type.cpp revision 6412:53a41e7cbe05
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "ci/ciTypeFlow.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "compiler/compileLog.hpp"
31#include "libadt/dict.hpp"
32#include "memory/gcLocker.hpp"
33#include "memory/oopFactory.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/instanceKlass.hpp"
36#include "oops/instanceMirrorKlass.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "oops/typeArrayKlass.hpp"
39#include "opto/matcher.hpp"
40#include "opto/node.hpp"
41#include "opto/opcodes.hpp"
42#include "opto/type.hpp"
43
44PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
45
46// Portions of code courtesy of Clifford Click
47
48// Optimization - Graph Style
49
50// Dictionary of types shared among compilations.
51Dict* Type::_shared_type_dict = NULL;
52
53// Array which maps compiler types to Basic Types
54Type::TypeInfo Type::_type_info[Type::lastype] = {
55  { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
56  { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
57  { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
58  { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
59  { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
60  { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
61  { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
62  { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
63  { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
64  { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
65
66#ifdef SPARC
67  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
68  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
69  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
70  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
71#elif defined(PPC64)
72  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
73  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
74  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
75  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
76#else // all other
77  { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
78  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
79  { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
80  { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
81#endif
82  { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
83  { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
84  { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
85  { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
86  { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
87  { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
88  { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
89  { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
90  { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
91  { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
92  { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
93  { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
94  { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
95  { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
96  { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
97  { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
98  { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
99  { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
100};
101
102// Map ideal registers (machine types) to ideal types
103const Type *Type::mreg2type[_last_machine_leaf];
104
105// Map basic types to canonical Type* pointers.
106const Type* Type::     _const_basic_type[T_CONFLICT+1];
107
108// Map basic types to constant-zero Types.
109const Type* Type::            _zero_type[T_CONFLICT+1];
110
111// Map basic types to array-body alias types.
112const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
113
114//=============================================================================
115// Convenience common pre-built types.
116const Type *Type::ABIO;         // State-of-machine only
117const Type *Type::BOTTOM;       // All values
118const Type *Type::CONTROL;      // Control only
119const Type *Type::DOUBLE;       // All doubles
120const Type *Type::FLOAT;        // All floats
121const Type *Type::HALF;         // Placeholder half of doublewide type
122const Type *Type::MEMORY;       // Abstract store only
123const Type *Type::RETURN_ADDRESS;
124const Type *Type::TOP;          // No values in set
125
126//------------------------------get_const_type---------------------------
127const Type* Type::get_const_type(ciType* type) {
128  if (type == NULL) {
129    return NULL;
130  } else if (type->is_primitive_type()) {
131    return get_const_basic_type(type->basic_type());
132  } else {
133    return TypeOopPtr::make_from_klass(type->as_klass());
134  }
135}
136
137//---------------------------array_element_basic_type---------------------------------
138// Mapping to the array element's basic type.
139BasicType Type::array_element_basic_type() const {
140  BasicType bt = basic_type();
141  if (bt == T_INT) {
142    if (this == TypeInt::INT)   return T_INT;
143    if (this == TypeInt::CHAR)  return T_CHAR;
144    if (this == TypeInt::BYTE)  return T_BYTE;
145    if (this == TypeInt::BOOL)  return T_BOOLEAN;
146    if (this == TypeInt::SHORT) return T_SHORT;
147    return T_VOID;
148  }
149  return bt;
150}
151
152//---------------------------get_typeflow_type---------------------------------
153// Import a type produced by ciTypeFlow.
154const Type* Type::get_typeflow_type(ciType* type) {
155  switch (type->basic_type()) {
156
157  case ciTypeFlow::StateVector::T_BOTTOM:
158    assert(type == ciTypeFlow::StateVector::bottom_type(), "");
159    return Type::BOTTOM;
160
161  case ciTypeFlow::StateVector::T_TOP:
162    assert(type == ciTypeFlow::StateVector::top_type(), "");
163    return Type::TOP;
164
165  case ciTypeFlow::StateVector::T_NULL:
166    assert(type == ciTypeFlow::StateVector::null_type(), "");
167    return TypePtr::NULL_PTR;
168
169  case ciTypeFlow::StateVector::T_LONG2:
170    // The ciTypeFlow pass pushes a long, then the half.
171    // We do the same.
172    assert(type == ciTypeFlow::StateVector::long2_type(), "");
173    return TypeInt::TOP;
174
175  case ciTypeFlow::StateVector::T_DOUBLE2:
176    // The ciTypeFlow pass pushes double, then the half.
177    // Our convention is the same.
178    assert(type == ciTypeFlow::StateVector::double2_type(), "");
179    return Type::TOP;
180
181  case T_ADDRESS:
182    assert(type->is_return_address(), "");
183    return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
184
185  default:
186    // make sure we did not mix up the cases:
187    assert(type != ciTypeFlow::StateVector::bottom_type(), "");
188    assert(type != ciTypeFlow::StateVector::top_type(), "");
189    assert(type != ciTypeFlow::StateVector::null_type(), "");
190    assert(type != ciTypeFlow::StateVector::long2_type(), "");
191    assert(type != ciTypeFlow::StateVector::double2_type(), "");
192    assert(!type->is_return_address(), "");
193
194    return Type::get_const_type(type);
195  }
196}
197
198
199//-----------------------make_from_constant------------------------------------
200const Type* Type::make_from_constant(ciConstant constant,
201                                     bool require_constant, bool is_autobox_cache) {
202  switch (constant.basic_type()) {
203  case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
204  case T_CHAR:     return TypeInt::make(constant.as_char());
205  case T_BYTE:     return TypeInt::make(constant.as_byte());
206  case T_SHORT:    return TypeInt::make(constant.as_short());
207  case T_INT:      return TypeInt::make(constant.as_int());
208  case T_LONG:     return TypeLong::make(constant.as_long());
209  case T_FLOAT:    return TypeF::make(constant.as_float());
210  case T_DOUBLE:   return TypeD::make(constant.as_double());
211  case T_ARRAY:
212  case T_OBJECT:
213    {
214      // cases:
215      //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
216      //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
217      // An oop is not scavengable if it is in the perm gen.
218      ciObject* oop_constant = constant.as_object();
219      if (oop_constant->is_null_object()) {
220        return Type::get_zero_type(T_OBJECT);
221      } else if (require_constant || oop_constant->should_be_constant()) {
222        return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
223      }
224    }
225  }
226  // Fall through to failure
227  return NULL;
228}
229
230
231//------------------------------make-------------------------------------------
232// Create a simple Type, with default empty symbol sets.  Then hashcons it
233// and look for an existing copy in the type dictionary.
234const Type *Type::make( enum TYPES t ) {
235  return (new Type(t))->hashcons();
236}
237
238//------------------------------cmp--------------------------------------------
239int Type::cmp( const Type *const t1, const Type *const t2 ) {
240  if( t1->_base != t2->_base )
241    return 1;                   // Missed badly
242  assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
243  return !t1->eq(t2);           // Return ZERO if equal
244}
245
246const Type* Type::maybe_remove_speculative(bool include_speculative) const {
247  if (!include_speculative) {
248    return remove_speculative();
249  }
250  return this;
251}
252
253//------------------------------hash-------------------------------------------
254int Type::uhash( const Type *const t ) {
255  return t->hash();
256}
257
258#define SMALLINT ((juint)3)  // a value too insignificant to consider widening
259
260//--------------------------Initialize_shared----------------------------------
261void Type::Initialize_shared(Compile* current) {
262  // This method does not need to be locked because the first system
263  // compilations (stub compilations) occur serially.  If they are
264  // changed to proceed in parallel, then this section will need
265  // locking.
266
267  Arena* save = current->type_arena();
268  Arena* shared_type_arena = new (mtCompiler)Arena();
269
270  current->set_type_arena(shared_type_arena);
271  _shared_type_dict =
272    new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
273                                  shared_type_arena, 128 );
274  current->set_type_dict(_shared_type_dict);
275
276  // Make shared pre-built types.
277  CONTROL = make(Control);      // Control only
278  TOP     = make(Top);          // No values in set
279  MEMORY  = make(Memory);       // Abstract store only
280  ABIO    = make(Abio);         // State-of-machine only
281  RETURN_ADDRESS=make(Return_Address);
282  FLOAT   = make(FloatBot);     // All floats
283  DOUBLE  = make(DoubleBot);    // All doubles
284  BOTTOM  = make(Bottom);       // Everything
285  HALF    = make(Half);         // Placeholder half of doublewide type
286
287  TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
288  TypeF::ONE  = TypeF::make(1.0); // Float 1
289
290  TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
291  TypeD::ONE  = TypeD::make(1.0); // Double 1
292
293  TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
294  TypeInt::ZERO    = TypeInt::make( 0);  //  0
295  TypeInt::ONE     = TypeInt::make( 1);  //  1
296  TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
297  TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
298  TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
299  TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
300  TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
301  TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
302  TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
303  TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
304  TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
305  TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
306  TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
307  TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
308  TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
309  TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
310  TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
311  TypeInt::TYPE_DOMAIN  = TypeInt::INT;
312  // CmpL is overloaded both as the bytecode computation returning
313  // a trinary (-1,0,+1) integer result AND as an efficient long
314  // compare returning optimizer ideal-type flags.
315  assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
316  assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
317  assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
318  assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
319  assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
320
321  TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
322  TypeLong::ZERO    = TypeLong::make( 0);        //  0
323  TypeLong::ONE     = TypeLong::make( 1);        //  1
324  TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
325  TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
326  TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
327  TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
328  TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
329
330  const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
331  fboth[0] = Type::CONTROL;
332  fboth[1] = Type::CONTROL;
333  TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
334
335  const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
336  ffalse[0] = Type::CONTROL;
337  ffalse[1] = Type::TOP;
338  TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
339
340  const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
341  fneither[0] = Type::TOP;
342  fneither[1] = Type::TOP;
343  TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
344
345  const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
346  ftrue[0] = Type::TOP;
347  ftrue[1] = Type::CONTROL;
348  TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
349
350  const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
351  floop[0] = Type::CONTROL;
352  floop[1] = TypeInt::INT;
353  TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
354
355  TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
356  TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
357  TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
358
359  TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
360  TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
361
362  const Type **fmembar = TypeTuple::fields(0);
363  TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
364
365  const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
366  fsc[0] = TypeInt::CC;
367  fsc[1] = Type::MEMORY;
368  TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
369
370  TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
371  TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
372  TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
373  TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
374                                           false, 0, oopDesc::mark_offset_in_bytes());
375  TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
376                                           false, 0, oopDesc::klass_offset_in_bytes());
377  TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
378
379  TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
380
381  TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
382  TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
383
384  TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
385
386  mreg2type[Op_Node] = Type::BOTTOM;
387  mreg2type[Op_Set ] = 0;
388  mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
389  mreg2type[Op_RegI] = TypeInt::INT;
390  mreg2type[Op_RegP] = TypePtr::BOTTOM;
391  mreg2type[Op_RegF] = Type::FLOAT;
392  mreg2type[Op_RegD] = Type::DOUBLE;
393  mreg2type[Op_RegL] = TypeLong::LONG;
394  mreg2type[Op_RegFlags] = TypeInt::CC;
395
396  TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
397
398  TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
399
400#ifdef _LP64
401  if (UseCompressedOops) {
402    assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
403    TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
404  } else
405#endif
406  {
407    // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
408    TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
409  }
410  TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
411  TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
412  TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
413  TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
414  TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
415  TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
416  TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
417
418  // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
419  TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
420  TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
421  TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
422  TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
423  TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
424  TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
425  TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
426  TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
427  TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
428  TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
429  TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
430
431  TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
432  TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
433
434  const Type **fi2c = TypeTuple::fields(2);
435  fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
436  fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
437  TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
438
439  const Type **intpair = TypeTuple::fields(2);
440  intpair[0] = TypeInt::INT;
441  intpair[1] = TypeInt::INT;
442  TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
443
444  const Type **longpair = TypeTuple::fields(2);
445  longpair[0] = TypeLong::LONG;
446  longpair[1] = TypeLong::LONG;
447  TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
448
449  const Type **intccpair = TypeTuple::fields(2);
450  intccpair[0] = TypeInt::INT;
451  intccpair[1] = TypeInt::CC;
452  TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
453
454  const Type **longccpair = TypeTuple::fields(2);
455  longccpair[0] = TypeLong::LONG;
456  longccpair[1] = TypeInt::CC;
457  TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
458
459  _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
460  _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
461  _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
462  _const_basic_type[T_CHAR]        = TypeInt::CHAR;
463  _const_basic_type[T_BYTE]        = TypeInt::BYTE;
464  _const_basic_type[T_SHORT]       = TypeInt::SHORT;
465  _const_basic_type[T_INT]         = TypeInt::INT;
466  _const_basic_type[T_LONG]        = TypeLong::LONG;
467  _const_basic_type[T_FLOAT]       = Type::FLOAT;
468  _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
469  _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
470  _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
471  _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
472  _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
473  _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
474
475  _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
476  _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
477  _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
478  _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
479  _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
480  _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
481  _zero_type[T_INT]         = TypeInt::ZERO;
482  _zero_type[T_LONG]        = TypeLong::ZERO;
483  _zero_type[T_FLOAT]       = TypeF::ZERO;
484  _zero_type[T_DOUBLE]      = TypeD::ZERO;
485  _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
486  _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
487  _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
488  _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
489
490  // get_zero_type() should not happen for T_CONFLICT
491  _zero_type[T_CONFLICT]= NULL;
492
493  // Vector predefined types, it needs initialized _const_basic_type[].
494  if (Matcher::vector_size_supported(T_BYTE,4)) {
495    TypeVect::VECTS = TypeVect::make(T_BYTE,4);
496  }
497  if (Matcher::vector_size_supported(T_FLOAT,2)) {
498    TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
499  }
500  if (Matcher::vector_size_supported(T_FLOAT,4)) {
501    TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
502  }
503  if (Matcher::vector_size_supported(T_FLOAT,8)) {
504    TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
505  }
506  mreg2type[Op_VecS] = TypeVect::VECTS;
507  mreg2type[Op_VecD] = TypeVect::VECTD;
508  mreg2type[Op_VecX] = TypeVect::VECTX;
509  mreg2type[Op_VecY] = TypeVect::VECTY;
510
511  // Restore working type arena.
512  current->set_type_arena(save);
513  current->set_type_dict(NULL);
514}
515
516//------------------------------Initialize-------------------------------------
517void Type::Initialize(Compile* current) {
518  assert(current->type_arena() != NULL, "must have created type arena");
519
520  if (_shared_type_dict == NULL) {
521    Initialize_shared(current);
522  }
523
524  Arena* type_arena = current->type_arena();
525
526  // Create the hash-cons'ing dictionary with top-level storage allocation
527  Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
528  current->set_type_dict(tdic);
529
530  // Transfer the shared types.
531  DictI i(_shared_type_dict);
532  for( ; i.test(); ++i ) {
533    Type* t = (Type*)i._value;
534    tdic->Insert(t,t);  // New Type, insert into Type table
535  }
536}
537
538//------------------------------hashcons---------------------------------------
539// Do the hash-cons trick.  If the Type already exists in the type table,
540// delete the current Type and return the existing Type.  Otherwise stick the
541// current Type in the Type table.
542const Type *Type::hashcons(void) {
543  debug_only(base());           // Check the assertion in Type::base().
544  // Look up the Type in the Type dictionary
545  Dict *tdic = type_dict();
546  Type* old = (Type*)(tdic->Insert(this, this, false));
547  if( old ) {                   // Pre-existing Type?
548    if( old != this )           // Yes, this guy is not the pre-existing?
549      delete this;              // Yes, Nuke this guy
550    assert( old->_dual, "" );
551    return old;                 // Return pre-existing
552  }
553
554  // Every type has a dual (to make my lattice symmetric).
555  // Since we just discovered a new Type, compute its dual right now.
556  assert( !_dual, "" );         // No dual yet
557  _dual = xdual();              // Compute the dual
558  if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
559    _dual = this;
560    return this;
561  }
562  assert( !_dual->_dual, "" );  // No reverse dual yet
563  assert( !(*tdic)[_dual], "" ); // Dual not in type system either
564  // New Type, insert into Type table
565  tdic->Insert((void*)_dual,(void*)_dual);
566  ((Type*)_dual)->_dual = this; // Finish up being symmetric
567#ifdef ASSERT
568  Type *dual_dual = (Type*)_dual->xdual();
569  assert( eq(dual_dual), "xdual(xdual()) should be identity" );
570  delete dual_dual;
571#endif
572  return this;                  // Return new Type
573}
574
575//------------------------------eq---------------------------------------------
576// Structural equality check for Type representations
577bool Type::eq( const Type * ) const {
578  return true;                  // Nothing else can go wrong
579}
580
581//------------------------------hash-------------------------------------------
582// Type-specific hashing function.
583int Type::hash(void) const {
584  return _base;
585}
586
587//------------------------------is_finite--------------------------------------
588// Has a finite value
589bool Type::is_finite() const {
590  return false;
591}
592
593//------------------------------is_nan-----------------------------------------
594// Is not a number (NaN)
595bool Type::is_nan()    const {
596  return false;
597}
598
599//----------------------interface_vs_oop---------------------------------------
600#ifdef ASSERT
601bool Type::interface_vs_oop_helper(const Type *t) const {
602  bool result = false;
603
604  const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
605  const TypePtr*    t_ptr =    t->make_ptr();
606  if( this_ptr == NULL || t_ptr == NULL )
607    return result;
608
609  const TypeInstPtr* this_inst = this_ptr->isa_instptr();
610  const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
611  if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
612    bool this_interface = this_inst->klass()->is_interface();
613    bool    t_interface =    t_inst->klass()->is_interface();
614    result = this_interface ^ t_interface;
615  }
616
617  return result;
618}
619
620bool Type::interface_vs_oop(const Type *t) const {
621  if (interface_vs_oop_helper(t)) {
622    return true;
623  }
624  // Now check the speculative parts as well
625  const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
626  const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
627  if (this_spec != NULL && t_spec != NULL) {
628    if (this_spec->interface_vs_oop_helper(t_spec)) {
629      return true;
630    }
631    return false;
632  }
633  if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
634    return true;
635  }
636  if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
637    return true;
638  }
639  return false;
640}
641
642#endif
643
644//------------------------------meet-------------------------------------------
645// Compute the MEET of two types.  NOT virtual.  It enforces that meet is
646// commutative and the lattice is symmetric.
647const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
648  if (isa_narrowoop() && t->isa_narrowoop()) {
649    const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
650    return result->make_narrowoop();
651  }
652  if (isa_narrowklass() && t->isa_narrowklass()) {
653    const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
654    return result->make_narrowklass();
655  }
656
657  const Type *this_t = maybe_remove_speculative(include_speculative);
658  t = t->maybe_remove_speculative(include_speculative);
659
660  const Type *mt = this_t->xmeet(t);
661  if (isa_narrowoop() || t->isa_narrowoop()) return mt;
662  if (isa_narrowklass() || t->isa_narrowklass()) return mt;
663#ifdef ASSERT
664  assert(mt == t->xmeet(this_t), "meet not commutative");
665  const Type* dual_join = mt->_dual;
666  const Type *t2t    = dual_join->xmeet(t->_dual);
667  const Type *t2this = dual_join->xmeet(this_t->_dual);
668
669  // Interface meet Oop is Not Symmetric:
670  // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
671  // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
672
673  if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
674    tty->print_cr("=== Meet Not Symmetric ===");
675    tty->print("t   =                   ");              t->dump(); tty->cr();
676    tty->print("this=                   ");         this_t->dump(); tty->cr();
677    tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
678
679    tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
680    tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
681    tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
682
683    tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
684    tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
685
686    fatal("meet not symmetric" );
687  }
688#endif
689  return mt;
690}
691
692//------------------------------xmeet------------------------------------------
693// Compute the MEET of two types.  It returns a new Type object.
694const Type *Type::xmeet( const Type *t ) const {
695  // Perform a fast test for common case; meeting the same types together.
696  if( this == t ) return this;  // Meeting same type-rep?
697
698  // Meeting TOP with anything?
699  if( _base == Top ) return t;
700
701  // Meeting BOTTOM with anything?
702  if( _base == Bottom ) return BOTTOM;
703
704  // Current "this->_base" is one of: Bad, Multi, Control, Top,
705  // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
706  switch (t->base()) {  // Switch on original type
707
708  // Cut in half the number of cases I must handle.  Only need cases for when
709  // the given enum "t->type" is less than or equal to the local enum "type".
710  case FloatCon:
711  case DoubleCon:
712  case Int:
713  case Long:
714    return t->xmeet(this);
715
716  case OopPtr:
717    return t->xmeet(this);
718
719  case InstPtr:
720    return t->xmeet(this);
721
722  case MetadataPtr:
723  case KlassPtr:
724    return t->xmeet(this);
725
726  case AryPtr:
727    return t->xmeet(this);
728
729  case NarrowOop:
730    return t->xmeet(this);
731
732  case NarrowKlass:
733    return t->xmeet(this);
734
735  case Bad:                     // Type check
736  default:                      // Bogus type not in lattice
737    typerr(t);
738    return Type::BOTTOM;
739
740  case Bottom:                  // Ye Olde Default
741    return t;
742
743  case FloatTop:
744    if( _base == FloatTop ) return this;
745  case FloatBot:                // Float
746    if( _base == FloatBot || _base == FloatTop ) return FLOAT;
747    if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
748    typerr(t);
749    return Type::BOTTOM;
750
751  case DoubleTop:
752    if( _base == DoubleTop ) return this;
753  case DoubleBot:               // Double
754    if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
755    if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
756    typerr(t);
757    return Type::BOTTOM;
758
759  // These next few cases must match exactly or it is a compile-time error.
760  case Control:                 // Control of code
761  case Abio:                    // State of world outside of program
762  case Memory:
763    if( _base == t->_base )  return this;
764    typerr(t);
765    return Type::BOTTOM;
766
767  case Top:                     // Top of the lattice
768    return this;
769  }
770
771  // The type is unchanged
772  return this;
773}
774
775//-----------------------------filter------------------------------------------
776const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
777  const Type* ft = join_helper(kills, include_speculative);
778  if (ft->empty())
779    return Type::TOP;           // Canonical empty value
780  return ft;
781}
782
783//------------------------------xdual------------------------------------------
784// Compute dual right now.
785const Type::TYPES Type::dual_type[Type::lastype] = {
786  Bad,          // Bad
787  Control,      // Control
788  Bottom,       // Top
789  Bad,          // Int - handled in v-call
790  Bad,          // Long - handled in v-call
791  Half,         // Half
792  Bad,          // NarrowOop - handled in v-call
793  Bad,          // NarrowKlass - handled in v-call
794
795  Bad,          // Tuple - handled in v-call
796  Bad,          // Array - handled in v-call
797  Bad,          // VectorS - handled in v-call
798  Bad,          // VectorD - handled in v-call
799  Bad,          // VectorX - handled in v-call
800  Bad,          // VectorY - handled in v-call
801
802  Bad,          // AnyPtr - handled in v-call
803  Bad,          // RawPtr - handled in v-call
804  Bad,          // OopPtr - handled in v-call
805  Bad,          // InstPtr - handled in v-call
806  Bad,          // AryPtr - handled in v-call
807
808  Bad,          //  MetadataPtr - handled in v-call
809  Bad,          // KlassPtr - handled in v-call
810
811  Bad,          // Function - handled in v-call
812  Abio,         // Abio
813  Return_Address,// Return_Address
814  Memory,       // Memory
815  FloatBot,     // FloatTop
816  FloatCon,     // FloatCon
817  FloatTop,     // FloatBot
818  DoubleBot,    // DoubleTop
819  DoubleCon,    // DoubleCon
820  DoubleTop,    // DoubleBot
821  Top           // Bottom
822};
823
824const Type *Type::xdual() const {
825  // Note: the base() accessor asserts the sanity of _base.
826  assert(_type_info[base()].dual_type != Bad, "implement with v-call");
827  return new Type(_type_info[_base].dual_type);
828}
829
830//------------------------------has_memory-------------------------------------
831bool Type::has_memory() const {
832  Type::TYPES tx = base();
833  if (tx == Memory) return true;
834  if (tx == Tuple) {
835    const TypeTuple *t = is_tuple();
836    for (uint i=0; i < t->cnt(); i++) {
837      tx = t->field_at(i)->base();
838      if (tx == Memory)  return true;
839    }
840  }
841  return false;
842}
843
844#ifndef PRODUCT
845//------------------------------dump2------------------------------------------
846void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
847  st->print("%s", _type_info[_base].msg);
848}
849
850//------------------------------dump-------------------------------------------
851void Type::dump_on(outputStream *st) const {
852  ResourceMark rm;
853  Dict d(cmpkey,hashkey);       // Stop recursive type dumping
854  dump2(d,1, st);
855  if (is_ptr_to_narrowoop()) {
856    st->print(" [narrow]");
857  } else if (is_ptr_to_narrowklass()) {
858    st->print(" [narrowklass]");
859  }
860}
861#endif
862
863//------------------------------singleton--------------------------------------
864// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
865// constants (Ldi nodes).  Singletons are integer, float or double constants.
866bool Type::singleton(void) const {
867  return _base == Top || _base == Half;
868}
869
870//------------------------------empty------------------------------------------
871// TRUE if Type is a type with no values, FALSE otherwise.
872bool Type::empty(void) const {
873  switch (_base) {
874  case DoubleTop:
875  case FloatTop:
876  case Top:
877    return true;
878
879  case Half:
880  case Abio:
881  case Return_Address:
882  case Memory:
883  case Bottom:
884  case FloatBot:
885  case DoubleBot:
886    return false;  // never a singleton, therefore never empty
887  }
888
889  ShouldNotReachHere();
890  return false;
891}
892
893//------------------------------dump_stats-------------------------------------
894// Dump collected statistics to stderr
895#ifndef PRODUCT
896void Type::dump_stats() {
897  tty->print("Types made: %d\n", type_dict()->Size());
898}
899#endif
900
901//------------------------------typerr-----------------------------------------
902void Type::typerr( const Type *t ) const {
903#ifndef PRODUCT
904  tty->print("\nError mixing types: ");
905  dump();
906  tty->print(" and ");
907  t->dump();
908  tty->print("\n");
909#endif
910  ShouldNotReachHere();
911}
912
913
914//=============================================================================
915// Convenience common pre-built types.
916const TypeF *TypeF::ZERO;       // Floating point zero
917const TypeF *TypeF::ONE;        // Floating point one
918
919//------------------------------make-------------------------------------------
920// Create a float constant
921const TypeF *TypeF::make(float f) {
922  return (TypeF*)(new TypeF(f))->hashcons();
923}
924
925//------------------------------meet-------------------------------------------
926// Compute the MEET of two types.  It returns a new Type object.
927const Type *TypeF::xmeet( const Type *t ) const {
928  // Perform a fast test for common case; meeting the same types together.
929  if( this == t ) return this;  // Meeting same type-rep?
930
931  // Current "this->_base" is FloatCon
932  switch (t->base()) {          // Switch on original type
933  case AnyPtr:                  // Mixing with oops happens when javac
934  case RawPtr:                  // reuses local variables
935  case OopPtr:
936  case InstPtr:
937  case AryPtr:
938  case MetadataPtr:
939  case KlassPtr:
940  case NarrowOop:
941  case NarrowKlass:
942  case Int:
943  case Long:
944  case DoubleTop:
945  case DoubleCon:
946  case DoubleBot:
947  case Bottom:                  // Ye Olde Default
948    return Type::BOTTOM;
949
950  case FloatBot:
951    return t;
952
953  default:                      // All else is a mistake
954    typerr(t);
955
956  case FloatCon:                // Float-constant vs Float-constant?
957    if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
958                                // must compare bitwise as positive zero, negative zero and NaN have
959                                // all the same representation in C++
960      return FLOAT;             // Return generic float
961                                // Equal constants
962  case Top:
963  case FloatTop:
964    break;                      // Return the float constant
965  }
966  return this;                  // Return the float constant
967}
968
969//------------------------------xdual------------------------------------------
970// Dual: symmetric
971const Type *TypeF::xdual() const {
972  return this;
973}
974
975//------------------------------eq---------------------------------------------
976// Structural equality check for Type representations
977bool TypeF::eq( const Type *t ) const {
978  if( g_isnan(_f) ||
979      g_isnan(t->getf()) ) {
980    // One or both are NANs.  If both are NANs return true, else false.
981    return (g_isnan(_f) && g_isnan(t->getf()));
982  }
983  if (_f == t->getf()) {
984    // (NaN is impossible at this point, since it is not equal even to itself)
985    if (_f == 0.0) {
986      // difference between positive and negative zero
987      if (jint_cast(_f) != jint_cast(t->getf()))  return false;
988    }
989    return true;
990  }
991  return false;
992}
993
994//------------------------------hash-------------------------------------------
995// Type-specific hashing function.
996int TypeF::hash(void) const {
997  return *(int*)(&_f);
998}
999
1000//------------------------------is_finite--------------------------------------
1001// Has a finite value
1002bool TypeF::is_finite() const {
1003  return g_isfinite(getf()) != 0;
1004}
1005
1006//------------------------------is_nan-----------------------------------------
1007// Is not a number (NaN)
1008bool TypeF::is_nan()    const {
1009  return g_isnan(getf()) != 0;
1010}
1011
1012//------------------------------dump2------------------------------------------
1013// Dump float constant Type
1014#ifndef PRODUCT
1015void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1016  Type::dump2(d,depth, st);
1017  st->print("%f", _f);
1018}
1019#endif
1020
1021//------------------------------singleton--------------------------------------
1022// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1023// constants (Ldi nodes).  Singletons are integer, float or double constants
1024// or a single symbol.
1025bool TypeF::singleton(void) const {
1026  return true;                  // Always a singleton
1027}
1028
1029bool TypeF::empty(void) const {
1030  return false;                 // always exactly a singleton
1031}
1032
1033//=============================================================================
1034// Convenience common pre-built types.
1035const TypeD *TypeD::ZERO;       // Floating point zero
1036const TypeD *TypeD::ONE;        // Floating point one
1037
1038//------------------------------make-------------------------------------------
1039const TypeD *TypeD::make(double d) {
1040  return (TypeD*)(new TypeD(d))->hashcons();
1041}
1042
1043//------------------------------meet-------------------------------------------
1044// Compute the MEET of two types.  It returns a new Type object.
1045const Type *TypeD::xmeet( const Type *t ) const {
1046  // Perform a fast test for common case; meeting the same types together.
1047  if( this == t ) return this;  // Meeting same type-rep?
1048
1049  // Current "this->_base" is DoubleCon
1050  switch (t->base()) {          // Switch on original type
1051  case AnyPtr:                  // Mixing with oops happens when javac
1052  case RawPtr:                  // reuses local variables
1053  case OopPtr:
1054  case InstPtr:
1055  case AryPtr:
1056  case MetadataPtr:
1057  case KlassPtr:
1058  case NarrowOop:
1059  case NarrowKlass:
1060  case Int:
1061  case Long:
1062  case FloatTop:
1063  case FloatCon:
1064  case FloatBot:
1065  case Bottom:                  // Ye Olde Default
1066    return Type::BOTTOM;
1067
1068  case DoubleBot:
1069    return t;
1070
1071  default:                      // All else is a mistake
1072    typerr(t);
1073
1074  case DoubleCon:               // Double-constant vs Double-constant?
1075    if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1076      return DOUBLE;            // Return generic double
1077  case Top:
1078  case DoubleTop:
1079    break;
1080  }
1081  return this;                  // Return the double constant
1082}
1083
1084//------------------------------xdual------------------------------------------
1085// Dual: symmetric
1086const Type *TypeD::xdual() const {
1087  return this;
1088}
1089
1090//------------------------------eq---------------------------------------------
1091// Structural equality check for Type representations
1092bool TypeD::eq( const Type *t ) const {
1093  if( g_isnan(_d) ||
1094      g_isnan(t->getd()) ) {
1095    // One or both are NANs.  If both are NANs return true, else false.
1096    return (g_isnan(_d) && g_isnan(t->getd()));
1097  }
1098  if (_d == t->getd()) {
1099    // (NaN is impossible at this point, since it is not equal even to itself)
1100    if (_d == 0.0) {
1101      // difference between positive and negative zero
1102      if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1103    }
1104    return true;
1105  }
1106  return false;
1107}
1108
1109//------------------------------hash-------------------------------------------
1110// Type-specific hashing function.
1111int TypeD::hash(void) const {
1112  return *(int*)(&_d);
1113}
1114
1115//------------------------------is_finite--------------------------------------
1116// Has a finite value
1117bool TypeD::is_finite() const {
1118  return g_isfinite(getd()) != 0;
1119}
1120
1121//------------------------------is_nan-----------------------------------------
1122// Is not a number (NaN)
1123bool TypeD::is_nan()    const {
1124  return g_isnan(getd()) != 0;
1125}
1126
1127//------------------------------dump2------------------------------------------
1128// Dump double constant Type
1129#ifndef PRODUCT
1130void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1131  Type::dump2(d,depth,st);
1132  st->print("%f", _d);
1133}
1134#endif
1135
1136//------------------------------singleton--------------------------------------
1137// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1138// constants (Ldi nodes).  Singletons are integer, float or double constants
1139// or a single symbol.
1140bool TypeD::singleton(void) const {
1141  return true;                  // Always a singleton
1142}
1143
1144bool TypeD::empty(void) const {
1145  return false;                 // always exactly a singleton
1146}
1147
1148//=============================================================================
1149// Convience common pre-built types.
1150const TypeInt *TypeInt::MINUS_1;// -1
1151const TypeInt *TypeInt::ZERO;   // 0
1152const TypeInt *TypeInt::ONE;    // 1
1153const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1154const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1155const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1156const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1157const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1158const TypeInt *TypeInt::CC_LE;  // [-1,0]
1159const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1160const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1161const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1162const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1163const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1164const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1165const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1166const TypeInt *TypeInt::INT;    // 32-bit integers
1167const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1168const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1169
1170//------------------------------TypeInt----------------------------------------
1171TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1172}
1173
1174//------------------------------make-------------------------------------------
1175const TypeInt *TypeInt::make( jint lo ) {
1176  return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1177}
1178
1179static int normalize_int_widen( jint lo, jint hi, int w ) {
1180  // Certain normalizations keep us sane when comparing types.
1181  // The 'SMALLINT' covers constants and also CC and its relatives.
1182  if (lo <= hi) {
1183    if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1184    if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1185  } else {
1186    if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1187    if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1188  }
1189  return w;
1190}
1191
1192const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1193  w = normalize_int_widen(lo, hi, w);
1194  return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1195}
1196
1197//------------------------------meet-------------------------------------------
1198// Compute the MEET of two types.  It returns a new Type representation object
1199// with reference count equal to the number of Types pointing at it.
1200// Caller should wrap a Types around it.
1201const Type *TypeInt::xmeet( const Type *t ) const {
1202  // Perform a fast test for common case; meeting the same types together.
1203  if( this == t ) return this;  // Meeting same type?
1204
1205  // Currently "this->_base" is a TypeInt
1206  switch (t->base()) {          // Switch on original type
1207  case AnyPtr:                  // Mixing with oops happens when javac
1208  case RawPtr:                  // reuses local variables
1209  case OopPtr:
1210  case InstPtr:
1211  case AryPtr:
1212  case MetadataPtr:
1213  case KlassPtr:
1214  case NarrowOop:
1215  case NarrowKlass:
1216  case Long:
1217  case FloatTop:
1218  case FloatCon:
1219  case FloatBot:
1220  case DoubleTop:
1221  case DoubleCon:
1222  case DoubleBot:
1223  case Bottom:                  // Ye Olde Default
1224    return Type::BOTTOM;
1225  default:                      // All else is a mistake
1226    typerr(t);
1227  case Top:                     // No change
1228    return this;
1229  case Int:                     // Int vs Int?
1230    break;
1231  }
1232
1233  // Expand covered set
1234  const TypeInt *r = t->is_int();
1235  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1236}
1237
1238//------------------------------xdual------------------------------------------
1239// Dual: reverse hi & lo; flip widen
1240const Type *TypeInt::xdual() const {
1241  int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1242  return new TypeInt(_hi,_lo,w);
1243}
1244
1245//------------------------------widen------------------------------------------
1246// Only happens for optimistic top-down optimizations.
1247const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1248  // Coming from TOP or such; no widening
1249  if( old->base() != Int ) return this;
1250  const TypeInt *ot = old->is_int();
1251
1252  // If new guy is equal to old guy, no widening
1253  if( _lo == ot->_lo && _hi == ot->_hi )
1254    return old;
1255
1256  // If new guy contains old, then we widened
1257  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1258    // New contains old
1259    // If new guy is already wider than old, no widening
1260    if( _widen > ot->_widen ) return this;
1261    // If old guy was a constant, do not bother
1262    if (ot->_lo == ot->_hi)  return this;
1263    // Now widen new guy.
1264    // Check for widening too far
1265    if (_widen == WidenMax) {
1266      int max = max_jint;
1267      int min = min_jint;
1268      if (limit->isa_int()) {
1269        max = limit->is_int()->_hi;
1270        min = limit->is_int()->_lo;
1271      }
1272      if (min < _lo && _hi < max) {
1273        // If neither endpoint is extremal yet, push out the endpoint
1274        // which is closer to its respective limit.
1275        if (_lo >= 0 ||                 // easy common case
1276            (juint)(_lo - min) >= (juint)(max - _hi)) {
1277          // Try to widen to an unsigned range type of 31 bits:
1278          return make(_lo, max, WidenMax);
1279        } else {
1280          return make(min, _hi, WidenMax);
1281        }
1282      }
1283      return TypeInt::INT;
1284    }
1285    // Returned widened new guy
1286    return make(_lo,_hi,_widen+1);
1287  }
1288
1289  // If old guy contains new, then we probably widened too far & dropped to
1290  // bottom.  Return the wider fellow.
1291  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1292    return old;
1293
1294  //fatal("Integer value range is not subset");
1295  //return this;
1296  return TypeInt::INT;
1297}
1298
1299//------------------------------narrow---------------------------------------
1300// Only happens for pessimistic optimizations.
1301const Type *TypeInt::narrow( const Type *old ) const {
1302  if (_lo >= _hi)  return this;   // already narrow enough
1303  if (old == NULL)  return this;
1304  const TypeInt* ot = old->isa_int();
1305  if (ot == NULL)  return this;
1306  jint olo = ot->_lo;
1307  jint ohi = ot->_hi;
1308
1309  // If new guy is equal to old guy, no narrowing
1310  if (_lo == olo && _hi == ohi)  return old;
1311
1312  // If old guy was maximum range, allow the narrowing
1313  if (olo == min_jint && ohi == max_jint)  return this;
1314
1315  if (_lo < olo || _hi > ohi)
1316    return this;                // doesn't narrow; pretty wierd
1317
1318  // The new type narrows the old type, so look for a "death march".
1319  // See comments on PhaseTransform::saturate.
1320  juint nrange = _hi - _lo;
1321  juint orange = ohi - olo;
1322  if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1323    // Use the new type only if the range shrinks a lot.
1324    // We do not want the optimizer computing 2^31 point by point.
1325    return old;
1326  }
1327
1328  return this;
1329}
1330
1331//-----------------------------filter------------------------------------------
1332const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1333  const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1334  if (ft == NULL || ft->empty())
1335    return Type::TOP;           // Canonical empty value
1336  if (ft->_widen < this->_widen) {
1337    // Do not allow the value of kill->_widen to affect the outcome.
1338    // The widen bits must be allowed to run freely through the graph.
1339    ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1340  }
1341  return ft;
1342}
1343
1344//------------------------------eq---------------------------------------------
1345// Structural equality check for Type representations
1346bool TypeInt::eq( const Type *t ) const {
1347  const TypeInt *r = t->is_int(); // Handy access
1348  return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1349}
1350
1351//------------------------------hash-------------------------------------------
1352// Type-specific hashing function.
1353int TypeInt::hash(void) const {
1354  return _lo+_hi+_widen+(int)Type::Int;
1355}
1356
1357//------------------------------is_finite--------------------------------------
1358// Has a finite value
1359bool TypeInt::is_finite() const {
1360  return true;
1361}
1362
1363//------------------------------dump2------------------------------------------
1364// Dump TypeInt
1365#ifndef PRODUCT
1366static const char* intname(char* buf, jint n) {
1367  if (n == min_jint)
1368    return "min";
1369  else if (n < min_jint + 10000)
1370    sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1371  else if (n == max_jint)
1372    return "max";
1373  else if (n > max_jint - 10000)
1374    sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1375  else
1376    sprintf(buf, INT32_FORMAT, n);
1377  return buf;
1378}
1379
1380void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1381  char buf[40], buf2[40];
1382  if (_lo == min_jint && _hi == max_jint)
1383    st->print("int");
1384  else if (is_con())
1385    st->print("int:%s", intname(buf, get_con()));
1386  else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1387    st->print("bool");
1388  else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1389    st->print("byte");
1390  else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1391    st->print("char");
1392  else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1393    st->print("short");
1394  else if (_hi == max_jint)
1395    st->print("int:>=%s", intname(buf, _lo));
1396  else if (_lo == min_jint)
1397    st->print("int:<=%s", intname(buf, _hi));
1398  else
1399    st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1400
1401  if (_widen != 0 && this != TypeInt::INT)
1402    st->print(":%.*s", _widen, "wwww");
1403}
1404#endif
1405
1406//------------------------------singleton--------------------------------------
1407// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1408// constants.
1409bool TypeInt::singleton(void) const {
1410  return _lo >= _hi;
1411}
1412
1413bool TypeInt::empty(void) const {
1414  return _lo > _hi;
1415}
1416
1417//=============================================================================
1418// Convenience common pre-built types.
1419const TypeLong *TypeLong::MINUS_1;// -1
1420const TypeLong *TypeLong::ZERO; // 0
1421const TypeLong *TypeLong::ONE;  // 1
1422const TypeLong *TypeLong::POS;  // >=0
1423const TypeLong *TypeLong::LONG; // 64-bit integers
1424const TypeLong *TypeLong::INT;  // 32-bit subrange
1425const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1426const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1427
1428//------------------------------TypeLong---------------------------------------
1429TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1430}
1431
1432//------------------------------make-------------------------------------------
1433const TypeLong *TypeLong::make( jlong lo ) {
1434  return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1435}
1436
1437static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1438  // Certain normalizations keep us sane when comparing types.
1439  // The 'SMALLINT' covers constants.
1440  if (lo <= hi) {
1441    if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1442    if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1443  } else {
1444    if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1445    if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1446  }
1447  return w;
1448}
1449
1450const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1451  w = normalize_long_widen(lo, hi, w);
1452  return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1453}
1454
1455
1456//------------------------------meet-------------------------------------------
1457// Compute the MEET of two types.  It returns a new Type representation object
1458// with reference count equal to the number of Types pointing at it.
1459// Caller should wrap a Types around it.
1460const Type *TypeLong::xmeet( const Type *t ) const {
1461  // Perform a fast test for common case; meeting the same types together.
1462  if( this == t ) return this;  // Meeting same type?
1463
1464  // Currently "this->_base" is a TypeLong
1465  switch (t->base()) {          // Switch on original type
1466  case AnyPtr:                  // Mixing with oops happens when javac
1467  case RawPtr:                  // reuses local variables
1468  case OopPtr:
1469  case InstPtr:
1470  case AryPtr:
1471  case MetadataPtr:
1472  case KlassPtr:
1473  case NarrowOop:
1474  case NarrowKlass:
1475  case Int:
1476  case FloatTop:
1477  case FloatCon:
1478  case FloatBot:
1479  case DoubleTop:
1480  case DoubleCon:
1481  case DoubleBot:
1482  case Bottom:                  // Ye Olde Default
1483    return Type::BOTTOM;
1484  default:                      // All else is a mistake
1485    typerr(t);
1486  case Top:                     // No change
1487    return this;
1488  case Long:                    // Long vs Long?
1489    break;
1490  }
1491
1492  // Expand covered set
1493  const TypeLong *r = t->is_long(); // Turn into a TypeLong
1494  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1495}
1496
1497//------------------------------xdual------------------------------------------
1498// Dual: reverse hi & lo; flip widen
1499const Type *TypeLong::xdual() const {
1500  int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1501  return new TypeLong(_hi,_lo,w);
1502}
1503
1504//------------------------------widen------------------------------------------
1505// Only happens for optimistic top-down optimizations.
1506const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1507  // Coming from TOP or such; no widening
1508  if( old->base() != Long ) return this;
1509  const TypeLong *ot = old->is_long();
1510
1511  // If new guy is equal to old guy, no widening
1512  if( _lo == ot->_lo && _hi == ot->_hi )
1513    return old;
1514
1515  // If new guy contains old, then we widened
1516  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1517    // New contains old
1518    // If new guy is already wider than old, no widening
1519    if( _widen > ot->_widen ) return this;
1520    // If old guy was a constant, do not bother
1521    if (ot->_lo == ot->_hi)  return this;
1522    // Now widen new guy.
1523    // Check for widening too far
1524    if (_widen == WidenMax) {
1525      jlong max = max_jlong;
1526      jlong min = min_jlong;
1527      if (limit->isa_long()) {
1528        max = limit->is_long()->_hi;
1529        min = limit->is_long()->_lo;
1530      }
1531      if (min < _lo && _hi < max) {
1532        // If neither endpoint is extremal yet, push out the endpoint
1533        // which is closer to its respective limit.
1534        if (_lo >= 0 ||                 // easy common case
1535            (julong)(_lo - min) >= (julong)(max - _hi)) {
1536          // Try to widen to an unsigned range type of 32/63 bits:
1537          if (max >= max_juint && _hi < max_juint)
1538            return make(_lo, max_juint, WidenMax);
1539          else
1540            return make(_lo, max, WidenMax);
1541        } else {
1542          return make(min, _hi, WidenMax);
1543        }
1544      }
1545      return TypeLong::LONG;
1546    }
1547    // Returned widened new guy
1548    return make(_lo,_hi,_widen+1);
1549  }
1550
1551  // If old guy contains new, then we probably widened too far & dropped to
1552  // bottom.  Return the wider fellow.
1553  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1554    return old;
1555
1556  //  fatal("Long value range is not subset");
1557  // return this;
1558  return TypeLong::LONG;
1559}
1560
1561//------------------------------narrow----------------------------------------
1562// Only happens for pessimistic optimizations.
1563const Type *TypeLong::narrow( const Type *old ) const {
1564  if (_lo >= _hi)  return this;   // already narrow enough
1565  if (old == NULL)  return this;
1566  const TypeLong* ot = old->isa_long();
1567  if (ot == NULL)  return this;
1568  jlong olo = ot->_lo;
1569  jlong ohi = ot->_hi;
1570
1571  // If new guy is equal to old guy, no narrowing
1572  if (_lo == olo && _hi == ohi)  return old;
1573
1574  // If old guy was maximum range, allow the narrowing
1575  if (olo == min_jlong && ohi == max_jlong)  return this;
1576
1577  if (_lo < olo || _hi > ohi)
1578    return this;                // doesn't narrow; pretty wierd
1579
1580  // The new type narrows the old type, so look for a "death march".
1581  // See comments on PhaseTransform::saturate.
1582  julong nrange = _hi - _lo;
1583  julong orange = ohi - olo;
1584  if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1585    // Use the new type only if the range shrinks a lot.
1586    // We do not want the optimizer computing 2^31 point by point.
1587    return old;
1588  }
1589
1590  return this;
1591}
1592
1593//-----------------------------filter------------------------------------------
1594const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1595  const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1596  if (ft == NULL || ft->empty())
1597    return Type::TOP;           // Canonical empty value
1598  if (ft->_widen < this->_widen) {
1599    // Do not allow the value of kill->_widen to affect the outcome.
1600    // The widen bits must be allowed to run freely through the graph.
1601    ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1602  }
1603  return ft;
1604}
1605
1606//------------------------------eq---------------------------------------------
1607// Structural equality check for Type representations
1608bool TypeLong::eq( const Type *t ) const {
1609  const TypeLong *r = t->is_long(); // Handy access
1610  return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1611}
1612
1613//------------------------------hash-------------------------------------------
1614// Type-specific hashing function.
1615int TypeLong::hash(void) const {
1616  return (int)(_lo+_hi+_widen+(int)Type::Long);
1617}
1618
1619//------------------------------is_finite--------------------------------------
1620// Has a finite value
1621bool TypeLong::is_finite() const {
1622  return true;
1623}
1624
1625//------------------------------dump2------------------------------------------
1626// Dump TypeLong
1627#ifndef PRODUCT
1628static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1629  if (n > x) {
1630    if (n >= x + 10000)  return NULL;
1631    sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1632  } else if (n < x) {
1633    if (n <= x - 10000)  return NULL;
1634    sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1635  } else {
1636    return xname;
1637  }
1638  return buf;
1639}
1640
1641static const char* longname(char* buf, jlong n) {
1642  const char* str;
1643  if (n == min_jlong)
1644    return "min";
1645  else if (n < min_jlong + 10000)
1646    sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1647  else if (n == max_jlong)
1648    return "max";
1649  else if (n > max_jlong - 10000)
1650    sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1651  else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1652    return str;
1653  else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1654    return str;
1655  else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1656    return str;
1657  else
1658    sprintf(buf, JLONG_FORMAT, n);
1659  return buf;
1660}
1661
1662void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1663  char buf[80], buf2[80];
1664  if (_lo == min_jlong && _hi == max_jlong)
1665    st->print("long");
1666  else if (is_con())
1667    st->print("long:%s", longname(buf, get_con()));
1668  else if (_hi == max_jlong)
1669    st->print("long:>=%s", longname(buf, _lo));
1670  else if (_lo == min_jlong)
1671    st->print("long:<=%s", longname(buf, _hi));
1672  else
1673    st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1674
1675  if (_widen != 0 && this != TypeLong::LONG)
1676    st->print(":%.*s", _widen, "wwww");
1677}
1678#endif
1679
1680//------------------------------singleton--------------------------------------
1681// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1682// constants
1683bool TypeLong::singleton(void) const {
1684  return _lo >= _hi;
1685}
1686
1687bool TypeLong::empty(void) const {
1688  return _lo > _hi;
1689}
1690
1691//=============================================================================
1692// Convenience common pre-built types.
1693const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1694const TypeTuple *TypeTuple::IFFALSE;
1695const TypeTuple *TypeTuple::IFTRUE;
1696const TypeTuple *TypeTuple::IFNEITHER;
1697const TypeTuple *TypeTuple::LOOPBODY;
1698const TypeTuple *TypeTuple::MEMBAR;
1699const TypeTuple *TypeTuple::STORECONDITIONAL;
1700const TypeTuple *TypeTuple::START_I2C;
1701const TypeTuple *TypeTuple::INT_PAIR;
1702const TypeTuple *TypeTuple::LONG_PAIR;
1703const TypeTuple *TypeTuple::INT_CC_PAIR;
1704const TypeTuple *TypeTuple::LONG_CC_PAIR;
1705
1706
1707//------------------------------make-------------------------------------------
1708// Make a TypeTuple from the range of a method signature
1709const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1710  ciType* return_type = sig->return_type();
1711  uint total_fields = TypeFunc::Parms + return_type->size();
1712  const Type **field_array = fields(total_fields);
1713  switch (return_type->basic_type()) {
1714  case T_LONG:
1715    field_array[TypeFunc::Parms]   = TypeLong::LONG;
1716    field_array[TypeFunc::Parms+1] = Type::HALF;
1717    break;
1718  case T_DOUBLE:
1719    field_array[TypeFunc::Parms]   = Type::DOUBLE;
1720    field_array[TypeFunc::Parms+1] = Type::HALF;
1721    break;
1722  case T_OBJECT:
1723  case T_ARRAY:
1724  case T_BOOLEAN:
1725  case T_CHAR:
1726  case T_FLOAT:
1727  case T_BYTE:
1728  case T_SHORT:
1729  case T_INT:
1730    field_array[TypeFunc::Parms] = get_const_type(return_type);
1731    break;
1732  case T_VOID:
1733    break;
1734  default:
1735    ShouldNotReachHere();
1736  }
1737  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1738}
1739
1740// Make a TypeTuple from the domain of a method signature
1741const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1742  uint total_fields = TypeFunc::Parms + sig->size();
1743
1744  uint pos = TypeFunc::Parms;
1745  const Type **field_array;
1746  if (recv != NULL) {
1747    total_fields++;
1748    field_array = fields(total_fields);
1749    // Use get_const_type here because it respects UseUniqueSubclasses:
1750    field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1751  } else {
1752    field_array = fields(total_fields);
1753  }
1754
1755  int i = 0;
1756  while (pos < total_fields) {
1757    ciType* type = sig->type_at(i);
1758
1759    switch (type->basic_type()) {
1760    case T_LONG:
1761      field_array[pos++] = TypeLong::LONG;
1762      field_array[pos++] = Type::HALF;
1763      break;
1764    case T_DOUBLE:
1765      field_array[pos++] = Type::DOUBLE;
1766      field_array[pos++] = Type::HALF;
1767      break;
1768    case T_OBJECT:
1769    case T_ARRAY:
1770    case T_BOOLEAN:
1771    case T_CHAR:
1772    case T_FLOAT:
1773    case T_BYTE:
1774    case T_SHORT:
1775    case T_INT:
1776      field_array[pos++] = get_const_type(type);
1777      break;
1778    default:
1779      ShouldNotReachHere();
1780    }
1781    i++;
1782  }
1783  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1784}
1785
1786const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1787  return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1788}
1789
1790//------------------------------fields-----------------------------------------
1791// Subroutine call type with space allocated for argument types
1792const Type **TypeTuple::fields( uint arg_cnt ) {
1793  const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1794  flds[TypeFunc::Control  ] = Type::CONTROL;
1795  flds[TypeFunc::I_O      ] = Type::ABIO;
1796  flds[TypeFunc::Memory   ] = Type::MEMORY;
1797  flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1798  flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1799
1800  return flds;
1801}
1802
1803//------------------------------meet-------------------------------------------
1804// Compute the MEET of two types.  It returns a new Type object.
1805const Type *TypeTuple::xmeet( const Type *t ) const {
1806  // Perform a fast test for common case; meeting the same types together.
1807  if( this == t ) return this;  // Meeting same type-rep?
1808
1809  // Current "this->_base" is Tuple
1810  switch (t->base()) {          // switch on original type
1811
1812  case Bottom:                  // Ye Olde Default
1813    return t;
1814
1815  default:                      // All else is a mistake
1816    typerr(t);
1817
1818  case Tuple: {                 // Meeting 2 signatures?
1819    const TypeTuple *x = t->is_tuple();
1820    assert( _cnt == x->_cnt, "" );
1821    const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1822    for( uint i=0; i<_cnt; i++ )
1823      fields[i] = field_at(i)->xmeet( x->field_at(i) );
1824    return TypeTuple::make(_cnt,fields);
1825  }
1826  case Top:
1827    break;
1828  }
1829  return this;                  // Return the double constant
1830}
1831
1832//------------------------------xdual------------------------------------------
1833// Dual: compute field-by-field dual
1834const Type *TypeTuple::xdual() const {
1835  const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1836  for( uint i=0; i<_cnt; i++ )
1837    fields[i] = _fields[i]->dual();
1838  return new TypeTuple(_cnt,fields);
1839}
1840
1841//------------------------------eq---------------------------------------------
1842// Structural equality check for Type representations
1843bool TypeTuple::eq( const Type *t ) const {
1844  const TypeTuple *s = (const TypeTuple *)t;
1845  if (_cnt != s->_cnt)  return false;  // Unequal field counts
1846  for (uint i = 0; i < _cnt; i++)
1847    if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1848      return false;             // Missed
1849  return true;
1850}
1851
1852//------------------------------hash-------------------------------------------
1853// Type-specific hashing function.
1854int TypeTuple::hash(void) const {
1855  intptr_t sum = _cnt;
1856  for( uint i=0; i<_cnt; i++ )
1857    sum += (intptr_t)_fields[i];     // Hash on pointers directly
1858  return sum;
1859}
1860
1861//------------------------------dump2------------------------------------------
1862// Dump signature Type
1863#ifndef PRODUCT
1864void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1865  st->print("{");
1866  if( !depth || d[this] ) {     // Check for recursive print
1867    st->print("...}");
1868    return;
1869  }
1870  d.Insert((void*)this, (void*)this);   // Stop recursion
1871  if( _cnt ) {
1872    uint i;
1873    for( i=0; i<_cnt-1; i++ ) {
1874      st->print("%d:", i);
1875      _fields[i]->dump2(d, depth-1, st);
1876      st->print(", ");
1877    }
1878    st->print("%d:", i);
1879    _fields[i]->dump2(d, depth-1, st);
1880  }
1881  st->print("}");
1882}
1883#endif
1884
1885//------------------------------singleton--------------------------------------
1886// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1887// constants (Ldi nodes).  Singletons are integer, float or double constants
1888// or a single symbol.
1889bool TypeTuple::singleton(void) const {
1890  return false;                 // Never a singleton
1891}
1892
1893bool TypeTuple::empty(void) const {
1894  for( uint i=0; i<_cnt; i++ ) {
1895    if (_fields[i]->empty())  return true;
1896  }
1897  return false;
1898}
1899
1900//=============================================================================
1901// Convenience common pre-built types.
1902
1903inline const TypeInt* normalize_array_size(const TypeInt* size) {
1904  // Certain normalizations keep us sane when comparing types.
1905  // We do not want arrayOop variables to differ only by the wideness
1906  // of their index types.  Pick minimum wideness, since that is the
1907  // forced wideness of small ranges anyway.
1908  if (size->_widen != Type::WidenMin)
1909    return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1910  else
1911    return size;
1912}
1913
1914//------------------------------make-------------------------------------------
1915const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1916  if (UseCompressedOops && elem->isa_oopptr()) {
1917    elem = elem->make_narrowoop();
1918  }
1919  size = normalize_array_size(size);
1920  return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1921}
1922
1923//------------------------------meet-------------------------------------------
1924// Compute the MEET of two types.  It returns a new Type object.
1925const Type *TypeAry::xmeet( const Type *t ) const {
1926  // Perform a fast test for common case; meeting the same types together.
1927  if( this == t ) return this;  // Meeting same type-rep?
1928
1929  // Current "this->_base" is Ary
1930  switch (t->base()) {          // switch on original type
1931
1932  case Bottom:                  // Ye Olde Default
1933    return t;
1934
1935  default:                      // All else is a mistake
1936    typerr(t);
1937
1938  case Array: {                 // Meeting 2 arrays?
1939    const TypeAry *a = t->is_ary();
1940    return TypeAry::make(_elem->meet_speculative(a->_elem),
1941                         _size->xmeet(a->_size)->is_int(),
1942                         _stable & a->_stable);
1943  }
1944  case Top:
1945    break;
1946  }
1947  return this;                  // Return the double constant
1948}
1949
1950//------------------------------xdual------------------------------------------
1951// Dual: compute field-by-field dual
1952const Type *TypeAry::xdual() const {
1953  const TypeInt* size_dual = _size->dual()->is_int();
1954  size_dual = normalize_array_size(size_dual);
1955  return new TypeAry(_elem->dual(), size_dual, !_stable);
1956}
1957
1958//------------------------------eq---------------------------------------------
1959// Structural equality check for Type representations
1960bool TypeAry::eq( const Type *t ) const {
1961  const TypeAry *a = (const TypeAry*)t;
1962  return _elem == a->_elem &&
1963    _stable == a->_stable &&
1964    _size == a->_size;
1965}
1966
1967//------------------------------hash-------------------------------------------
1968// Type-specific hashing function.
1969int TypeAry::hash(void) const {
1970  return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1971}
1972
1973/**
1974 * Return same type without a speculative part in the element
1975 */
1976const Type* TypeAry::remove_speculative() const {
1977  return make(_elem->remove_speculative(), _size, _stable);
1978}
1979
1980/**
1981 * Return same type with cleaned up speculative part of element
1982 */
1983const Type* TypeAry::cleanup_speculative() const {
1984  return make(_elem->cleanup_speculative(), _size, _stable);
1985}
1986
1987/**
1988 * Return same type but with a different inline depth (used for speculation)
1989 *
1990 * @param depth  depth to meet with
1991 */
1992const TypePtr* TypePtr::with_inline_depth(int depth) const {
1993  if (!UseInlineDepthForSpeculativeTypes) {
1994    return this;
1995  }
1996  return make(AnyPtr, _ptr, _offset, _speculative, depth);
1997}
1998
1999//----------------------interface_vs_oop---------------------------------------
2000#ifdef ASSERT
2001bool TypeAry::interface_vs_oop(const Type *t) const {
2002  const TypeAry* t_ary = t->is_ary();
2003  if (t_ary) {
2004    return _elem->interface_vs_oop(t_ary->_elem);
2005  }
2006  return false;
2007}
2008#endif
2009
2010//------------------------------dump2------------------------------------------
2011#ifndef PRODUCT
2012void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2013  if (_stable)  st->print("stable:");
2014  _elem->dump2(d, depth, st);
2015  st->print("[");
2016  _size->dump2(d, depth, st);
2017  st->print("]");
2018}
2019#endif
2020
2021//------------------------------singleton--------------------------------------
2022// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2023// constants (Ldi nodes).  Singletons are integer, float or double constants
2024// or a single symbol.
2025bool TypeAry::singleton(void) const {
2026  return false;                 // Never a singleton
2027}
2028
2029bool TypeAry::empty(void) const {
2030  return _elem->empty() || _size->empty();
2031}
2032
2033//--------------------------ary_must_be_exact----------------------------------
2034bool TypeAry::ary_must_be_exact() const {
2035  if (!UseExactTypes)       return false;
2036  // This logic looks at the element type of an array, and returns true
2037  // if the element type is either a primitive or a final instance class.
2038  // In such cases, an array built on this ary must have no subclasses.
2039  if (_elem == BOTTOM)      return false;  // general array not exact
2040  if (_elem == TOP   )      return false;  // inverted general array not exact
2041  const TypeOopPtr*  toop = NULL;
2042  if (UseCompressedOops && _elem->isa_narrowoop()) {
2043    toop = _elem->make_ptr()->isa_oopptr();
2044  } else {
2045    toop = _elem->isa_oopptr();
2046  }
2047  if (!toop)                return true;   // a primitive type, like int
2048  ciKlass* tklass = toop->klass();
2049  if (tklass == NULL)       return false;  // unloaded class
2050  if (!tklass->is_loaded()) return false;  // unloaded class
2051  const TypeInstPtr* tinst;
2052  if (_elem->isa_narrowoop())
2053    tinst = _elem->make_ptr()->isa_instptr();
2054  else
2055    tinst = _elem->isa_instptr();
2056  if (tinst)
2057    return tklass->as_instance_klass()->is_final();
2058  const TypeAryPtr*  tap;
2059  if (_elem->isa_narrowoop())
2060    tap = _elem->make_ptr()->isa_aryptr();
2061  else
2062    tap = _elem->isa_aryptr();
2063  if (tap)
2064    return tap->ary()->ary_must_be_exact();
2065  return false;
2066}
2067
2068//==============================TypeVect=======================================
2069// Convenience common pre-built types.
2070const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2071const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2072const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2073const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2074
2075//------------------------------make-------------------------------------------
2076const TypeVect* TypeVect::make(const Type *elem, uint length) {
2077  BasicType elem_bt = elem->array_element_basic_type();
2078  assert(is_java_primitive(elem_bt), "only primitive types in vector");
2079  assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2080  assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2081  int size = length * type2aelembytes(elem_bt);
2082  switch (Matcher::vector_ideal_reg(size)) {
2083  case Op_VecS:
2084    return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2085  case Op_RegL:
2086  case Op_VecD:
2087  case Op_RegD:
2088    return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2089  case Op_VecX:
2090    return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2091  case Op_VecY:
2092    return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2093  }
2094 ShouldNotReachHere();
2095  return NULL;
2096}
2097
2098//------------------------------meet-------------------------------------------
2099// Compute the MEET of two types.  It returns a new Type object.
2100const Type *TypeVect::xmeet( const Type *t ) const {
2101  // Perform a fast test for common case; meeting the same types together.
2102  if( this == t ) return this;  // Meeting same type-rep?
2103
2104  // Current "this->_base" is Vector
2105  switch (t->base()) {          // switch on original type
2106
2107  case Bottom:                  // Ye Olde Default
2108    return t;
2109
2110  default:                      // All else is a mistake
2111    typerr(t);
2112
2113  case VectorS:
2114  case VectorD:
2115  case VectorX:
2116  case VectorY: {                // Meeting 2 vectors?
2117    const TypeVect* v = t->is_vect();
2118    assert(  base() == v->base(), "");
2119    assert(length() == v->length(), "");
2120    assert(element_basic_type() == v->element_basic_type(), "");
2121    return TypeVect::make(_elem->xmeet(v->_elem), _length);
2122  }
2123  case Top:
2124    break;
2125  }
2126  return this;
2127}
2128
2129//------------------------------xdual------------------------------------------
2130// Dual: compute field-by-field dual
2131const Type *TypeVect::xdual() const {
2132  return new TypeVect(base(), _elem->dual(), _length);
2133}
2134
2135//------------------------------eq---------------------------------------------
2136// Structural equality check for Type representations
2137bool TypeVect::eq(const Type *t) const {
2138  const TypeVect *v = t->is_vect();
2139  return (_elem == v->_elem) && (_length == v->_length);
2140}
2141
2142//------------------------------hash-------------------------------------------
2143// Type-specific hashing function.
2144int TypeVect::hash(void) const {
2145  return (intptr_t)_elem + (intptr_t)_length;
2146}
2147
2148//------------------------------singleton--------------------------------------
2149// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2150// constants (Ldi nodes).  Vector is singleton if all elements are the same
2151// constant value (when vector is created with Replicate code).
2152bool TypeVect::singleton(void) const {
2153// There is no Con node for vectors yet.
2154//  return _elem->singleton();
2155  return false;
2156}
2157
2158bool TypeVect::empty(void) const {
2159  return _elem->empty();
2160}
2161
2162//------------------------------dump2------------------------------------------
2163#ifndef PRODUCT
2164void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2165  switch (base()) {
2166  case VectorS:
2167    st->print("vectors["); break;
2168  case VectorD:
2169    st->print("vectord["); break;
2170  case VectorX:
2171    st->print("vectorx["); break;
2172  case VectorY:
2173    st->print("vectory["); break;
2174  default:
2175    ShouldNotReachHere();
2176  }
2177  st->print("%d]:{", _length);
2178  _elem->dump2(d, depth, st);
2179  st->print("}");
2180}
2181#endif
2182
2183
2184//=============================================================================
2185// Convenience common pre-built types.
2186const TypePtr *TypePtr::NULL_PTR;
2187const TypePtr *TypePtr::NOTNULL;
2188const TypePtr *TypePtr::BOTTOM;
2189
2190//------------------------------meet-------------------------------------------
2191// Meet over the PTR enum
2192const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2193  //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2194  { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2195  { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2196  { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2197  { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2198  { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2199  { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2200};
2201
2202//------------------------------make-------------------------------------------
2203const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2204  return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2205}
2206
2207//------------------------------cast_to_ptr_type-------------------------------
2208const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2209  assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2210  if( ptr == _ptr ) return this;
2211  return make(_base, ptr, _offset, _speculative, _inline_depth);
2212}
2213
2214//------------------------------get_con----------------------------------------
2215intptr_t TypePtr::get_con() const {
2216  assert( _ptr == Null, "" );
2217  return _offset;
2218}
2219
2220//------------------------------meet-------------------------------------------
2221// Compute the MEET of two types.  It returns a new Type object.
2222const Type *TypePtr::xmeet(const Type *t) const {
2223  const Type* res = xmeet_helper(t);
2224  if (res->isa_ptr() == NULL) {
2225    return res;
2226  }
2227
2228  const TypePtr* res_ptr = res->is_ptr();
2229  if (res_ptr->speculative() != NULL) {
2230    // type->speculative() == NULL means that speculation is no better
2231    // than type, i.e. type->speculative() == type. So there are 2
2232    // ways to represent the fact that we have no useful speculative
2233    // data and we should use a single one to be able to test for
2234    // equality between types. Check whether type->speculative() ==
2235    // type and set speculative to NULL if it is the case.
2236    if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2237      return res_ptr->remove_speculative();
2238    }
2239  }
2240
2241  return res;
2242}
2243
2244const Type *TypePtr::xmeet_helper(const Type *t) const {
2245  // Perform a fast test for common case; meeting the same types together.
2246  if( this == t ) return this;  // Meeting same type-rep?
2247
2248  // Current "this->_base" is AnyPtr
2249  switch (t->base()) {          // switch on original type
2250  case Int:                     // Mixing ints & oops happens when javac
2251  case Long:                    // reuses local variables
2252  case FloatTop:
2253  case FloatCon:
2254  case FloatBot:
2255  case DoubleTop:
2256  case DoubleCon:
2257  case DoubleBot:
2258  case NarrowOop:
2259  case NarrowKlass:
2260  case Bottom:                  // Ye Olde Default
2261    return Type::BOTTOM;
2262  case Top:
2263    return this;
2264
2265  case AnyPtr: {                // Meeting to AnyPtrs
2266    const TypePtr *tp = t->is_ptr();
2267    const TypePtr* speculative = xmeet_speculative(tp);
2268    int depth = meet_inline_depth(tp->inline_depth());
2269    return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2270  }
2271  case RawPtr:                  // For these, flip the call around to cut down
2272  case OopPtr:
2273  case InstPtr:                 // on the cases I have to handle.
2274  case AryPtr:
2275  case MetadataPtr:
2276  case KlassPtr:
2277    return t->xmeet(this);      // Call in reverse direction
2278  default:                      // All else is a mistake
2279    typerr(t);
2280
2281  }
2282  return this;
2283}
2284
2285//------------------------------meet_offset------------------------------------
2286int TypePtr::meet_offset( int offset ) const {
2287  // Either is 'TOP' offset?  Return the other offset!
2288  if( _offset == OffsetTop ) return offset;
2289  if( offset == OffsetTop ) return _offset;
2290  // If either is different, return 'BOTTOM' offset
2291  if( _offset != offset ) return OffsetBot;
2292  return _offset;
2293}
2294
2295//------------------------------dual_offset------------------------------------
2296int TypePtr::dual_offset( ) const {
2297  if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2298  if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2299  return _offset;               // Map everything else into self
2300}
2301
2302//------------------------------xdual------------------------------------------
2303// Dual: compute field-by-field dual
2304const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2305  BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2306};
2307const Type *TypePtr::xdual() const {
2308  return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2309}
2310
2311//------------------------------xadd_offset------------------------------------
2312int TypePtr::xadd_offset( intptr_t offset ) const {
2313  // Adding to 'TOP' offset?  Return 'TOP'!
2314  if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2315  // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2316  if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2317  // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2318  offset += (intptr_t)_offset;
2319  if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2320
2321  // assert( _offset >= 0 && _offset+offset >= 0, "" );
2322  // It is possible to construct a negative offset during PhaseCCP
2323
2324  return (int)offset;        // Sum valid offsets
2325}
2326
2327//------------------------------add_offset-------------------------------------
2328const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2329  return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2330}
2331
2332//------------------------------eq---------------------------------------------
2333// Structural equality check for Type representations
2334bool TypePtr::eq( const Type *t ) const {
2335  const TypePtr *a = (const TypePtr*)t;
2336  return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2337}
2338
2339//------------------------------hash-------------------------------------------
2340// Type-specific hashing function.
2341int TypePtr::hash(void) const {
2342  return _ptr + _offset + hash_speculative() + _inline_depth;
2343;
2344}
2345
2346/**
2347 * Return same type without a speculative part
2348 */
2349const Type* TypePtr::remove_speculative() const {
2350  if (_speculative == NULL) {
2351    return this;
2352  }
2353  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2354  return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2355}
2356
2357/**
2358 * Return same type but drop speculative part if we know we won't use
2359 * it
2360 */
2361const Type* TypePtr::cleanup_speculative() const {
2362  if (speculative() == NULL) {
2363    return this;
2364  }
2365  const Type* no_spec = remove_speculative();
2366  // If this is NULL_PTR then we don't need the speculative type
2367  // (with_inline_depth in case the current type inline depth is
2368  // InlineDepthTop)
2369  if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2370    return no_spec;
2371  }
2372  if (above_centerline(speculative()->ptr())) {
2373    return no_spec;
2374  }
2375  const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2376  // If the speculative may be null and is an inexact klass then it
2377  // doesn't help
2378  if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2379    return no_spec;
2380  }
2381  return this;
2382}
2383
2384/**
2385 * dual of the speculative part of the type
2386 */
2387const TypePtr* TypePtr::dual_speculative() const {
2388  if (_speculative == NULL) {
2389    return NULL;
2390  }
2391  return _speculative->dual()->is_ptr();
2392}
2393
2394/**
2395 * meet of the speculative parts of 2 types
2396 *
2397 * @param other  type to meet with
2398 */
2399const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2400  bool this_has_spec = (_speculative != NULL);
2401  bool other_has_spec = (other->speculative() != NULL);
2402
2403  if (!this_has_spec && !other_has_spec) {
2404    return NULL;
2405  }
2406
2407  // If we are at a point where control flow meets and one branch has
2408  // a speculative type and the other has not, we meet the speculative
2409  // type of one branch with the actual type of the other. If the
2410  // actual type is exact and the speculative is as well, then the
2411  // result is a speculative type which is exact and we can continue
2412  // speculation further.
2413  const TypePtr* this_spec = _speculative;
2414  const TypePtr* other_spec = other->speculative();
2415
2416  if (!this_has_spec) {
2417    this_spec = this;
2418  }
2419
2420  if (!other_has_spec) {
2421    other_spec = other;
2422  }
2423
2424  return this_spec->meet(other_spec)->is_ptr();
2425}
2426
2427/**
2428 * dual of the inline depth for this type (used for speculation)
2429 */
2430int TypePtr::dual_inline_depth() const {
2431  return -inline_depth();
2432}
2433
2434/**
2435 * meet of 2 inline depths (used for speculation)
2436 *
2437 * @param depth  depth to meet with
2438 */
2439int TypePtr::meet_inline_depth(int depth) const {
2440  return MAX2(inline_depth(), depth);
2441}
2442
2443/**
2444 * Are the speculative parts of 2 types equal?
2445 *
2446 * @param other  type to compare this one to
2447 */
2448bool TypePtr::eq_speculative(const TypePtr* other) const {
2449  if (_speculative == NULL || other->speculative() == NULL) {
2450    return _speculative == other->speculative();
2451  }
2452
2453  if (_speculative->base() != other->speculative()->base()) {
2454    return false;
2455  }
2456
2457  return _speculative->eq(other->speculative());
2458}
2459
2460/**
2461 * Hash of the speculative part of the type
2462 */
2463int TypePtr::hash_speculative() const {
2464  if (_speculative == NULL) {
2465    return 0;
2466  }
2467
2468  return _speculative->hash();
2469}
2470
2471/**
2472 * add offset to the speculative part of the type
2473 *
2474 * @param offset  offset to add
2475 */
2476const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2477  if (_speculative == NULL) {
2478    return NULL;
2479  }
2480  return _speculative->add_offset(offset)->is_ptr();
2481}
2482
2483/**
2484 * return exact klass from the speculative type if there's one
2485 */
2486ciKlass* TypePtr::speculative_type() const {
2487  if (_speculative != NULL && _speculative->isa_oopptr()) {
2488    const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2489    if (speculative->klass_is_exact()) {
2490      return speculative->klass();
2491    }
2492  }
2493  return NULL;
2494}
2495
2496/**
2497 * return true if speculative type may be null
2498 */
2499bool TypePtr::speculative_maybe_null() const {
2500  if (_speculative != NULL) {
2501    const TypePtr* speculative = _speculative->join(this)->is_ptr();
2502    return speculative->maybe_null();
2503  }
2504  return true;
2505}
2506
2507/**
2508 * Same as TypePtr::speculative_type() but return the klass only if
2509 * the speculative tells us is not null
2510 */
2511ciKlass* TypePtr::speculative_type_not_null() const {
2512  if (speculative_maybe_null()) {
2513    return NULL;
2514  }
2515  return speculative_type();
2516}
2517
2518/**
2519 * Check whether new profiling would improve speculative type
2520 *
2521 * @param   exact_kls    class from profiling
2522 * @param   inline_depth inlining depth of profile point
2523 *
2524 * @return  true if type profile is valuable
2525 */
2526bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2527  // no profiling?
2528  if (exact_kls == NULL) {
2529    return false;
2530  }
2531  // no speculative type or non exact speculative type?
2532  if (speculative_type() == NULL) {
2533    return true;
2534  }
2535  // If the node already has an exact speculative type keep it,
2536  // unless it was provided by profiling that is at a deeper
2537  // inlining level. Profiling at a higher inlining depth is
2538  // expected to be less accurate.
2539  if (_speculative->inline_depth() == InlineDepthBottom) {
2540    return false;
2541  }
2542  assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2543  return inline_depth < _speculative->inline_depth();
2544}
2545
2546/**
2547 * Check whether new profiling would improve ptr (= tells us it is non
2548 * null)
2549 *
2550 * @param   maybe_null true if profiling tells the ptr may be null
2551 *
2552 * @return  true if ptr profile is valuable
2553 */
2554bool TypePtr::would_improve_ptr(bool maybe_null) const {
2555  // profiling doesn't tell us anything useful
2556  if (maybe_null) {
2557    return false;
2558  }
2559  // We already know this is not be null
2560  if (!this->maybe_null()) {
2561    return false;
2562  }
2563  // We already know the speculative type cannot be null
2564  if (!speculative_maybe_null()) {
2565    return false;
2566  }
2567  return true;
2568}
2569
2570//------------------------------dump2------------------------------------------
2571const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2572  "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2573};
2574
2575#ifndef PRODUCT
2576void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2577  if( _ptr == Null ) st->print("NULL");
2578  else st->print("%s *", ptr_msg[_ptr]);
2579  if( _offset == OffsetTop ) st->print("+top");
2580  else if( _offset == OffsetBot ) st->print("+bot");
2581  else if( _offset ) st->print("+%d", _offset);
2582  dump_inline_depth(st);
2583  dump_speculative(st);
2584}
2585
2586/**
2587 *dump the speculative part of the type
2588 */
2589void TypePtr::dump_speculative(outputStream *st) const {
2590  if (_speculative != NULL) {
2591    st->print(" (speculative=");
2592    _speculative->dump_on(st);
2593    st->print(")");
2594  }
2595}
2596
2597/**
2598 *dump the inline depth of the type
2599 */
2600void TypePtr::dump_inline_depth(outputStream *st) const {
2601  if (_inline_depth != InlineDepthBottom) {
2602    if (_inline_depth == InlineDepthTop) {
2603      st->print(" (inline_depth=InlineDepthTop)");
2604    } else {
2605      st->print(" (inline_depth=%d)", _inline_depth);
2606    }
2607  }
2608}
2609#endif
2610
2611//------------------------------singleton--------------------------------------
2612// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2613// constants
2614bool TypePtr::singleton(void) const {
2615  // TopPTR, Null, AnyNull, Constant are all singletons
2616  return (_offset != OffsetBot) && !below_centerline(_ptr);
2617}
2618
2619bool TypePtr::empty(void) const {
2620  return (_offset == OffsetTop) || above_centerline(_ptr);
2621}
2622
2623//=============================================================================
2624// Convenience common pre-built types.
2625const TypeRawPtr *TypeRawPtr::BOTTOM;
2626const TypeRawPtr *TypeRawPtr::NOTNULL;
2627
2628//------------------------------make-------------------------------------------
2629const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2630  assert( ptr != Constant, "what is the constant?" );
2631  assert( ptr != Null, "Use TypePtr for NULL" );
2632  return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2633}
2634
2635const TypeRawPtr *TypeRawPtr::make( address bits ) {
2636  assert( bits, "Use TypePtr for NULL" );
2637  return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2638}
2639
2640//------------------------------cast_to_ptr_type-------------------------------
2641const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2642  assert( ptr != Constant, "what is the constant?" );
2643  assert( ptr != Null, "Use TypePtr for NULL" );
2644  assert( _bits==0, "Why cast a constant address?");
2645  if( ptr == _ptr ) return this;
2646  return make(ptr);
2647}
2648
2649//------------------------------get_con----------------------------------------
2650intptr_t TypeRawPtr::get_con() const {
2651  assert( _ptr == Null || _ptr == Constant, "" );
2652  return (intptr_t)_bits;
2653}
2654
2655//------------------------------meet-------------------------------------------
2656// Compute the MEET of two types.  It returns a new Type object.
2657const Type *TypeRawPtr::xmeet( const Type *t ) const {
2658  // Perform a fast test for common case; meeting the same types together.
2659  if( this == t ) return this;  // Meeting same type-rep?
2660
2661  // Current "this->_base" is RawPtr
2662  switch( t->base() ) {         // switch on original type
2663  case Bottom:                  // Ye Olde Default
2664    return t;
2665  case Top:
2666    return this;
2667  case AnyPtr:                  // Meeting to AnyPtrs
2668    break;
2669  case RawPtr: {                // might be top, bot, any/not or constant
2670    enum PTR tptr = t->is_ptr()->ptr();
2671    enum PTR ptr = meet_ptr( tptr );
2672    if( ptr == Constant ) {     // Cannot be equal constants, so...
2673      if( tptr == Constant && _ptr != Constant)  return t;
2674      if( _ptr == Constant && tptr != Constant)  return this;
2675      ptr = NotNull;            // Fall down in lattice
2676    }
2677    return make( ptr );
2678  }
2679
2680  case OopPtr:
2681  case InstPtr:
2682  case AryPtr:
2683  case MetadataPtr:
2684  case KlassPtr:
2685    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2686  default:                      // All else is a mistake
2687    typerr(t);
2688  }
2689
2690  // Found an AnyPtr type vs self-RawPtr type
2691  const TypePtr *tp = t->is_ptr();
2692  switch (tp->ptr()) {
2693  case TypePtr::TopPTR:  return this;
2694  case TypePtr::BotPTR:  return t;
2695  case TypePtr::Null:
2696    if( _ptr == TypePtr::TopPTR ) return t;
2697    return TypeRawPtr::BOTTOM;
2698  case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2699  case TypePtr::AnyNull:
2700    if( _ptr == TypePtr::Constant) return this;
2701    return make( meet_ptr(TypePtr::AnyNull) );
2702  default: ShouldNotReachHere();
2703  }
2704  return this;
2705}
2706
2707//------------------------------xdual------------------------------------------
2708// Dual: compute field-by-field dual
2709const Type *TypeRawPtr::xdual() const {
2710  return new TypeRawPtr( dual_ptr(), _bits );
2711}
2712
2713//------------------------------add_offset-------------------------------------
2714const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2715  if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2716  if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2717  if( offset == 0 ) return this; // No change
2718  switch (_ptr) {
2719  case TypePtr::TopPTR:
2720  case TypePtr::BotPTR:
2721  case TypePtr::NotNull:
2722    return this;
2723  case TypePtr::Null:
2724  case TypePtr::Constant: {
2725    address bits = _bits+offset;
2726    if ( bits == 0 ) return TypePtr::NULL_PTR;
2727    return make( bits );
2728  }
2729  default:  ShouldNotReachHere();
2730  }
2731  return NULL;                  // Lint noise
2732}
2733
2734//------------------------------eq---------------------------------------------
2735// Structural equality check for Type representations
2736bool TypeRawPtr::eq( const Type *t ) const {
2737  const TypeRawPtr *a = (const TypeRawPtr*)t;
2738  return _bits == a->_bits && TypePtr::eq(t);
2739}
2740
2741//------------------------------hash-------------------------------------------
2742// Type-specific hashing function.
2743int TypeRawPtr::hash(void) const {
2744  return (intptr_t)_bits + TypePtr::hash();
2745}
2746
2747//------------------------------dump2------------------------------------------
2748#ifndef PRODUCT
2749void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2750  if( _ptr == Constant )
2751    st->print(INTPTR_FORMAT, _bits);
2752  else
2753    st->print("rawptr:%s", ptr_msg[_ptr]);
2754}
2755#endif
2756
2757//=============================================================================
2758// Convenience common pre-built type.
2759const TypeOopPtr *TypeOopPtr::BOTTOM;
2760
2761//------------------------------TypeOopPtr-------------------------------------
2762TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2763                       int instance_id, const TypePtr* speculative, int inline_depth)
2764  : TypePtr(t, ptr, offset, speculative, inline_depth),
2765    _const_oop(o), _klass(k),
2766    _klass_is_exact(xk),
2767    _is_ptr_to_narrowoop(false),
2768    _is_ptr_to_narrowklass(false),
2769    _is_ptr_to_boxed_value(false),
2770    _instance_id(instance_id) {
2771  if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2772      (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2773    _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2774  }
2775#ifdef _LP64
2776  if (_offset != 0) {
2777    if (_offset == oopDesc::klass_offset_in_bytes()) {
2778      _is_ptr_to_narrowklass = UseCompressedClassPointers;
2779    } else if (klass() == NULL) {
2780      // Array with unknown body type
2781      assert(this->isa_aryptr(), "only arrays without klass");
2782      _is_ptr_to_narrowoop = UseCompressedOops;
2783    } else if (this->isa_aryptr()) {
2784      _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2785                             _offset != arrayOopDesc::length_offset_in_bytes());
2786    } else if (klass()->is_instance_klass()) {
2787      ciInstanceKlass* ik = klass()->as_instance_klass();
2788      ciField* field = NULL;
2789      if (this->isa_klassptr()) {
2790        // Perm objects don't use compressed references
2791      } else if (_offset == OffsetBot || _offset == OffsetTop) {
2792        // unsafe access
2793        _is_ptr_to_narrowoop = UseCompressedOops;
2794      } else { // exclude unsafe ops
2795        assert(this->isa_instptr(), "must be an instance ptr.");
2796
2797        if (klass() == ciEnv::current()->Class_klass() &&
2798            (_offset == java_lang_Class::klass_offset_in_bytes() ||
2799             _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2800          // Special hidden fields from the Class.
2801          assert(this->isa_instptr(), "must be an instance ptr.");
2802          _is_ptr_to_narrowoop = false;
2803        } else if (klass() == ciEnv::current()->Class_klass() &&
2804                   _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2805          // Static fields
2806          assert(o != NULL, "must be constant");
2807          ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2808          ciField* field = k->get_field_by_offset(_offset, true);
2809          assert(field != NULL, "missing field");
2810          BasicType basic_elem_type = field->layout_type();
2811          _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2812                                                       basic_elem_type == T_ARRAY);
2813        } else {
2814          // Instance fields which contains a compressed oop references.
2815          field = ik->get_field_by_offset(_offset, false);
2816          if (field != NULL) {
2817            BasicType basic_elem_type = field->layout_type();
2818            _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2819                                                         basic_elem_type == T_ARRAY);
2820          } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2821            // Compile::find_alias_type() cast exactness on all types to verify
2822            // that it does not affect alias type.
2823            _is_ptr_to_narrowoop = UseCompressedOops;
2824          } else {
2825            // Type for the copy start in LibraryCallKit::inline_native_clone().
2826            _is_ptr_to_narrowoop = UseCompressedOops;
2827          }
2828        }
2829      }
2830    }
2831  }
2832#endif
2833}
2834
2835//------------------------------make-------------------------------------------
2836const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2837                                     const TypePtr* speculative, int inline_depth) {
2838  assert(ptr != Constant, "no constant generic pointers");
2839  ciKlass*  k = Compile::current()->env()->Object_klass();
2840  bool      xk = false;
2841  ciObject* o = NULL;
2842  return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2843}
2844
2845
2846//------------------------------cast_to_ptr_type-------------------------------
2847const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2848  assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2849  if( ptr == _ptr ) return this;
2850  return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2851}
2852
2853//-----------------------------cast_to_instance_id----------------------------
2854const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2855  // There are no instances of a general oop.
2856  // Return self unchanged.
2857  return this;
2858}
2859
2860//-----------------------------cast_to_exactness-------------------------------
2861const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2862  // There is no such thing as an exact general oop.
2863  // Return self unchanged.
2864  return this;
2865}
2866
2867
2868//------------------------------as_klass_type----------------------------------
2869// Return the klass type corresponding to this instance or array type.
2870// It is the type that is loaded from an object of this type.
2871const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2872  ciKlass* k = klass();
2873  bool    xk = klass_is_exact();
2874  if (k == NULL)
2875    return TypeKlassPtr::OBJECT;
2876  else
2877    return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2878}
2879
2880//------------------------------meet-------------------------------------------
2881// Compute the MEET of two types.  It returns a new Type object.
2882const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2883  // Perform a fast test for common case; meeting the same types together.
2884  if( this == t ) return this;  // Meeting same type-rep?
2885
2886  // Current "this->_base" is OopPtr
2887  switch (t->base()) {          // switch on original type
2888
2889  case Int:                     // Mixing ints & oops happens when javac
2890  case Long:                    // reuses local variables
2891  case FloatTop:
2892  case FloatCon:
2893  case FloatBot:
2894  case DoubleTop:
2895  case DoubleCon:
2896  case DoubleBot:
2897  case NarrowOop:
2898  case NarrowKlass:
2899  case Bottom:                  // Ye Olde Default
2900    return Type::BOTTOM;
2901  case Top:
2902    return this;
2903
2904  default:                      // All else is a mistake
2905    typerr(t);
2906
2907  case RawPtr:
2908  case MetadataPtr:
2909  case KlassPtr:
2910    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2911
2912  case AnyPtr: {
2913    // Found an AnyPtr type vs self-OopPtr type
2914    const TypePtr *tp = t->is_ptr();
2915    int offset = meet_offset(tp->offset());
2916    PTR ptr = meet_ptr(tp->ptr());
2917    const TypePtr* speculative = xmeet_speculative(tp);
2918    int depth = meet_inline_depth(tp->inline_depth());
2919    switch (tp->ptr()) {
2920    case Null:
2921      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2922      // else fall through:
2923    case TopPTR:
2924    case AnyNull: {
2925      int instance_id = meet_instance_id(InstanceTop);
2926      return make(ptr, offset, instance_id, speculative, depth);
2927    }
2928    case BotPTR:
2929    case NotNull:
2930      return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2931    default: typerr(t);
2932    }
2933  }
2934
2935  case OopPtr: {                 // Meeting to other OopPtrs
2936    const TypeOopPtr *tp = t->is_oopptr();
2937    int instance_id = meet_instance_id(tp->instance_id());
2938    const TypePtr* speculative = xmeet_speculative(tp);
2939    int depth = meet_inline_depth(tp->inline_depth());
2940    return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2941  }
2942
2943  case InstPtr:                  // For these, flip the call around to cut down
2944  case AryPtr:
2945    return t->xmeet(this);      // Call in reverse direction
2946
2947  } // End of switch
2948  return this;                  // Return the double constant
2949}
2950
2951
2952//------------------------------xdual------------------------------------------
2953// Dual of a pure heap pointer.  No relevant klass or oop information.
2954const Type *TypeOopPtr::xdual() const {
2955  assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2956  assert(const_oop() == NULL,             "no constants here");
2957  return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2958}
2959
2960//--------------------------make_from_klass_common-----------------------------
2961// Computes the element-type given a klass.
2962const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2963  if (klass->is_instance_klass()) {
2964    Compile* C = Compile::current();
2965    Dependencies* deps = C->dependencies();
2966    assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2967    // Element is an instance
2968    bool klass_is_exact = false;
2969    if (klass->is_loaded()) {
2970      // Try to set klass_is_exact.
2971      ciInstanceKlass* ik = klass->as_instance_klass();
2972      klass_is_exact = ik->is_final();
2973      if (!klass_is_exact && klass_change
2974          && deps != NULL && UseUniqueSubclasses) {
2975        ciInstanceKlass* sub = ik->unique_concrete_subklass();
2976        if (sub != NULL) {
2977          deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2978          klass = ik = sub;
2979          klass_is_exact = sub->is_final();
2980        }
2981      }
2982      if (!klass_is_exact && try_for_exact
2983          && deps != NULL && UseExactTypes) {
2984        if (!ik->is_interface() && !ik->has_subklass()) {
2985          // Add a dependence; if concrete subclass added we need to recompile
2986          deps->assert_leaf_type(ik);
2987          klass_is_exact = true;
2988        }
2989      }
2990    }
2991    return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2992  } else if (klass->is_obj_array_klass()) {
2993    // Element is an object array. Recursively call ourself.
2994    const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2995    bool xk = etype->klass_is_exact();
2996    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2997    // We used to pass NotNull in here, asserting that the sub-arrays
2998    // are all not-null.  This is not true in generally, as code can
2999    // slam NULLs down in the subarrays.
3000    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3001    return arr;
3002  } else if (klass->is_type_array_klass()) {
3003    // Element is an typeArray
3004    const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3005    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3006    // We used to pass NotNull in here, asserting that the array pointer
3007    // is not-null. That was not true in general.
3008    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3009    return arr;
3010  } else {
3011    ShouldNotReachHere();
3012    return NULL;
3013  }
3014}
3015
3016//------------------------------make_from_constant-----------------------------
3017// Make a java pointer from an oop constant
3018const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
3019                                                 bool require_constant,
3020                                                 bool is_autobox_cache) {
3021  assert(!o->is_null_object(), "null object not yet handled here.");
3022  ciKlass* klass = o->klass();
3023  if (klass->is_instance_klass()) {
3024    // Element is an instance
3025    if (require_constant) {
3026      if (!o->can_be_constant())  return NULL;
3027    } else if (!o->should_be_constant()) {
3028      return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3029    }
3030    return TypeInstPtr::make(o);
3031  } else if (klass->is_obj_array_klass()) {
3032    // Element is an object array. Recursively call ourself.
3033    const TypeOopPtr *etype =
3034      TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3035    if (is_autobox_cache) {
3036      // The pointers in the autobox arrays are always non-null.
3037      etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3038    }
3039    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3040    // We used to pass NotNull in here, asserting that the sub-arrays
3041    // are all not-null.  This is not true in generally, as code can
3042    // slam NULLs down in the subarrays.
3043    if (require_constant) {
3044      if (!o->can_be_constant())  return NULL;
3045    } else if (!o->should_be_constant()) {
3046      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3047    }
3048    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
3049    return arr;
3050  } else if (klass->is_type_array_klass()) {
3051    // Element is an typeArray
3052    const Type* etype =
3053      (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3054    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3055    // We used to pass NotNull in here, asserting that the array pointer
3056    // is not-null. That was not true in general.
3057    if (require_constant) {
3058      if (!o->can_be_constant())  return NULL;
3059    } else if (!o->should_be_constant()) {
3060      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3061    }
3062    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3063    return arr;
3064  }
3065
3066  fatal("unhandled object type");
3067  return NULL;
3068}
3069
3070//------------------------------get_con----------------------------------------
3071intptr_t TypeOopPtr::get_con() const {
3072  assert( _ptr == Null || _ptr == Constant, "" );
3073  assert( _offset >= 0, "" );
3074
3075  if (_offset != 0) {
3076    // After being ported to the compiler interface, the compiler no longer
3077    // directly manipulates the addresses of oops.  Rather, it only has a pointer
3078    // to a handle at compile time.  This handle is embedded in the generated
3079    // code and dereferenced at the time the nmethod is made.  Until that time,
3080    // it is not reasonable to do arithmetic with the addresses of oops (we don't
3081    // have access to the addresses!).  This does not seem to currently happen,
3082    // but this assertion here is to help prevent its occurence.
3083    tty->print_cr("Found oop constant with non-zero offset");
3084    ShouldNotReachHere();
3085  }
3086
3087  return (intptr_t)const_oop()->constant_encoding();
3088}
3089
3090
3091//-----------------------------filter------------------------------------------
3092// Do not allow interface-vs.-noninterface joins to collapse to top.
3093const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3094
3095  const Type* ft = join_helper(kills, include_speculative);
3096  const TypeInstPtr* ftip = ft->isa_instptr();
3097  const TypeInstPtr* ktip = kills->isa_instptr();
3098
3099  if (ft->empty()) {
3100    // Check for evil case of 'this' being a class and 'kills' expecting an
3101    // interface.  This can happen because the bytecodes do not contain
3102    // enough type info to distinguish a Java-level interface variable
3103    // from a Java-level object variable.  If we meet 2 classes which
3104    // both implement interface I, but their meet is at 'j/l/O' which
3105    // doesn't implement I, we have no way to tell if the result should
3106    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3107    // into a Phi which "knows" it's an Interface type we'll have to
3108    // uplift the type.
3109    if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
3110      return kills;             // Uplift to interface
3111
3112    return Type::TOP;           // Canonical empty value
3113  }
3114
3115  // If we have an interface-typed Phi or cast and we narrow to a class type,
3116  // the join should report back the class.  However, if we have a J/L/Object
3117  // class-typed Phi and an interface flows in, it's possible that the meet &
3118  // join report an interface back out.  This isn't possible but happens
3119  // because the type system doesn't interact well with interfaces.
3120  if (ftip != NULL && ktip != NULL &&
3121      ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3122      ktip->is_loaded() && !ktip->klass()->is_interface()) {
3123    // Happens in a CTW of rt.jar, 320-341, no extra flags
3124    assert(!ftip->klass_is_exact(), "interface could not be exact");
3125    return ktip->cast_to_ptr_type(ftip->ptr());
3126  }
3127
3128  return ft;
3129}
3130
3131//------------------------------eq---------------------------------------------
3132// Structural equality check for Type representations
3133bool TypeOopPtr::eq( const Type *t ) const {
3134  const TypeOopPtr *a = (const TypeOopPtr*)t;
3135  if (_klass_is_exact != a->_klass_is_exact ||
3136      _instance_id != a->_instance_id)  return false;
3137  ciObject* one = const_oop();
3138  ciObject* two = a->const_oop();
3139  if (one == NULL || two == NULL) {
3140    return (one == two) && TypePtr::eq(t);
3141  } else {
3142    return one->equals(two) && TypePtr::eq(t);
3143  }
3144}
3145
3146//------------------------------hash-------------------------------------------
3147// Type-specific hashing function.
3148int TypeOopPtr::hash(void) const {
3149  return
3150    (const_oop() ? const_oop()->hash() : 0) +
3151    _klass_is_exact +
3152    _instance_id +
3153    TypePtr::hash();
3154}
3155
3156//------------------------------dump2------------------------------------------
3157#ifndef PRODUCT
3158void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3159  st->print("oopptr:%s", ptr_msg[_ptr]);
3160  if( _klass_is_exact ) st->print(":exact");
3161  if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
3162  switch( _offset ) {
3163  case OffsetTop: st->print("+top"); break;
3164  case OffsetBot: st->print("+any"); break;
3165  case         0: break;
3166  default:        st->print("+%d",_offset); break;
3167  }
3168  if (_instance_id == InstanceTop)
3169    st->print(",iid=top");
3170  else if (_instance_id != InstanceBot)
3171    st->print(",iid=%d",_instance_id);
3172
3173  dump_inline_depth(st);
3174  dump_speculative(st);
3175}
3176#endif
3177
3178//------------------------------singleton--------------------------------------
3179// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3180// constants
3181bool TypeOopPtr::singleton(void) const {
3182  // detune optimizer to not generate constant oop + constant offset as a constant!
3183  // TopPTR, Null, AnyNull, Constant are all singletons
3184  return (_offset == 0) && !below_centerline(_ptr);
3185}
3186
3187//------------------------------add_offset-------------------------------------
3188const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3189  return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3190}
3191
3192/**
3193 * Return same type without a speculative part
3194 */
3195const Type* TypeOopPtr::remove_speculative() const {
3196  if (_speculative == NULL) {
3197    return this;
3198  }
3199  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3200  return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3201}
3202
3203/**
3204 * Return same type but drop speculative part if we know we won't use
3205 * it
3206 */
3207const Type* TypeOopPtr::cleanup_speculative() const {
3208  // If the klass is exact and the ptr is not null then there's
3209  // nothing that the speculative type can help us with
3210  if (klass_is_exact() && !maybe_null()) {
3211    return remove_speculative();
3212  }
3213  return TypePtr::cleanup_speculative();
3214}
3215
3216/**
3217 * Return same type but with a different inline depth (used for speculation)
3218 *
3219 * @param depth  depth to meet with
3220 */
3221const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3222  if (!UseInlineDepthForSpeculativeTypes) {
3223    return this;
3224  }
3225  return make(_ptr, _offset, _instance_id, _speculative, depth);
3226}
3227
3228//------------------------------meet_instance_id--------------------------------
3229int TypeOopPtr::meet_instance_id( int instance_id ) const {
3230  // Either is 'TOP' instance?  Return the other instance!
3231  if( _instance_id == InstanceTop ) return  instance_id;
3232  if(  instance_id == InstanceTop ) return _instance_id;
3233  // If either is different, return 'BOTTOM' instance
3234  if( _instance_id != instance_id ) return InstanceBot;
3235  return _instance_id;
3236}
3237
3238//------------------------------dual_instance_id--------------------------------
3239int TypeOopPtr::dual_instance_id( ) const {
3240  if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3241  if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3242  return _instance_id;              // Map everything else into self
3243}
3244
3245/**
3246 * Check whether new profiling would improve speculative type
3247 *
3248 * @param   exact_kls    class from profiling
3249 * @param   inline_depth inlining depth of profile point
3250 *
3251 * @return  true if type profile is valuable
3252 */
3253bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3254  // no way to improve an already exact type
3255  if (klass_is_exact()) {
3256    return false;
3257  }
3258  return TypePtr::would_improve_type(exact_kls, inline_depth);
3259}
3260
3261//=============================================================================
3262// Convenience common pre-built types.
3263const TypeInstPtr *TypeInstPtr::NOTNULL;
3264const TypeInstPtr *TypeInstPtr::BOTTOM;
3265const TypeInstPtr *TypeInstPtr::MIRROR;
3266const TypeInstPtr *TypeInstPtr::MARK;
3267const TypeInstPtr *TypeInstPtr::KLASS;
3268
3269//------------------------------TypeInstPtr-------------------------------------
3270TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3271                         int instance_id, const TypePtr* speculative, int inline_depth)
3272  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3273    _name(k->name()) {
3274   assert(k != NULL &&
3275          (k->is_loaded() || o == NULL),
3276          "cannot have constants with non-loaded klass");
3277};
3278
3279//------------------------------make-------------------------------------------
3280const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3281                                     ciKlass* k,
3282                                     bool xk,
3283                                     ciObject* o,
3284                                     int offset,
3285                                     int instance_id,
3286                                     const TypePtr* speculative,
3287                                     int inline_depth) {
3288  assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3289  // Either const_oop() is NULL or else ptr is Constant
3290  assert( (!o && ptr != Constant) || (o && ptr == Constant),
3291          "constant pointers must have a value supplied" );
3292  // Ptr is never Null
3293  assert( ptr != Null, "NULL pointers are not typed" );
3294
3295  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3296  if (!UseExactTypes)  xk = false;
3297  if (ptr == Constant) {
3298    // Note:  This case includes meta-object constants, such as methods.
3299    xk = true;
3300  } else if (k->is_loaded()) {
3301    ciInstanceKlass* ik = k->as_instance_klass();
3302    if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3303    if (xk && ik->is_interface())  xk = false;  // no exact interface
3304  }
3305
3306  // Now hash this baby
3307  TypeInstPtr *result =
3308    (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3309
3310  return result;
3311}
3312
3313/**
3314 *  Create constant type for a constant boxed value
3315 */
3316const Type* TypeInstPtr::get_const_boxed_value() const {
3317  assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3318  assert((const_oop() != NULL), "should be called only for constant object");
3319  ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3320  BasicType bt = constant.basic_type();
3321  switch (bt) {
3322    case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3323    case T_INT:      return TypeInt::make(constant.as_int());
3324    case T_CHAR:     return TypeInt::make(constant.as_char());
3325    case T_BYTE:     return TypeInt::make(constant.as_byte());
3326    case T_SHORT:    return TypeInt::make(constant.as_short());
3327    case T_FLOAT:    return TypeF::make(constant.as_float());
3328    case T_DOUBLE:   return TypeD::make(constant.as_double());
3329    case T_LONG:     return TypeLong::make(constant.as_long());
3330    default:         break;
3331  }
3332  fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3333  return NULL;
3334}
3335
3336//------------------------------cast_to_ptr_type-------------------------------
3337const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3338  if( ptr == _ptr ) return this;
3339  // Reconstruct _sig info here since not a problem with later lazy
3340  // construction, _sig will show up on demand.
3341  return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3342}
3343
3344
3345//-----------------------------cast_to_exactness-------------------------------
3346const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3347  if( klass_is_exact == _klass_is_exact ) return this;
3348  if (!UseExactTypes)  return this;
3349  if (!_klass->is_loaded())  return this;
3350  ciInstanceKlass* ik = _klass->as_instance_klass();
3351  if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3352  if( ik->is_interface() )              return this;  // cannot set xk
3353  return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3354}
3355
3356//-----------------------------cast_to_instance_id----------------------------
3357const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3358  if( instance_id == _instance_id ) return this;
3359  return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3360}
3361
3362//------------------------------xmeet_unloaded---------------------------------
3363// Compute the MEET of two InstPtrs when at least one is unloaded.
3364// Assume classes are different since called after check for same name/class-loader
3365const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3366    int off = meet_offset(tinst->offset());
3367    PTR ptr = meet_ptr(tinst->ptr());
3368    int instance_id = meet_instance_id(tinst->instance_id());
3369    const TypePtr* speculative = xmeet_speculative(tinst);
3370    int depth = meet_inline_depth(tinst->inline_depth());
3371
3372    const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3373    const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3374    if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3375      //
3376      // Meet unloaded class with java/lang/Object
3377      //
3378      // Meet
3379      //          |                     Unloaded Class
3380      //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3381      //  ===================================================================
3382      //   TOP    | ..........................Unloaded......................|
3383      //  AnyNull |  U-AN    |................Unloaded......................|
3384      // Constant | ... O-NN .................................. |   O-BOT   |
3385      //  NotNull | ... O-NN .................................. |   O-BOT   |
3386      //  BOTTOM  | ........................Object-BOTTOM ..................|
3387      //
3388      assert(loaded->ptr() != TypePtr::Null, "insanity check");
3389      //
3390      if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3391      else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3392      else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3393      else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3394        if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3395        else                                      { return TypeInstPtr::NOTNULL; }
3396      }
3397      else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3398
3399      return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3400    }
3401
3402    // Both are unloaded, not the same class, not Object
3403    // Or meet unloaded with a different loaded class, not java/lang/Object
3404    if( ptr != TypePtr::BotPTR ) {
3405      return TypeInstPtr::NOTNULL;
3406    }
3407    return TypeInstPtr::BOTTOM;
3408}
3409
3410
3411//------------------------------meet-------------------------------------------
3412// Compute the MEET of two types.  It returns a new Type object.
3413const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3414  // Perform a fast test for common case; meeting the same types together.
3415  if( this == t ) return this;  // Meeting same type-rep?
3416
3417  // Current "this->_base" is Pointer
3418  switch (t->base()) {          // switch on original type
3419
3420  case Int:                     // Mixing ints & oops happens when javac
3421  case Long:                    // reuses local variables
3422  case FloatTop:
3423  case FloatCon:
3424  case FloatBot:
3425  case DoubleTop:
3426  case DoubleCon:
3427  case DoubleBot:
3428  case NarrowOop:
3429  case NarrowKlass:
3430  case Bottom:                  // Ye Olde Default
3431    return Type::BOTTOM;
3432  case Top:
3433    return this;
3434
3435  default:                      // All else is a mistake
3436    typerr(t);
3437
3438  case MetadataPtr:
3439  case KlassPtr:
3440  case RawPtr: return TypePtr::BOTTOM;
3441
3442  case AryPtr: {                // All arrays inherit from Object class
3443    const TypeAryPtr *tp = t->is_aryptr();
3444    int offset = meet_offset(tp->offset());
3445    PTR ptr = meet_ptr(tp->ptr());
3446    int instance_id = meet_instance_id(tp->instance_id());
3447    const TypePtr* speculative = xmeet_speculative(tp);
3448    int depth = meet_inline_depth(tp->inline_depth());
3449    switch (ptr) {
3450    case TopPTR:
3451    case AnyNull:                // Fall 'down' to dual of object klass
3452      // For instances when a subclass meets a superclass we fall
3453      // below the centerline when the superclass is exact. We need to
3454      // do the same here.
3455      if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3456        return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3457      } else {
3458        // cannot subclass, so the meet has to fall badly below the centerline
3459        ptr = NotNull;
3460        instance_id = InstanceBot;
3461        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3462      }
3463    case Constant:
3464    case NotNull:
3465    case BotPTR:                // Fall down to object klass
3466      // LCA is object_klass, but if we subclass from the top we can do better
3467      if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3468        // If 'this' (InstPtr) is above the centerline and it is Object class
3469        // then we can subclass in the Java class hierarchy.
3470        // For instances when a subclass meets a superclass we fall
3471        // below the centerline when the superclass is exact. We need
3472        // to do the same here.
3473        if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3474          // that is, tp's array type is a subtype of my klass
3475          return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3476                                  tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3477        }
3478      }
3479      // The other case cannot happen, since I cannot be a subtype of an array.
3480      // The meet falls down to Object class below centerline.
3481      if( ptr == Constant )
3482         ptr = NotNull;
3483      instance_id = InstanceBot;
3484      return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3485    default: typerr(t);
3486    }
3487  }
3488
3489  case OopPtr: {                // Meeting to OopPtrs
3490    // Found a OopPtr type vs self-InstPtr type
3491    const TypeOopPtr *tp = t->is_oopptr();
3492    int offset = meet_offset(tp->offset());
3493    PTR ptr = meet_ptr(tp->ptr());
3494    switch (tp->ptr()) {
3495    case TopPTR:
3496    case AnyNull: {
3497      int instance_id = meet_instance_id(InstanceTop);
3498      const TypePtr* speculative = xmeet_speculative(tp);
3499      int depth = meet_inline_depth(tp->inline_depth());
3500      return make(ptr, klass(), klass_is_exact(),
3501                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3502    }
3503    case NotNull:
3504    case BotPTR: {
3505      int instance_id = meet_instance_id(tp->instance_id());
3506      const TypePtr* speculative = xmeet_speculative(tp);
3507      int depth = meet_inline_depth(tp->inline_depth());
3508      return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3509    }
3510    default: typerr(t);
3511    }
3512  }
3513
3514  case AnyPtr: {                // Meeting to AnyPtrs
3515    // Found an AnyPtr type vs self-InstPtr type
3516    const TypePtr *tp = t->is_ptr();
3517    int offset = meet_offset(tp->offset());
3518    PTR ptr = meet_ptr(tp->ptr());
3519    int instance_id = meet_instance_id(InstanceTop);
3520    const TypePtr* speculative = xmeet_speculative(tp);
3521    int depth = meet_inline_depth(tp->inline_depth());
3522    switch (tp->ptr()) {
3523    case Null:
3524      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3525      // else fall through to AnyNull
3526    case TopPTR:
3527    case AnyNull: {
3528      return make(ptr, klass(), klass_is_exact(),
3529                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3530    }
3531    case NotNull:
3532    case BotPTR:
3533      return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3534    default: typerr(t);
3535    }
3536  }
3537
3538  /*
3539                 A-top         }
3540               /   |   \       }  Tops
3541           B-top A-any C-top   }
3542              | /  |  \ |      }  Any-nulls
3543           B-any   |   C-any   }
3544              |    |    |
3545           B-con A-con C-con   } constants; not comparable across classes
3546              |    |    |
3547           B-not   |   C-not   }
3548              | \  |  / |      }  not-nulls
3549           B-bot A-not C-bot   }
3550               \   |   /       }  Bottoms
3551                 A-bot         }
3552  */
3553
3554  case InstPtr: {                // Meeting 2 Oops?
3555    // Found an InstPtr sub-type vs self-InstPtr type
3556    const TypeInstPtr *tinst = t->is_instptr();
3557    int off = meet_offset( tinst->offset() );
3558    PTR ptr = meet_ptr( tinst->ptr() );
3559    int instance_id = meet_instance_id(tinst->instance_id());
3560    const TypePtr* speculative = xmeet_speculative(tinst);
3561    int depth = meet_inline_depth(tinst->inline_depth());
3562
3563    // Check for easy case; klasses are equal (and perhaps not loaded!)
3564    // If we have constants, then we created oops so classes are loaded
3565    // and we can handle the constants further down.  This case handles
3566    // both-not-loaded or both-loaded classes
3567    if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3568      return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3569    }
3570
3571    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3572    ciKlass* tinst_klass = tinst->klass();
3573    ciKlass* this_klass  = this->klass();
3574    bool tinst_xk = tinst->klass_is_exact();
3575    bool this_xk  = this->klass_is_exact();
3576    if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3577      // One of these classes has not been loaded
3578      const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3579#ifndef PRODUCT
3580      if( PrintOpto && Verbose ) {
3581        tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3582        tty->print("  this == "); this->dump(); tty->cr();
3583        tty->print(" tinst == "); tinst->dump(); tty->cr();
3584      }
3585#endif
3586      return unloaded_meet;
3587    }
3588
3589    // Handle mixing oops and interfaces first.
3590    if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3591                                        tinst_klass == ciEnv::current()->Object_klass())) {
3592      ciKlass *tmp = tinst_klass; // Swap interface around
3593      tinst_klass = this_klass;
3594      this_klass = tmp;
3595      bool tmp2 = tinst_xk;
3596      tinst_xk = this_xk;
3597      this_xk = tmp2;
3598    }
3599    if (tinst_klass->is_interface() &&
3600        !(this_klass->is_interface() ||
3601          // Treat java/lang/Object as an honorary interface,
3602          // because we need a bottom for the interface hierarchy.
3603          this_klass == ciEnv::current()->Object_klass())) {
3604      // Oop meets interface!
3605
3606      // See if the oop subtypes (implements) interface.
3607      ciKlass *k;
3608      bool xk;
3609      if( this_klass->is_subtype_of( tinst_klass ) ) {
3610        // Oop indeed subtypes.  Now keep oop or interface depending
3611        // on whether we are both above the centerline or either is
3612        // below the centerline.  If we are on the centerline
3613        // (e.g., Constant vs. AnyNull interface), use the constant.
3614        k  = below_centerline(ptr) ? tinst_klass : this_klass;
3615        // If we are keeping this_klass, keep its exactness too.
3616        xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3617      } else {                  // Does not implement, fall to Object
3618        // Oop does not implement interface, so mixing falls to Object
3619        // just like the verifier does (if both are above the
3620        // centerline fall to interface)
3621        k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3622        xk = above_centerline(ptr) ? tinst_xk : false;
3623        // Watch out for Constant vs. AnyNull interface.
3624        if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3625        instance_id = InstanceBot;
3626      }
3627      ciObject* o = NULL;  // the Constant value, if any
3628      if (ptr == Constant) {
3629        // Find out which constant.
3630        o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3631      }
3632      return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3633    }
3634
3635    // Either oop vs oop or interface vs interface or interface vs Object
3636
3637    // !!! Here's how the symmetry requirement breaks down into invariants:
3638    // If we split one up & one down AND they subtype, take the down man.
3639    // If we split one up & one down AND they do NOT subtype, "fall hard".
3640    // If both are up and they subtype, take the subtype class.
3641    // If both are up and they do NOT subtype, "fall hard".
3642    // If both are down and they subtype, take the supertype class.
3643    // If both are down and they do NOT subtype, "fall hard".
3644    // Constants treated as down.
3645
3646    // Now, reorder the above list; observe that both-down+subtype is also
3647    // "fall hard"; "fall hard" becomes the default case:
3648    // If we split one up & one down AND they subtype, take the down man.
3649    // If both are up and they subtype, take the subtype class.
3650
3651    // If both are down and they subtype, "fall hard".
3652    // If both are down and they do NOT subtype, "fall hard".
3653    // If both are up and they do NOT subtype, "fall hard".
3654    // If we split one up & one down AND they do NOT subtype, "fall hard".
3655
3656    // If a proper subtype is exact, and we return it, we return it exactly.
3657    // If a proper supertype is exact, there can be no subtyping relationship!
3658    // If both types are equal to the subtype, exactness is and-ed below the
3659    // centerline and or-ed above it.  (N.B. Constants are always exact.)
3660
3661    // Check for subtyping:
3662    ciKlass *subtype = NULL;
3663    bool subtype_exact = false;
3664    if( tinst_klass->equals(this_klass) ) {
3665      subtype = this_klass;
3666      subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3667    } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3668      subtype = this_klass;     // Pick subtyping class
3669      subtype_exact = this_xk;
3670    } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3671      subtype = tinst_klass;    // Pick subtyping class
3672      subtype_exact = tinst_xk;
3673    }
3674
3675    if( subtype ) {
3676      if( above_centerline(ptr) ) { // both are up?
3677        this_klass = tinst_klass = subtype;
3678        this_xk = tinst_xk = subtype_exact;
3679      } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3680        this_klass = tinst_klass; // tinst is down; keep down man
3681        this_xk = tinst_xk;
3682      } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3683        tinst_klass = this_klass; // this is down; keep down man
3684        tinst_xk = this_xk;
3685      } else {
3686        this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3687      }
3688    }
3689
3690    // Check for classes now being equal
3691    if (tinst_klass->equals(this_klass)) {
3692      // If the klasses are equal, the constants may still differ.  Fall to
3693      // NotNull if they do (neither constant is NULL; that is a special case
3694      // handled elsewhere).
3695      ciObject* o = NULL;             // Assume not constant when done
3696      ciObject* this_oop  = const_oop();
3697      ciObject* tinst_oop = tinst->const_oop();
3698      if( ptr == Constant ) {
3699        if (this_oop != NULL && tinst_oop != NULL &&
3700            this_oop->equals(tinst_oop) )
3701          o = this_oop;
3702        else if (above_centerline(this ->_ptr))
3703          o = tinst_oop;
3704        else if (above_centerline(tinst ->_ptr))
3705          o = this_oop;
3706        else
3707          ptr = NotNull;
3708      }
3709      return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3710    } // Else classes are not equal
3711
3712    // Since klasses are different, we require a LCA in the Java
3713    // class hierarchy - which means we have to fall to at least NotNull.
3714    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3715      ptr = NotNull;
3716
3717    instance_id = InstanceBot;
3718
3719    // Now we find the LCA of Java classes
3720    ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3721    return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3722  } // End of case InstPtr
3723
3724  } // End of switch
3725  return this;                  // Return the double constant
3726}
3727
3728
3729//------------------------java_mirror_type--------------------------------------
3730ciType* TypeInstPtr::java_mirror_type() const {
3731  // must be a singleton type
3732  if( const_oop() == NULL )  return NULL;
3733
3734  // must be of type java.lang.Class
3735  if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3736
3737  return const_oop()->as_instance()->java_mirror_type();
3738}
3739
3740
3741//------------------------------xdual------------------------------------------
3742// Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3743// inheritance mechanism.
3744const Type *TypeInstPtr::xdual() const {
3745  return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3746}
3747
3748//------------------------------eq---------------------------------------------
3749// Structural equality check for Type representations
3750bool TypeInstPtr::eq( const Type *t ) const {
3751  const TypeInstPtr *p = t->is_instptr();
3752  return
3753    klass()->equals(p->klass()) &&
3754    TypeOopPtr::eq(p);          // Check sub-type stuff
3755}
3756
3757//------------------------------hash-------------------------------------------
3758// Type-specific hashing function.
3759int TypeInstPtr::hash(void) const {
3760  int hash = klass()->hash() + TypeOopPtr::hash();
3761  return hash;
3762}
3763
3764//------------------------------dump2------------------------------------------
3765// Dump oop Type
3766#ifndef PRODUCT
3767void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3768  // Print the name of the klass.
3769  klass()->print_name_on(st);
3770
3771  switch( _ptr ) {
3772  case Constant:
3773    // TO DO: Make CI print the hex address of the underlying oop.
3774    if (WizardMode || Verbose) {
3775      const_oop()->print_oop(st);
3776    }
3777  case BotPTR:
3778    if (!WizardMode && !Verbose) {
3779      if( _klass_is_exact ) st->print(":exact");
3780      break;
3781    }
3782  case TopPTR:
3783  case AnyNull:
3784  case NotNull:
3785    st->print(":%s", ptr_msg[_ptr]);
3786    if( _klass_is_exact ) st->print(":exact");
3787    break;
3788  }
3789
3790  if( _offset ) {               // Dump offset, if any
3791    if( _offset == OffsetBot )      st->print("+any");
3792    else if( _offset == OffsetTop ) st->print("+unknown");
3793    else st->print("+%d", _offset);
3794  }
3795
3796  st->print(" *");
3797  if (_instance_id == InstanceTop)
3798    st->print(",iid=top");
3799  else if (_instance_id != InstanceBot)
3800    st->print(",iid=%d",_instance_id);
3801
3802  dump_inline_depth(st);
3803  dump_speculative(st);
3804}
3805#endif
3806
3807//------------------------------add_offset-------------------------------------
3808const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3809  return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3810              _instance_id, add_offset_speculative(offset), _inline_depth);
3811}
3812
3813const Type *TypeInstPtr::remove_speculative() const {
3814  if (_speculative == NULL) {
3815    return this;
3816  }
3817  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3818  return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3819              _instance_id, NULL, _inline_depth);
3820}
3821
3822const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3823  if (!UseInlineDepthForSpeculativeTypes) {
3824    return this;
3825  }
3826  return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3827}
3828
3829//=============================================================================
3830// Convenience common pre-built types.
3831const TypeAryPtr *TypeAryPtr::RANGE;
3832const TypeAryPtr *TypeAryPtr::OOPS;
3833const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3834const TypeAryPtr *TypeAryPtr::BYTES;
3835const TypeAryPtr *TypeAryPtr::SHORTS;
3836const TypeAryPtr *TypeAryPtr::CHARS;
3837const TypeAryPtr *TypeAryPtr::INTS;
3838const TypeAryPtr *TypeAryPtr::LONGS;
3839const TypeAryPtr *TypeAryPtr::FLOATS;
3840const TypeAryPtr *TypeAryPtr::DOUBLES;
3841
3842//------------------------------make-------------------------------------------
3843const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3844                                   int instance_id, const TypePtr* speculative, int inline_depth) {
3845  assert(!(k == NULL && ary->_elem->isa_int()),
3846         "integral arrays must be pre-equipped with a class");
3847  if (!xk)  xk = ary->ary_must_be_exact();
3848  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3849  if (!UseExactTypes)  xk = (ptr == Constant);
3850  return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3851}
3852
3853//------------------------------make-------------------------------------------
3854const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3855                                   int instance_id, const TypePtr* speculative, int inline_depth,
3856                                   bool is_autobox_cache) {
3857  assert(!(k == NULL && ary->_elem->isa_int()),
3858         "integral arrays must be pre-equipped with a class");
3859  assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3860  if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3861  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3862  if (!UseExactTypes)  xk = (ptr == Constant);
3863  return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3864}
3865
3866//------------------------------cast_to_ptr_type-------------------------------
3867const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3868  if( ptr == _ptr ) return this;
3869  return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3870}
3871
3872
3873//-----------------------------cast_to_exactness-------------------------------
3874const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3875  if( klass_is_exact == _klass_is_exact ) return this;
3876  if (!UseExactTypes)  return this;
3877  if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3878  return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3879}
3880
3881//-----------------------------cast_to_instance_id----------------------------
3882const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3883  if( instance_id == _instance_id ) return this;
3884  return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3885}
3886
3887//-----------------------------narrow_size_type-------------------------------
3888// Local cache for arrayOopDesc::max_array_length(etype),
3889// which is kind of slow (and cached elsewhere by other users).
3890static jint max_array_length_cache[T_CONFLICT+1];
3891static jint max_array_length(BasicType etype) {
3892  jint& cache = max_array_length_cache[etype];
3893  jint res = cache;
3894  if (res == 0) {
3895    switch (etype) {
3896    case T_NARROWOOP:
3897      etype = T_OBJECT;
3898      break;
3899    case T_NARROWKLASS:
3900    case T_CONFLICT:
3901    case T_ILLEGAL:
3902    case T_VOID:
3903      etype = T_BYTE;           // will produce conservatively high value
3904    }
3905    cache = res = arrayOopDesc::max_array_length(etype);
3906  }
3907  return res;
3908}
3909
3910// Narrow the given size type to the index range for the given array base type.
3911// Return NULL if the resulting int type becomes empty.
3912const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3913  jint hi = size->_hi;
3914  jint lo = size->_lo;
3915  jint min_lo = 0;
3916  jint max_hi = max_array_length(elem()->basic_type());
3917  //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3918  bool chg = false;
3919  if (lo < min_lo) {
3920    lo = min_lo;
3921    if (size->is_con()) {
3922      hi = lo;
3923    }
3924    chg = true;
3925  }
3926  if (hi > max_hi) {
3927    hi = max_hi;
3928    if (size->is_con()) {
3929      lo = hi;
3930    }
3931    chg = true;
3932  }
3933  // Negative length arrays will produce weird intermediate dead fast-path code
3934  if (lo > hi)
3935    return TypeInt::ZERO;
3936  if (!chg)
3937    return size;
3938  return TypeInt::make(lo, hi, Type::WidenMin);
3939}
3940
3941//-------------------------------cast_to_size----------------------------------
3942const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3943  assert(new_size != NULL, "");
3944  new_size = narrow_size_type(new_size);
3945  if (new_size == size())  return this;
3946  const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3947  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3948}
3949
3950
3951//------------------------------cast_to_stable---------------------------------
3952const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3953  if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3954    return this;
3955
3956  const Type* elem = this->elem();
3957  const TypePtr* elem_ptr = elem->make_ptr();
3958
3959  if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3960    // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3961    elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3962  }
3963
3964  const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3965
3966  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3967}
3968
3969//-----------------------------stable_dimension--------------------------------
3970int TypeAryPtr::stable_dimension() const {
3971  if (!is_stable())  return 0;
3972  int dim = 1;
3973  const TypePtr* elem_ptr = elem()->make_ptr();
3974  if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3975    dim += elem_ptr->is_aryptr()->stable_dimension();
3976  return dim;
3977}
3978
3979//------------------------------eq---------------------------------------------
3980// Structural equality check for Type representations
3981bool TypeAryPtr::eq( const Type *t ) const {
3982  const TypeAryPtr *p = t->is_aryptr();
3983  return
3984    _ary == p->_ary &&  // Check array
3985    TypeOopPtr::eq(p);  // Check sub-parts
3986}
3987
3988//------------------------------hash-------------------------------------------
3989// Type-specific hashing function.
3990int TypeAryPtr::hash(void) const {
3991  return (intptr_t)_ary + TypeOopPtr::hash();
3992}
3993
3994//------------------------------meet-------------------------------------------
3995// Compute the MEET of two types.  It returns a new Type object.
3996const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3997  // Perform a fast test for common case; meeting the same types together.
3998  if( this == t ) return this;  // Meeting same type-rep?
3999  // Current "this->_base" is Pointer
4000  switch (t->base()) {          // switch on original type
4001
4002  // Mixing ints & oops happens when javac reuses local variables
4003  case Int:
4004  case Long:
4005  case FloatTop:
4006  case FloatCon:
4007  case FloatBot:
4008  case DoubleTop:
4009  case DoubleCon:
4010  case DoubleBot:
4011  case NarrowOop:
4012  case NarrowKlass:
4013  case Bottom:                  // Ye Olde Default
4014    return Type::BOTTOM;
4015  case Top:
4016    return this;
4017
4018  default:                      // All else is a mistake
4019    typerr(t);
4020
4021  case OopPtr: {                // Meeting to OopPtrs
4022    // Found a OopPtr type vs self-AryPtr type
4023    const TypeOopPtr *tp = t->is_oopptr();
4024    int offset = meet_offset(tp->offset());
4025    PTR ptr = meet_ptr(tp->ptr());
4026    int depth = meet_inline_depth(tp->inline_depth());
4027    const TypePtr* speculative = xmeet_speculative(tp);
4028    switch (tp->ptr()) {
4029    case TopPTR:
4030    case AnyNull: {
4031      int instance_id = meet_instance_id(InstanceTop);
4032      return make(ptr, (ptr == Constant ? const_oop() : NULL),
4033                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4034    }
4035    case BotPTR:
4036    case NotNull: {
4037      int instance_id = meet_instance_id(tp->instance_id());
4038      return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4039    }
4040    default: ShouldNotReachHere();
4041    }
4042  }
4043
4044  case AnyPtr: {                // Meeting two AnyPtrs
4045    // Found an AnyPtr type vs self-AryPtr type
4046    const TypePtr *tp = t->is_ptr();
4047    int offset = meet_offset(tp->offset());
4048    PTR ptr = meet_ptr(tp->ptr());
4049    const TypePtr* speculative = xmeet_speculative(tp);
4050    int depth = meet_inline_depth(tp->inline_depth());
4051    switch (tp->ptr()) {
4052    case TopPTR:
4053      return this;
4054    case BotPTR:
4055    case NotNull:
4056      return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4057    case Null:
4058      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4059      // else fall through to AnyNull
4060    case AnyNull: {
4061      int instance_id = meet_instance_id(InstanceTop);
4062      return make(ptr, (ptr == Constant ? const_oop() : NULL),
4063                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4064    }
4065    default: ShouldNotReachHere();
4066    }
4067  }
4068
4069  case MetadataPtr:
4070  case KlassPtr:
4071  case RawPtr: return TypePtr::BOTTOM;
4072
4073  case AryPtr: {                // Meeting 2 references?
4074    const TypeAryPtr *tap = t->is_aryptr();
4075    int off = meet_offset(tap->offset());
4076    const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4077    PTR ptr = meet_ptr(tap->ptr());
4078    int instance_id = meet_instance_id(tap->instance_id());
4079    const TypePtr* speculative = xmeet_speculative(tap);
4080    int depth = meet_inline_depth(tap->inline_depth());
4081    ciKlass* lazy_klass = NULL;
4082    if (tary->_elem->isa_int()) {
4083      // Integral array element types have irrelevant lattice relations.
4084      // It is the klass that determines array layout, not the element type.
4085      if (_klass == NULL)
4086        lazy_klass = tap->_klass;
4087      else if (tap->_klass == NULL || tap->_klass == _klass) {
4088        lazy_klass = _klass;
4089      } else {
4090        // Something like byte[int+] meets char[int+].
4091        // This must fall to bottom, not (int[-128..65535])[int+].
4092        instance_id = InstanceBot;
4093        tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4094      }
4095    } else // Non integral arrays.
4096      // Must fall to bottom if exact klasses in upper lattice
4097      // are not equal or super klass is exact.
4098      if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4099          // meet with top[] and bottom[] are processed further down:
4100          tap->_klass != NULL  && this->_klass != NULL   &&
4101          // both are exact and not equal:
4102          ((tap->_klass_is_exact && this->_klass_is_exact) ||
4103           // 'tap'  is exact and super or unrelated:
4104           (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4105           // 'this' is exact and super or unrelated:
4106           (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4107      tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4108      return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4109    }
4110
4111    bool xk = false;
4112    switch (tap->ptr()) {
4113    case AnyNull:
4114    case TopPTR:
4115      // Compute new klass on demand, do not use tap->_klass
4116      if (below_centerline(this->_ptr)) {
4117        xk = this->_klass_is_exact;
4118      } else {
4119        xk = (tap->_klass_is_exact | this->_klass_is_exact);
4120      }
4121      return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4122    case Constant: {
4123      ciObject* o = const_oop();
4124      if( _ptr == Constant ) {
4125        if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4126          xk = (klass() == tap->klass());
4127          ptr = NotNull;
4128          o = NULL;
4129          instance_id = InstanceBot;
4130        } else {
4131          xk = true;
4132        }
4133      } else if(above_centerline(_ptr)) {
4134        o = tap->const_oop();
4135        xk = true;
4136      } else {
4137        // Only precise for identical arrays
4138        xk = this->_klass_is_exact && (klass() == tap->klass());
4139      }
4140      return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4141    }
4142    case NotNull:
4143    case BotPTR:
4144      // Compute new klass on demand, do not use tap->_klass
4145      if (above_centerline(this->_ptr))
4146            xk = tap->_klass_is_exact;
4147      else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4148              (klass() == tap->klass()); // Only precise for identical arrays
4149      return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4150    default: ShouldNotReachHere();
4151    }
4152  }
4153
4154  // All arrays inherit from Object class
4155  case InstPtr: {
4156    const TypeInstPtr *tp = t->is_instptr();
4157    int offset = meet_offset(tp->offset());
4158    PTR ptr = meet_ptr(tp->ptr());
4159    int instance_id = meet_instance_id(tp->instance_id());
4160    const TypePtr* speculative = xmeet_speculative(tp);
4161    int depth = meet_inline_depth(tp->inline_depth());
4162    switch (ptr) {
4163    case TopPTR:
4164    case AnyNull:                // Fall 'down' to dual of object klass
4165      // For instances when a subclass meets a superclass we fall
4166      // below the centerline when the superclass is exact. We need to
4167      // do the same here.
4168      if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4169        return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4170      } else {
4171        // cannot subclass, so the meet has to fall badly below the centerline
4172        ptr = NotNull;
4173        instance_id = InstanceBot;
4174        return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4175      }
4176    case Constant:
4177    case NotNull:
4178    case BotPTR:                // Fall down to object klass
4179      // LCA is object_klass, but if we subclass from the top we can do better
4180      if (above_centerline(tp->ptr())) {
4181        // If 'tp'  is above the centerline and it is Object class
4182        // then we can subclass in the Java class hierarchy.
4183        // For instances when a subclass meets a superclass we fall
4184        // below the centerline when the superclass is exact. We need
4185        // to do the same here.
4186        if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4187          // that is, my array type is a subtype of 'tp' klass
4188          return make(ptr, (ptr == Constant ? const_oop() : NULL),
4189                      _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4190        }
4191      }
4192      // The other case cannot happen, since t cannot be a subtype of an array.
4193      // The meet falls down to Object class below centerline.
4194      if( ptr == Constant )
4195         ptr = NotNull;
4196      instance_id = InstanceBot;
4197      return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4198    default: typerr(t);
4199    }
4200  }
4201  }
4202  return this;                  // Lint noise
4203}
4204
4205//------------------------------xdual------------------------------------------
4206// Dual: compute field-by-field dual
4207const Type *TypeAryPtr::xdual() const {
4208  return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4209}
4210
4211//----------------------interface_vs_oop---------------------------------------
4212#ifdef ASSERT
4213bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4214  const TypeAryPtr* t_aryptr = t->isa_aryptr();
4215  if (t_aryptr) {
4216    return _ary->interface_vs_oop(t_aryptr->_ary);
4217  }
4218  return false;
4219}
4220#endif
4221
4222//------------------------------dump2------------------------------------------
4223#ifndef PRODUCT
4224void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4225  _ary->dump2(d,depth,st);
4226  switch( _ptr ) {
4227  case Constant:
4228    const_oop()->print(st);
4229    break;
4230  case BotPTR:
4231    if (!WizardMode && !Verbose) {
4232      if( _klass_is_exact ) st->print(":exact");
4233      break;
4234    }
4235  case TopPTR:
4236  case AnyNull:
4237  case NotNull:
4238    st->print(":%s", ptr_msg[_ptr]);
4239    if( _klass_is_exact ) st->print(":exact");
4240    break;
4241  }
4242
4243  if( _offset != 0 ) {
4244    int header_size = objArrayOopDesc::header_size() * wordSize;
4245    if( _offset == OffsetTop )       st->print("+undefined");
4246    else if( _offset == OffsetBot )  st->print("+any");
4247    else if( _offset < header_size ) st->print("+%d", _offset);
4248    else {
4249      BasicType basic_elem_type = elem()->basic_type();
4250      int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4251      int elem_size = type2aelembytes(basic_elem_type);
4252      st->print("[%d]", (_offset - array_base)/elem_size);
4253    }
4254  }
4255  st->print(" *");
4256  if (_instance_id == InstanceTop)
4257    st->print(",iid=top");
4258  else if (_instance_id != InstanceBot)
4259    st->print(",iid=%d",_instance_id);
4260
4261  dump_inline_depth(st);
4262  dump_speculative(st);
4263}
4264#endif
4265
4266bool TypeAryPtr::empty(void) const {
4267  if (_ary->empty())       return true;
4268  return TypeOopPtr::empty();
4269}
4270
4271//------------------------------add_offset-------------------------------------
4272const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4273  return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4274}
4275
4276const Type *TypeAryPtr::remove_speculative() const {
4277  if (_speculative == NULL) {
4278    return this;
4279  }
4280  assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4281  return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4282}
4283
4284const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4285  if (!UseInlineDepthForSpeculativeTypes) {
4286    return this;
4287  }
4288  return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4289}
4290
4291//=============================================================================
4292
4293//------------------------------hash-------------------------------------------
4294// Type-specific hashing function.
4295int TypeNarrowPtr::hash(void) const {
4296  return _ptrtype->hash() + 7;
4297}
4298
4299bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4300  return _ptrtype->singleton();
4301}
4302
4303bool TypeNarrowPtr::empty(void) const {
4304  return _ptrtype->empty();
4305}
4306
4307intptr_t TypeNarrowPtr::get_con() const {
4308  return _ptrtype->get_con();
4309}
4310
4311bool TypeNarrowPtr::eq( const Type *t ) const {
4312  const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4313  if (tc != NULL) {
4314    if (_ptrtype->base() != tc->_ptrtype->base()) {
4315      return false;
4316    }
4317    return tc->_ptrtype->eq(_ptrtype);
4318  }
4319  return false;
4320}
4321
4322const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4323  const TypePtr* odual = _ptrtype->dual()->is_ptr();
4324  return make_same_narrowptr(odual);
4325}
4326
4327
4328const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4329  if (isa_same_narrowptr(kills)) {
4330    const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4331    if (ft->empty())
4332      return Type::TOP;           // Canonical empty value
4333    if (ft->isa_ptr()) {
4334      return make_hash_same_narrowptr(ft->isa_ptr());
4335    }
4336    return ft;
4337  } else if (kills->isa_ptr()) {
4338    const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4339    if (ft->empty())
4340      return Type::TOP;           // Canonical empty value
4341    return ft;
4342  } else {
4343    return Type::TOP;
4344  }
4345}
4346
4347//------------------------------xmeet------------------------------------------
4348// Compute the MEET of two types.  It returns a new Type object.
4349const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4350  // Perform a fast test for common case; meeting the same types together.
4351  if( this == t ) return this;  // Meeting same type-rep?
4352
4353  if (t->base() == base()) {
4354    const Type* result = _ptrtype->xmeet(t->make_ptr());
4355    if (result->isa_ptr()) {
4356      return make_hash_same_narrowptr(result->is_ptr());
4357    }
4358    return result;
4359  }
4360
4361  // Current "this->_base" is NarrowKlass or NarrowOop
4362  switch (t->base()) {          // switch on original type
4363
4364  case Int:                     // Mixing ints & oops happens when javac
4365  case Long:                    // reuses local variables
4366  case FloatTop:
4367  case FloatCon:
4368  case FloatBot:
4369  case DoubleTop:
4370  case DoubleCon:
4371  case DoubleBot:
4372  case AnyPtr:
4373  case RawPtr:
4374  case OopPtr:
4375  case InstPtr:
4376  case AryPtr:
4377  case MetadataPtr:
4378  case KlassPtr:
4379  case NarrowOop:
4380  case NarrowKlass:
4381
4382  case Bottom:                  // Ye Olde Default
4383    return Type::BOTTOM;
4384  case Top:
4385    return this;
4386
4387  default:                      // All else is a mistake
4388    typerr(t);
4389
4390  } // End of switch
4391
4392  return this;
4393}
4394
4395#ifndef PRODUCT
4396void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4397  _ptrtype->dump2(d, depth, st);
4398}
4399#endif
4400
4401const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4402const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4403
4404
4405const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4406  return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4407}
4408
4409const Type* TypeNarrowOop::remove_speculative() const {
4410  return make(_ptrtype->remove_speculative()->is_ptr());
4411}
4412
4413const Type* TypeNarrowOop::cleanup_speculative() const {
4414  return make(_ptrtype->cleanup_speculative()->is_ptr());
4415}
4416
4417#ifndef PRODUCT
4418void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4419  st->print("narrowoop: ");
4420  TypeNarrowPtr::dump2(d, depth, st);
4421}
4422#endif
4423
4424const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4425
4426const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4427  return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4428}
4429
4430#ifndef PRODUCT
4431void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4432  st->print("narrowklass: ");
4433  TypeNarrowPtr::dump2(d, depth, st);
4434}
4435#endif
4436
4437
4438//------------------------------eq---------------------------------------------
4439// Structural equality check for Type representations
4440bool TypeMetadataPtr::eq( const Type *t ) const {
4441  const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4442  ciMetadata* one = metadata();
4443  ciMetadata* two = a->metadata();
4444  if (one == NULL || two == NULL) {
4445    return (one == two) && TypePtr::eq(t);
4446  } else {
4447    return one->equals(two) && TypePtr::eq(t);
4448  }
4449}
4450
4451//------------------------------hash-------------------------------------------
4452// Type-specific hashing function.
4453int TypeMetadataPtr::hash(void) const {
4454  return
4455    (metadata() ? metadata()->hash() : 0) +
4456    TypePtr::hash();
4457}
4458
4459//------------------------------singleton--------------------------------------
4460// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4461// constants
4462bool TypeMetadataPtr::singleton(void) const {
4463  // detune optimizer to not generate constant metadta + constant offset as a constant!
4464  // TopPTR, Null, AnyNull, Constant are all singletons
4465  return (_offset == 0) && !below_centerline(_ptr);
4466}
4467
4468//------------------------------add_offset-------------------------------------
4469const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4470  return make( _ptr, _metadata, xadd_offset(offset));
4471}
4472
4473//-----------------------------filter------------------------------------------
4474// Do not allow interface-vs.-noninterface joins to collapse to top.
4475const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4476  const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4477  if (ft == NULL || ft->empty())
4478    return Type::TOP;           // Canonical empty value
4479  return ft;
4480}
4481
4482 //------------------------------get_con----------------------------------------
4483intptr_t TypeMetadataPtr::get_con() const {
4484  assert( _ptr == Null || _ptr == Constant, "" );
4485  assert( _offset >= 0, "" );
4486
4487  if (_offset != 0) {
4488    // After being ported to the compiler interface, the compiler no longer
4489    // directly manipulates the addresses of oops.  Rather, it only has a pointer
4490    // to a handle at compile time.  This handle is embedded in the generated
4491    // code and dereferenced at the time the nmethod is made.  Until that time,
4492    // it is not reasonable to do arithmetic with the addresses of oops (we don't
4493    // have access to the addresses!).  This does not seem to currently happen,
4494    // but this assertion here is to help prevent its occurence.
4495    tty->print_cr("Found oop constant with non-zero offset");
4496    ShouldNotReachHere();
4497  }
4498
4499  return (intptr_t)metadata()->constant_encoding();
4500}
4501
4502//------------------------------cast_to_ptr_type-------------------------------
4503const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4504  if( ptr == _ptr ) return this;
4505  return make(ptr, metadata(), _offset);
4506}
4507
4508//------------------------------meet-------------------------------------------
4509// Compute the MEET of two types.  It returns a new Type object.
4510const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4511  // Perform a fast test for common case; meeting the same types together.
4512  if( this == t ) return this;  // Meeting same type-rep?
4513
4514  // Current "this->_base" is OopPtr
4515  switch (t->base()) {          // switch on original type
4516
4517  case Int:                     // Mixing ints & oops happens when javac
4518  case Long:                    // reuses local variables
4519  case FloatTop:
4520  case FloatCon:
4521  case FloatBot:
4522  case DoubleTop:
4523  case DoubleCon:
4524  case DoubleBot:
4525  case NarrowOop:
4526  case NarrowKlass:
4527  case Bottom:                  // Ye Olde Default
4528    return Type::BOTTOM;
4529  case Top:
4530    return this;
4531
4532  default:                      // All else is a mistake
4533    typerr(t);
4534
4535  case AnyPtr: {
4536    // Found an AnyPtr type vs self-OopPtr type
4537    const TypePtr *tp = t->is_ptr();
4538    int offset = meet_offset(tp->offset());
4539    PTR ptr = meet_ptr(tp->ptr());
4540    switch (tp->ptr()) {
4541    case Null:
4542      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4543      // else fall through:
4544    case TopPTR:
4545    case AnyNull: {
4546      return make(ptr, _metadata, offset);
4547    }
4548    case BotPTR:
4549    case NotNull:
4550      return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4551    default: typerr(t);
4552    }
4553  }
4554
4555  case RawPtr:
4556  case KlassPtr:
4557  case OopPtr:
4558  case InstPtr:
4559  case AryPtr:
4560    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4561
4562  case MetadataPtr: {
4563    const TypeMetadataPtr *tp = t->is_metadataptr();
4564    int offset = meet_offset(tp->offset());
4565    PTR tptr = tp->ptr();
4566    PTR ptr = meet_ptr(tptr);
4567    ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4568    if (tptr == TopPTR || _ptr == TopPTR ||
4569        metadata()->equals(tp->metadata())) {
4570      return make(ptr, md, offset);
4571    }
4572    // metadata is different
4573    if( ptr == Constant ) {  // Cannot be equal constants, so...
4574      if( tptr == Constant && _ptr != Constant)  return t;
4575      if( _ptr == Constant && tptr != Constant)  return this;
4576      ptr = NotNull;            // Fall down in lattice
4577    }
4578    return make(ptr, NULL, offset);
4579    break;
4580  }
4581  } // End of switch
4582  return this;                  // Return the double constant
4583}
4584
4585
4586//------------------------------xdual------------------------------------------
4587// Dual of a pure metadata pointer.
4588const Type *TypeMetadataPtr::xdual() const {
4589  return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4590}
4591
4592//------------------------------dump2------------------------------------------
4593#ifndef PRODUCT
4594void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4595  st->print("metadataptr:%s", ptr_msg[_ptr]);
4596  if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4597  switch( _offset ) {
4598  case OffsetTop: st->print("+top"); break;
4599  case OffsetBot: st->print("+any"); break;
4600  case         0: break;
4601  default:        st->print("+%d",_offset); break;
4602  }
4603}
4604#endif
4605
4606
4607//=============================================================================
4608// Convenience common pre-built type.
4609const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4610
4611TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4612  TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4613}
4614
4615const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4616  return make(Constant, m, 0);
4617}
4618const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4619  return make(Constant, m, 0);
4620}
4621
4622//------------------------------make-------------------------------------------
4623// Create a meta data constant
4624const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4625  assert(m == NULL || !m->is_klass(), "wrong type");
4626  return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4627}
4628
4629
4630//=============================================================================
4631// Convenience common pre-built types.
4632
4633// Not-null object klass or below
4634const TypeKlassPtr *TypeKlassPtr::OBJECT;
4635const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4636
4637//------------------------------TypeKlassPtr-----------------------------------
4638TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4639  : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4640}
4641
4642//------------------------------make-------------------------------------------
4643// ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4644const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4645  assert( k != NULL, "Expect a non-NULL klass");
4646  assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4647  TypeKlassPtr *r =
4648    (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4649
4650  return r;
4651}
4652
4653//------------------------------eq---------------------------------------------
4654// Structural equality check for Type representations
4655bool TypeKlassPtr::eq( const Type *t ) const {
4656  const TypeKlassPtr *p = t->is_klassptr();
4657  return
4658    klass()->equals(p->klass()) &&
4659    TypePtr::eq(p);
4660}
4661
4662//------------------------------hash-------------------------------------------
4663// Type-specific hashing function.
4664int TypeKlassPtr::hash(void) const {
4665  return klass()->hash() + TypePtr::hash();
4666}
4667
4668//------------------------------singleton--------------------------------------
4669// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4670// constants
4671bool TypeKlassPtr::singleton(void) const {
4672  // detune optimizer to not generate constant klass + constant offset as a constant!
4673  // TopPTR, Null, AnyNull, Constant are all singletons
4674  return (_offset == 0) && !below_centerline(_ptr);
4675}
4676
4677// Do not allow interface-vs.-noninterface joins to collapse to top.
4678const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4679  // logic here mirrors the one from TypeOopPtr::filter. See comments
4680  // there.
4681  const Type* ft = join_helper(kills, include_speculative);
4682  const TypeKlassPtr* ftkp = ft->isa_klassptr();
4683  const TypeKlassPtr* ktkp = kills->isa_klassptr();
4684
4685  if (ft->empty()) {
4686    if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4687      return kills;             // Uplift to interface
4688
4689    return Type::TOP;           // Canonical empty value
4690  }
4691
4692  // Interface klass type could be exact in opposite to interface type,
4693  // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4694  if (ftkp != NULL && ktkp != NULL &&
4695      ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4696      !ftkp->klass_is_exact() && // Keep exact interface klass
4697      ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4698    return ktkp->cast_to_ptr_type(ftkp->ptr());
4699  }
4700
4701  return ft;
4702}
4703
4704//----------------------compute_klass------------------------------------------
4705// Compute the defining klass for this class
4706ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4707  // Compute _klass based on element type.
4708  ciKlass* k_ary = NULL;
4709  const TypeInstPtr *tinst;
4710  const TypeAryPtr *tary;
4711  const Type* el = elem();
4712  if (el->isa_narrowoop()) {
4713    el = el->make_ptr();
4714  }
4715
4716  // Get element klass
4717  if ((tinst = el->isa_instptr()) != NULL) {
4718    // Compute array klass from element klass
4719    k_ary = ciObjArrayKlass::make(tinst->klass());
4720  } else if ((tary = el->isa_aryptr()) != NULL) {
4721    // Compute array klass from element klass
4722    ciKlass* k_elem = tary->klass();
4723    // If element type is something like bottom[], k_elem will be null.
4724    if (k_elem != NULL)
4725      k_ary = ciObjArrayKlass::make(k_elem);
4726  } else if ((el->base() == Type::Top) ||
4727             (el->base() == Type::Bottom)) {
4728    // element type of Bottom occurs from meet of basic type
4729    // and object; Top occurs when doing join on Bottom.
4730    // Leave k_ary at NULL.
4731  } else {
4732    // Cannot compute array klass directly from basic type,
4733    // since subtypes of TypeInt all have basic type T_INT.
4734#ifdef ASSERT
4735    if (verify && el->isa_int()) {
4736      // Check simple cases when verifying klass.
4737      BasicType bt = T_ILLEGAL;
4738      if (el == TypeInt::BYTE) {
4739        bt = T_BYTE;
4740      } else if (el == TypeInt::SHORT) {
4741        bt = T_SHORT;
4742      } else if (el == TypeInt::CHAR) {
4743        bt = T_CHAR;
4744      } else if (el == TypeInt::INT) {
4745        bt = T_INT;
4746      } else {
4747        return _klass; // just return specified klass
4748      }
4749      return ciTypeArrayKlass::make(bt);
4750    }
4751#endif
4752    assert(!el->isa_int(),
4753           "integral arrays must be pre-equipped with a class");
4754    // Compute array klass directly from basic type
4755    k_ary = ciTypeArrayKlass::make(el->basic_type());
4756  }
4757  return k_ary;
4758}
4759
4760//------------------------------klass------------------------------------------
4761// Return the defining klass for this class
4762ciKlass* TypeAryPtr::klass() const {
4763  if( _klass ) return _klass;   // Return cached value, if possible
4764
4765  // Oops, need to compute _klass and cache it
4766  ciKlass* k_ary = compute_klass();
4767
4768  if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4769    // The _klass field acts as a cache of the underlying
4770    // ciKlass for this array type.  In order to set the field,
4771    // we need to cast away const-ness.
4772    //
4773    // IMPORTANT NOTE: we *never* set the _klass field for the
4774    // type TypeAryPtr::OOPS.  This Type is shared between all
4775    // active compilations.  However, the ciKlass which represents
4776    // this Type is *not* shared between compilations, so caching
4777    // this value would result in fetching a dangling pointer.
4778    //
4779    // Recomputing the underlying ciKlass for each request is
4780    // a bit less efficient than caching, but calls to
4781    // TypeAryPtr::OOPS->klass() are not common enough to matter.
4782    ((TypeAryPtr*)this)->_klass = k_ary;
4783    if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4784        _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4785      ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4786    }
4787  }
4788  return k_ary;
4789}
4790
4791
4792//------------------------------add_offset-------------------------------------
4793// Access internals of klass object
4794const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4795  return make( _ptr, klass(), xadd_offset(offset) );
4796}
4797
4798//------------------------------cast_to_ptr_type-------------------------------
4799const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4800  assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4801  if( ptr == _ptr ) return this;
4802  return make(ptr, _klass, _offset);
4803}
4804
4805
4806//-----------------------------cast_to_exactness-------------------------------
4807const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4808  if( klass_is_exact == _klass_is_exact ) return this;
4809  if (!UseExactTypes)  return this;
4810  return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4811}
4812
4813
4814//-----------------------------as_instance_type--------------------------------
4815// Corresponding type for an instance of the given class.
4816// It will be NotNull, and exact if and only if the klass type is exact.
4817const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4818  ciKlass* k = klass();
4819  bool    xk = klass_is_exact();
4820  //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4821  const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4822  guarantee(toop != NULL, "need type for given klass");
4823  toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4824  return toop->cast_to_exactness(xk)->is_oopptr();
4825}
4826
4827
4828//------------------------------xmeet------------------------------------------
4829// Compute the MEET of two types, return a new Type object.
4830const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4831  // Perform a fast test for common case; meeting the same types together.
4832  if( this == t ) return this;  // Meeting same type-rep?
4833
4834  // Current "this->_base" is Pointer
4835  switch (t->base()) {          // switch on original type
4836
4837  case Int:                     // Mixing ints & oops happens when javac
4838  case Long:                    // reuses local variables
4839  case FloatTop:
4840  case FloatCon:
4841  case FloatBot:
4842  case DoubleTop:
4843  case DoubleCon:
4844  case DoubleBot:
4845  case NarrowOop:
4846  case NarrowKlass:
4847  case Bottom:                  // Ye Olde Default
4848    return Type::BOTTOM;
4849  case Top:
4850    return this;
4851
4852  default:                      // All else is a mistake
4853    typerr(t);
4854
4855  case AnyPtr: {                // Meeting to AnyPtrs
4856    // Found an AnyPtr type vs self-KlassPtr type
4857    const TypePtr *tp = t->is_ptr();
4858    int offset = meet_offset(tp->offset());
4859    PTR ptr = meet_ptr(tp->ptr());
4860    switch (tp->ptr()) {
4861    case TopPTR:
4862      return this;
4863    case Null:
4864      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4865    case AnyNull:
4866      return make( ptr, klass(), offset );
4867    case BotPTR:
4868    case NotNull:
4869      return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4870    default: typerr(t);
4871    }
4872  }
4873
4874  case RawPtr:
4875  case MetadataPtr:
4876  case OopPtr:
4877  case AryPtr:                  // Meet with AryPtr
4878  case InstPtr:                 // Meet with InstPtr
4879    return TypePtr::BOTTOM;
4880
4881  //
4882  //             A-top         }
4883  //           /   |   \       }  Tops
4884  //       B-top A-any C-top   }
4885  //          | /  |  \ |      }  Any-nulls
4886  //       B-any   |   C-any   }
4887  //          |    |    |
4888  //       B-con A-con C-con   } constants; not comparable across classes
4889  //          |    |    |
4890  //       B-not   |   C-not   }
4891  //          | \  |  / |      }  not-nulls
4892  //       B-bot A-not C-bot   }
4893  //           \   |   /       }  Bottoms
4894  //             A-bot         }
4895  //
4896
4897  case KlassPtr: {  // Meet two KlassPtr types
4898    const TypeKlassPtr *tkls = t->is_klassptr();
4899    int  off     = meet_offset(tkls->offset());
4900    PTR  ptr     = meet_ptr(tkls->ptr());
4901
4902    // Check for easy case; klasses are equal (and perhaps not loaded!)
4903    // If we have constants, then we created oops so classes are loaded
4904    // and we can handle the constants further down.  This case handles
4905    // not-loaded classes
4906    if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4907      return make( ptr, klass(), off );
4908    }
4909
4910    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4911    ciKlass* tkls_klass = tkls->klass();
4912    ciKlass* this_klass = this->klass();
4913    assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4914    assert( this_klass->is_loaded(), "This class should have been loaded.");
4915
4916    // If 'this' type is above the centerline and is a superclass of the
4917    // other, we can treat 'this' as having the same type as the other.
4918    if ((above_centerline(this->ptr())) &&
4919        tkls_klass->is_subtype_of(this_klass)) {
4920      this_klass = tkls_klass;
4921    }
4922    // If 'tinst' type is above the centerline and is a superclass of the
4923    // other, we can treat 'tinst' as having the same type as the other.
4924    if ((above_centerline(tkls->ptr())) &&
4925        this_klass->is_subtype_of(tkls_klass)) {
4926      tkls_klass = this_klass;
4927    }
4928
4929    // Check for classes now being equal
4930    if (tkls_klass->equals(this_klass)) {
4931      // If the klasses are equal, the constants may still differ.  Fall to
4932      // NotNull if they do (neither constant is NULL; that is a special case
4933      // handled elsewhere).
4934      if( ptr == Constant ) {
4935        if (this->_ptr == Constant && tkls->_ptr == Constant &&
4936            this->klass()->equals(tkls->klass()));
4937        else if (above_centerline(this->ptr()));
4938        else if (above_centerline(tkls->ptr()));
4939        else
4940          ptr = NotNull;
4941      }
4942      return make( ptr, this_klass, off );
4943    } // Else classes are not equal
4944
4945    // Since klasses are different, we require the LCA in the Java
4946    // class hierarchy - which means we have to fall to at least NotNull.
4947    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4948      ptr = NotNull;
4949    // Now we find the LCA of Java classes
4950    ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4951    return   make( ptr, k, off );
4952  } // End of case KlassPtr
4953
4954  } // End of switch
4955  return this;                  // Return the double constant
4956}
4957
4958//------------------------------xdual------------------------------------------
4959// Dual: compute field-by-field dual
4960const Type    *TypeKlassPtr::xdual() const {
4961  return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4962}
4963
4964//------------------------------get_con----------------------------------------
4965intptr_t TypeKlassPtr::get_con() const {
4966  assert( _ptr == Null || _ptr == Constant, "" );
4967  assert( _offset >= 0, "" );
4968
4969  if (_offset != 0) {
4970    // After being ported to the compiler interface, the compiler no longer
4971    // directly manipulates the addresses of oops.  Rather, it only has a pointer
4972    // to a handle at compile time.  This handle is embedded in the generated
4973    // code and dereferenced at the time the nmethod is made.  Until that time,
4974    // it is not reasonable to do arithmetic with the addresses of oops (we don't
4975    // have access to the addresses!).  This does not seem to currently happen,
4976    // but this assertion here is to help prevent its occurence.
4977    tty->print_cr("Found oop constant with non-zero offset");
4978    ShouldNotReachHere();
4979  }
4980
4981  return (intptr_t)klass()->constant_encoding();
4982}
4983//------------------------------dump2------------------------------------------
4984// Dump Klass Type
4985#ifndef PRODUCT
4986void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4987  switch( _ptr ) {
4988  case Constant:
4989    st->print("precise ");
4990  case NotNull:
4991    {
4992      const char *name = klass()->name()->as_utf8();
4993      if( name ) {
4994        st->print("klass %s: " INTPTR_FORMAT, name, klass());
4995      } else {
4996        ShouldNotReachHere();
4997      }
4998    }
4999  case BotPTR:
5000    if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5001  case TopPTR:
5002  case AnyNull:
5003    st->print(":%s", ptr_msg[_ptr]);
5004    if( _klass_is_exact ) st->print(":exact");
5005    break;
5006  }
5007
5008  if( _offset ) {               // Dump offset, if any
5009    if( _offset == OffsetBot )      { st->print("+any"); }
5010    else if( _offset == OffsetTop ) { st->print("+unknown"); }
5011    else                            { st->print("+%d", _offset); }
5012  }
5013
5014  st->print(" *");
5015}
5016#endif
5017
5018
5019
5020//=============================================================================
5021// Convenience common pre-built types.
5022
5023//------------------------------make-------------------------------------------
5024const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5025  return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5026}
5027
5028//------------------------------make-------------------------------------------
5029const TypeFunc *TypeFunc::make(ciMethod* method) {
5030  Compile* C = Compile::current();
5031  const TypeFunc* tf = C->last_tf(method); // check cache
5032  if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5033  const TypeTuple *domain;
5034  if (method->is_static()) {
5035    domain = TypeTuple::make_domain(NULL, method->signature());
5036  } else {
5037    domain = TypeTuple::make_domain(method->holder(), method->signature());
5038  }
5039  const TypeTuple *range  = TypeTuple::make_range(method->signature());
5040  tf = TypeFunc::make(domain, range);
5041  C->set_last_tf(method, tf);  // fill cache
5042  return tf;
5043}
5044
5045//------------------------------meet-------------------------------------------
5046// Compute the MEET of two types.  It returns a new Type object.
5047const Type *TypeFunc::xmeet( const Type *t ) const {
5048  // Perform a fast test for common case; meeting the same types together.
5049  if( this == t ) return this;  // Meeting same type-rep?
5050
5051  // Current "this->_base" is Func
5052  switch (t->base()) {          // switch on original type
5053
5054  case Bottom:                  // Ye Olde Default
5055    return t;
5056
5057  default:                      // All else is a mistake
5058    typerr(t);
5059
5060  case Top:
5061    break;
5062  }
5063  return this;                  // Return the double constant
5064}
5065
5066//------------------------------xdual------------------------------------------
5067// Dual: compute field-by-field dual
5068const Type *TypeFunc::xdual() const {
5069  return this;
5070}
5071
5072//------------------------------eq---------------------------------------------
5073// Structural equality check for Type representations
5074bool TypeFunc::eq( const Type *t ) const {
5075  const TypeFunc *a = (const TypeFunc*)t;
5076  return _domain == a->_domain &&
5077    _range == a->_range;
5078}
5079
5080//------------------------------hash-------------------------------------------
5081// Type-specific hashing function.
5082int TypeFunc::hash(void) const {
5083  return (intptr_t)_domain + (intptr_t)_range;
5084}
5085
5086//------------------------------dump2------------------------------------------
5087// Dump Function Type
5088#ifndef PRODUCT
5089void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5090  if( _range->_cnt <= Parms )
5091    st->print("void");
5092  else {
5093    uint i;
5094    for (i = Parms; i < _range->_cnt-1; i++) {
5095      _range->field_at(i)->dump2(d,depth,st);
5096      st->print("/");
5097    }
5098    _range->field_at(i)->dump2(d,depth,st);
5099  }
5100  st->print(" ");
5101  st->print("( ");
5102  if( !depth || d[this] ) {     // Check for recursive dump
5103    st->print("...)");
5104    return;
5105  }
5106  d.Insert((void*)this,(void*)this);    // Stop recursion
5107  if (Parms < _domain->_cnt)
5108    _domain->field_at(Parms)->dump2(d,depth-1,st);
5109  for (uint i = Parms+1; i < _domain->_cnt; i++) {
5110    st->print(", ");
5111    _domain->field_at(i)->dump2(d,depth-1,st);
5112  }
5113  st->print(" )");
5114}
5115#endif
5116
5117//------------------------------singleton--------------------------------------
5118// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5119// constants (Ldi nodes).  Singletons are integer, float or double constants
5120// or a single symbol.
5121bool TypeFunc::singleton(void) const {
5122  return false;                 // Never a singleton
5123}
5124
5125bool TypeFunc::empty(void) const {
5126  return false;                 // Never empty
5127}
5128
5129
5130BasicType TypeFunc::return_type() const{
5131  if (range()->cnt() == TypeFunc::Parms) {
5132    return T_VOID;
5133  }
5134  return range()->field_at(TypeFunc::Parms)->basic_type();
5135}
5136