::KLASS;
3297
3298//------------------------------TypeInstPtr-------------------------------------
3299TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3300                         int instance_id, const TypePtr* speculative, int inline_depth)
3301  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3302    _name(k->name()) {
3303   assert(k != NULL &&
3304          (k->is_loaded() || o == NULL),
3305          "cannot have constants with non-loaded klass");
3306};
3307
3308//------------------------------make-------------------------------------------
3309const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3310                                     ciKlass* k,
3311                                     bool xk,
3312                                     ciObject* o,
3313                                     int offset,
3314                                     int instance_id,
3315                                     const TypePtr* speculative,
3316                                     int inline_depth) {
3317  assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3318  // Either const_oop() is NULL or else ptr is Constant
3319  assert( (!o && ptr != Constant) || (o && ptr == Constant),
3320          "constant pointers must have a value supplied" );
3321  // Ptr is never Null
3322  assert( ptr != Null, "NULL pointers are not typed" );
3323
3324  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3325  if (!UseExactTypes)  xk = false;
3326  if (ptr == Constant) {
3327    // Note:  This case includes meta-object constants, such as methods.
3328    xk = true;
3329  } else if (k->is_loaded()) {
3330    ciInstanceKlass* ik = k->as_instance_klass();
3331    if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3332    if (xk && ik->is_interface())  xk = false;  // no exact interface
3333  }
3334
3335  // Now hash this baby
3336  TypeInstPtr *result =
3337    (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3338
3339  return result;
3340}
3341
3342/**
3343 *  Create constant type for a constant boxed value
3344 */
3345const Type* TypeInstPtr::get_const_boxed_value() const {
3346  assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3347  assert((const_oop() != NULL), "should be called only for constant object");
3348  ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3349  BasicType bt = constant.basic_type();
3350  switch (bt) {
3351    case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3352    case T_INT:      return TypeInt::make(constant.as_int());
3353    case T_CHAR:     return TypeInt::make(constant.as_char());
3354    case T_BYTE:     return TypeInt::make(constant.as_byte());
3355    case T_SHORT:    return TypeInt::make(constant.as_short());
3356    case T_FLOAT:    return TypeF::make(constant.as_float());
3357    case T_DOUBLE:   return TypeD::make(constant.as_double());
3358    case T_LONG:     return TypeLong::make(constant.as_long());
3359    default:         break;
3360  }
3361  fatal("Invalid boxed value type '%s'", type2name(bt));
3362  return NULL;
3363}
3364
3365//------------------------------cast_to_ptr_type-------------------------------
3366const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3367  if( ptr == _ptr ) return this;
3368  // Reconstruct _sig info here since not a problem with later lazy
3369  // construction, _sig will show up on demand.
3370  return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3371}
3372
3373
3374//-----------------------------cast_to_exactness-------------------------------
3375const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3376  if( klass_is_exact == _klass_is_exact ) return this;
3377  if (!UseExactTypes)  return this;
3378  if (!_klass->is_loaded())  return this;
3379  ciInstanceKlass* ik = _klass->as_instance_klass();
3380  if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3381  if( ik->is_interface() )              return this;  // cannot set xk
3382  return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3383}
3384
3385//-----------------------------cast_to_instance_id----------------------------
3386const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3387  if( instance_id == _instance_id ) return this;
3388  return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3389}
3390
3391//------------------------------xmeet_unloaded---------------------------------
3392// Compute the MEET of two InstPtrs when at least one is unloaded.
3393// Assume classes are different since called after check for same name/class-loader
3394const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3395    int off = meet_offset(tinst->offset());
3396    PTR ptr = meet_ptr(tinst->ptr());
3397    int instance_id = meet_instance_id(tinst->instance_id());
3398    const TypePtr* speculative = xmeet_speculative(tinst);
3399    int depth = meet_inline_depth(tinst->inline_depth());
3400
3401    const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3402    const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3403    if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3404      //
3405      // Meet unloaded class with java/lang/Object
3406      //
3407      // Meet
3408      //          |                     Unloaded Class
3409      //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3410      //  ===================================================================
3411      //   TOP    | ..........................Unloaded......................|
3412      //  AnyNull |  U-AN    |................Unloaded......................|
3413      // Constant | ... O-NN .................................. |   O-BOT   |
3414      //  NotNull | ... O-NN .................................. |   O-BOT   |
3415      //  BOTTOM  | ........................Object-BOTTOM ..................|
3416      //
3417      assert(loaded->ptr() != TypePtr::Null, "insanity check");
3418      //
3419      if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3420      else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3421      else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3422      else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3423        if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3424        else                                      { return TypeInstPtr::NOTNULL; }
3425      }
3426      else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3427
3428      return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3429    }
3430
3431    // Both are unloaded, not the same class, not Object
3432    // Or meet unloaded with a different loaded class, not java/lang/Object
3433    if( ptr != TypePtr::BotPTR ) {
3434      return TypeInstPtr::NOTNULL;
3435    }
3436    return TypeInstPtr::BOTTOM;
3437}
3438
3439
3440//------------------------------meet-------------------------------------------
3441// Compute the MEET of two types.  It returns a new Type object.
3442const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3443  // Perform a fast test for common case; meeting the same types together.
3444  if( this == t ) return this;  // Meeting same type-rep?
3445
3446  // Current "this->_base" is Pointer
3447  switch (t->base()) {          // switch on original type
3448
3449  case Int:                     // Mixing ints & oops happens when javac
3450  case Long:                    // reuses local variables
3451  case FloatTop:
3452  case FloatCon:
3453  case FloatBot:
3454  case DoubleTop:
3455  case DoubleCon:
3456  case DoubleBot:
3457  case NarrowOop:
3458  case NarrowKlass:
3459  case Bottom:                  // Ye Olde Default
3460    return Type::BOTTOM;
3461  case Top:
3462    return this;
3463
3464  default:                      // All else is a mistake
3465    typerr(t);
3466
3467  case MetadataPtr:
3468  case KlassPtr:
3469  case RawPtr: return TypePtr::BOTTOM;
3470
3471  case AryPtr: {                // All arrays inherit from Object class
3472    const TypeAryPtr *tp = t->is_aryptr();
3473    int offset = meet_offset(tp->offset());
3474    PTR ptr = meet_ptr(tp->ptr());
3475    int instance_id = meet_instance_id(tp->instance_id());
3476    const TypePtr* speculative = xmeet_speculative(tp);
3477    int depth = meet_inline_depth(tp->inline_depth());
3478    switch (ptr) {
3479    case TopPTR:
3480    case AnyNull:                // Fall 'down' to dual of object klass
3481      // For instances when a subclass meets a superclass we fall
3482      // below the centerline when the superclass is exact. We need to
3483      // do the same here.
3484      if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3485        return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3486      } else {
3487        // cannot subclass, so the meet has to fall badly below the centerline
3488        ptr = NotNull;
3489        instance_id = InstanceBot;
3490        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3491      }
3492    case Constant:
3493    case NotNull:
3494    case BotPTR:                // Fall down to object klass
3495      // LCA is object_klass, but if we subclass from the top we can do better
3496      if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3497        // If 'this' (InstPtr) is above the centerline and it is Object class
3498        // then we can subclass in the Java class hierarchy.
3499        // For instances when a subclass meets a superclass we fall
3500        // below the centerline when the superclass is exact. We need
3501        // to do the same here.
3502        if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3503          // that is, tp's array type is a subtype of my klass
3504          return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3505                                  tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3506        }
3507      }
3508      // The other case cannot happen, since I cannot be a subtype of an array.
3509      // The meet falls down to Object class below centerline.
3510      if( ptr == Constant )
3511         ptr = NotNull;
3512      instance_id = InstanceBot;
3513      return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3514    default: typerr(t);
3515    }
3516  }
3517
3518  case OopPtr: {                // Meeting to OopPtrs
3519    // Found a OopPtr type vs self-InstPtr type
3520    const TypeOopPtr *tp = t->is_oopptr();
3521    int offset = meet_offset(tp->offset());
3522    PTR ptr = meet_ptr(tp->ptr());
3523    switch (tp->ptr()) {
3524    case TopPTR:
3525    case AnyNull: {
3526      int instance_id = meet_instance_id(InstanceTop);
3527      const TypePtr* speculative = xmeet_speculative(tp);
3528      int depth = meet_inline_depth(tp->inline_depth());
3529      return make(ptr, klass(), klass_is_exact(),
3530                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3531    }
3532    case NotNull:
3533    case BotPTR: {
3534      int instance_id = meet_instance_id(tp->instance_id());
3535      const TypePtr* speculative = xmeet_speculative(tp);
3536      int depth = meet_inline_depth(tp->inline_depth());
3537      return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3538    }
3539    default: typerr(t);
3540    }
3541  }
3542
3543  case AnyPtr: {                // Meeting to AnyPtrs
3544    // Found an AnyPtr type vs self-InstPtr type
3545    const TypePtr *tp = t->is_ptr();
3546    int offset = meet_offset(tp->offset());
3547    PTR ptr = meet_ptr(tp->ptr());
3548    int instance_id = meet_instance_id(InstanceTop);
3549    const TypePtr* speculative = xmeet_speculative(tp);
3550    int depth = meet_inline_depth(tp->inline_depth());
3551    switch (tp->ptr()) {
3552    case Null:
3553      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3554      // else fall through to AnyNull
3555    case TopPTR:
3556    case AnyNull: {
3557      return make(ptr, klass(), klass_is_exact(),
3558                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3559    }
3560    case NotNull:
3561    case BotPTR:
3562      return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3563    default: typerr(t);
3564    }
3565  }
3566
3567  /*
3568                 A-top         }
3569               /   |   \       }  Tops
3570           B-top A-any C-top   }
3571              | /  |  \ |      }  Any-nulls
3572           B-any   |   C-any   }
3573              |    |    |
3574           B-con A-con C-con   } constants; not comparable across classes
3575              |    |    |
3576           B-not   |   C-not   }
3577              | \  |  / |      }  not-nulls
3578           B-bot A-not C-bot   }
3579               \   |   /       }  Bottoms
3580                 A-bot         }
3581  */
3582
3583  case InstPtr: {                // Meeting 2 Oops?
3584    // Found an InstPtr sub-type vs self-InstPtr type
3585    const TypeInstPtr *tinst = t->is_instptr();
3586    int off = meet_offset( tinst->offset() );
3587    PTR ptr = meet_ptr( tinst->ptr() );
3588    int instance_id = meet_instance_id(tinst->instance_id());
3589    const TypePtr* speculative = xmeet_speculative(tinst);
3590    int depth = meet_inline_depth(tinst->inline_depth());
3591
3592    // Check for easy case; klasses are equal (and perhaps not loaded!)
3593    // If we have constants, then we created oops so classes are loaded
3594    // and we can handle the constants further down.  This case handles
3595    // both-not-loaded or both-loaded classes
3596    if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3597      return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3598    }
3599
3600    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3601    ciKlass* tinst_klass = tinst->klass();
3602    ciKlass* this_klass  = this->klass();
3603    bool tinst_xk = tinst->klass_is_exact();
3604    bool this_xk  = this->klass_is_exact();
3605    if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3606      // One of these classes has not been loaded
3607      const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3608#ifndef PRODUCT
3609      if( PrintOpto && Verbose ) {
3610        tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3611        tty->print("  this == "); this->dump(); tty->cr();
3612        tty->print(" tinst == "); tinst->dump(); tty->cr();
3613      }
3614#endif
3615      return unloaded_meet;
3616    }
3617
3618    // Handle mixing oops and interfaces first.
3619    if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3620                                        tinst_klass == ciEnv::current()->Object_klass())) {
3621      ciKlass *tmp = tinst_klass; // Swap interface around
3622      tinst_klass = this_klass;
3623      this_klass = tmp;
3624      bool tmp2 = tinst_xk;
3625      tinst_xk = this_xk;
3626      this_xk = tmp2;
3627    }
3628    if (tinst_klass->is_interface() &&
3629        !(this_klass->is_interface() ||
3630          // Treat java/lang/Object as an honorary interface,
3631          // because we need a bottom for the interface hierarchy.
3632          this_klass == ciEnv::current()->Object_klass())) {
3633      // Oop meets interface!
3634
3635      // See if the oop subtypes (implements) interface.
3636      ciKlass *k;
3637      bool xk;
3638      if( this_klass->is_subtype_of( tinst_klass ) ) {
3639        // Oop indeed subtypes.  Now keep oop or interface depending
3640        // on whether we are both above the centerline or either is
3641        // below the centerline.  If we are on the centerline
3642        // (e.g., Constant vs. AnyNull interface), use the constant.
3643        k  = below_centerline(ptr) ? tinst_klass : this_klass;
3644        // If we are keeping this_klass, keep its exactness too.
3645        xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3646      } else {                  // Does not implement, fall to Object
3647        // Oop does not implement interface, so mixing falls to Object
3648        // just like the verifier does (if both are above the
3649        // centerline fall to interface)
3650        k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3651        xk = above_centerline(ptr) ? tinst_xk : false;
3652        // Watch out for Constant vs. AnyNull interface.
3653        if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3654        instance_id = InstanceBot;
3655      }
3656      ciObject* o = NULL;  // the Constant value, if any
3657      if (ptr == Constant) {
3658        // Find out which constant.
3659        o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3660      }
3661      return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3662    }
3663
3664    // Either oop vs oop or interface vs interface or interface vs Object
3665
3666    // !!! Here's how the symmetry requirement breaks down into invariants:
3667    // If we split one up & one down AND they subtype, take the down man.
3668    // If we split one up & one down AND they do NOT subtype, "fall hard".
3669    // If both are up and they subtype, take the subtype class.
3670    // If both are up and they do NOT subtype, "fall hard".
3671    // If both are down and they subtype, take the supertype class.
3672    // If both are down and they do NOT subtype, "fall hard".
3673    // Constants treated as down.
3674
3675    // Now, reorder the above list; observe that both-down+subtype is also
3676    // "fall hard"; "fall hard" becomes the default case:
3677    // If we split one up & one down AND they subtype, take the down man.
3678    // If both are up and they subtype, take the subtype class.
3679
3680    // If both are down and they subtype, "fall hard".
3681    // If both are down and they do NOT subtype, "fall hard".
3682    // If both are up and they do NOT subtype, "fall hard".
3683    // If we split one up & one down AND they do NOT subtype, "fall hard".
3684
3685    // If a proper subtype is exact, and we return it, we return it exactly.
3686    // If a proper supertype is exact, there can be no subtyping relationship!
3687    // If both types are equal to the subtype, exactness is and-ed below the
3688    // centerline and or-ed above it.  (N.B. Constants are always exact.)
3689
3690    // Check for subtyping:
3691    ciKlass *subtype = NULL;
3692    bool subtype_exact = false;
3693    if( tinst_klass->equals(this_klass) ) {
3694      subtype = this_klass;
3695      subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3696    } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3697      subtype = this_klass;     // Pick subtyping class
3698      subtype_exact = this_xk;
3699    } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3700      subtype = tinst_klass;    // Pick subtyping class
3701      subtype_exact = tinst_xk;
3702    }
3703
3704    if( subtype ) {
3705      if( above_centerline(ptr) ) { // both are up?
3706        this_klass = tinst_klass = subtype;
3707        this_xk = tinst_xk = subtype_exact;
3708      } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3709        this_klass = tinst_klass; // tinst is down; keep down man
3710        this_xk = tinst_xk;
3711      } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3712        tinst_klass = this_klass; // this is down; keep down man
3713        tinst_xk = this_xk;
3714      } else {
3715        this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3716      }
3717    }
3718
3719    // Check for classes now being equal
3720    if (tinst_klass->equals(this_klass)) {
3721      // If the klasses are equal, the constants may still differ.  Fall to
3722      // NotNull if they do (neither constant is NULL; that is a special case
3723      // handled elsewhere).
3724      ciObject* o = NULL;             // Assume not constant when done
3725      ciObject* this_oop  = const_oop();
3726      ciObject* tinst_oop = tinst->const_oop();
3727      if( ptr == Constant ) {
3728        if (this_oop != NULL && tinst_oop != NULL &&
3729            this_oop->equals(tinst_oop) )
3730          o = this_oop;
3731        else if (above_centerline(this ->_ptr))
3732          o = tinst_oop;
3733        else if (above_centerline(tinst ->_ptr))
3734          o = this_oop;
3735        else
3736          ptr = NotNull;
3737      }
3738      return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3739    } // Else classes are not equal
3740
3741    // Since klasses are different, we require a LCA in the Java
3742    // class hierarchy - which means we have to fall to at least NotNull.
3743    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3744      ptr = NotNull;
3745
3746    instance_id = InstanceBot;
3747
3748    // Now we find the LCA of Java classes
3749    ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3750    return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3751  } // End of case InstPtr
3752
3753  } // End of switch
3754  return this;                  // Return the double constant
3755}
3756
3757
3758//------------------------java_mirror_type--------------------------------------
3759ciType* TypeInstPtr::java_mirror_type() const {
3760  // must be a singleton type
3761  if( const_oop() == NULL )  return NULL;
3762
3763  // must be of type java.lang.Class
3764  if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3765
3766  return const_oop()->as_instance()->java_mirror_type();
3767}
3768
3769
3770//------------------------------xdual------------------------------------------
3771// Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3772// inheritance mechanism.
3773const Type *TypeInstPtr::xdual() const {
3774  return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3775}
3776
3777//------------------------------eq---------------------------------------------
3778// Structural equality check for Type representations
3779bool TypeInstPtr::eq( const Type *t ) const {
3780  const TypeInstPtr *p = t->is_instptr();
3781  return
3782    klass()->equals(p->klass()) &&
3783    TypeOopPtr::eq(p);          // Check sub-type stuff
3784}
3785
3786//------------------------------hash-------------------------------------------
3787// Type-specific hashing function.
3788int TypeInstPtr::hash(void) const {
3789  int hash = klass()->hash() + TypeOopPtr::hash();
3790  return hash;
3791}
3792
3793//------------------------------dump2------------------------------------------
3794// Dump oop Type
3795#ifndef PRODUCT
3796void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3797  // Print the name of the klass.
3798  klass()->print_name_on(st);
3799
3800  switch( _ptr ) {
3801  case Constant:
3802    // TO DO: Make CI print the hex address of the underlying oop.
3803    if (WizardMode || Verbose) {
3804      const_oop()->print_oop(st);
3805    }
3806  case BotPTR:
3807    if (!WizardMode && !Verbose) {
3808      if( _klass_is_exact ) st->print(":exact");
3809      break;
3810    }
3811  case TopPTR:
3812  case AnyNull:
3813  case NotNull:
3814    st->print(":%s", ptr_msg[_ptr]);
3815    if( _klass_is_exact ) st->print(":exact");
3816    break;
3817  }
3818
3819  if( _offset ) {               // Dump offset, if any
3820    if( _offset == OffsetBot )      st->print("+any");
3821    else if( _offset == OffsetTop ) st->print("+unknown");
3822    else st->print("+%d", _offset);
3823  }
3824
3825  st->print(" *");
3826  if (_instance_id == InstanceTop)
3827    st->print(",iid=top");
3828  else if (_instance_id != InstanceBot)
3829    st->print(",iid=%d",_instance_id);
3830
3831  dump_inline_depth(st);
3832  dump_speculative(st);
3833}
3834#endif
3835
3836//------------------------------add_offset-------------------------------------
3837const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3838  return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3839              _instance_id, add_offset_speculative(offset), _inline_depth);
3840}
3841
3842const Type *TypeInstPtr::remove_speculative() const {
3843  if (_speculative == NULL) {
3844    return this;
3845  }
3846  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3847  return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3848              _instance_id, NULL, _inline_depth);
3849}
3850
3851const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3852  if (!UseInlineDepthForSpeculativeTypes) {
3853    return this;
3854  }
3855  return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3856}
3857
3858//=============================================================================
3859// Convenience common pre-built types.
3860const TypeAryPtr *TypeAryPtr::RANGE;
3861const TypeAryPtr *TypeAryPtr::OOPS;
3862const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3863const TypeAryPtr *TypeAryPtr::BYTES;
3864const TypeAryPtr *TypeAryPtr::SHORTS;
3865const TypeAryPtr *TypeAryPtr::CHARS;
3866const TypeAryPtr *TypeAryPtr::INTS;
3867const TypeAryPtr *TypeAryPtr::LONGS;
3868const TypeAryPtr *TypeAryPtr::FLOATS;
3869const TypeAryPtr *TypeAryPtr::DOUBLES;
3870
3871//------------------------------make-------------------------------------------
3872const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3873                                   int instance_id, const TypePtr* speculative, int inline_depth) {
3874  assert(!(k == NULL && ary->_elem->isa_int()),
3875         "integral arrays must be pre-equipped with a class");
3876  if (!xk)  xk = ary->ary_must_be_exact();
3877  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3878  if (!UseExactTypes)  xk = (ptr == Constant);
3879  return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3880}
3881
3882//------------------------------make-------------------------------------------
3883const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3884                                   int instance_id, const TypePtr* speculative, int inline_depth,
3885                                   bool is_autobox_cache) {
3886  assert(!(k == NULL && ary->_elem->isa_int()),
3887         "integral arrays must be pre-equipped with a class");
3888  assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3889  if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3890  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3891  if (!UseExactTypes)  xk = (ptr == Constant);
3892  return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3893}
3894
3895//------------------------------cast_to_ptr_type-------------------------------
3896const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3897  if( ptr == _ptr ) return this;
3898  return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3899}
3900
3901
3902//-----------------------------cast_to_exactness-------------------------------
3903const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3904  if( klass_is_exact == _klass_is_exact ) return this;
3905  if (!UseExactTypes)  return this;
3906  if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3907  return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3908}
3909
3910//-----------------------------cast_to_instance_id----------------------------
3911const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3912  if( instance_id == _instance_id ) return this;
3913  return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3914}
3915
3916//-----------------------------narrow_size_type-------------------------------
3917// Local cache for arrayOopDesc::max_array_length(etype),
3918// which is kind of slow (and cached elsewhere by other users).
3919static jint max_array_length_cache[T_CONFLICT+1];
3920static jint max_array_length(BasicType etype) {
3921  jint& cache = max_array_length_cache[etype];
3922  jint res = cache;
3923  if (res == 0) {
3924    switch (etype) {
3925    case T_NARROWOOP:
3926      etype = T_OBJECT;
3927      break;
3928    case T_NARROWKLASS:
3929    case T_CONFLICT:
3930    case T_ILLEGAL:
3931    case T_VOID:
3932      etype = T_BYTE;           // will produce conservatively high value
3933    }
3934    cache = res = arrayOopDesc::max_array_length(etype);
3935  }
3936  return res;
3937}
3938
3939// Narrow the given size type to the index range for the given array base type.
3940// Return NULL if the resulting int type becomes empty.
3941const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3942  jint hi = size->_hi;
3943  jint lo = size->_lo;
3944  jint min_lo = 0;
3945  jint max_hi = max_array_length(elem()->basic_type());
3946  //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3947  bool chg = false;
3948  if (lo < min_lo) {
3949    lo = min_lo;
3950    if (size->is_con()) {
3951      hi = lo;
3952    }
3953    chg = true;
3954  }
3955  if (hi > max_hi) {
3956    hi = max_hi;
3957    if (size->is_con()) {
3958      lo = hi;
3959    }
3960    chg = true;
3961  }
3962  // Negative length arrays will produce weird intermediate dead fast-path code
3963  if (lo > hi)
3964    return TypeInt::ZERO;
3965  if (!chg)
3966    return size;
3967  return TypeInt::make(lo, hi, Type::WidenMin);
3968}
3969
3970//-------------------------------cast_to_size----------------------------------
3971const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3972  assert(new_size != NULL, "");
3973  new_size = narrow_size_type(new_size);
3974  if (new_size == size())  return this;
3975  const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3976  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3977}
3978
3979//------------------------------cast_to_stable---------------------------------
3980const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3981  if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3982    return this;
3983
3984  const Type* elem = this->elem();
3985  const TypePtr* elem_ptr = elem->make_ptr();
3986
3987  if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3988    // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3989    elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3990  }
3991
3992  const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3993
3994  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3995}
3996
3997//-----------------------------stable_dimension--------------------------------
3998int TypeAryPtr::stable_dimension() const {
3999  if (!is_stable())  return 0;
4000  int dim = 1;
4001  const TypePtr* elem_ptr = elem()->make_ptr();
4002  if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4003    dim += elem_ptr->is_aryptr()->stable_dimension();
4004  return dim;
4005}
4006
4007//----------------------cast_to_autobox_cache-----------------------------------
4008const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4009  if (is_autobox_cache() == cache)  return this;
4010  const TypeOopPtr* etype = elem()->make_oopptr();
4011  if (etype == NULL)  return this;
4012  // The pointers in the autobox arrays are always non-null.
4013  TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4014  etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4015  const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4016  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4017}
4018
4019//------------------------------eq---------------------------------------------
4020// Structural equality check for Type representations
4021bool TypeAryPtr::eq( const Type *t ) const {
4022  const TypeAryPtr *p = t->is_aryptr();
4023  return
4024    _ary == p->_ary &&  // Check array
4025    TypeOopPtr::eq(p);  // Check sub-parts
4026}
4027
4028//------------------------------hash-------------------------------------------
4029// Type-specific hashing function.
4030int TypeAryPtr::hash(void) const {
4031  return (intptr_t)_ary + TypeOopPtr::hash();
4032}
4033
4034//------------------------------meet-------------------------------------------
4035// Compute the MEET of two types.  It returns a new Type object.
4036const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4037  // Perform a fast test for common case; meeting the same types together.
4038  if( this == t ) return this;  // Meeting same type-rep?
4039  // Current "this->_base" is Pointer
4040  switch (t->base()) {          // switch on original type
4041
4042  // Mixing ints & oops happens when javac reuses local variables
4043  case Int:
4044  case Long:
4045  case FloatTop:
4046  case FloatCon:
4047  case FloatBot:
4048  case DoubleTop:
4049  case DoubleCon:
4050  case DoubleBot:
4051  case NarrowOop:
4052  case NarrowKlass:
4053  case Bottom:                  // Ye Olde Default
4054    return Type::BOTTOM;
4055  case Top:
4056    return this;
4057
4058  default:                      // All else is a mistake
4059    typerr(t);
4060
4061  case OopPtr: {                // Meeting to OopPtrs
4062    // Found a OopPtr type vs self-AryPtr type
4063    const TypeOopPtr *tp = t->is_oopptr();
4064    int offset = meet_offset(tp->offset());
4065    PTR ptr = meet_ptr(tp->ptr());
4066    int depth = meet_inline_depth(tp->inline_depth());
4067    const TypePtr* speculative = xmeet_speculative(tp);
4068    switch (tp->ptr()) {
4069    case TopPTR:
4070    case AnyNull: {
4071      int instance_id = meet_instance_id(InstanceTop);
4072      return make(ptr, (ptr == Constant ? const_oop() : NULL),
4073                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4074    }
4075    case BotPTR:
4076    case NotNull: {
4077      int instance_id = meet_instance_id(tp->instance_id());
4078      return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4079    }
4080    default: ShouldNotReachHere();
4081    }
4082  }
4083
4084  case AnyPtr: {                // Meeting two AnyPtrs
4085    // Found an AnyPtr type vs self-AryPtr type
4086    const TypePtr *tp = t->is_ptr();
4087    int offset = meet_offset(tp->offset());
4088    PTR ptr = meet_ptr(tp->ptr());
4089    const TypePtr* speculative = xmeet_speculative(tp);
4090    int depth = meet_inline_depth(tp->inline_depth());
4091    switch (tp->ptr()) {
4092    case TopPTR:
4093      return this;
4094    case BotPTR:
4095    case NotNull:
4096      return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4097    case Null:
4098      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4099      // else fall through to AnyNull
4100    case AnyNull: {
4101      int instance_id = meet_instance_id(InstanceTop);
4102      return make(ptr, (ptr == Constant ? const_oop() : NULL),
4103                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4104    }
4105    default: ShouldNotReachHere();
4106    }
4107  }
4108
4109  case MetadataPtr:
4110  case KlassPtr:
4111  case RawPtr: return TypePtr::BOTTOM;
4112
4113  case AryPtr: {                // Meeting 2 references?
4114    const TypeAryPtr *tap = t->is_aryptr();
4115    int off = meet_offset(tap->offset());
4116    const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4117    PTR ptr = meet_ptr(tap->ptr());
4118    int instance_id = meet_instance_id(tap->instance_id());
4119    const TypePtr* speculative = xmeet_speculative(tap);
4120    int depth = meet_inline_depth(tap->inline_depth());
4121    ciKlass* lazy_klass = NULL;
4122    if (tary->_elem->isa_int()) {
4123      // Integral array element types have irrelevant lattice relations.
4124      // It is the klass that determines array layout, not the element type.
4125      if (_klass == NULL)
4126        lazy_klass = tap->_klass;
4127      else if (tap->_klass == NULL || tap->_klass == _klass) {
4128        lazy_klass = _klass;
4129      } else {
4130        // Something like byte[int+] meets char[int+].
4131        // This must fall to bottom, not (int[-128..65535])[int+].
4132        instance_id = InstanceBot;
4133        tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4134      }
4135    } else // Non integral arrays.
4136      // Must fall to bottom if exact klasses in upper lattice
4137      // are not equal or super klass is exact.
4138      if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4139          // meet with top[] and bottom[] are processed further down:
4140          tap->_klass != NULL  && this->_klass != NULL   &&
4141          // both are exact and not equal:
4142          ((tap->_klass_is_exact && this->_klass_is_exact) ||
4143           // 'tap'  is exact and super or unrelated:
4144           (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4145           // 'this' is exact and super or unrelated:
4146           (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4147      if (above_centerline(ptr)) {
4148        tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4149      }
4150      return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4151    }
4152
4153    bool xk = false;
4154    switch (tap->ptr()) {
4155    case AnyNull:
4156    case TopPTR:
4157      // Compute new klass on demand, do not use tap->_klass
4158      if (below_centerline(this->_ptr)) {
4159        xk = this->_klass_is_exact;
4160      } else {
4161        xk = (tap->_klass_is_exact | this->_klass_is_exact);
4162      }
4163      return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4164    case Constant: {
4165      ciObject* o = const_oop();
4166      if( _ptr == Constant ) {
4167        if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4168          xk = (klass() == tap->klass());
4169          ptr = NotNull;
4170          o = NULL;
4171          instance_id = InstanceBot;
4172        } else {
4173          xk = true;
4174        }
4175      } else if(above_centerline(_ptr)) {
4176        o = tap->const_oop();
4177        xk = true;
4178      } else {
4179        // Only precise for identical arrays
4180        xk = this->_klass_is_exact && (klass() == tap->klass());
4181      }
4182      return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4183    }
4184    case NotNull:
4185    case BotPTR:
4186      // Compute new klass on demand, do not use tap->_klass
4187      if (above_centerline(this->_ptr))
4188            xk = tap->_klass_is_exact;
4189      else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4190              (klass() == tap->klass()); // Only precise for identical arrays
4191      return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4192    default: ShouldNotReachHere();
4193    }
4194  }
4195
4196  // All arrays inherit from Object class
4197  case InstPtr: {
4198    const TypeInstPtr *tp = t->is_instptr();
4199    int offset = meet_offset(tp->offset());
4200    PTR ptr = meet_ptr(tp->ptr());
4201    int instance_id = meet_instance_id(tp->instance_id());
4202    const TypePtr* speculative = xmeet_speculative(tp);
4203    int depth = meet_inline_depth(tp->inline_depth());
4204    switch (ptr) {
4205    case TopPTR:
4206    case AnyNull:                // Fall 'down' to dual of object klass
4207      // For instances when a subclass meets a superclass we fall
4208      // below the centerline when the superclass is exact. We need to
4209      // do the same here.
4210      if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4211        return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4212      } else {
4213        // cannot subclass, so the meet has to fall badly below the centerline
4214        ptr = NotNull;
4215        instance_id = InstanceBot;
4216        return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4217      }
4218    case Constant:
4219    case NotNull:
4220    case BotPTR:                // Fall down to object klass
4221      // LCA is object_klass, but if we subclass from the top we can do better
4222      if (above_centerline(tp->ptr())) {
4223        // If 'tp'  is above the centerline and it is Object class
4224        // then we can subclass in the Java class hierarchy.
4225        // For instances when a subclass meets a superclass we fall
4226        // below the centerline when the superclass is exact. We need
4227        // to do the same here.
4228        if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4229          // that is, my array type is a subtype of 'tp' klass
4230          return make(ptr, (ptr == Constant ? const_oop() : NULL),
4231                      _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4232        }
4233      }
4234      // The other case cannot happen, since t cannot be a subtype of an array.
4235      // The meet falls down to Object class below centerline.
4236      if( ptr == Constant )
4237         ptr = NotNull;
4238      instance_id = InstanceBot;
4239      return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4240    default: typerr(t);
4241    }
4242  }
4243  }
4244  return this;                  // Lint noise
4245}
4246
4247//------------------------------xdual------------------------------------------
4248// Dual: compute field-by-field dual
4249const Type *TypeAryPtr::xdual() const {
4250  return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4251}
4252
4253//----------------------interface_vs_oop---------------------------------------
4254#ifdef ASSERT
4255bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4256  const TypeAryPtr* t_aryptr = t->isa_aryptr();
4257  if (t_aryptr) {
4258    return _ary->interface_vs_oop(t_aryptr->_ary);
4259  }
4260  return false;
4261}
4262#endif
4263
4264//------------------------------dump2------------------------------------------
4265#ifndef PRODUCT
4266void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4267  _ary->dump2(d,depth,st);
4268  switch( _ptr ) {
4269  case Constant:
4270    const_oop()->print(st);
4271    break;
4272  case BotPTR:
4273    if (!WizardMode && !Verbose) {
4274      if( _klass_is_exact ) st->print(":exact");
4275      break;
4276    }
4277  case TopPTR:
4278  case AnyNull:
4279  case NotNull:
4280    st->print(":%s", ptr_msg[_ptr]);
4281    if( _klass_is_exact ) st->print(":exact");
4282    break;
4283  }
4284
4285  if( _offset != 0 ) {
4286    int header_size = objArrayOopDesc::header_size() * wordSize;
4287    if( _offset == OffsetTop )       st->print("+undefined");
4288    else if( _offset == OffsetBot )  st->print("+any");
4289    else if( _offset < header_size ) st->print("+%d", _offset);
4290    else {
4291      BasicType basic_elem_type = elem()->basic_type();
4292      int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4293      int elem_size = type2aelembytes(basic_elem_type);
4294      st->print("[%d]", (_offset - array_base)/elem_size);
4295    }
4296  }
4297  st->print(" *");
4298  if (_instance_id == InstanceTop)
4299    st->print(",iid=top");
4300  else if (_instance_id != InstanceBot)
4301    st->print(",iid=%d",_instance_id);
4302
4303  dump_inline_depth(st);
4304  dump_speculative(st);
4305}
4306#endif
4307
4308bool TypeAryPtr::empty(void) const {
4309  if (_ary->empty())       return true;
4310  return TypeOopPtr::empty();
4311}
4312
4313//------------------------------add_offset-------------------------------------
4314const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4315  return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4316}
4317
4318const Type *TypeAryPtr::remove_speculative() const {
4319  if (_speculative == NULL) {
4320    return this;
4321  }
4322  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4323  return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4324}
4325
4326const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4327  if (!UseInlineDepthForSpeculativeTypes) {
4328    return this;
4329  }
4330  return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4331}
4332
4333//=============================================================================
4334
4335//------------------------------hash-------------------------------------------
4336// Type-specific hashing function.
4337int TypeNarrowPtr::hash(void) const {
4338  return _ptrtype->hash() + 7;
4339}
4340
4341bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4342  return _ptrtype->singleton();
4343}
4344
4345bool TypeNarrowPtr::empty(void) const {
4346  return _ptrtype->empty();
4347}
4348
4349intptr_t TypeNarrowPtr::get_con() const {
4350  return _ptrtype->get_con();
4351}
4352
4353bool TypeNarrowPtr::eq( const Type *t ) const {
4354  const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4355  if (tc != NULL) {
4356    if (_ptrtype->base() != tc->_ptrtype->base()) {
4357      return false;
4358    }
4359    return tc->_ptrtype->eq(_ptrtype);
4360  }
4361  return false;
4362}
4363
4364const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4365  const TypePtr* odual = _ptrtype->dual()->is_ptr();
4366  return make_same_narrowptr(odual);
4367}
4368
4369
4370const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4371  if (isa_same_narrowptr(kills)) {
4372    const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4373    if (ft->empty())
4374      return Type::TOP;           // Canonical empty value
4375    if (ft->isa_ptr()) {
4376      return make_hash_same_narrowptr(ft->isa_ptr());
4377    }
4378    return ft;
4379  } else if (kills->isa_ptr()) {
4380    const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4381    if (ft->empty())
4382      return Type::TOP;           // Canonical empty value
4383    return ft;
4384  } else {
4385    return Type::TOP;
4386  }
4387}
4388
4389//------------------------------xmeet------------------------------------------
4390// Compute the MEET of two types.  It returns a new Type object.
4391const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4392  // Perform a fast test for common case; meeting the same types together.
4393  if( this == t ) return this;  // Meeting same type-rep?
4394
4395  if (t->base() == base()) {
4396    const Type* result = _ptrtype->xmeet(t->make_ptr());
4397    if (result->isa_ptr()) {
4398      return make_hash_same_narrowptr(result->is_ptr());
4399    }
4400    return result;
4401  }
4402
4403  // Current "this->_base" is NarrowKlass or NarrowOop
4404  switch (t->base()) {          // switch on original type
4405
4406  case Int:                     // Mixing ints & oops happens when javac
4407  case Long:                    // reuses local variables
4408  case FloatTop:
4409  case FloatCon:
4410  case FloatBot:
4411  case DoubleTop:
4412  case DoubleCon:
4413  case DoubleBot:
4414  case AnyPtr:
4415  case RawPtr:
4416  case OopPtr:
4417  case InstPtr:
4418  case AryPtr:
4419  case MetadataPtr:
4420  case KlassPtr:
4421  case NarrowOop:
4422  case NarrowKlass:
4423
4424  case Bottom:                  // Ye Olde Default
4425    return Type::BOTTOM;
4426  case Top:
4427    return this;
4428
4429  default:                      // All else is a mistake
4430    typerr(t);
4431
4432  } // End of switch
4433
4434  return this;
4435}
4436
4437#ifndef PRODUCT
4438void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4439  _ptrtype->dump2(d, depth, st);
4440}
4441#endif
4442
4443const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4444const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4445
4446
4447const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4448  return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4449}
4450
4451const Type* TypeNarrowOop::remove_speculative() const {
4452  return make(_ptrtype->remove_speculative()->is_ptr());
4453}
4454
4455const Type* TypeNarrowOop::cleanup_speculative() const {
4456  return make(_ptrtype->cleanup_speculative()->is_ptr());
4457}
4458
4459#ifndef PRODUCT
4460void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4461  st->print("narrowoop: ");
4462  TypeNarrowPtr::dump2(d, depth, st);
4463}
4464#endif
4465
4466const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4467
4468const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4469  return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4470}
4471
4472#ifndef PRODUCT
4473void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4474  st->print("narrowklass: ");
4475  TypeNarrowPtr::dump2(d, depth, st);
4476}
4477#endif
4478
4479
4480//------------------------------eq---------------------------------------------
4481// Structural equality check for Type representations
4482bool TypeMetadataPtr::eq( const Type *t ) const {
4483  const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4484  ciMetadata* one = metadata();
4485  ciMetadata* two = a->metadata();
4486  if (one == NULL || two == NULL) {
4487    return (one == two) && TypePtr::eq(t);
4488  } else {
4489    return one->equals(two) && TypePtr::eq(t);
4490  }
4491}
4492
4493//------------------------------hash-------------------------------------------
4494// Type-specific hashing function.
4495int TypeMetadataPtr::hash(void) const {
4496  return
4497    (metadata() ? metadata()->hash() : 0) +
4498    TypePtr::hash();
4499}
4500
4501//------------------------------singleton--------------------------------------
4502// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4503// constants
4504bool TypeMetadataPtr::singleton(void) const {
4505  // detune optimizer to not generate constant metadata + constant offset as a constant!
4506  // TopPTR, Null, AnyNull, Constant are all singletons
4507  return (_offset == 0) && !below_centerline(_ptr);
4508}
4509
4510//------------------------------add_offset-------------------------------------
4511const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4512  return make( _ptr, _metadata, xadd_offset(offset));
4513}
4514
4515//-----------------------------filter------------------------------------------
4516// Do not allow interface-vs.-noninterface joins to collapse to top.
4517const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4518  const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4519  if (ft == NULL || ft->empty())
4520    return Type::TOP;           // Canonical empty value
4521  return ft;
4522}
4523
4524 //------------------------------get_con----------------------------------------
4525intptr_t TypeMetadataPtr::get_con() const {
4526  assert( _ptr == Null || _ptr == Constant, "" );
4527  assert( _offset >= 0, "" );
4528
4529  if (_offset != 0) {
4530    // After being ported to the compiler interface, the compiler no longer
4531    // directly manipulates the addresses of oops.  Rather, it only has a pointer
4532    // to a handle at compile time.  This handle is embedded in the generated
4533    // code and dereferenced at the time the nmethod is made.  Until that time,
4534    // it is not reasonable to do arithmetic with the addresses of oops (we don't
4535    // have access to the addresses!).  This does not seem to currently happen,
4536    // but this assertion here is to help prevent its occurence.
4537    tty->print_cr("Found oop constant with non-zero offset");
4538    ShouldNotReachHere();
4539  }
4540
4541  return (intptr_t)metadata()->constant_encoding();
4542}
4543
4544//------------------------------cast_to_ptr_type-------------------------------
4545const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4546  if( ptr == _ptr ) return this;
4547  return make(ptr, metadata(), _offset);
4548}
4549
4550//------------------------------meet-------------------------------------------
4551// Compute the MEET of two types.  It returns a new Type object.
4552const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4553  // Perform a fast test for common case; meeting the same types together.
4554  if( this == t ) return this;  // Meeting same type-rep?
4555
4556  // Current "this->_base" is OopPtr
4557  switch (t->base()) {          // switch on original type
4558
4559  case Int:                     // Mixing ints & oops happens when javac
4560  case Long:                    // reuses local variables
4561  case FloatTop:
4562  case FloatCon:
4563  case FloatBot:
4564  case DoubleTop:
4565  case DoubleCon:
4566  case DoubleBot:
4567  case NarrowOop:
4568  case NarrowKlass:
4569  case Bottom:                  // Ye Olde Default
4570    return Type::BOTTOM;
4571  case Top:
4572    return this;
4573
4574  default:                      // All else is a mistake
4575    typerr(t);
4576
4577  case AnyPtr: {
4578    // Found an AnyPtr type vs self-OopPtr type
4579    const TypePtr *tp = t->is_ptr();
4580    int offset = meet_offset(tp->offset());
4581    PTR ptr = meet_ptr(tp->ptr());
4582    switch (tp->ptr()) {
4583    case Null:
4584      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4585      // else fall through:
4586    case TopPTR:
4587    case AnyNull: {
4588      return make(ptr, _metadata, offset);
4589    }
4590    case BotPTR:
4591    case NotNull:
4592      return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4593    default: typerr(t);
4594    }
4595  }
4596
4597  case RawPtr:
4598  case KlassPtr:
4599  case OopPtr:
4600  case InstPtr:
4601  case AryPtr:
4602    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4603
4604  case MetadataPtr: {
4605    const TypeMetadataPtr *tp = t->is_metadataptr();
4606    int offset = meet_offset(tp->offset());
4607    PTR tptr = tp->ptr();
4608    PTR ptr = meet_ptr(tptr);
4609    ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4610    if (tptr == TopPTR || _ptr == TopPTR ||
4611        metadata()->equals(tp->metadata())) {
4612      return make(ptr, md, offset);
4613    }
4614    // metadata is different
4615    if( ptr == Constant ) {  // Cannot be equal constants, so...
4616      if( tptr == Constant && _ptr != Constant)  return t;
4617      if( _ptr == Constant && tptr != Constant)  return this;
4618      ptr = NotNull;            // Fall down in lattice
4619    }
4620    return make(ptr, NULL, offset);
4621    break;
4622  }
4623  } // End of switch
4624  return this;                  // Return the double constant
4625}
4626
4627
4628//------------------------------xdual------------------------------------------
4629// Dual of a pure metadata pointer.
4630const Type *TypeMetadataPtr::xdual() const {
4631  return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4632}
4633
4634//------------------------------dump2------------------------------------------
4635#ifndef PRODUCT
4636void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4637  st->print("metadataptr:%s", ptr_msg[_ptr]);
4638  if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4639  switch( _offset ) {
4640  case OffsetTop: st->print("+top"); break;
4641  case OffsetBot: st->print("+any"); break;
4642  case         0: break;
4643  default:        st->print("+%d",_offset); break;
4644  }
4645}
4646#endif
4647
4648
4649//=============================================================================
4650// Convenience common pre-built type.
4651const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4652
4653TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4654  TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4655}
4656
4657const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4658  return make(Constant, m, 0);
4659}
4660const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4661  return make(Constant, m, 0);
4662}
4663
4664//------------------------------make-------------------------------------------
4665// Create a meta data constant
4666const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4667  assert(m == NULL || !m->is_klass(), "wrong type");
4668  return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4669}
4670
4671
4672//=============================================================================
4673// Convenience common pre-built types.
4674
4675// Not-null object klass or below
4676const TypeKlassPtr *TypeKlassPtr::OBJECT;
4677const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4678
4679//------------------------------TypeKlassPtr-----------------------------------
4680TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4681  : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4682}
4683
4684//------------------------------make-------------------------------------------
4685// ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4686const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4687  assert( k != NULL, "Expect a non-NULL klass");
4688  assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4689  TypeKlassPtr *r =
4690    (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4691
4692  return r;
4693}
4694
4695//------------------------------eq---------------------------------------------
4696// Structural equality check for Type representations
4697bool TypeKlassPtr::eq( const Type *t ) const {
4698  const TypeKlassPtr *p = t->is_klassptr();
4699  return
4700    klass()->equals(p->klass()) &&
4701    TypePtr::eq(p);
4702}
4703
4704//------------------------------hash-------------------------------------------
4705// Type-specific hashing function.
4706int TypeKlassPtr::hash(void) const {
4707  return klass()->hash() + TypePtr::hash();
4708}
4709
4710//------------------------------singleton--------------------------------------
4711// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4712// constants
4713bool TypeKlassPtr::singleton(void) const {
4714  // detune optimizer to not generate constant klass + constant offset as a constant!
4715  // TopPTR, Null, AnyNull, Constant are all singletons
4716  return (_offset == 0) && !below_centerline(_ptr);
4717}
4718
4719// Do not allow interface-vs.-noninterface joins to collapse to top.
4720const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4721  // logic here mirrors the one from TypeOopPtr::filter. See comments
4722  // there.
4723  const Type* ft = join_helper(kills, include_speculative);
4724  const TypeKlassPtr* ftkp = ft->isa_klassptr();
4725  const TypeKlassPtr* ktkp = kills->isa_klassptr();
4726
4727  if (ft->empty()) {
4728    if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4729      return kills;             // Uplift to interface
4730
4731    return Type::TOP;           // Canonical empty value
4732  }
4733
4734  // Interface klass type could be exact in opposite to interface type,
4735  // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4736  if (ftkp != NULL && ktkp != NULL &&
4737      ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4738      !ftkp->klass_is_exact() && // Keep exact interface klass
4739      ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4740    return ktkp->cast_to_ptr_type(ftkp->ptr());
4741  }
4742
4743  return ft;
4744}
4745
4746//----------------------compute_klass------------------------------------------
4747// Compute the defining klass for this class
4748ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4749  // Compute _klass based on element type.
4750  ciKlass* k_ary = NULL;
4751  const TypeInstPtr *tinst;
4752  const TypeAryPtr *tary;
4753  const Type* el = elem();
4754  if (el->isa_narrowoop()) {
4755    el = el->make_ptr();
4756  }
4757
4758  // Get element klass
4759  if ((tinst = el->isa_instptr()) != NULL) {
4760    // Compute array klass from element klass
4761    k_ary = ciObjArrayKlass::make(tinst->klass());
4762  } else if ((tary = el->isa_aryptr()) != NULL) {
4763    // Compute array klass from element klass
4764    ciKlass* k_elem = tary->klass();
4765    // If element type is something like bottom[], k_elem will be null.
4766    if (k_elem != NULL)
4767      k_ary = ciObjArrayKlass::make(k_elem);
4768  } else if ((el->base() == Type::Top) ||
4769             (el->base() == Type::Bottom)) {
4770    // element type of Bottom occurs from meet of basic type
4771    // and object; Top occurs when doing join on Bottom.
4772    // Leave k_ary at NULL.
4773  } else {
4774    // Cannot compute array klass directly from basic type,
4775    // since subtypes of TypeInt all have basic type T_INT.
4776#ifdef ASSERT
4777    if (verify && el->isa_int()) {
4778      // Check simple cases when verifying klass.
4779      BasicType bt = T_ILLEGAL;
4780      if (el == TypeInt::BYTE) {
4781        bt = T_BYTE;
4782      } else if (el == TypeInt::SHORT) {
4783        bt = T_SHORT;
4784      } else if (el == TypeInt::CHAR) {
4785        bt = T_CHAR;
4786      } else if (el == TypeInt::INT) {
4787        bt = T_INT;
4788      } else {
4789        return _klass; // just return specified klass
4790      }
4791      return ciTypeArrayKlass::make(bt);
4792    }
4793#endif
4794    assert(!el->isa_int(),
4795           "integral arrays must be pre-equipped with a class");
4796    // Compute array klass directly from basic type
4797    k_ary = ciTypeArrayKlass::make(el->basic_type());
4798  }
4799  return k_ary;
4800}
4801
4802//------------------------------klass------------------------------------------
4803// Return the defining klass for this class
4804ciKlass* TypeAryPtr::klass() const {
4805  if( _klass ) return _klass;   // Return cached value, if possible
4806
4807  // Oops, need to compute _klass and cache it
4808  ciKlass* k_ary = compute_klass();
4809
4810  if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4811    // The _klass field acts as a cache of the underlying
4812    // ciKlass for this array type.  In order to set the field,
4813    // we need to cast away const-ness.
4814    //
4815    // IMPORTANT NOTE: we *never* set the _klass field for the
4816    // type TypeAryPtr::OOPS.  This Type is shared between all
4817    // active compilations.  However, the ciKlass which represents
4818    // this Type is *not* shared between compilations, so caching
4819    // this value would result in fetching a dangling pointer.
4820    //
4821    // Recomputing the underlying ciKlass for each request is
4822    // a bit less efficient than caching, but calls to
4823    // TypeAryPtr::OOPS->klass() are not common enough to matter.
4824    ((TypeAryPtr*)this)->_klass = k_ary;
4825    if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4826        _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4827      ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4828    }
4829  }
4830  return k_ary;
4831}
4832
4833
4834//------------------------------add_offset-------------------------------------
4835// Access internals of klass object
4836const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4837  return make( _ptr, klass(), xadd_offset(offset) );
4838}
4839
4840//------------------------------cast_to_ptr_type-------------------------------
4841const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4842  assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4843  if( ptr == _ptr ) return this;
4844  return make(ptr, _klass, _offset);
4845}
4846
4847
4848//-----------------------------cast_to_exactness-------------------------------
4849const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4850  if( klass_is_exact == _klass_is_exact ) return this;
4851  if (!UseExactTypes)  return this;
4852  return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4853}
4854
4855
4856//-----------------------------as_instance_type--------------------------------
4857// Corresponding type for an instance of the given class.
4858// It will be NotNull, and exact if and only if the klass type is exact.
4859const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4860  ciKlass* k = klass();
4861  bool    xk = klass_is_exact();
4862  //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4863  const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4864  guarantee(toop != NULL, "need type for given klass");
4865  toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4866  return toop->cast_to_exactness(xk)->is_oopptr();
4867}
4868
4869
4870//------------------------------xmeet------------------------------------------
4871// Compute the MEET of two types, return a new Type object.
4872const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4873  // Perform a fast test for common case; meeting the same types together.
4874  if( this == t ) return this;  // Meeting same type-rep?
4875
4876  // Current "this->_base" is Pointer
4877  switch (t->base()) {          // switch on original type
4878
4879  case Int:                     // Mixing ints & oops happens when javac
4880  case Long:                    // reuses local variables
4881  case FloatTop:
4882  case FloatCon:
4883  case FloatBot:
4884  case DoubleTop:
4885  case DoubleCon:
4886  case DoubleBot:
4887  case NarrowOop:
4888  case NarrowKlass:
4889  case Bottom:                  // Ye Olde Default
4890    return Type::BOTTOM;
4891  case Top:
4892    return this;
4893
4894  default:                      // All else is a mistake
4895    typerr(t);
4896
4897  case AnyPtr: {                // Meeting to AnyPtrs
4898    // Found an AnyPtr type vs self-KlassPtr type
4899    const TypePtr *tp = t->is_ptr();
4900    int offset = meet_offset(tp->offset());
4901    PTR ptr = meet_ptr(tp->ptr());
4902    switch (tp->ptr()) {
4903    case TopPTR:
4904      return this;
4905    case Null:
4906      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4907    case AnyNull:
4908      return make( ptr, klass(), offset );
4909    case BotPTR:
4910    case NotNull:
4911      return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4912    default: typerr(t);
4913    }
4914  }
4915
4916  case RawPtr:
4917  case MetadataPtr:
4918  case OopPtr:
4919  case AryPtr:                  // Meet with AryPtr
4920  case InstPtr:                 // Meet with InstPtr
4921    return TypePtr::BOTTOM;
4922
4923  //
4924  //             A-top         }
4925  //           /   |   \       }  Tops
4926  //       B-top A-any C-top   }
4927  //          | /  |  \ |      }  Any-nulls
4928  //       B-any   |   C-any   }
4929  //          |    |    |
4930  //       B-con A-con C-con   } constants; not comparable across classes
4931  //          |    |    |
4932  //       B-not   |   C-not   }
4933  //          | \  |  / |      }  not-nulls
4934  //       B-bot A-not C-bot   }
4935  //           \   |   /       }  Bottoms
4936  //             A-bot         }
4937  //
4938
4939  case KlassPtr: {  // Meet two KlassPtr types
4940    const TypeKlassPtr *tkls = t->is_klassptr();
4941    int  off     = meet_offset(tkls->offset());
4942    PTR  ptr     = meet_ptr(tkls->ptr());
4943
4944    // Check for easy case; klasses are equal (and perhaps not loaded!)
4945    // If we have constants, then we created oops so classes are loaded
4946    // and we can handle the constants further down.  This case handles
4947    // not-loaded classes
4948    if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4949      return make( ptr, klass(), off );
4950    }
4951
4952    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4953    ciKlass* tkls_klass = tkls->klass();
4954    ciKlass* this_klass = this->klass();
4955    assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4956    assert( this_klass->is_loaded(), "This class should have been loaded.");
4957
4958    // If 'this' type is above the centerline and is a superclass of the
4959    // other, we can treat 'this' as having the same type as the other.
4960    if ((above_centerline(this->ptr())) &&
4961        tkls_klass->is_subtype_of(this_klass)) {
4962      this_klass = tkls_klass;
4963    }
4964    // If 'tinst' type is above the centerline and is a superclass of the
4965    // other, we can treat 'tinst' as having the same type as the other.
4966    if ((above_centerline(tkls->ptr())) &&
4967        this_klass->is_subtype_of(tkls_klass)) {
4968      tkls_klass = this_klass;
4969    }
4970
4971    // Check for classes now being equal
4972    if (tkls_klass->equals(this_klass)) {
4973      // If the klasses are equal, the constants may still differ.  Fall to
4974      // NotNull if they do (neither constant is NULL; that is a special case
4975      // handled elsewhere).
4976      if( ptr == Constant ) {
4977        if (this->_ptr == Constant && tkls->_ptr == Constant &&
4978            this->klass()->equals(tkls->klass()));
4979        else if (above_centerline(this->ptr()));
4980        else if (above_centerline(tkls->ptr()));
4981        else
4982          ptr = NotNull;
4983      }
4984      return make( ptr, this_klass, off );
4985    } // Else classes are not equal
4986
4987    // Since klasses are different, we require the LCA in the Java
4988    // class hierarchy - which means we have to fall to at least NotNull.
4989    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4990      ptr = NotNull;
4991    // Now we find the LCA of Java classes
4992    ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4993    return   make( ptr, k, off );
4994  } // End of case KlassPtr
4995
4996  } // End of switch
4997  return this;                  // Return the double constant
4998}
4999
5000//------------------------------xdual------------------------------------------
5001// Dual: compute field-by-field dual
5002const Type    *TypeKlassPtr::xdual() const {
5003  return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5004}
5005
5006//------------------------------get_con----------------------------------------
5007intptr_t TypeKlassPtr::get_con() const {
5008  assert( _ptr == Null || _ptr == Constant, "" );
5009  assert( _offset >= 0, "" );
5010
5011  if (_offset != 0) {
5012    // After being ported to the compiler interface, the compiler no longer
5013    // directly manipulates the addresses of oops.  Rather, it only has a pointer
5014    // to a handle at compile time.  This handle is embedded in the generated
5015    // code and dereferenced at the time the nmethod is made.  Until that time,
5016    // it is not reasonable to do arithmetic with the addresses of oops (we don't
5017    // have access to the addresses!).  This does not seem to currently happen,
5018    // but this assertion here is to help prevent its occurence.
5019    tty->print_cr("Found oop constant with non-zero offset");
5020    ShouldNotReachHere();
5021  }
5022
5023  return (intptr_t)klass()->constant_encoding();
5024}
5025//------------------------------dump2------------------------------------------
5026// Dump Klass Type
5027#ifndef PRODUCT
5028void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5029  switch( _ptr ) {
5030  case Constant:
5031    st->print("precise ");
5032  case NotNull:
5033    {
5034      const char *name = klass()->name()->as_utf8();
5035      if( name ) {
5036        st->print("klass %s: " INTPTR_FORMAT, name, klass());
5037      } else {
5038        ShouldNotReachHere();
5039      }
5040    }
5041  case BotPTR:
5042    if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5043  case TopPTR:
5044  case AnyNull:
5045    st->print(":%s", ptr_msg[_ptr]);
5046    if( _klass_is_exact ) st->print(":exact");
5047    break;
5048  }
5049
5050  if( _offset ) {               // Dump offset, if any
5051    if( _offset == OffsetBot )      { st->print("+any"); }
5052    else if( _offset == OffsetTop ) { st->print("+unknown"); }
5053    else                            { st->print("+%d", _offset); }
5054  }
5055
5056  st->print(" *");
5057}
5058#endif
5059
5060
5061
5062//=============================================================================
5063// Convenience common pre-built types.
5064
5065//------------------------------make-------------------------------------------
5066const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5067  return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5068}
5069
5070//------------------------------make-------------------------------------------
5071const TypeFunc *TypeFunc::make(ciMethod* method) {
5072  Compile* C = Compile::current();
5073  const TypeFunc* tf = C->last_tf(method); // check cache
5074  if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5075  const TypeTuple *domain;
5076  if (method->is_static()) {
5077    domain = TypeTuple::make_domain(NULL, method->signature());
5078  } else {
5079    domain = TypeTuple::make_domain(method->holder(), method->signature());
5080  }
5081  const TypeTuple *range  = TypeTuple::make_range(method->signature());
5082  tf = TypeFunc::make(domain, range);
5083  C->set_last_tf(method, tf);  // fill cache
5084  return tf;
5085}
5086
5087//------------------------------meet-------------------------------------------
5088// Compute the MEET of two types.  It returns a new Type object.
5089const Type *TypeFunc::xmeet( const Type *t ) const {
5090  // Perform a fast test for common case; meeting the same types together.
5091  if( this == t ) return this;  // Meeting same type-rep?
5092
5093  // Current "this->_base" is Func
5094  switch (t->base()) {          // switch on original type
5095
5096  case Bottom:                  // Ye Olde Default
5097    return t;
5098
5099  default:                      // All else is a mistake
5100    typerr(t);
5101
5102  case Top:
5103    break;
5104  }
5105  return this;                  // Return the double constant
5106}
5107
5108//------------------------------xdual------------------------------------------
5109// Dual: compute field-by-field dual
5110const Type *TypeFunc::xdual() const {
5111  return this;
5112}
5113
5114//------------------------------eq---------------------------------------------
5115// Structural equality check for Type representations
5116bool TypeFunc::eq( const Type *t ) const {
5117  const TypeFunc *a = (const TypeFunc*)t;
5118  return _domain == a->_domain &&
5119    _range == a->_range;
5120}
5121
5122//------------------------------hash-------------------------------------------
5123// Type-specific hashing function.
5124int TypeFunc::hash(void) const {
5125  return (intptr_t)_domain + (intptr_t)_range;
5126}
5127
5128//------------------------------dump2------------------------------------------
5129// Dump Function Type
5130#ifndef PRODUCT
5131void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5132  if( _range->cnt() <= Parms )
5133    st->print("void");
5134  else {
5135    uint i;
5136    for (i = Parms; i < _range->cnt()-1; i++) {
5137      _range->field_at(i)->dump2(d,depth,st);
5138      st->print("/");
5139    }
5140    _range->field_at(i)->dump2(d,depth,st);
5141  }
5142  st->print(" ");
5143  st->print("( ");
5144  if( !depth || d[this] ) {     // Check for recursive dump
5145    st->print("...)");
5146    return;
5147  }
5148  d.Insert((void*)this,(void*)this);    // Stop recursion
5149  if (Parms < _domain->cnt())
5150    _domain->field_at(Parms)->dump2(d,depth-1,st);
5151  for (uint i = Parms+1; i < _domain->cnt(); i++) {
5152    st->print(", ");
5153    _domain->field_at(i)->dump2(d,depth-1,st);
5154  }
5155  st->print(" )");
5156}
5157#endif
5158
5159//------------------------------singleton--------------------------------------
5160// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5161// constants (Ldi nodes).  Singletons are integer, float or double constants
5162// or a single symbol.
5163bool TypeFunc::singleton(void) const {
5164  return false;                 // Never a singleton
5165}
5166
5167bool TypeFunc::empty(void) const {
5168  return false;                 // Never empty
5169}
5170
5171
5172BasicType TypeFunc::return_type() const{
5173  if (range()->cnt() == TypeFunc::Parms) {
5174    return T_VOID;
5175  }
5176  return range()->field_at(TypeFunc::Parms)->basic_type();
5177}
5178