type.cpp revision 4030:203f64878aab
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "ci/ciTypeFlow.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "compiler/compileLog.hpp"
31#include "libadt/dict.hpp"
32#include "memory/gcLocker.hpp"
33#include "memory/oopFactory.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/instanceKlass.hpp"
36#include "oops/instanceMirrorKlass.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "oops/typeArrayKlass.hpp"
39#include "opto/matcher.hpp"
40#include "opto/node.hpp"
41#include "opto/opcodes.hpp"
42#include "opto/type.hpp"
43
44// Portions of code courtesy of Clifford Click
45
46// Optimization - Graph Style
47
48// Dictionary of types shared among compilations.
49Dict* Type::_shared_type_dict = NULL;
50
51// Array which maps compiler types to Basic Types
52Type::TypeInfo Type::_type_info[Type::lastype] = {
53  { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
54  { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
55  { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
56  { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
57  { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
58  { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
59  { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
60  { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
61  { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
62  { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
63
64#ifndef SPARC
65  { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
66  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
67  { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
68  { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
69#else
70  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
71  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
72  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
73  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
74#endif // IA32 || AMD64
75  { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
76  { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
77  { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
78  { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
79  { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
80  { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
81  { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
82  { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
83  { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
84  { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
85  { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
86  { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
87  { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
88  { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
89  { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
90  { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
91  { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
92  { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
93};
94
95// Map ideal registers (machine types) to ideal types
96const Type *Type::mreg2type[_last_machine_leaf];
97
98// Map basic types to canonical Type* pointers.
99const Type* Type::     _const_basic_type[T_CONFLICT+1];
100
101// Map basic types to constant-zero Types.
102const Type* Type::            _zero_type[T_CONFLICT+1];
103
104// Map basic types to array-body alias types.
105const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
106
107//=============================================================================
108// Convenience common pre-built types.
109const Type *Type::ABIO;         // State-of-machine only
110const Type *Type::BOTTOM;       // All values
111const Type *Type::CONTROL;      // Control only
112const Type *Type::DOUBLE;       // All doubles
113const Type *Type::FLOAT;        // All floats
114const Type *Type::HALF;         // Placeholder half of doublewide type
115const Type *Type::MEMORY;       // Abstract store only
116const Type *Type::RETURN_ADDRESS;
117const Type *Type::TOP;          // No values in set
118
119//------------------------------get_const_type---------------------------
120const Type* Type::get_const_type(ciType* type) {
121  if (type == NULL) {
122    return NULL;
123  } else if (type->is_primitive_type()) {
124    return get_const_basic_type(type->basic_type());
125  } else {
126    return TypeOopPtr::make_from_klass(type->as_klass());
127  }
128}
129
130//---------------------------array_element_basic_type---------------------------------
131// Mapping to the array element's basic type.
132BasicType Type::array_element_basic_type() const {
133  BasicType bt = basic_type();
134  if (bt == T_INT) {
135    if (this == TypeInt::INT)   return T_INT;
136    if (this == TypeInt::CHAR)  return T_CHAR;
137    if (this == TypeInt::BYTE)  return T_BYTE;
138    if (this == TypeInt::BOOL)  return T_BOOLEAN;
139    if (this == TypeInt::SHORT) return T_SHORT;
140    return T_VOID;
141  }
142  return bt;
143}
144
145//---------------------------get_typeflow_type---------------------------------
146// Import a type produced by ciTypeFlow.
147const Type* Type::get_typeflow_type(ciType* type) {
148  switch (type->basic_type()) {
149
150  case ciTypeFlow::StateVector::T_BOTTOM:
151    assert(type == ciTypeFlow::StateVector::bottom_type(), "");
152    return Type::BOTTOM;
153
154  case ciTypeFlow::StateVector::T_TOP:
155    assert(type == ciTypeFlow::StateVector::top_type(), "");
156    return Type::TOP;
157
158  case ciTypeFlow::StateVector::T_NULL:
159    assert(type == ciTypeFlow::StateVector::null_type(), "");
160    return TypePtr::NULL_PTR;
161
162  case ciTypeFlow::StateVector::T_LONG2:
163    // The ciTypeFlow pass pushes a long, then the half.
164    // We do the same.
165    assert(type == ciTypeFlow::StateVector::long2_type(), "");
166    return TypeInt::TOP;
167
168  case ciTypeFlow::StateVector::T_DOUBLE2:
169    // The ciTypeFlow pass pushes double, then the half.
170    // Our convention is the same.
171    assert(type == ciTypeFlow::StateVector::double2_type(), "");
172    return Type::TOP;
173
174  case T_ADDRESS:
175    assert(type->is_return_address(), "");
176    return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
177
178  default:
179    // make sure we did not mix up the cases:
180    assert(type != ciTypeFlow::StateVector::bottom_type(), "");
181    assert(type != ciTypeFlow::StateVector::top_type(), "");
182    assert(type != ciTypeFlow::StateVector::null_type(), "");
183    assert(type != ciTypeFlow::StateVector::long2_type(), "");
184    assert(type != ciTypeFlow::StateVector::double2_type(), "");
185    assert(!type->is_return_address(), "");
186
187    return Type::get_const_type(type);
188  }
189}
190
191
192//------------------------------make-------------------------------------------
193// Create a simple Type, with default empty symbol sets.  Then hashcons it
194// and look for an existing copy in the type dictionary.
195const Type *Type::make( enum TYPES t ) {
196  return (new Type(t))->hashcons();
197}
198
199//------------------------------cmp--------------------------------------------
200int Type::cmp( const Type *const t1, const Type *const t2 ) {
201  if( t1->_base != t2->_base )
202    return 1;                   // Missed badly
203  assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
204  return !t1->eq(t2);           // Return ZERO if equal
205}
206
207//------------------------------hash-------------------------------------------
208int Type::uhash( const Type *const t ) {
209  return t->hash();
210}
211
212#define SMALLINT ((juint)3)  // a value too insignificant to consider widening
213
214//--------------------------Initialize_shared----------------------------------
215void Type::Initialize_shared(Compile* current) {
216  // This method does not need to be locked because the first system
217  // compilations (stub compilations) occur serially.  If they are
218  // changed to proceed in parallel, then this section will need
219  // locking.
220
221  Arena* save = current->type_arena();
222  Arena* shared_type_arena = new (mtCompiler)Arena();
223
224  current->set_type_arena(shared_type_arena);
225  _shared_type_dict =
226    new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
227                                  shared_type_arena, 128 );
228  current->set_type_dict(_shared_type_dict);
229
230  // Make shared pre-built types.
231  CONTROL = make(Control);      // Control only
232  TOP     = make(Top);          // No values in set
233  MEMORY  = make(Memory);       // Abstract store only
234  ABIO    = make(Abio);         // State-of-machine only
235  RETURN_ADDRESS=make(Return_Address);
236  FLOAT   = make(FloatBot);     // All floats
237  DOUBLE  = make(DoubleBot);    // All doubles
238  BOTTOM  = make(Bottom);       // Everything
239  HALF    = make(Half);         // Placeholder half of doublewide type
240
241  TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
242  TypeF::ONE  = TypeF::make(1.0); // Float 1
243
244  TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
245  TypeD::ONE  = TypeD::make(1.0); // Double 1
246
247  TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
248  TypeInt::ZERO    = TypeInt::make( 0);  //  0
249  TypeInt::ONE     = TypeInt::make( 1);  //  1
250  TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
251  TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
252  TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
253  TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
254  TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
255  TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
256  TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
257  TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
258  TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
259  TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
260  TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
261  TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
262  TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
263  TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
264  TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
265  // CmpL is overloaded both as the bytecode computation returning
266  // a trinary (-1,0,+1) integer result AND as an efficient long
267  // compare returning optimizer ideal-type flags.
268  assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
269  assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
270  assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
271  assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
272  assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
273
274  TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
275  TypeLong::ZERO    = TypeLong::make( 0);        //  0
276  TypeLong::ONE     = TypeLong::make( 1);        //  1
277  TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
278  TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
279  TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
280  TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
281
282  const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
283  fboth[0] = Type::CONTROL;
284  fboth[1] = Type::CONTROL;
285  TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
286
287  const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
288  ffalse[0] = Type::CONTROL;
289  ffalse[1] = Type::TOP;
290  TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
291
292  const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
293  fneither[0] = Type::TOP;
294  fneither[1] = Type::TOP;
295  TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
296
297  const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
298  ftrue[0] = Type::TOP;
299  ftrue[1] = Type::CONTROL;
300  TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
301
302  const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
303  floop[0] = Type::CONTROL;
304  floop[1] = TypeInt::INT;
305  TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
306
307  TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
308  TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
309  TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
310
311  TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
312  TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
313
314  const Type **fmembar = TypeTuple::fields(0);
315  TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
316
317  const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
318  fsc[0] = TypeInt::CC;
319  fsc[1] = Type::MEMORY;
320  TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
321
322  TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
323  TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
324  TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
325  TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
326                                           false, 0, oopDesc::mark_offset_in_bytes());
327  TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
328                                           false, 0, oopDesc::klass_offset_in_bytes());
329  TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
330
331  TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
332
333  TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
334  TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
335
336  TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
337
338  mreg2type[Op_Node] = Type::BOTTOM;
339  mreg2type[Op_Set ] = 0;
340  mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
341  mreg2type[Op_RegI] = TypeInt::INT;
342  mreg2type[Op_RegP] = TypePtr::BOTTOM;
343  mreg2type[Op_RegF] = Type::FLOAT;
344  mreg2type[Op_RegD] = Type::DOUBLE;
345  mreg2type[Op_RegL] = TypeLong::LONG;
346  mreg2type[Op_RegFlags] = TypeInt::CC;
347
348  TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
349
350  TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
351
352#ifdef _LP64
353  if (UseCompressedOops) {
354    assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
355    TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
356  } else
357#endif
358  {
359    // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
360    TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
361  }
362  TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
363  TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
364  TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
365  TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
366  TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
367  TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
368  TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
369
370  // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
371  TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
372  TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
373  TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
374  TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
375  TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
376  TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
377  TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
378  TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
379  TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
380  TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
381  TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
382
383  TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
384  TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
385
386  const Type **fi2c = TypeTuple::fields(2);
387  fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
388  fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
389  TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
390
391  const Type **intpair = TypeTuple::fields(2);
392  intpair[0] = TypeInt::INT;
393  intpair[1] = TypeInt::INT;
394  TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
395
396  const Type **longpair = TypeTuple::fields(2);
397  longpair[0] = TypeLong::LONG;
398  longpair[1] = TypeLong::LONG;
399  TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
400
401  _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
402  _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
403  _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
404  _const_basic_type[T_CHAR]        = TypeInt::CHAR;
405  _const_basic_type[T_BYTE]        = TypeInt::BYTE;
406  _const_basic_type[T_SHORT]       = TypeInt::SHORT;
407  _const_basic_type[T_INT]         = TypeInt::INT;
408  _const_basic_type[T_LONG]        = TypeLong::LONG;
409  _const_basic_type[T_FLOAT]       = Type::FLOAT;
410  _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
411  _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
412  _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
413  _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
414  _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
415  _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
416
417  _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
418  _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
419  _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
420  _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
421  _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
422  _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
423  _zero_type[T_INT]         = TypeInt::ZERO;
424  _zero_type[T_LONG]        = TypeLong::ZERO;
425  _zero_type[T_FLOAT]       = TypeF::ZERO;
426  _zero_type[T_DOUBLE]      = TypeD::ZERO;
427  _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
428  _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
429  _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
430  _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
431
432  // get_zero_type() should not happen for T_CONFLICT
433  _zero_type[T_CONFLICT]= NULL;
434
435  // Vector predefined types, it needs initialized _const_basic_type[].
436  if (Matcher::vector_size_supported(T_BYTE,4)) {
437    TypeVect::VECTS = TypeVect::make(T_BYTE,4);
438  }
439  if (Matcher::vector_size_supported(T_FLOAT,2)) {
440    TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
441  }
442  if (Matcher::vector_size_supported(T_FLOAT,4)) {
443    TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
444  }
445  if (Matcher::vector_size_supported(T_FLOAT,8)) {
446    TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
447  }
448  mreg2type[Op_VecS] = TypeVect::VECTS;
449  mreg2type[Op_VecD] = TypeVect::VECTD;
450  mreg2type[Op_VecX] = TypeVect::VECTX;
451  mreg2type[Op_VecY] = TypeVect::VECTY;
452
453  // Restore working type arena.
454  current->set_type_arena(save);
455  current->set_type_dict(NULL);
456}
457
458//------------------------------Initialize-------------------------------------
459void Type::Initialize(Compile* current) {
460  assert(current->type_arena() != NULL, "must have created type arena");
461
462  if (_shared_type_dict == NULL) {
463    Initialize_shared(current);
464  }
465
466  Arena* type_arena = current->type_arena();
467
468  // Create the hash-cons'ing dictionary with top-level storage allocation
469  Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
470  current->set_type_dict(tdic);
471
472  // Transfer the shared types.
473  DictI i(_shared_type_dict);
474  for( ; i.test(); ++i ) {
475    Type* t = (Type*)i._value;
476    tdic->Insert(t,t);  // New Type, insert into Type table
477  }
478}
479
480//------------------------------hashcons---------------------------------------
481// Do the hash-cons trick.  If the Type already exists in the type table,
482// delete the current Type and return the existing Type.  Otherwise stick the
483// current Type in the Type table.
484const Type *Type::hashcons(void) {
485  debug_only(base());           // Check the assertion in Type::base().
486  // Look up the Type in the Type dictionary
487  Dict *tdic = type_dict();
488  Type* old = (Type*)(tdic->Insert(this, this, false));
489  if( old ) {                   // Pre-existing Type?
490    if( old != this )           // Yes, this guy is not the pre-existing?
491      delete this;              // Yes, Nuke this guy
492    assert( old->_dual, "" );
493    return old;                 // Return pre-existing
494  }
495
496  // Every type has a dual (to make my lattice symmetric).
497  // Since we just discovered a new Type, compute its dual right now.
498  assert( !_dual, "" );         // No dual yet
499  _dual = xdual();              // Compute the dual
500  if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
501    _dual = this;
502    return this;
503  }
504  assert( !_dual->_dual, "" );  // No reverse dual yet
505  assert( !(*tdic)[_dual], "" ); // Dual not in type system either
506  // New Type, insert into Type table
507  tdic->Insert((void*)_dual,(void*)_dual);
508  ((Type*)_dual)->_dual = this; // Finish up being symmetric
509#ifdef ASSERT
510  Type *dual_dual = (Type*)_dual->xdual();
511  assert( eq(dual_dual), "xdual(xdual()) should be identity" );
512  delete dual_dual;
513#endif
514  return this;                  // Return new Type
515}
516
517//------------------------------eq---------------------------------------------
518// Structural equality check for Type representations
519bool Type::eq( const Type * ) const {
520  return true;                  // Nothing else can go wrong
521}
522
523//------------------------------hash-------------------------------------------
524// Type-specific hashing function.
525int Type::hash(void) const {
526  return _base;
527}
528
529//------------------------------is_finite--------------------------------------
530// Has a finite value
531bool Type::is_finite() const {
532  return false;
533}
534
535//------------------------------is_nan-----------------------------------------
536// Is not a number (NaN)
537bool Type::is_nan()    const {
538  return false;
539}
540
541//----------------------interface_vs_oop---------------------------------------
542#ifdef ASSERT
543bool Type::interface_vs_oop(const Type *t) const {
544  bool result = false;
545
546  const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
547  const TypePtr*    t_ptr =    t->make_ptr();
548  if( this_ptr == NULL || t_ptr == NULL )
549    return result;
550
551  const TypeInstPtr* this_inst = this_ptr->isa_instptr();
552  const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
553  if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
554    bool this_interface = this_inst->klass()->is_interface();
555    bool    t_interface =    t_inst->klass()->is_interface();
556    result = this_interface ^ t_interface;
557  }
558
559  return result;
560}
561#endif
562
563//------------------------------meet-------------------------------------------
564// Compute the MEET of two types.  NOT virtual.  It enforces that meet is
565// commutative and the lattice is symmetric.
566const Type *Type::meet( const Type *t ) const {
567  if (isa_narrowoop() && t->isa_narrowoop()) {
568    const Type* result = make_ptr()->meet(t->make_ptr());
569    return result->make_narrowoop();
570  }
571  if (isa_narrowklass() && t->isa_narrowklass()) {
572    const Type* result = make_ptr()->meet(t->make_ptr());
573    return result->make_narrowklass();
574  }
575
576  const Type *mt = xmeet(t);
577  if (isa_narrowoop() || t->isa_narrowoop()) return mt;
578  if (isa_narrowklass() || t->isa_narrowklass()) return mt;
579#ifdef ASSERT
580  assert( mt == t->xmeet(this), "meet not commutative" );
581  const Type* dual_join = mt->_dual;
582  const Type *t2t    = dual_join->xmeet(t->_dual);
583  const Type *t2this = dual_join->xmeet(   _dual);
584
585  // Interface meet Oop is Not Symmetric:
586  // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
587  // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
588
589  if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
590    tty->print_cr("=== Meet Not Symmetric ===");
591    tty->print("t   =                   ");         t->dump(); tty->cr();
592    tty->print("this=                   ");            dump(); tty->cr();
593    tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
594
595    tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
596    tty->print("this_dual=              ");     _dual->dump(); tty->cr();
597    tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
598
599    tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
600    tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
601
602    fatal("meet not symmetric" );
603  }
604#endif
605  return mt;
606}
607
608//------------------------------xmeet------------------------------------------
609// Compute the MEET of two types.  It returns a new Type object.
610const Type *Type::xmeet( const Type *t ) const {
611  // Perform a fast test for common case; meeting the same types together.
612  if( this == t ) return this;  // Meeting same type-rep?
613
614  // Meeting TOP with anything?
615  if( _base == Top ) return t;
616
617  // Meeting BOTTOM with anything?
618  if( _base == Bottom ) return BOTTOM;
619
620  // Current "this->_base" is one of: Bad, Multi, Control, Top,
621  // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
622  switch (t->base()) {  // Switch on original type
623
624  // Cut in half the number of cases I must handle.  Only need cases for when
625  // the given enum "t->type" is less than or equal to the local enum "type".
626  case FloatCon:
627  case DoubleCon:
628  case Int:
629  case Long:
630    return t->xmeet(this);
631
632  case OopPtr:
633    return t->xmeet(this);
634
635  case InstPtr:
636    return t->xmeet(this);
637
638  case MetadataPtr:
639  case KlassPtr:
640    return t->xmeet(this);
641
642  case AryPtr:
643    return t->xmeet(this);
644
645  case NarrowOop:
646    return t->xmeet(this);
647
648  case NarrowKlass:
649    return t->xmeet(this);
650
651  case Bad:                     // Type check
652  default:                      // Bogus type not in lattice
653    typerr(t);
654    return Type::BOTTOM;
655
656  case Bottom:                  // Ye Olde Default
657    return t;
658
659  case FloatTop:
660    if( _base == FloatTop ) return this;
661  case FloatBot:                // Float
662    if( _base == FloatBot || _base == FloatTop ) return FLOAT;
663    if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
664    typerr(t);
665    return Type::BOTTOM;
666
667  case DoubleTop:
668    if( _base == DoubleTop ) return this;
669  case DoubleBot:               // Double
670    if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
671    if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
672    typerr(t);
673    return Type::BOTTOM;
674
675  // These next few cases must match exactly or it is a compile-time error.
676  case Control:                 // Control of code
677  case Abio:                    // State of world outside of program
678  case Memory:
679    if( _base == t->_base )  return this;
680    typerr(t);
681    return Type::BOTTOM;
682
683  case Top:                     // Top of the lattice
684    return this;
685  }
686
687  // The type is unchanged
688  return this;
689}
690
691//-----------------------------filter------------------------------------------
692const Type *Type::filter( const Type *kills ) const {
693  const Type* ft = join(kills);
694  if (ft->empty())
695    return Type::TOP;           // Canonical empty value
696  return ft;
697}
698
699//------------------------------xdual------------------------------------------
700// Compute dual right now.
701const Type::TYPES Type::dual_type[Type::lastype] = {
702  Bad,          // Bad
703  Control,      // Control
704  Bottom,       // Top
705  Bad,          // Int - handled in v-call
706  Bad,          // Long - handled in v-call
707  Half,         // Half
708  Bad,          // NarrowOop - handled in v-call
709  Bad,          // NarrowKlass - handled in v-call
710
711  Bad,          // Tuple - handled in v-call
712  Bad,          // Array - handled in v-call
713  Bad,          // VectorS - handled in v-call
714  Bad,          // VectorD - handled in v-call
715  Bad,          // VectorX - handled in v-call
716  Bad,          // VectorY - handled in v-call
717
718  Bad,          // AnyPtr - handled in v-call
719  Bad,          // RawPtr - handled in v-call
720  Bad,          // OopPtr - handled in v-call
721  Bad,          // InstPtr - handled in v-call
722  Bad,          // AryPtr - handled in v-call
723
724  Bad,          //  MetadataPtr - handled in v-call
725  Bad,          // KlassPtr - handled in v-call
726
727  Bad,          // Function - handled in v-call
728  Abio,         // Abio
729  Return_Address,// Return_Address
730  Memory,       // Memory
731  FloatBot,     // FloatTop
732  FloatCon,     // FloatCon
733  FloatTop,     // FloatBot
734  DoubleBot,    // DoubleTop
735  DoubleCon,    // DoubleCon
736  DoubleTop,    // DoubleBot
737  Top           // Bottom
738};
739
740const Type *Type::xdual() const {
741  // Note: the base() accessor asserts the sanity of _base.
742  assert(_type_info[base()].dual_type != Bad, "implement with v-call");
743  return new Type(_type_info[_base].dual_type);
744}
745
746//------------------------------has_memory-------------------------------------
747bool Type::has_memory() const {
748  Type::TYPES tx = base();
749  if (tx == Memory) return true;
750  if (tx == Tuple) {
751    const TypeTuple *t = is_tuple();
752    for (uint i=0; i < t->cnt(); i++) {
753      tx = t->field_at(i)->base();
754      if (tx == Memory)  return true;
755    }
756  }
757  return false;
758}
759
760#ifndef PRODUCT
761//------------------------------dump2------------------------------------------
762void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
763  st->print(_type_info[_base].msg);
764}
765
766//------------------------------dump-------------------------------------------
767void Type::dump_on(outputStream *st) const {
768  ResourceMark rm;
769  Dict d(cmpkey,hashkey);       // Stop recursive type dumping
770  dump2(d,1, st);
771  if (is_ptr_to_narrowoop()) {
772    st->print(" [narrow]");
773  } else if (is_ptr_to_narrowklass()) {
774    st->print(" [narrowklass]");
775  }
776}
777#endif
778
779//------------------------------singleton--------------------------------------
780// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
781// constants (Ldi nodes).  Singletons are integer, float or double constants.
782bool Type::singleton(void) const {
783  return _base == Top || _base == Half;
784}
785
786//------------------------------empty------------------------------------------
787// TRUE if Type is a type with no values, FALSE otherwise.
788bool Type::empty(void) const {
789  switch (_base) {
790  case DoubleTop:
791  case FloatTop:
792  case Top:
793    return true;
794
795  case Half:
796  case Abio:
797  case Return_Address:
798  case Memory:
799  case Bottom:
800  case FloatBot:
801  case DoubleBot:
802    return false;  // never a singleton, therefore never empty
803  }
804
805  ShouldNotReachHere();
806  return false;
807}
808
809//------------------------------dump_stats-------------------------------------
810// Dump collected statistics to stderr
811#ifndef PRODUCT
812void Type::dump_stats() {
813  tty->print("Types made: %d\n", type_dict()->Size());
814}
815#endif
816
817//------------------------------typerr-----------------------------------------
818void Type::typerr( const Type *t ) const {
819#ifndef PRODUCT
820  tty->print("\nError mixing types: ");
821  dump();
822  tty->print(" and ");
823  t->dump();
824  tty->print("\n");
825#endif
826  ShouldNotReachHere();
827}
828
829
830//=============================================================================
831// Convenience common pre-built types.
832const TypeF *TypeF::ZERO;       // Floating point zero
833const TypeF *TypeF::ONE;        // Floating point one
834
835//------------------------------make-------------------------------------------
836// Create a float constant
837const TypeF *TypeF::make(float f) {
838  return (TypeF*)(new TypeF(f))->hashcons();
839}
840
841//------------------------------meet-------------------------------------------
842// Compute the MEET of two types.  It returns a new Type object.
843const Type *TypeF::xmeet( const Type *t ) const {
844  // Perform a fast test for common case; meeting the same types together.
845  if( this == t ) return this;  // Meeting same type-rep?
846
847  // Current "this->_base" is FloatCon
848  switch (t->base()) {          // Switch on original type
849  case AnyPtr:                  // Mixing with oops happens when javac
850  case RawPtr:                  // reuses local variables
851  case OopPtr:
852  case InstPtr:
853  case AryPtr:
854  case MetadataPtr:
855  case KlassPtr:
856  case NarrowOop:
857  case NarrowKlass:
858  case Int:
859  case Long:
860  case DoubleTop:
861  case DoubleCon:
862  case DoubleBot:
863  case Bottom:                  // Ye Olde Default
864    return Type::BOTTOM;
865
866  case FloatBot:
867    return t;
868
869  default:                      // All else is a mistake
870    typerr(t);
871
872  case FloatCon:                // Float-constant vs Float-constant?
873    if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
874                                // must compare bitwise as positive zero, negative zero and NaN have
875                                // all the same representation in C++
876      return FLOAT;             // Return generic float
877                                // Equal constants
878  case Top:
879  case FloatTop:
880    break;                      // Return the float constant
881  }
882  return this;                  // Return the float constant
883}
884
885//------------------------------xdual------------------------------------------
886// Dual: symmetric
887const Type *TypeF::xdual() const {
888  return this;
889}
890
891//------------------------------eq---------------------------------------------
892// Structural equality check for Type representations
893bool TypeF::eq( const Type *t ) const {
894  if( g_isnan(_f) ||
895      g_isnan(t->getf()) ) {
896    // One or both are NANs.  If both are NANs return true, else false.
897    return (g_isnan(_f) && g_isnan(t->getf()));
898  }
899  if (_f == t->getf()) {
900    // (NaN is impossible at this point, since it is not equal even to itself)
901    if (_f == 0.0) {
902      // difference between positive and negative zero
903      if (jint_cast(_f) != jint_cast(t->getf()))  return false;
904    }
905    return true;
906  }
907  return false;
908}
909
910//------------------------------hash-------------------------------------------
911// Type-specific hashing function.
912int TypeF::hash(void) const {
913  return *(int*)(&_f);
914}
915
916//------------------------------is_finite--------------------------------------
917// Has a finite value
918bool TypeF::is_finite() const {
919  return g_isfinite(getf()) != 0;
920}
921
922//------------------------------is_nan-----------------------------------------
923// Is not a number (NaN)
924bool TypeF::is_nan()    const {
925  return g_isnan(getf()) != 0;
926}
927
928//------------------------------dump2------------------------------------------
929// Dump float constant Type
930#ifndef PRODUCT
931void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
932  Type::dump2(d,depth, st);
933  st->print("%f", _f);
934}
935#endif
936
937//------------------------------singleton--------------------------------------
938// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
939// constants (Ldi nodes).  Singletons are integer, float or double constants
940// or a single symbol.
941bool TypeF::singleton(void) const {
942  return true;                  // Always a singleton
943}
944
945bool TypeF::empty(void) const {
946  return false;                 // always exactly a singleton
947}
948
949//=============================================================================
950// Convenience common pre-built types.
951const TypeD *TypeD::ZERO;       // Floating point zero
952const TypeD *TypeD::ONE;        // Floating point one
953
954//------------------------------make-------------------------------------------
955const TypeD *TypeD::make(double d) {
956  return (TypeD*)(new TypeD(d))->hashcons();
957}
958
959//------------------------------meet-------------------------------------------
960// Compute the MEET of two types.  It returns a new Type object.
961const Type *TypeD::xmeet( const Type *t ) const {
962  // Perform a fast test for common case; meeting the same types together.
963  if( this == t ) return this;  // Meeting same type-rep?
964
965  // Current "this->_base" is DoubleCon
966  switch (t->base()) {          // Switch on original type
967  case AnyPtr:                  // Mixing with oops happens when javac
968  case RawPtr:                  // reuses local variables
969  case OopPtr:
970  case InstPtr:
971  case AryPtr:
972  case MetadataPtr:
973  case KlassPtr:
974  case NarrowOop:
975  case NarrowKlass:
976  case Int:
977  case Long:
978  case FloatTop:
979  case FloatCon:
980  case FloatBot:
981  case Bottom:                  // Ye Olde Default
982    return Type::BOTTOM;
983
984  case DoubleBot:
985    return t;
986
987  default:                      // All else is a mistake
988    typerr(t);
989
990  case DoubleCon:               // Double-constant vs Double-constant?
991    if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
992      return DOUBLE;            // Return generic double
993  case Top:
994  case DoubleTop:
995    break;
996  }
997  return this;                  // Return the double constant
998}
999
1000//------------------------------xdual------------------------------------------
1001// Dual: symmetric
1002const Type *TypeD::xdual() const {
1003  return this;
1004}
1005
1006//------------------------------eq---------------------------------------------
1007// Structural equality check for Type representations
1008bool TypeD::eq( const Type *t ) const {
1009  if( g_isnan(_d) ||
1010      g_isnan(t->getd()) ) {
1011    // One or both are NANs.  If both are NANs return true, else false.
1012    return (g_isnan(_d) && g_isnan(t->getd()));
1013  }
1014  if (_d == t->getd()) {
1015    // (NaN is impossible at this point, since it is not equal even to itself)
1016    if (_d == 0.0) {
1017      // difference between positive and negative zero
1018      if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1019    }
1020    return true;
1021  }
1022  return false;
1023}
1024
1025//------------------------------hash-------------------------------------------
1026// Type-specific hashing function.
1027int TypeD::hash(void) const {
1028  return *(int*)(&_d);
1029}
1030
1031//------------------------------is_finite--------------------------------------
1032// Has a finite value
1033bool TypeD::is_finite() const {
1034  return g_isfinite(getd()) != 0;
1035}
1036
1037//------------------------------is_nan-----------------------------------------
1038// Is not a number (NaN)
1039bool TypeD::is_nan()    const {
1040  return g_isnan(getd()) != 0;
1041}
1042
1043//------------------------------dump2------------------------------------------
1044// Dump double constant Type
1045#ifndef PRODUCT
1046void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1047  Type::dump2(d,depth,st);
1048  st->print("%f", _d);
1049}
1050#endif
1051
1052//------------------------------singleton--------------------------------------
1053// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1054// constants (Ldi nodes).  Singletons are integer, float or double constants
1055// or a single symbol.
1056bool TypeD::singleton(void) const {
1057  return true;                  // Always a singleton
1058}
1059
1060bool TypeD::empty(void) const {
1061  return false;                 // always exactly a singleton
1062}
1063
1064//=============================================================================
1065// Convience common pre-built types.
1066const TypeInt *TypeInt::MINUS_1;// -1
1067const TypeInt *TypeInt::ZERO;   // 0
1068const TypeInt *TypeInt::ONE;    // 1
1069const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1070const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1071const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1072const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1073const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1074const TypeInt *TypeInt::CC_LE;  // [-1,0]
1075const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1076const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1077const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1078const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1079const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1080const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1081const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1082const TypeInt *TypeInt::INT;    // 32-bit integers
1083const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1084
1085//------------------------------TypeInt----------------------------------------
1086TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1087}
1088
1089//------------------------------make-------------------------------------------
1090const TypeInt *TypeInt::make( jint lo ) {
1091  return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1092}
1093
1094static int normalize_int_widen( jint lo, jint hi, int w ) {
1095  // Certain normalizations keep us sane when comparing types.
1096  // The 'SMALLINT' covers constants and also CC and its relatives.
1097  if (lo <= hi) {
1098    if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1099    if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1100  } else {
1101    if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1102    if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1103  }
1104  return w;
1105}
1106
1107const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1108  w = normalize_int_widen(lo, hi, w);
1109  return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1110}
1111
1112//------------------------------meet-------------------------------------------
1113// Compute the MEET of two types.  It returns a new Type representation object
1114// with reference count equal to the number of Types pointing at it.
1115// Caller should wrap a Types around it.
1116const Type *TypeInt::xmeet( const Type *t ) const {
1117  // Perform a fast test for common case; meeting the same types together.
1118  if( this == t ) return this;  // Meeting same type?
1119
1120  // Currently "this->_base" is a TypeInt
1121  switch (t->base()) {          // Switch on original type
1122  case AnyPtr:                  // Mixing with oops happens when javac
1123  case RawPtr:                  // reuses local variables
1124  case OopPtr:
1125  case InstPtr:
1126  case AryPtr:
1127  case MetadataPtr:
1128  case KlassPtr:
1129  case NarrowOop:
1130  case NarrowKlass:
1131  case Long:
1132  case FloatTop:
1133  case FloatCon:
1134  case FloatBot:
1135  case DoubleTop:
1136  case DoubleCon:
1137  case DoubleBot:
1138  case Bottom:                  // Ye Olde Default
1139    return Type::BOTTOM;
1140  default:                      // All else is a mistake
1141    typerr(t);
1142  case Top:                     // No change
1143    return this;
1144  case Int:                     // Int vs Int?
1145    break;
1146  }
1147
1148  // Expand covered set
1149  const TypeInt *r = t->is_int();
1150  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1151}
1152
1153//------------------------------xdual------------------------------------------
1154// Dual: reverse hi & lo; flip widen
1155const Type *TypeInt::xdual() const {
1156  int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1157  return new TypeInt(_hi,_lo,w);
1158}
1159
1160//------------------------------widen------------------------------------------
1161// Only happens for optimistic top-down optimizations.
1162const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1163  // Coming from TOP or such; no widening
1164  if( old->base() != Int ) return this;
1165  const TypeInt *ot = old->is_int();
1166
1167  // If new guy is equal to old guy, no widening
1168  if( _lo == ot->_lo && _hi == ot->_hi )
1169    return old;
1170
1171  // If new guy contains old, then we widened
1172  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1173    // New contains old
1174    // If new guy is already wider than old, no widening
1175    if( _widen > ot->_widen ) return this;
1176    // If old guy was a constant, do not bother
1177    if (ot->_lo == ot->_hi)  return this;
1178    // Now widen new guy.
1179    // Check for widening too far
1180    if (_widen == WidenMax) {
1181      int max = max_jint;
1182      int min = min_jint;
1183      if (limit->isa_int()) {
1184        max = limit->is_int()->_hi;
1185        min = limit->is_int()->_lo;
1186      }
1187      if (min < _lo && _hi < max) {
1188        // If neither endpoint is extremal yet, push out the endpoint
1189        // which is closer to its respective limit.
1190        if (_lo >= 0 ||                 // easy common case
1191            (juint)(_lo - min) >= (juint)(max - _hi)) {
1192          // Try to widen to an unsigned range type of 31 bits:
1193          return make(_lo, max, WidenMax);
1194        } else {
1195          return make(min, _hi, WidenMax);
1196        }
1197      }
1198      return TypeInt::INT;
1199    }
1200    // Returned widened new guy
1201    return make(_lo,_hi,_widen+1);
1202  }
1203
1204  // If old guy contains new, then we probably widened too far & dropped to
1205  // bottom.  Return the wider fellow.
1206  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1207    return old;
1208
1209  //fatal("Integer value range is not subset");
1210  //return this;
1211  return TypeInt::INT;
1212}
1213
1214//------------------------------narrow---------------------------------------
1215// Only happens for pessimistic optimizations.
1216const Type *TypeInt::narrow( const Type *old ) const {
1217  if (_lo >= _hi)  return this;   // already narrow enough
1218  if (old == NULL)  return this;
1219  const TypeInt* ot = old->isa_int();
1220  if (ot == NULL)  return this;
1221  jint olo = ot->_lo;
1222  jint ohi = ot->_hi;
1223
1224  // If new guy is equal to old guy, no narrowing
1225  if (_lo == olo && _hi == ohi)  return old;
1226
1227  // If old guy was maximum range, allow the narrowing
1228  if (olo == min_jint && ohi == max_jint)  return this;
1229
1230  if (_lo < olo || _hi > ohi)
1231    return this;                // doesn't narrow; pretty wierd
1232
1233  // The new type narrows the old type, so look for a "death march".
1234  // See comments on PhaseTransform::saturate.
1235  juint nrange = _hi - _lo;
1236  juint orange = ohi - olo;
1237  if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1238    // Use the new type only if the range shrinks a lot.
1239    // We do not want the optimizer computing 2^31 point by point.
1240    return old;
1241  }
1242
1243  return this;
1244}
1245
1246//-----------------------------filter------------------------------------------
1247const Type *TypeInt::filter( const Type *kills ) const {
1248  const TypeInt* ft = join(kills)->isa_int();
1249  if (ft == NULL || ft->empty())
1250    return Type::TOP;           // Canonical empty value
1251  if (ft->_widen < this->_widen) {
1252    // Do not allow the value of kill->_widen to affect the outcome.
1253    // The widen bits must be allowed to run freely through the graph.
1254    ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1255  }
1256  return ft;
1257}
1258
1259//------------------------------eq---------------------------------------------
1260// Structural equality check for Type representations
1261bool TypeInt::eq( const Type *t ) const {
1262  const TypeInt *r = t->is_int(); // Handy access
1263  return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1264}
1265
1266//------------------------------hash-------------------------------------------
1267// Type-specific hashing function.
1268int TypeInt::hash(void) const {
1269  return _lo+_hi+_widen+(int)Type::Int;
1270}
1271
1272//------------------------------is_finite--------------------------------------
1273// Has a finite value
1274bool TypeInt::is_finite() const {
1275  return true;
1276}
1277
1278//------------------------------dump2------------------------------------------
1279// Dump TypeInt
1280#ifndef PRODUCT
1281static const char* intname(char* buf, jint n) {
1282  if (n == min_jint)
1283    return "min";
1284  else if (n < min_jint + 10000)
1285    sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1286  else if (n == max_jint)
1287    return "max";
1288  else if (n > max_jint - 10000)
1289    sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1290  else
1291    sprintf(buf, INT32_FORMAT, n);
1292  return buf;
1293}
1294
1295void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1296  char buf[40], buf2[40];
1297  if (_lo == min_jint && _hi == max_jint)
1298    st->print("int");
1299  else if (is_con())
1300    st->print("int:%s", intname(buf, get_con()));
1301  else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1302    st->print("bool");
1303  else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1304    st->print("byte");
1305  else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1306    st->print("char");
1307  else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1308    st->print("short");
1309  else if (_hi == max_jint)
1310    st->print("int:>=%s", intname(buf, _lo));
1311  else if (_lo == min_jint)
1312    st->print("int:<=%s", intname(buf, _hi));
1313  else
1314    st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1315
1316  if (_widen != 0 && this != TypeInt::INT)
1317    st->print(":%.*s", _widen, "wwww");
1318}
1319#endif
1320
1321//------------------------------singleton--------------------------------------
1322// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1323// constants.
1324bool TypeInt::singleton(void) const {
1325  return _lo >= _hi;
1326}
1327
1328bool TypeInt::empty(void) const {
1329  return _lo > _hi;
1330}
1331
1332//=============================================================================
1333// Convenience common pre-built types.
1334const TypeLong *TypeLong::MINUS_1;// -1
1335const TypeLong *TypeLong::ZERO; // 0
1336const TypeLong *TypeLong::ONE;  // 1
1337const TypeLong *TypeLong::POS;  // >=0
1338const TypeLong *TypeLong::LONG; // 64-bit integers
1339const TypeLong *TypeLong::INT;  // 32-bit subrange
1340const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1341
1342//------------------------------TypeLong---------------------------------------
1343TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1344}
1345
1346//------------------------------make-------------------------------------------
1347const TypeLong *TypeLong::make( jlong lo ) {
1348  return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1349}
1350
1351static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1352  // Certain normalizations keep us sane when comparing types.
1353  // The 'SMALLINT' covers constants.
1354  if (lo <= hi) {
1355    if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1356    if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1357  } else {
1358    if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1359    if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1360  }
1361  return w;
1362}
1363
1364const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1365  w = normalize_long_widen(lo, hi, w);
1366  return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1367}
1368
1369
1370//------------------------------meet-------------------------------------------
1371// Compute the MEET of two types.  It returns a new Type representation object
1372// with reference count equal to the number of Types pointing at it.
1373// Caller should wrap a Types around it.
1374const Type *TypeLong::xmeet( const Type *t ) const {
1375  // Perform a fast test for common case; meeting the same types together.
1376  if( this == t ) return this;  // Meeting same type?
1377
1378  // Currently "this->_base" is a TypeLong
1379  switch (t->base()) {          // Switch on original type
1380  case AnyPtr:                  // Mixing with oops happens when javac
1381  case RawPtr:                  // reuses local variables
1382  case OopPtr:
1383  case InstPtr:
1384  case AryPtr:
1385  case MetadataPtr:
1386  case KlassPtr:
1387  case NarrowOop:
1388  case NarrowKlass:
1389  case Int:
1390  case FloatTop:
1391  case FloatCon:
1392  case FloatBot:
1393  case DoubleTop:
1394  case DoubleCon:
1395  case DoubleBot:
1396  case Bottom:                  // Ye Olde Default
1397    return Type::BOTTOM;
1398  default:                      // All else is a mistake
1399    typerr(t);
1400  case Top:                     // No change
1401    return this;
1402  case Long:                    // Long vs Long?
1403    break;
1404  }
1405
1406  // Expand covered set
1407  const TypeLong *r = t->is_long(); // Turn into a TypeLong
1408  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1409}
1410
1411//------------------------------xdual------------------------------------------
1412// Dual: reverse hi & lo; flip widen
1413const Type *TypeLong::xdual() const {
1414  int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1415  return new TypeLong(_hi,_lo,w);
1416}
1417
1418//------------------------------widen------------------------------------------
1419// Only happens for optimistic top-down optimizations.
1420const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1421  // Coming from TOP or such; no widening
1422  if( old->base() != Long ) return this;
1423  const TypeLong *ot = old->is_long();
1424
1425  // If new guy is equal to old guy, no widening
1426  if( _lo == ot->_lo && _hi == ot->_hi )
1427    return old;
1428
1429  // If new guy contains old, then we widened
1430  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1431    // New contains old
1432    // If new guy is already wider than old, no widening
1433    if( _widen > ot->_widen ) return this;
1434    // If old guy was a constant, do not bother
1435    if (ot->_lo == ot->_hi)  return this;
1436    // Now widen new guy.
1437    // Check for widening too far
1438    if (_widen == WidenMax) {
1439      jlong max = max_jlong;
1440      jlong min = min_jlong;
1441      if (limit->isa_long()) {
1442        max = limit->is_long()->_hi;
1443        min = limit->is_long()->_lo;
1444      }
1445      if (min < _lo && _hi < max) {
1446        // If neither endpoint is extremal yet, push out the endpoint
1447        // which is closer to its respective limit.
1448        if (_lo >= 0 ||                 // easy common case
1449            (julong)(_lo - min) >= (julong)(max - _hi)) {
1450          // Try to widen to an unsigned range type of 32/63 bits:
1451          if (max >= max_juint && _hi < max_juint)
1452            return make(_lo, max_juint, WidenMax);
1453          else
1454            return make(_lo, max, WidenMax);
1455        } else {
1456          return make(min, _hi, WidenMax);
1457        }
1458      }
1459      return TypeLong::LONG;
1460    }
1461    // Returned widened new guy
1462    return make(_lo,_hi,_widen+1);
1463  }
1464
1465  // If old guy contains new, then we probably widened too far & dropped to
1466  // bottom.  Return the wider fellow.
1467  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1468    return old;
1469
1470  //  fatal("Long value range is not subset");
1471  // return this;
1472  return TypeLong::LONG;
1473}
1474
1475//------------------------------narrow----------------------------------------
1476// Only happens for pessimistic optimizations.
1477const Type *TypeLong::narrow( const Type *old ) const {
1478  if (_lo >= _hi)  return this;   // already narrow enough
1479  if (old == NULL)  return this;
1480  const TypeLong* ot = old->isa_long();
1481  if (ot == NULL)  return this;
1482  jlong olo = ot->_lo;
1483  jlong ohi = ot->_hi;
1484
1485  // If new guy is equal to old guy, no narrowing
1486  if (_lo == olo && _hi == ohi)  return old;
1487
1488  // If old guy was maximum range, allow the narrowing
1489  if (olo == min_jlong && ohi == max_jlong)  return this;
1490
1491  if (_lo < olo || _hi > ohi)
1492    return this;                // doesn't narrow; pretty wierd
1493
1494  // The new type narrows the old type, so look for a "death march".
1495  // See comments on PhaseTransform::saturate.
1496  julong nrange = _hi - _lo;
1497  julong orange = ohi - olo;
1498  if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1499    // Use the new type only if the range shrinks a lot.
1500    // We do not want the optimizer computing 2^31 point by point.
1501    return old;
1502  }
1503
1504  return this;
1505}
1506
1507//-----------------------------filter------------------------------------------
1508const Type *TypeLong::filter( const Type *kills ) const {
1509  const TypeLong* ft = join(kills)->isa_long();
1510  if (ft == NULL || ft->empty())
1511    return Type::TOP;           // Canonical empty value
1512  if (ft->_widen < this->_widen) {
1513    // Do not allow the value of kill->_widen to affect the outcome.
1514    // The widen bits must be allowed to run freely through the graph.
1515    ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1516  }
1517  return ft;
1518}
1519
1520//------------------------------eq---------------------------------------------
1521// Structural equality check for Type representations
1522bool TypeLong::eq( const Type *t ) const {
1523  const TypeLong *r = t->is_long(); // Handy access
1524  return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1525}
1526
1527//------------------------------hash-------------------------------------------
1528// Type-specific hashing function.
1529int TypeLong::hash(void) const {
1530  return (int)(_lo+_hi+_widen+(int)Type::Long);
1531}
1532
1533//------------------------------is_finite--------------------------------------
1534// Has a finite value
1535bool TypeLong::is_finite() const {
1536  return true;
1537}
1538
1539//------------------------------dump2------------------------------------------
1540// Dump TypeLong
1541#ifndef PRODUCT
1542static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1543  if (n > x) {
1544    if (n >= x + 10000)  return NULL;
1545    sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1546  } else if (n < x) {
1547    if (n <= x - 10000)  return NULL;
1548    sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1549  } else {
1550    return xname;
1551  }
1552  return buf;
1553}
1554
1555static const char* longname(char* buf, jlong n) {
1556  const char* str;
1557  if (n == min_jlong)
1558    return "min";
1559  else if (n < min_jlong + 10000)
1560    sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1561  else if (n == max_jlong)
1562    return "max";
1563  else if (n > max_jlong - 10000)
1564    sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1565  else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1566    return str;
1567  else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1568    return str;
1569  else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1570    return str;
1571  else
1572    sprintf(buf, JLONG_FORMAT, n);
1573  return buf;
1574}
1575
1576void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1577  char buf[80], buf2[80];
1578  if (_lo == min_jlong && _hi == max_jlong)
1579    st->print("long");
1580  else if (is_con())
1581    st->print("long:%s", longname(buf, get_con()));
1582  else if (_hi == max_jlong)
1583    st->print("long:>=%s", longname(buf, _lo));
1584  else if (_lo == min_jlong)
1585    st->print("long:<=%s", longname(buf, _hi));
1586  else
1587    st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1588
1589  if (_widen != 0 && this != TypeLong::LONG)
1590    st->print(":%.*s", _widen, "wwww");
1591}
1592#endif
1593
1594//------------------------------singleton--------------------------------------
1595// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1596// constants
1597bool TypeLong::singleton(void) const {
1598  return _lo >= _hi;
1599}
1600
1601bool TypeLong::empty(void) const {
1602  return _lo > _hi;
1603}
1604
1605//=============================================================================
1606// Convenience common pre-built types.
1607const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1608const TypeTuple *TypeTuple::IFFALSE;
1609const TypeTuple *TypeTuple::IFTRUE;
1610const TypeTuple *TypeTuple::IFNEITHER;
1611const TypeTuple *TypeTuple::LOOPBODY;
1612const TypeTuple *TypeTuple::MEMBAR;
1613const TypeTuple *TypeTuple::STORECONDITIONAL;
1614const TypeTuple *TypeTuple::START_I2C;
1615const TypeTuple *TypeTuple::INT_PAIR;
1616const TypeTuple *TypeTuple::LONG_PAIR;
1617
1618
1619//------------------------------make-------------------------------------------
1620// Make a TypeTuple from the range of a method signature
1621const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1622  ciType* return_type = sig->return_type();
1623  uint total_fields = TypeFunc::Parms + return_type->size();
1624  const Type **field_array = fields(total_fields);
1625  switch (return_type->basic_type()) {
1626  case T_LONG:
1627    field_array[TypeFunc::Parms]   = TypeLong::LONG;
1628    field_array[TypeFunc::Parms+1] = Type::HALF;
1629    break;
1630  case T_DOUBLE:
1631    field_array[TypeFunc::Parms]   = Type::DOUBLE;
1632    field_array[TypeFunc::Parms+1] = Type::HALF;
1633    break;
1634  case T_OBJECT:
1635  case T_ARRAY:
1636  case T_BOOLEAN:
1637  case T_CHAR:
1638  case T_FLOAT:
1639  case T_BYTE:
1640  case T_SHORT:
1641  case T_INT:
1642    field_array[TypeFunc::Parms] = get_const_type(return_type);
1643    break;
1644  case T_VOID:
1645    break;
1646  default:
1647    ShouldNotReachHere();
1648  }
1649  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1650}
1651
1652// Make a TypeTuple from the domain of a method signature
1653const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1654  uint total_fields = TypeFunc::Parms + sig->size();
1655
1656  uint pos = TypeFunc::Parms;
1657  const Type **field_array;
1658  if (recv != NULL) {
1659    total_fields++;
1660    field_array = fields(total_fields);
1661    // Use get_const_type here because it respects UseUniqueSubclasses:
1662    field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
1663  } else {
1664    field_array = fields(total_fields);
1665  }
1666
1667  int i = 0;
1668  while (pos < total_fields) {
1669    ciType* type = sig->type_at(i);
1670
1671    switch (type->basic_type()) {
1672    case T_LONG:
1673      field_array[pos++] = TypeLong::LONG;
1674      field_array[pos++] = Type::HALF;
1675      break;
1676    case T_DOUBLE:
1677      field_array[pos++] = Type::DOUBLE;
1678      field_array[pos++] = Type::HALF;
1679      break;
1680    case T_OBJECT:
1681    case T_ARRAY:
1682    case T_BOOLEAN:
1683    case T_CHAR:
1684    case T_FLOAT:
1685    case T_BYTE:
1686    case T_SHORT:
1687    case T_INT:
1688      field_array[pos++] = get_const_type(type);
1689      break;
1690    default:
1691      ShouldNotReachHere();
1692    }
1693    i++;
1694  }
1695  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1696}
1697
1698const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1699  return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1700}
1701
1702//------------------------------fields-----------------------------------------
1703// Subroutine call type with space allocated for argument types
1704const Type **TypeTuple::fields( uint arg_cnt ) {
1705  const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1706  flds[TypeFunc::Control  ] = Type::CONTROL;
1707  flds[TypeFunc::I_O      ] = Type::ABIO;
1708  flds[TypeFunc::Memory   ] = Type::MEMORY;
1709  flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1710  flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1711
1712  return flds;
1713}
1714
1715//------------------------------meet-------------------------------------------
1716// Compute the MEET of two types.  It returns a new Type object.
1717const Type *TypeTuple::xmeet( const Type *t ) const {
1718  // Perform a fast test for common case; meeting the same types together.
1719  if( this == t ) return this;  // Meeting same type-rep?
1720
1721  // Current "this->_base" is Tuple
1722  switch (t->base()) {          // switch on original type
1723
1724  case Bottom:                  // Ye Olde Default
1725    return t;
1726
1727  default:                      // All else is a mistake
1728    typerr(t);
1729
1730  case Tuple: {                 // Meeting 2 signatures?
1731    const TypeTuple *x = t->is_tuple();
1732    assert( _cnt == x->_cnt, "" );
1733    const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1734    for( uint i=0; i<_cnt; i++ )
1735      fields[i] = field_at(i)->xmeet( x->field_at(i) );
1736    return TypeTuple::make(_cnt,fields);
1737  }
1738  case Top:
1739    break;
1740  }
1741  return this;                  // Return the double constant
1742}
1743
1744//------------------------------xdual------------------------------------------
1745// Dual: compute field-by-field dual
1746const Type *TypeTuple::xdual() const {
1747  const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1748  for( uint i=0; i<_cnt; i++ )
1749    fields[i] = _fields[i]->dual();
1750  return new TypeTuple(_cnt,fields);
1751}
1752
1753//------------------------------eq---------------------------------------------
1754// Structural equality check for Type representations
1755bool TypeTuple::eq( const Type *t ) const {
1756  const TypeTuple *s = (const TypeTuple *)t;
1757  if (_cnt != s->_cnt)  return false;  // Unequal field counts
1758  for (uint i = 0; i < _cnt; i++)
1759    if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1760      return false;             // Missed
1761  return true;
1762}
1763
1764//------------------------------hash-------------------------------------------
1765// Type-specific hashing function.
1766int TypeTuple::hash(void) const {
1767  intptr_t sum = _cnt;
1768  for( uint i=0; i<_cnt; i++ )
1769    sum += (intptr_t)_fields[i];     // Hash on pointers directly
1770  return sum;
1771}
1772
1773//------------------------------dump2------------------------------------------
1774// Dump signature Type
1775#ifndef PRODUCT
1776void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1777  st->print("{");
1778  if( !depth || d[this] ) {     // Check for recursive print
1779    st->print("...}");
1780    return;
1781  }
1782  d.Insert((void*)this, (void*)this);   // Stop recursion
1783  if( _cnt ) {
1784    uint i;
1785    for( i=0; i<_cnt-1; i++ ) {
1786      st->print("%d:", i);
1787      _fields[i]->dump2(d, depth-1, st);
1788      st->print(", ");
1789    }
1790    st->print("%d:", i);
1791    _fields[i]->dump2(d, depth-1, st);
1792  }
1793  st->print("}");
1794}
1795#endif
1796
1797//------------------------------singleton--------------------------------------
1798// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1799// constants (Ldi nodes).  Singletons are integer, float or double constants
1800// or a single symbol.
1801bool TypeTuple::singleton(void) const {
1802  return false;                 // Never a singleton
1803}
1804
1805bool TypeTuple::empty(void) const {
1806  for( uint i=0; i<_cnt; i++ ) {
1807    if (_fields[i]->empty())  return true;
1808  }
1809  return false;
1810}
1811
1812//=============================================================================
1813// Convenience common pre-built types.
1814
1815inline const TypeInt* normalize_array_size(const TypeInt* size) {
1816  // Certain normalizations keep us sane when comparing types.
1817  // We do not want arrayOop variables to differ only by the wideness
1818  // of their index types.  Pick minimum wideness, since that is the
1819  // forced wideness of small ranges anyway.
1820  if (size->_widen != Type::WidenMin)
1821    return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1822  else
1823    return size;
1824}
1825
1826//------------------------------make-------------------------------------------
1827const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
1828  if (UseCompressedOops && elem->isa_oopptr()) {
1829    elem = elem->make_narrowoop();
1830  }
1831  size = normalize_array_size(size);
1832  return (TypeAry*)(new TypeAry(elem,size))->hashcons();
1833}
1834
1835//------------------------------meet-------------------------------------------
1836// Compute the MEET of two types.  It returns a new Type object.
1837const Type *TypeAry::xmeet( const Type *t ) const {
1838  // Perform a fast test for common case; meeting the same types together.
1839  if( this == t ) return this;  // Meeting same type-rep?
1840
1841  // Current "this->_base" is Ary
1842  switch (t->base()) {          // switch on original type
1843
1844  case Bottom:                  // Ye Olde Default
1845    return t;
1846
1847  default:                      // All else is a mistake
1848    typerr(t);
1849
1850  case Array: {                 // Meeting 2 arrays?
1851    const TypeAry *a = t->is_ary();
1852    return TypeAry::make(_elem->meet(a->_elem),
1853                         _size->xmeet(a->_size)->is_int());
1854  }
1855  case Top:
1856    break;
1857  }
1858  return this;                  // Return the double constant
1859}
1860
1861//------------------------------xdual------------------------------------------
1862// Dual: compute field-by-field dual
1863const Type *TypeAry::xdual() const {
1864  const TypeInt* size_dual = _size->dual()->is_int();
1865  size_dual = normalize_array_size(size_dual);
1866  return new TypeAry( _elem->dual(), size_dual);
1867}
1868
1869//------------------------------eq---------------------------------------------
1870// Structural equality check for Type representations
1871bool TypeAry::eq( const Type *t ) const {
1872  const TypeAry *a = (const TypeAry*)t;
1873  return _elem == a->_elem &&
1874    _size == a->_size;
1875}
1876
1877//------------------------------hash-------------------------------------------
1878// Type-specific hashing function.
1879int TypeAry::hash(void) const {
1880  return (intptr_t)_elem + (intptr_t)_size;
1881}
1882
1883//----------------------interface_vs_oop---------------------------------------
1884#ifdef ASSERT
1885bool TypeAry::interface_vs_oop(const Type *t) const {
1886  const TypeAry* t_ary = t->is_ary();
1887  if (t_ary) {
1888    return _elem->interface_vs_oop(t_ary->_elem);
1889  }
1890  return false;
1891}
1892#endif
1893
1894//------------------------------dump2------------------------------------------
1895#ifndef PRODUCT
1896void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1897  _elem->dump2(d, depth, st);
1898  st->print("[");
1899  _size->dump2(d, depth, st);
1900  st->print("]");
1901}
1902#endif
1903
1904//------------------------------singleton--------------------------------------
1905// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1906// constants (Ldi nodes).  Singletons are integer, float or double constants
1907// or a single symbol.
1908bool TypeAry::singleton(void) const {
1909  return false;                 // Never a singleton
1910}
1911
1912bool TypeAry::empty(void) const {
1913  return _elem->empty() || _size->empty();
1914}
1915
1916//--------------------------ary_must_be_exact----------------------------------
1917bool TypeAry::ary_must_be_exact() const {
1918  if (!UseExactTypes)       return false;
1919  // This logic looks at the element type of an array, and returns true
1920  // if the element type is either a primitive or a final instance class.
1921  // In such cases, an array built on this ary must have no subclasses.
1922  if (_elem == BOTTOM)      return false;  // general array not exact
1923  if (_elem == TOP   )      return false;  // inverted general array not exact
1924  const TypeOopPtr*  toop = NULL;
1925  if (UseCompressedOops && _elem->isa_narrowoop()) {
1926    toop = _elem->make_ptr()->isa_oopptr();
1927  } else {
1928    toop = _elem->isa_oopptr();
1929  }
1930  if (!toop)                return true;   // a primitive type, like int
1931  ciKlass* tklass = toop->klass();
1932  if (tklass == NULL)       return false;  // unloaded class
1933  if (!tklass->is_loaded()) return false;  // unloaded class
1934  const TypeInstPtr* tinst;
1935  if (_elem->isa_narrowoop())
1936    tinst = _elem->make_ptr()->isa_instptr();
1937  else
1938    tinst = _elem->isa_instptr();
1939  if (tinst)
1940    return tklass->as_instance_klass()->is_final();
1941  const TypeAryPtr*  tap;
1942  if (_elem->isa_narrowoop())
1943    tap = _elem->make_ptr()->isa_aryptr();
1944  else
1945    tap = _elem->isa_aryptr();
1946  if (tap)
1947    return tap->ary()->ary_must_be_exact();
1948  return false;
1949}
1950
1951//==============================TypeVect=======================================
1952// Convenience common pre-built types.
1953const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
1954const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
1955const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
1956const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
1957
1958//------------------------------make-------------------------------------------
1959const TypeVect* TypeVect::make(const Type *elem, uint length) {
1960  BasicType elem_bt = elem->array_element_basic_type();
1961  assert(is_java_primitive(elem_bt), "only primitive types in vector");
1962  assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
1963  assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
1964  int size = length * type2aelembytes(elem_bt);
1965  switch (Matcher::vector_ideal_reg(size)) {
1966  case Op_VecS:
1967    return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
1968  case Op_VecD:
1969  case Op_RegD:
1970    return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
1971  case Op_VecX:
1972    return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
1973  case Op_VecY:
1974    return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
1975  }
1976 ShouldNotReachHere();
1977  return NULL;
1978}
1979
1980//------------------------------meet-------------------------------------------
1981// Compute the MEET of two types.  It returns a new Type object.
1982const Type *TypeVect::xmeet( const Type *t ) const {
1983  // Perform a fast test for common case; meeting the same types together.
1984  if( this == t ) return this;  // Meeting same type-rep?
1985
1986  // Current "this->_base" is Vector
1987  switch (t->base()) {          // switch on original type
1988
1989  case Bottom:                  // Ye Olde Default
1990    return t;
1991
1992  default:                      // All else is a mistake
1993    typerr(t);
1994
1995  case VectorS:
1996  case VectorD:
1997  case VectorX:
1998  case VectorY: {                // Meeting 2 vectors?
1999    const TypeVect* v = t->is_vect();
2000    assert(  base() == v->base(), "");
2001    assert(length() == v->length(), "");
2002    assert(element_basic_type() == v->element_basic_type(), "");
2003    return TypeVect::make(_elem->xmeet(v->_elem), _length);
2004  }
2005  case Top:
2006    break;
2007  }
2008  return this;
2009}
2010
2011//------------------------------xdual------------------------------------------
2012// Dual: compute field-by-field dual
2013const Type *TypeVect::xdual() const {
2014  return new TypeVect(base(), _elem->dual(), _length);
2015}
2016
2017//------------------------------eq---------------------------------------------
2018// Structural equality check for Type representations
2019bool TypeVect::eq(const Type *t) const {
2020  const TypeVect *v = t->is_vect();
2021  return (_elem == v->_elem) && (_length == v->_length);
2022}
2023
2024//------------------------------hash-------------------------------------------
2025// Type-specific hashing function.
2026int TypeVect::hash(void) const {
2027  return (intptr_t)_elem + (intptr_t)_length;
2028}
2029
2030//------------------------------singleton--------------------------------------
2031// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2032// constants (Ldi nodes).  Vector is singleton if all elements are the same
2033// constant value (when vector is created with Replicate code).
2034bool TypeVect::singleton(void) const {
2035// There is no Con node for vectors yet.
2036//  return _elem->singleton();
2037  return false;
2038}
2039
2040bool TypeVect::empty(void) const {
2041  return _elem->empty();
2042}
2043
2044//------------------------------dump2------------------------------------------
2045#ifndef PRODUCT
2046void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2047  switch (base()) {
2048  case VectorS:
2049    st->print("vectors["); break;
2050  case VectorD:
2051    st->print("vectord["); break;
2052  case VectorX:
2053    st->print("vectorx["); break;
2054  case VectorY:
2055    st->print("vectory["); break;
2056  default:
2057    ShouldNotReachHere();
2058  }
2059  st->print("%d]:{", _length);
2060  _elem->dump2(d, depth, st);
2061  st->print("}");
2062}
2063#endif
2064
2065
2066//=============================================================================
2067// Convenience common pre-built types.
2068const TypePtr *TypePtr::NULL_PTR;
2069const TypePtr *TypePtr::NOTNULL;
2070const TypePtr *TypePtr::BOTTOM;
2071
2072//------------------------------meet-------------------------------------------
2073// Meet over the PTR enum
2074const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2075  //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2076  { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2077  { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2078  { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2079  { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2080  { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2081  { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2082};
2083
2084//------------------------------make-------------------------------------------
2085const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2086  return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2087}
2088
2089//------------------------------cast_to_ptr_type-------------------------------
2090const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2091  assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2092  if( ptr == _ptr ) return this;
2093  return make(_base, ptr, _offset);
2094}
2095
2096//------------------------------get_con----------------------------------------
2097intptr_t TypePtr::get_con() const {
2098  assert( _ptr == Null, "" );
2099  return _offset;
2100}
2101
2102//------------------------------meet-------------------------------------------
2103// Compute the MEET of two types.  It returns a new Type object.
2104const Type *TypePtr::xmeet( const Type *t ) const {
2105  // Perform a fast test for common case; meeting the same types together.
2106  if( this == t ) return this;  // Meeting same type-rep?
2107
2108  // Current "this->_base" is AnyPtr
2109  switch (t->base()) {          // switch on original type
2110  case Int:                     // Mixing ints & oops happens when javac
2111  case Long:                    // reuses local variables
2112  case FloatTop:
2113  case FloatCon:
2114  case FloatBot:
2115  case DoubleTop:
2116  case DoubleCon:
2117  case DoubleBot:
2118  case NarrowOop:
2119  case NarrowKlass:
2120  case Bottom:                  // Ye Olde Default
2121    return Type::BOTTOM;
2122  case Top:
2123    return this;
2124
2125  case AnyPtr: {                // Meeting to AnyPtrs
2126    const TypePtr *tp = t->is_ptr();
2127    return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2128  }
2129  case RawPtr:                  // For these, flip the call around to cut down
2130  case OopPtr:
2131  case InstPtr:                 // on the cases I have to handle.
2132  case AryPtr:
2133  case MetadataPtr:
2134  case KlassPtr:
2135    return t->xmeet(this);      // Call in reverse direction
2136  default:                      // All else is a mistake
2137    typerr(t);
2138
2139  }
2140  return this;
2141}
2142
2143//------------------------------meet_offset------------------------------------
2144int TypePtr::meet_offset( int offset ) const {
2145  // Either is 'TOP' offset?  Return the other offset!
2146  if( _offset == OffsetTop ) return offset;
2147  if( offset == OffsetTop ) return _offset;
2148  // If either is different, return 'BOTTOM' offset
2149  if( _offset != offset ) return OffsetBot;
2150  return _offset;
2151}
2152
2153//------------------------------dual_offset------------------------------------
2154int TypePtr::dual_offset( ) const {
2155  if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2156  if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2157  return _offset;               // Map everything else into self
2158}
2159
2160//------------------------------xdual------------------------------------------
2161// Dual: compute field-by-field dual
2162const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2163  BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2164};
2165const Type *TypePtr::xdual() const {
2166  return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2167}
2168
2169//------------------------------xadd_offset------------------------------------
2170int TypePtr::xadd_offset( intptr_t offset ) const {
2171  // Adding to 'TOP' offset?  Return 'TOP'!
2172  if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2173  // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2174  if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2175  // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2176  offset += (intptr_t)_offset;
2177  if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2178
2179  // assert( _offset >= 0 && _offset+offset >= 0, "" );
2180  // It is possible to construct a negative offset during PhaseCCP
2181
2182  return (int)offset;        // Sum valid offsets
2183}
2184
2185//------------------------------add_offset-------------------------------------
2186const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2187  return make( AnyPtr, _ptr, xadd_offset(offset) );
2188}
2189
2190//------------------------------eq---------------------------------------------
2191// Structural equality check for Type representations
2192bool TypePtr::eq( const Type *t ) const {
2193  const TypePtr *a = (const TypePtr*)t;
2194  return _ptr == a->ptr() && _offset == a->offset();
2195}
2196
2197//------------------------------hash-------------------------------------------
2198// Type-specific hashing function.
2199int TypePtr::hash(void) const {
2200  return _ptr + _offset;
2201}
2202
2203//------------------------------dump2------------------------------------------
2204const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2205  "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2206};
2207
2208#ifndef PRODUCT
2209void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2210  if( _ptr == Null ) st->print("NULL");
2211  else st->print("%s *", ptr_msg[_ptr]);
2212  if( _offset == OffsetTop ) st->print("+top");
2213  else if( _offset == OffsetBot ) st->print("+bot");
2214  else if( _offset ) st->print("+%d", _offset);
2215}
2216#endif
2217
2218//------------------------------singleton--------------------------------------
2219// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2220// constants
2221bool TypePtr::singleton(void) const {
2222  // TopPTR, Null, AnyNull, Constant are all singletons
2223  return (_offset != OffsetBot) && !below_centerline(_ptr);
2224}
2225
2226bool TypePtr::empty(void) const {
2227  return (_offset == OffsetTop) || above_centerline(_ptr);
2228}
2229
2230//=============================================================================
2231// Convenience common pre-built types.
2232const TypeRawPtr *TypeRawPtr::BOTTOM;
2233const TypeRawPtr *TypeRawPtr::NOTNULL;
2234
2235//------------------------------make-------------------------------------------
2236const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2237  assert( ptr != Constant, "what is the constant?" );
2238  assert( ptr != Null, "Use TypePtr for NULL" );
2239  return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2240}
2241
2242const TypeRawPtr *TypeRawPtr::make( address bits ) {
2243  assert( bits, "Use TypePtr for NULL" );
2244  return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2245}
2246
2247//------------------------------cast_to_ptr_type-------------------------------
2248const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2249  assert( ptr != Constant, "what is the constant?" );
2250  assert( ptr != Null, "Use TypePtr for NULL" );
2251  assert( _bits==0, "Why cast a constant address?");
2252  if( ptr == _ptr ) return this;
2253  return make(ptr);
2254}
2255
2256//------------------------------get_con----------------------------------------
2257intptr_t TypeRawPtr::get_con() const {
2258  assert( _ptr == Null || _ptr == Constant, "" );
2259  return (intptr_t)_bits;
2260}
2261
2262//------------------------------meet-------------------------------------------
2263// Compute the MEET of two types.  It returns a new Type object.
2264const Type *TypeRawPtr::xmeet( const Type *t ) const {
2265  // Perform a fast test for common case; meeting the same types together.
2266  if( this == t ) return this;  // Meeting same type-rep?
2267
2268  // Current "this->_base" is RawPtr
2269  switch( t->base() ) {         // switch on original type
2270  case Bottom:                  // Ye Olde Default
2271    return t;
2272  case Top:
2273    return this;
2274  case AnyPtr:                  // Meeting to AnyPtrs
2275    break;
2276  case RawPtr: {                // might be top, bot, any/not or constant
2277    enum PTR tptr = t->is_ptr()->ptr();
2278    enum PTR ptr = meet_ptr( tptr );
2279    if( ptr == Constant ) {     // Cannot be equal constants, so...
2280      if( tptr == Constant && _ptr != Constant)  return t;
2281      if( _ptr == Constant && tptr != Constant)  return this;
2282      ptr = NotNull;            // Fall down in lattice
2283    }
2284    return make( ptr );
2285  }
2286
2287  case OopPtr:
2288  case InstPtr:
2289  case AryPtr:
2290  case MetadataPtr:
2291  case KlassPtr:
2292    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2293  default:                      // All else is a mistake
2294    typerr(t);
2295  }
2296
2297  // Found an AnyPtr type vs self-RawPtr type
2298  const TypePtr *tp = t->is_ptr();
2299  switch (tp->ptr()) {
2300  case TypePtr::TopPTR:  return this;
2301  case TypePtr::BotPTR:  return t;
2302  case TypePtr::Null:
2303    if( _ptr == TypePtr::TopPTR ) return t;
2304    return TypeRawPtr::BOTTOM;
2305  case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2306  case TypePtr::AnyNull:
2307    if( _ptr == TypePtr::Constant) return this;
2308    return make( meet_ptr(TypePtr::AnyNull) );
2309  default: ShouldNotReachHere();
2310  }
2311  return this;
2312}
2313
2314//------------------------------xdual------------------------------------------
2315// Dual: compute field-by-field dual
2316const Type *TypeRawPtr::xdual() const {
2317  return new TypeRawPtr( dual_ptr(), _bits );
2318}
2319
2320//------------------------------add_offset-------------------------------------
2321const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2322  if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2323  if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2324  if( offset == 0 ) return this; // No change
2325  switch (_ptr) {
2326  case TypePtr::TopPTR:
2327  case TypePtr::BotPTR:
2328  case TypePtr::NotNull:
2329    return this;
2330  case TypePtr::Null:
2331  case TypePtr::Constant: {
2332    address bits = _bits+offset;
2333    if ( bits == 0 ) return TypePtr::NULL_PTR;
2334    return make( bits );
2335  }
2336  default:  ShouldNotReachHere();
2337  }
2338  return NULL;                  // Lint noise
2339}
2340
2341//------------------------------eq---------------------------------------------
2342// Structural equality check for Type representations
2343bool TypeRawPtr::eq( const Type *t ) const {
2344  const TypeRawPtr *a = (const TypeRawPtr*)t;
2345  return _bits == a->_bits && TypePtr::eq(t);
2346}
2347
2348//------------------------------hash-------------------------------------------
2349// Type-specific hashing function.
2350int TypeRawPtr::hash(void) const {
2351  return (intptr_t)_bits + TypePtr::hash();
2352}
2353
2354//------------------------------dump2------------------------------------------
2355#ifndef PRODUCT
2356void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2357  if( _ptr == Constant )
2358    st->print(INTPTR_FORMAT, _bits);
2359  else
2360    st->print("rawptr:%s", ptr_msg[_ptr]);
2361}
2362#endif
2363
2364//=============================================================================
2365// Convenience common pre-built type.
2366const TypeOopPtr *TypeOopPtr::BOTTOM;
2367
2368//------------------------------TypeOopPtr-------------------------------------
2369TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
2370  : TypePtr(t, ptr, offset),
2371    _const_oop(o), _klass(k),
2372    _klass_is_exact(xk),
2373    _is_ptr_to_narrowoop(false),
2374    _is_ptr_to_narrowklass(false),
2375    _instance_id(instance_id) {
2376#ifdef _LP64
2377  if (_offset != 0) {
2378    if (_offset == oopDesc::klass_offset_in_bytes()) {
2379      _is_ptr_to_narrowklass = UseCompressedKlassPointers;
2380    } else if (klass() == NULL) {
2381      // Array with unknown body type
2382      assert(this->isa_aryptr(), "only arrays without klass");
2383      _is_ptr_to_narrowoop = UseCompressedOops;
2384    } else if (this->isa_aryptr()) {
2385      _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2386                             _offset != arrayOopDesc::length_offset_in_bytes());
2387    } else if (klass()->is_instance_klass()) {
2388      ciInstanceKlass* ik = klass()->as_instance_klass();
2389      ciField* field = NULL;
2390      if (this->isa_klassptr()) {
2391        // Perm objects don't use compressed references
2392      } else if (_offset == OffsetBot || _offset == OffsetTop) {
2393        // unsafe access
2394        _is_ptr_to_narrowoop = UseCompressedOops;
2395      } else { // exclude unsafe ops
2396        assert(this->isa_instptr(), "must be an instance ptr.");
2397
2398        if (klass() == ciEnv::current()->Class_klass() &&
2399            (_offset == java_lang_Class::klass_offset_in_bytes() ||
2400             _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2401          // Special hidden fields from the Class.
2402          assert(this->isa_instptr(), "must be an instance ptr.");
2403          _is_ptr_to_narrowoop = false;
2404        } else if (klass() == ciEnv::current()->Class_klass() &&
2405                   _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2406          // Static fields
2407          assert(o != NULL, "must be constant");
2408          ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2409          ciField* field = k->get_field_by_offset(_offset, true);
2410          assert(field != NULL, "missing field");
2411          BasicType basic_elem_type = field->layout_type();
2412          _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2413                                                       basic_elem_type == T_ARRAY);
2414        } else {
2415          // Instance fields which contains a compressed oop references.
2416          field = ik->get_field_by_offset(_offset, false);
2417          if (field != NULL) {
2418            BasicType basic_elem_type = field->layout_type();
2419            _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2420                                                         basic_elem_type == T_ARRAY);
2421          } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2422            // Compile::find_alias_type() cast exactness on all types to verify
2423            // that it does not affect alias type.
2424            _is_ptr_to_narrowoop = UseCompressedOops;
2425          } else {
2426            // Type for the copy start in LibraryCallKit::inline_native_clone().
2427            _is_ptr_to_narrowoop = UseCompressedOops;
2428          }
2429        }
2430      }
2431    }
2432  }
2433#endif
2434}
2435
2436//------------------------------make-------------------------------------------
2437const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2438                                   int offset, int instance_id) {
2439  assert(ptr != Constant, "no constant generic pointers");
2440  ciKlass*  k = Compile::current()->env()->Object_klass();
2441  bool      xk = false;
2442  ciObject* o = NULL;
2443  return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
2444}
2445
2446
2447//------------------------------cast_to_ptr_type-------------------------------
2448const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2449  assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2450  if( ptr == _ptr ) return this;
2451  return make(ptr, _offset, _instance_id);
2452}
2453
2454//-----------------------------cast_to_instance_id----------------------------
2455const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2456  // There are no instances of a general oop.
2457  // Return self unchanged.
2458  return this;
2459}
2460
2461//-----------------------------cast_to_exactness-------------------------------
2462const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2463  // There is no such thing as an exact general oop.
2464  // Return self unchanged.
2465  return this;
2466}
2467
2468
2469//------------------------------as_klass_type----------------------------------
2470// Return the klass type corresponding to this instance or array type.
2471// It is the type that is loaded from an object of this type.
2472const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2473  ciKlass* k = klass();
2474  bool    xk = klass_is_exact();
2475  if (k == NULL)
2476    return TypeKlassPtr::OBJECT;
2477  else
2478    return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2479}
2480
2481
2482//------------------------------meet-------------------------------------------
2483// Compute the MEET of two types.  It returns a new Type object.
2484const Type *TypeOopPtr::xmeet( const Type *t ) const {
2485  // Perform a fast test for common case; meeting the same types together.
2486  if( this == t ) return this;  // Meeting same type-rep?
2487
2488  // Current "this->_base" is OopPtr
2489  switch (t->base()) {          // switch on original type
2490
2491  case Int:                     // Mixing ints & oops happens when javac
2492  case Long:                    // reuses local variables
2493  case FloatTop:
2494  case FloatCon:
2495  case FloatBot:
2496  case DoubleTop:
2497  case DoubleCon:
2498  case DoubleBot:
2499  case NarrowOop:
2500  case NarrowKlass:
2501  case Bottom:                  // Ye Olde Default
2502    return Type::BOTTOM;
2503  case Top:
2504    return this;
2505
2506  default:                      // All else is a mistake
2507    typerr(t);
2508
2509  case RawPtr:
2510  case MetadataPtr:
2511  case KlassPtr:
2512    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2513
2514  case AnyPtr: {
2515    // Found an AnyPtr type vs self-OopPtr type
2516    const TypePtr *tp = t->is_ptr();
2517    int offset = meet_offset(tp->offset());
2518    PTR ptr = meet_ptr(tp->ptr());
2519    switch (tp->ptr()) {
2520    case Null:
2521      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2522      // else fall through:
2523    case TopPTR:
2524    case AnyNull: {
2525      int instance_id = meet_instance_id(InstanceTop);
2526      return make(ptr, offset, instance_id);
2527    }
2528    case BotPTR:
2529    case NotNull:
2530      return TypePtr::make(AnyPtr, ptr, offset);
2531    default: typerr(t);
2532    }
2533  }
2534
2535  case OopPtr: {                 // Meeting to other OopPtrs
2536    const TypeOopPtr *tp = t->is_oopptr();
2537    int instance_id = meet_instance_id(tp->instance_id());
2538    return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
2539  }
2540
2541  case InstPtr:                  // For these, flip the call around to cut down
2542  case AryPtr:
2543    return t->xmeet(this);      // Call in reverse direction
2544
2545  } // End of switch
2546  return this;                  // Return the double constant
2547}
2548
2549
2550//------------------------------xdual------------------------------------------
2551// Dual of a pure heap pointer.  No relevant klass or oop information.
2552const Type *TypeOopPtr::xdual() const {
2553  assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2554  assert(const_oop() == NULL,             "no constants here");
2555  return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
2556}
2557
2558//--------------------------make_from_klass_common-----------------------------
2559// Computes the element-type given a klass.
2560const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2561  if (klass->is_instance_klass()) {
2562    Compile* C = Compile::current();
2563    Dependencies* deps = C->dependencies();
2564    assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2565    // Element is an instance
2566    bool klass_is_exact = false;
2567    if (klass->is_loaded()) {
2568      // Try to set klass_is_exact.
2569      ciInstanceKlass* ik = klass->as_instance_klass();
2570      klass_is_exact = ik->is_final();
2571      if (!klass_is_exact && klass_change
2572          && deps != NULL && UseUniqueSubclasses) {
2573        ciInstanceKlass* sub = ik->unique_concrete_subklass();
2574        if (sub != NULL) {
2575          deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2576          klass = ik = sub;
2577          klass_is_exact = sub->is_final();
2578        }
2579      }
2580      if (!klass_is_exact && try_for_exact
2581          && deps != NULL && UseExactTypes) {
2582        if (!ik->is_interface() && !ik->has_subklass()) {
2583          // Add a dependence; if concrete subclass added we need to recompile
2584          deps->assert_leaf_type(ik);
2585          klass_is_exact = true;
2586        }
2587      }
2588    }
2589    return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2590  } else if (klass->is_obj_array_klass()) {
2591    // Element is an object array. Recursively call ourself.
2592    const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2593    bool xk = etype->klass_is_exact();
2594    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2595    // We used to pass NotNull in here, asserting that the sub-arrays
2596    // are all not-null.  This is not true in generally, as code can
2597    // slam NULLs down in the subarrays.
2598    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2599    return arr;
2600  } else if (klass->is_type_array_klass()) {
2601    // Element is an typeArray
2602    const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2603    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2604    // We used to pass NotNull in here, asserting that the array pointer
2605    // is not-null. That was not true in general.
2606    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2607    return arr;
2608  } else {
2609    ShouldNotReachHere();
2610    return NULL;
2611  }
2612}
2613
2614//------------------------------make_from_constant-----------------------------
2615// Make a java pointer from an oop constant
2616const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
2617    assert(!o->is_null_object(), "null object not yet handled here.");
2618    ciKlass* klass = o->klass();
2619    if (klass->is_instance_klass()) {
2620      // Element is an instance
2621      if (require_constant) {
2622        if (!o->can_be_constant())  return NULL;
2623      } else if (!o->should_be_constant()) {
2624        return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2625      }
2626      return TypeInstPtr::make(o);
2627    } else if (klass->is_obj_array_klass()) {
2628      // Element is an object array. Recursively call ourself.
2629    const Type *etype =
2630      TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2631      const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2632      // We used to pass NotNull in here, asserting that the sub-arrays
2633      // are all not-null.  This is not true in generally, as code can
2634      // slam NULLs down in the subarrays.
2635      if (require_constant) {
2636        if (!o->can_be_constant())  return NULL;
2637      } else if (!o->should_be_constant()) {
2638        return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2639      }
2640    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2641    return arr;
2642    } else if (klass->is_type_array_klass()) {
2643      // Element is an typeArray
2644    const Type* etype =
2645      (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2646      const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2647      // We used to pass NotNull in here, asserting that the array pointer
2648      // is not-null. That was not true in general.
2649      if (require_constant) {
2650        if (!o->can_be_constant())  return NULL;
2651      } else if (!o->should_be_constant()) {
2652        return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2653      }
2654    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2655    return arr;
2656  }
2657
2658  fatal("unhandled object type");
2659  return NULL;
2660}
2661
2662//------------------------------get_con----------------------------------------
2663intptr_t TypeOopPtr::get_con() const {
2664  assert( _ptr == Null || _ptr == Constant, "" );
2665  assert( _offset >= 0, "" );
2666
2667  if (_offset != 0) {
2668    // After being ported to the compiler interface, the compiler no longer
2669    // directly manipulates the addresses of oops.  Rather, it only has a pointer
2670    // to a handle at compile time.  This handle is embedded in the generated
2671    // code and dereferenced at the time the nmethod is made.  Until that time,
2672    // it is not reasonable to do arithmetic with the addresses of oops (we don't
2673    // have access to the addresses!).  This does not seem to currently happen,
2674    // but this assertion here is to help prevent its occurence.
2675    tty->print_cr("Found oop constant with non-zero offset");
2676    ShouldNotReachHere();
2677  }
2678
2679  return (intptr_t)const_oop()->constant_encoding();
2680}
2681
2682
2683//-----------------------------filter------------------------------------------
2684// Do not allow interface-vs.-noninterface joins to collapse to top.
2685const Type *TypeOopPtr::filter( const Type *kills ) const {
2686
2687  const Type* ft = join(kills);
2688  const TypeInstPtr* ftip = ft->isa_instptr();
2689  const TypeInstPtr* ktip = kills->isa_instptr();
2690  const TypeKlassPtr* ftkp = ft->isa_klassptr();
2691  const TypeKlassPtr* ktkp = kills->isa_klassptr();
2692
2693  if (ft->empty()) {
2694    // Check for evil case of 'this' being a class and 'kills' expecting an
2695    // interface.  This can happen because the bytecodes do not contain
2696    // enough type info to distinguish a Java-level interface variable
2697    // from a Java-level object variable.  If we meet 2 classes which
2698    // both implement interface I, but their meet is at 'j/l/O' which
2699    // doesn't implement I, we have no way to tell if the result should
2700    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2701    // into a Phi which "knows" it's an Interface type we'll have to
2702    // uplift the type.
2703    if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2704      return kills;             // Uplift to interface
2705    if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
2706      return kills;             // Uplift to interface
2707
2708    return Type::TOP;           // Canonical empty value
2709  }
2710
2711  // If we have an interface-typed Phi or cast and we narrow to a class type,
2712  // the join should report back the class.  However, if we have a J/L/Object
2713  // class-typed Phi and an interface flows in, it's possible that the meet &
2714  // join report an interface back out.  This isn't possible but happens
2715  // because the type system doesn't interact well with interfaces.
2716  if (ftip != NULL && ktip != NULL &&
2717      ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2718      ktip->is_loaded() && !ktip->klass()->is_interface()) {
2719    // Happens in a CTW of rt.jar, 320-341, no extra flags
2720    assert(!ftip->klass_is_exact(), "interface could not be exact");
2721    return ktip->cast_to_ptr_type(ftip->ptr());
2722  }
2723  // Interface klass type could be exact in opposite to interface type,
2724  // return it here instead of incorrect Constant ptr J/L/Object (6894807).
2725  if (ftkp != NULL && ktkp != NULL &&
2726      ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
2727      !ftkp->klass_is_exact() && // Keep exact interface klass
2728      ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
2729    return ktkp->cast_to_ptr_type(ftkp->ptr());
2730  }
2731
2732  return ft;
2733}
2734
2735//------------------------------eq---------------------------------------------
2736// Structural equality check for Type representations
2737bool TypeOopPtr::eq( const Type *t ) const {
2738  const TypeOopPtr *a = (const TypeOopPtr*)t;
2739  if (_klass_is_exact != a->_klass_is_exact ||
2740      _instance_id != a->_instance_id)  return false;
2741  ciObject* one = const_oop();
2742  ciObject* two = a->const_oop();
2743  if (one == NULL || two == NULL) {
2744    return (one == two) && TypePtr::eq(t);
2745  } else {
2746    return one->equals(two) && TypePtr::eq(t);
2747  }
2748}
2749
2750//------------------------------hash-------------------------------------------
2751// Type-specific hashing function.
2752int TypeOopPtr::hash(void) const {
2753  return
2754    (const_oop() ? const_oop()->hash() : 0) +
2755    _klass_is_exact +
2756    _instance_id +
2757    TypePtr::hash();
2758}
2759
2760//------------------------------dump2------------------------------------------
2761#ifndef PRODUCT
2762void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2763  st->print("oopptr:%s", ptr_msg[_ptr]);
2764  if( _klass_is_exact ) st->print(":exact");
2765  if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2766  switch( _offset ) {
2767  case OffsetTop: st->print("+top"); break;
2768  case OffsetBot: st->print("+any"); break;
2769  case         0: break;
2770  default:        st->print("+%d",_offset); break;
2771  }
2772  if (_instance_id == InstanceTop)
2773    st->print(",iid=top");
2774  else if (_instance_id != InstanceBot)
2775    st->print(",iid=%d",_instance_id);
2776}
2777#endif
2778
2779//------------------------------singleton--------------------------------------
2780// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2781// constants
2782bool TypeOopPtr::singleton(void) const {
2783  // detune optimizer to not generate constant oop + constant offset as a constant!
2784  // TopPTR, Null, AnyNull, Constant are all singletons
2785  return (_offset == 0) && !below_centerline(_ptr);
2786}
2787
2788//------------------------------add_offset-------------------------------------
2789const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
2790  return make( _ptr, xadd_offset(offset), _instance_id);
2791}
2792
2793//------------------------------meet_instance_id--------------------------------
2794int TypeOopPtr::meet_instance_id( int instance_id ) const {
2795  // Either is 'TOP' instance?  Return the other instance!
2796  if( _instance_id == InstanceTop ) return  instance_id;
2797  if(  instance_id == InstanceTop ) return _instance_id;
2798  // If either is different, return 'BOTTOM' instance
2799  if( _instance_id != instance_id ) return InstanceBot;
2800  return _instance_id;
2801}
2802
2803//------------------------------dual_instance_id--------------------------------
2804int TypeOopPtr::dual_instance_id( ) const {
2805  if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2806  if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2807  return _instance_id;              // Map everything else into self
2808}
2809
2810
2811//=============================================================================
2812// Convenience common pre-built types.
2813const TypeInstPtr *TypeInstPtr::NOTNULL;
2814const TypeInstPtr *TypeInstPtr::BOTTOM;
2815const TypeInstPtr *TypeInstPtr::MIRROR;
2816const TypeInstPtr *TypeInstPtr::MARK;
2817const TypeInstPtr *TypeInstPtr::KLASS;
2818
2819//------------------------------TypeInstPtr-------------------------------------
2820TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
2821 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
2822   assert(k != NULL &&
2823          (k->is_loaded() || o == NULL),
2824          "cannot have constants with non-loaded klass");
2825};
2826
2827//------------------------------make-------------------------------------------
2828const TypeInstPtr *TypeInstPtr::make(PTR ptr,
2829                                     ciKlass* k,
2830                                     bool xk,
2831                                     ciObject* o,
2832                                     int offset,
2833                                     int instance_id) {
2834  assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
2835  // Either const_oop() is NULL or else ptr is Constant
2836  assert( (!o && ptr != Constant) || (o && ptr == Constant),
2837          "constant pointers must have a value supplied" );
2838  // Ptr is never Null
2839  assert( ptr != Null, "NULL pointers are not typed" );
2840
2841  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
2842  if (!UseExactTypes)  xk = false;
2843  if (ptr == Constant) {
2844    // Note:  This case includes meta-object constants, such as methods.
2845    xk = true;
2846  } else if (k->is_loaded()) {
2847    ciInstanceKlass* ik = k->as_instance_klass();
2848    if (!xk && ik->is_final())     xk = true;   // no inexact final klass
2849    if (xk && ik->is_interface())  xk = false;  // no exact interface
2850  }
2851
2852  // Now hash this baby
2853  TypeInstPtr *result =
2854    (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
2855
2856  return result;
2857}
2858
2859
2860//------------------------------cast_to_ptr_type-------------------------------
2861const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
2862  if( ptr == _ptr ) return this;
2863  // Reconstruct _sig info here since not a problem with later lazy
2864  // construction, _sig will show up on demand.
2865  return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
2866}
2867
2868
2869//-----------------------------cast_to_exactness-------------------------------
2870const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
2871  if( klass_is_exact == _klass_is_exact ) return this;
2872  if (!UseExactTypes)  return this;
2873  if (!_klass->is_loaded())  return this;
2874  ciInstanceKlass* ik = _klass->as_instance_klass();
2875  if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
2876  if( ik->is_interface() )              return this;  // cannot set xk
2877  return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
2878}
2879
2880//-----------------------------cast_to_instance_id----------------------------
2881const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
2882  if( instance_id == _instance_id ) return this;
2883  return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
2884}
2885
2886//------------------------------xmeet_unloaded---------------------------------
2887// Compute the MEET of two InstPtrs when at least one is unloaded.
2888// Assume classes are different since called after check for same name/class-loader
2889const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
2890    int off = meet_offset(tinst->offset());
2891    PTR ptr = meet_ptr(tinst->ptr());
2892    int instance_id = meet_instance_id(tinst->instance_id());
2893
2894    const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
2895    const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
2896    if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
2897      //
2898      // Meet unloaded class with java/lang/Object
2899      //
2900      // Meet
2901      //          |                     Unloaded Class
2902      //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
2903      //  ===================================================================
2904      //   TOP    | ..........................Unloaded......................|
2905      //  AnyNull |  U-AN    |................Unloaded......................|
2906      // Constant | ... O-NN .................................. |   O-BOT   |
2907      //  NotNull | ... O-NN .................................. |   O-BOT   |
2908      //  BOTTOM  | ........................Object-BOTTOM ..................|
2909      //
2910      assert(loaded->ptr() != TypePtr::Null, "insanity check");
2911      //
2912      if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
2913      else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
2914      else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
2915      else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
2916        if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
2917        else                                      { return TypeInstPtr::NOTNULL; }
2918      }
2919      else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
2920
2921      return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
2922    }
2923
2924    // Both are unloaded, not the same class, not Object
2925    // Or meet unloaded with a different loaded class, not java/lang/Object
2926    if( ptr != TypePtr::BotPTR ) {
2927      return TypeInstPtr::NOTNULL;
2928    }
2929    return TypeInstPtr::BOTTOM;
2930}
2931
2932
2933//------------------------------meet-------------------------------------------
2934// Compute the MEET of two types.  It returns a new Type object.
2935const Type *TypeInstPtr::xmeet( const Type *t ) const {
2936  // Perform a fast test for common case; meeting the same types together.
2937  if( this == t ) return this;  // Meeting same type-rep?
2938
2939  // Current "this->_base" is Pointer
2940  switch (t->base()) {          // switch on original type
2941
2942  case Int:                     // Mixing ints & oops happens when javac
2943  case Long:                    // reuses local variables
2944  case FloatTop:
2945  case FloatCon:
2946  case FloatBot:
2947  case DoubleTop:
2948  case DoubleCon:
2949  case DoubleBot:
2950  case NarrowOop:
2951  case NarrowKlass:
2952  case Bottom:                  // Ye Olde Default
2953    return Type::BOTTOM;
2954  case Top:
2955    return this;
2956
2957  default:                      // All else is a mistake
2958    typerr(t);
2959
2960  case MetadataPtr:
2961  case KlassPtr:
2962  case RawPtr: return TypePtr::BOTTOM;
2963
2964  case AryPtr: {                // All arrays inherit from Object class
2965    const TypeAryPtr *tp = t->is_aryptr();
2966    int offset = meet_offset(tp->offset());
2967    PTR ptr = meet_ptr(tp->ptr());
2968    int instance_id = meet_instance_id(tp->instance_id());
2969    switch (ptr) {
2970    case TopPTR:
2971    case AnyNull:                // Fall 'down' to dual of object klass
2972      if (klass()->equals(ciEnv::current()->Object_klass())) {
2973        return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2974      } else {
2975        // cannot subclass, so the meet has to fall badly below the centerline
2976        ptr = NotNull;
2977        instance_id = InstanceBot;
2978        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
2979      }
2980    case Constant:
2981    case NotNull:
2982    case BotPTR:                // Fall down to object klass
2983      // LCA is object_klass, but if we subclass from the top we can do better
2984      if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
2985        // If 'this' (InstPtr) is above the centerline and it is Object class
2986        // then we can subclass in the Java class hierarchy.
2987        if (klass()->equals(ciEnv::current()->Object_klass())) {
2988          // that is, tp's array type is a subtype of my klass
2989          return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
2990                                  tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2991        }
2992      }
2993      // The other case cannot happen, since I cannot be a subtype of an array.
2994      // The meet falls down to Object class below centerline.
2995      if( ptr == Constant )
2996         ptr = NotNull;
2997      instance_id = InstanceBot;
2998      return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
2999    default: typerr(t);
3000    }
3001  }
3002
3003  case OopPtr: {                // Meeting to OopPtrs
3004    // Found a OopPtr type vs self-InstPtr type
3005    const TypeOopPtr *tp = t->is_oopptr();
3006    int offset = meet_offset(tp->offset());
3007    PTR ptr = meet_ptr(tp->ptr());
3008    switch (tp->ptr()) {
3009    case TopPTR:
3010    case AnyNull: {
3011      int instance_id = meet_instance_id(InstanceTop);
3012      return make(ptr, klass(), klass_is_exact(),
3013                  (ptr == Constant ? const_oop() : NULL), offset, instance_id);
3014    }
3015    case NotNull:
3016    case BotPTR: {
3017      int instance_id = meet_instance_id(tp->instance_id());
3018      return TypeOopPtr::make(ptr, offset, instance_id);
3019    }
3020    default: typerr(t);
3021    }
3022  }
3023
3024  case AnyPtr: {                // Meeting to AnyPtrs
3025    // Found an AnyPtr type vs self-InstPtr type
3026    const TypePtr *tp = t->is_ptr();
3027    int offset = meet_offset(tp->offset());
3028    PTR ptr = meet_ptr(tp->ptr());
3029    switch (tp->ptr()) {
3030    case Null:
3031      if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
3032      // else fall through to AnyNull
3033    case TopPTR:
3034    case AnyNull: {
3035      int instance_id = meet_instance_id(InstanceTop);
3036      return make( ptr, klass(), klass_is_exact(),
3037                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
3038    }
3039    case NotNull:
3040    case BotPTR:
3041      return TypePtr::make( AnyPtr, ptr, offset );
3042    default: typerr(t);
3043    }
3044  }
3045
3046  /*
3047                 A-top         }
3048               /   |   \       }  Tops
3049           B-top A-any C-top   }
3050              | /  |  \ |      }  Any-nulls
3051           B-any   |   C-any   }
3052              |    |    |
3053           B-con A-con C-con   } constants; not comparable across classes
3054              |    |    |
3055           B-not   |   C-not   }
3056              | \  |  / |      }  not-nulls
3057           B-bot A-not C-bot   }
3058               \   |   /       }  Bottoms
3059                 A-bot         }
3060  */
3061
3062  case InstPtr: {                // Meeting 2 Oops?
3063    // Found an InstPtr sub-type vs self-InstPtr type
3064    const TypeInstPtr *tinst = t->is_instptr();
3065    int off = meet_offset( tinst->offset() );
3066    PTR ptr = meet_ptr( tinst->ptr() );
3067    int instance_id = meet_instance_id(tinst->instance_id());
3068
3069    // Check for easy case; klasses are equal (and perhaps not loaded!)
3070    // If we have constants, then we created oops so classes are loaded
3071    // and we can handle the constants further down.  This case handles
3072    // both-not-loaded or both-loaded classes
3073    if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3074      return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
3075    }
3076
3077    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3078    ciKlass* tinst_klass = tinst->klass();
3079    ciKlass* this_klass  = this->klass();
3080    bool tinst_xk = tinst->klass_is_exact();
3081    bool this_xk  = this->klass_is_exact();
3082    if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3083      // One of these classes has not been loaded
3084      const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3085#ifndef PRODUCT
3086      if( PrintOpto && Verbose ) {
3087        tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3088        tty->print("  this == "); this->dump(); tty->cr();
3089        tty->print(" tinst == "); tinst->dump(); tty->cr();
3090      }
3091#endif
3092      return unloaded_meet;
3093    }
3094
3095    // Handle mixing oops and interfaces first.
3096    if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
3097      ciKlass *tmp = tinst_klass; // Swap interface around
3098      tinst_klass = this_klass;
3099      this_klass = tmp;
3100      bool tmp2 = tinst_xk;
3101      tinst_xk = this_xk;
3102      this_xk = tmp2;
3103    }
3104    if (tinst_klass->is_interface() &&
3105        !(this_klass->is_interface() ||
3106          // Treat java/lang/Object as an honorary interface,
3107          // because we need a bottom for the interface hierarchy.
3108          this_klass == ciEnv::current()->Object_klass())) {
3109      // Oop meets interface!
3110
3111      // See if the oop subtypes (implements) interface.
3112      ciKlass *k;
3113      bool xk;
3114      if( this_klass->is_subtype_of( tinst_klass ) ) {
3115        // Oop indeed subtypes.  Now keep oop or interface depending
3116        // on whether we are both above the centerline or either is
3117        // below the centerline.  If we are on the centerline
3118        // (e.g., Constant vs. AnyNull interface), use the constant.
3119        k  = below_centerline(ptr) ? tinst_klass : this_klass;
3120        // If we are keeping this_klass, keep its exactness too.
3121        xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3122      } else {                  // Does not implement, fall to Object
3123        // Oop does not implement interface, so mixing falls to Object
3124        // just like the verifier does (if both are above the
3125        // centerline fall to interface)
3126        k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3127        xk = above_centerline(ptr) ? tinst_xk : false;
3128        // Watch out for Constant vs. AnyNull interface.
3129        if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3130        instance_id = InstanceBot;
3131      }
3132      ciObject* o = NULL;  // the Constant value, if any
3133      if (ptr == Constant) {
3134        // Find out which constant.
3135        o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3136      }
3137      return make( ptr, k, xk, o, off, instance_id );
3138    }
3139
3140    // Either oop vs oop or interface vs interface or interface vs Object
3141
3142    // !!! Here's how the symmetry requirement breaks down into invariants:
3143    // If we split one up & one down AND they subtype, take the down man.
3144    // If we split one up & one down AND they do NOT subtype, "fall hard".
3145    // If both are up and they subtype, take the subtype class.
3146    // If both are up and they do NOT subtype, "fall hard".
3147    // If both are down and they subtype, take the supertype class.
3148    // If both are down and they do NOT subtype, "fall hard".
3149    // Constants treated as down.
3150
3151    // Now, reorder the above list; observe that both-down+subtype is also
3152    // "fall hard"; "fall hard" becomes the default case:
3153    // If we split one up & one down AND they subtype, take the down man.
3154    // If both are up and they subtype, take the subtype class.
3155
3156    // If both are down and they subtype, "fall hard".
3157    // If both are down and they do NOT subtype, "fall hard".
3158    // If both are up and they do NOT subtype, "fall hard".
3159    // If we split one up & one down AND they do NOT subtype, "fall hard".
3160
3161    // If a proper subtype is exact, and we return it, we return it exactly.
3162    // If a proper supertype is exact, there can be no subtyping relationship!
3163    // If both types are equal to the subtype, exactness is and-ed below the
3164    // centerline and or-ed above it.  (N.B. Constants are always exact.)
3165
3166    // Check for subtyping:
3167    ciKlass *subtype = NULL;
3168    bool subtype_exact = false;
3169    if( tinst_klass->equals(this_klass) ) {
3170      subtype = this_klass;
3171      subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3172    } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3173      subtype = this_klass;     // Pick subtyping class
3174      subtype_exact = this_xk;
3175    } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3176      subtype = tinst_klass;    // Pick subtyping class
3177      subtype_exact = tinst_xk;
3178    }
3179
3180    if( subtype ) {
3181      if( above_centerline(ptr) ) { // both are up?
3182        this_klass = tinst_klass = subtype;
3183        this_xk = tinst_xk = subtype_exact;
3184      } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3185        this_klass = tinst_klass; // tinst is down; keep down man
3186        this_xk = tinst_xk;
3187      } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3188        tinst_klass = this_klass; // this is down; keep down man
3189        tinst_xk = this_xk;
3190      } else {
3191        this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3192      }
3193    }
3194
3195    // Check for classes now being equal
3196    if (tinst_klass->equals(this_klass)) {
3197      // If the klasses are equal, the constants may still differ.  Fall to
3198      // NotNull if they do (neither constant is NULL; that is a special case
3199      // handled elsewhere).
3200      ciObject* o = NULL;             // Assume not constant when done
3201      ciObject* this_oop  = const_oop();
3202      ciObject* tinst_oop = tinst->const_oop();
3203      if( ptr == Constant ) {
3204        if (this_oop != NULL && tinst_oop != NULL &&
3205            this_oop->equals(tinst_oop) )
3206          o = this_oop;
3207        else if (above_centerline(this ->_ptr))
3208          o = tinst_oop;
3209        else if (above_centerline(tinst ->_ptr))
3210          o = this_oop;
3211        else
3212          ptr = NotNull;
3213      }
3214      return make( ptr, this_klass, this_xk, o, off, instance_id );
3215    } // Else classes are not equal
3216
3217    // Since klasses are different, we require a LCA in the Java
3218    // class hierarchy - which means we have to fall to at least NotNull.
3219    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3220      ptr = NotNull;
3221    instance_id = InstanceBot;
3222
3223    // Now we find the LCA of Java classes
3224    ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3225    return make( ptr, k, false, NULL, off, instance_id );
3226  } // End of case InstPtr
3227
3228  } // End of switch
3229  return this;                  // Return the double constant
3230}
3231
3232
3233//------------------------java_mirror_type--------------------------------------
3234ciType* TypeInstPtr::java_mirror_type() const {
3235  // must be a singleton type
3236  if( const_oop() == NULL )  return NULL;
3237
3238  // must be of type java.lang.Class
3239  if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3240
3241  return const_oop()->as_instance()->java_mirror_type();
3242}
3243
3244
3245//------------------------------xdual------------------------------------------
3246// Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3247// inheritance mechanism.
3248const Type *TypeInstPtr::xdual() const {
3249  return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
3250}
3251
3252//------------------------------eq---------------------------------------------
3253// Structural equality check for Type representations
3254bool TypeInstPtr::eq( const Type *t ) const {
3255  const TypeInstPtr *p = t->is_instptr();
3256  return
3257    klass()->equals(p->klass()) &&
3258    TypeOopPtr::eq(p);          // Check sub-type stuff
3259}
3260
3261//------------------------------hash-------------------------------------------
3262// Type-specific hashing function.
3263int TypeInstPtr::hash(void) const {
3264  int hash = klass()->hash() + TypeOopPtr::hash();
3265  return hash;
3266}
3267
3268//------------------------------dump2------------------------------------------
3269// Dump oop Type
3270#ifndef PRODUCT
3271void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3272  // Print the name of the klass.
3273  klass()->print_name_on(st);
3274
3275  switch( _ptr ) {
3276  case Constant:
3277    // TO DO: Make CI print the hex address of the underlying oop.
3278    if (WizardMode || Verbose) {
3279      const_oop()->print_oop(st);
3280    }
3281  case BotPTR:
3282    if (!WizardMode && !Verbose) {
3283      if( _klass_is_exact ) st->print(":exact");
3284      break;
3285    }
3286  case TopPTR:
3287  case AnyNull:
3288  case NotNull:
3289    st->print(":%s", ptr_msg[_ptr]);
3290    if( _klass_is_exact ) st->print(":exact");
3291    break;
3292  }
3293
3294  if( _offset ) {               // Dump offset, if any
3295    if( _offset == OffsetBot )      st->print("+any");
3296    else if( _offset == OffsetTop ) st->print("+unknown");
3297    else st->print("+%d", _offset);
3298  }
3299
3300  st->print(" *");
3301  if (_instance_id == InstanceTop)
3302    st->print(",iid=top");
3303  else if (_instance_id != InstanceBot)
3304    st->print(",iid=%d",_instance_id);
3305}
3306#endif
3307
3308//------------------------------add_offset-------------------------------------
3309const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
3310  return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
3311}
3312
3313//=============================================================================
3314// Convenience common pre-built types.
3315const TypeAryPtr *TypeAryPtr::RANGE;
3316const TypeAryPtr *TypeAryPtr::OOPS;
3317const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3318const TypeAryPtr *TypeAryPtr::BYTES;
3319const TypeAryPtr *TypeAryPtr::SHORTS;
3320const TypeAryPtr *TypeAryPtr::CHARS;
3321const TypeAryPtr *TypeAryPtr::INTS;
3322const TypeAryPtr *TypeAryPtr::LONGS;
3323const TypeAryPtr *TypeAryPtr::FLOATS;
3324const TypeAryPtr *TypeAryPtr::DOUBLES;
3325
3326//------------------------------make-------------------------------------------
3327const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3328  assert(!(k == NULL && ary->_elem->isa_int()),
3329         "integral arrays must be pre-equipped with a class");
3330  if (!xk)  xk = ary->ary_must_be_exact();
3331  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3332  if (!UseExactTypes)  xk = (ptr == Constant);
3333  return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
3334}
3335
3336//------------------------------make-------------------------------------------
3337const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3338  assert(!(k == NULL && ary->_elem->isa_int()),
3339         "integral arrays must be pre-equipped with a class");
3340  assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3341  if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3342  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3343  if (!UseExactTypes)  xk = (ptr == Constant);
3344  return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
3345}
3346
3347//------------------------------cast_to_ptr_type-------------------------------
3348const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3349  if( ptr == _ptr ) return this;
3350  return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
3351}
3352
3353
3354//-----------------------------cast_to_exactness-------------------------------
3355const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3356  if( klass_is_exact == _klass_is_exact ) return this;
3357  if (!UseExactTypes)  return this;
3358  if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3359  return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
3360}
3361
3362//-----------------------------cast_to_instance_id----------------------------
3363const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3364  if( instance_id == _instance_id ) return this;
3365  return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
3366}
3367
3368//-----------------------------narrow_size_type-------------------------------
3369// Local cache for arrayOopDesc::max_array_length(etype),
3370// which is kind of slow (and cached elsewhere by other users).
3371static jint max_array_length_cache[T_CONFLICT+1];
3372static jint max_array_length(BasicType etype) {
3373  jint& cache = max_array_length_cache[etype];
3374  jint res = cache;
3375  if (res == 0) {
3376    switch (etype) {
3377    case T_NARROWOOP:
3378      etype = T_OBJECT;
3379      break;
3380    case T_NARROWKLASS:
3381    case T_CONFLICT:
3382    case T_ILLEGAL:
3383    case T_VOID:
3384      etype = T_BYTE;           // will produce conservatively high value
3385    }
3386    cache = res = arrayOopDesc::max_array_length(etype);
3387  }
3388  return res;
3389}
3390
3391// Narrow the given size type to the index range for the given array base type.
3392// Return NULL if the resulting int type becomes empty.
3393const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3394  jint hi = size->_hi;
3395  jint lo = size->_lo;
3396  jint min_lo = 0;
3397  jint max_hi = max_array_length(elem()->basic_type());
3398  //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3399  bool chg = false;
3400  if (lo < min_lo) { lo = min_lo; chg = true; }
3401  if (hi > max_hi) { hi = max_hi; chg = true; }
3402  // Negative length arrays will produce weird intermediate dead fast-path code
3403  if (lo > hi)
3404    return TypeInt::ZERO;
3405  if (!chg)
3406    return size;
3407  return TypeInt::make(lo, hi, Type::WidenMin);
3408}
3409
3410//-------------------------------cast_to_size----------------------------------
3411const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3412  assert(new_size != NULL, "");
3413  new_size = narrow_size_type(new_size);
3414  if (new_size == size())  return this;
3415  const TypeAry* new_ary = TypeAry::make(elem(), new_size);
3416  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3417}
3418
3419
3420//------------------------------eq---------------------------------------------
3421// Structural equality check for Type representations
3422bool TypeAryPtr::eq( const Type *t ) const {
3423  const TypeAryPtr *p = t->is_aryptr();
3424  return
3425    _ary == p->_ary &&  // Check array
3426    TypeOopPtr::eq(p);  // Check sub-parts
3427}
3428
3429//------------------------------hash-------------------------------------------
3430// Type-specific hashing function.
3431int TypeAryPtr::hash(void) const {
3432  return (intptr_t)_ary + TypeOopPtr::hash();
3433}
3434
3435//------------------------------meet-------------------------------------------
3436// Compute the MEET of two types.  It returns a new Type object.
3437const Type *TypeAryPtr::xmeet( const Type *t ) const {
3438  // Perform a fast test for common case; meeting the same types together.
3439  if( this == t ) return this;  // Meeting same type-rep?
3440  // Current "this->_base" is Pointer
3441  switch (t->base()) {          // switch on original type
3442
3443  // Mixing ints & oops happens when javac reuses local variables
3444  case Int:
3445  case Long:
3446  case FloatTop:
3447  case FloatCon:
3448  case FloatBot:
3449  case DoubleTop:
3450  case DoubleCon:
3451  case DoubleBot:
3452  case NarrowOop:
3453  case NarrowKlass:
3454  case Bottom:                  // Ye Olde Default
3455    return Type::BOTTOM;
3456  case Top:
3457    return this;
3458
3459  default:                      // All else is a mistake
3460    typerr(t);
3461
3462  case OopPtr: {                // Meeting to OopPtrs
3463    // Found a OopPtr type vs self-AryPtr type
3464    const TypeOopPtr *tp = t->is_oopptr();
3465    int offset = meet_offset(tp->offset());
3466    PTR ptr = meet_ptr(tp->ptr());
3467    switch (tp->ptr()) {
3468    case TopPTR:
3469    case AnyNull: {
3470      int instance_id = meet_instance_id(InstanceTop);
3471      return make(ptr, (ptr == Constant ? const_oop() : NULL),
3472                  _ary, _klass, _klass_is_exact, offset, instance_id);
3473    }
3474    case BotPTR:
3475    case NotNull: {
3476      int instance_id = meet_instance_id(tp->instance_id());
3477      return TypeOopPtr::make(ptr, offset, instance_id);
3478    }
3479    default: ShouldNotReachHere();
3480    }
3481  }
3482
3483  case AnyPtr: {                // Meeting two AnyPtrs
3484    // Found an AnyPtr type vs self-AryPtr type
3485    const TypePtr *tp = t->is_ptr();
3486    int offset = meet_offset(tp->offset());
3487    PTR ptr = meet_ptr(tp->ptr());
3488    switch (tp->ptr()) {
3489    case TopPTR:
3490      return this;
3491    case BotPTR:
3492    case NotNull:
3493      return TypePtr::make(AnyPtr, ptr, offset);
3494    case Null:
3495      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3496      // else fall through to AnyNull
3497    case AnyNull: {
3498      int instance_id = meet_instance_id(InstanceTop);
3499      return make( ptr, (ptr == Constant ? const_oop() : NULL),
3500                  _ary, _klass, _klass_is_exact, offset, instance_id);
3501    }
3502    default: ShouldNotReachHere();
3503    }
3504  }
3505
3506  case MetadataPtr:
3507  case KlassPtr:
3508  case RawPtr: return TypePtr::BOTTOM;
3509
3510  case AryPtr: {                // Meeting 2 references?
3511    const TypeAryPtr *tap = t->is_aryptr();
3512    int off = meet_offset(tap->offset());
3513    const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
3514    PTR ptr = meet_ptr(tap->ptr());
3515    int instance_id = meet_instance_id(tap->instance_id());
3516    ciKlass* lazy_klass = NULL;
3517    if (tary->_elem->isa_int()) {
3518      // Integral array element types have irrelevant lattice relations.
3519      // It is the klass that determines array layout, not the element type.
3520      if (_klass == NULL)
3521        lazy_klass = tap->_klass;
3522      else if (tap->_klass == NULL || tap->_klass == _klass) {
3523        lazy_klass = _klass;
3524      } else {
3525        // Something like byte[int+] meets char[int+].
3526        // This must fall to bottom, not (int[-128..65535])[int+].
3527        instance_id = InstanceBot;
3528        tary = TypeAry::make(Type::BOTTOM, tary->_size);
3529      }
3530    } else // Non integral arrays.
3531    // Must fall to bottom if exact klasses in upper lattice
3532    // are not equal or super klass is exact.
3533    if ( above_centerline(ptr) && klass() != tap->klass() &&
3534         // meet with top[] and bottom[] are processed further down:
3535         tap ->_klass != NULL  && this->_klass != NULL   &&
3536         // both are exact and not equal:
3537        ((tap ->_klass_is_exact && this->_klass_is_exact) ||
3538         // 'tap'  is exact and super or unrelated:
3539         (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3540         // 'this' is exact and super or unrelated:
3541         (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3542      tary = TypeAry::make(Type::BOTTOM, tary->_size);
3543      return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
3544    }
3545
3546    bool xk = false;
3547    switch (tap->ptr()) {
3548    case AnyNull:
3549    case TopPTR:
3550      // Compute new klass on demand, do not use tap->_klass
3551      xk = (tap->_klass_is_exact | this->_klass_is_exact);
3552      return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
3553    case Constant: {
3554      ciObject* o = const_oop();
3555      if( _ptr == Constant ) {
3556        if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3557          xk = (klass() == tap->klass());
3558          ptr = NotNull;
3559          o = NULL;
3560          instance_id = InstanceBot;
3561        } else {
3562          xk = true;
3563        }
3564      } else if( above_centerline(_ptr) ) {
3565        o = tap->const_oop();
3566        xk = true;
3567      } else {
3568        // Only precise for identical arrays
3569        xk = this->_klass_is_exact && (klass() == tap->klass());
3570      }
3571      return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
3572    }
3573    case NotNull:
3574    case BotPTR:
3575      // Compute new klass on demand, do not use tap->_klass
3576      if (above_centerline(this->_ptr))
3577            xk = tap->_klass_is_exact;
3578      else if (above_centerline(tap->_ptr))
3579            xk = this->_klass_is_exact;
3580      else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3581              (klass() == tap->klass()); // Only precise for identical arrays
3582      return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
3583    default: ShouldNotReachHere();
3584    }
3585  }
3586
3587  // All arrays inherit from Object class
3588  case InstPtr: {
3589    const TypeInstPtr *tp = t->is_instptr();
3590    int offset = meet_offset(tp->offset());
3591    PTR ptr = meet_ptr(tp->ptr());
3592    int instance_id = meet_instance_id(tp->instance_id());
3593    switch (ptr) {
3594    case TopPTR:
3595    case AnyNull:                // Fall 'down' to dual of object klass
3596      if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3597        return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3598      } else {
3599        // cannot subclass, so the meet has to fall badly below the centerline
3600        ptr = NotNull;
3601        instance_id = InstanceBot;
3602        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3603      }
3604    case Constant:
3605    case NotNull:
3606    case BotPTR:                // Fall down to object klass
3607      // LCA is object_klass, but if we subclass from the top we can do better
3608      if (above_centerline(tp->ptr())) {
3609        // If 'tp'  is above the centerline and it is Object class
3610        // then we can subclass in the Java class hierarchy.
3611        if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3612          // that is, my array type is a subtype of 'tp' klass
3613          return make( ptr, (ptr == Constant ? const_oop() : NULL),
3614                       _ary, _klass, _klass_is_exact, offset, instance_id );
3615        }
3616      }
3617      // The other case cannot happen, since t cannot be a subtype of an array.
3618      // The meet falls down to Object class below centerline.
3619      if( ptr == Constant )
3620         ptr = NotNull;
3621      instance_id = InstanceBot;
3622      return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3623    default: typerr(t);
3624    }
3625  }
3626  }
3627  return this;                  // Lint noise
3628}
3629
3630//------------------------------xdual------------------------------------------
3631// Dual: compute field-by-field dual
3632const Type *TypeAryPtr::xdual() const {
3633  return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
3634}
3635
3636//----------------------interface_vs_oop---------------------------------------
3637#ifdef ASSERT
3638bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3639  const TypeAryPtr* t_aryptr = t->isa_aryptr();
3640  if (t_aryptr) {
3641    return _ary->interface_vs_oop(t_aryptr->_ary);
3642  }
3643  return false;
3644}
3645#endif
3646
3647//------------------------------dump2------------------------------------------
3648#ifndef PRODUCT
3649void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3650  _ary->dump2(d,depth,st);
3651  switch( _ptr ) {
3652  case Constant:
3653    const_oop()->print(st);
3654    break;
3655  case BotPTR:
3656    if (!WizardMode && !Verbose) {
3657      if( _klass_is_exact ) st->print(":exact");
3658      break;
3659    }
3660  case TopPTR:
3661  case AnyNull:
3662  case NotNull:
3663    st->print(":%s", ptr_msg[_ptr]);
3664    if( _klass_is_exact ) st->print(":exact");
3665    break;
3666  }
3667
3668  if( _offset != 0 ) {
3669    int header_size = objArrayOopDesc::header_size() * wordSize;
3670    if( _offset == OffsetTop )       st->print("+undefined");
3671    else if( _offset == OffsetBot )  st->print("+any");
3672    else if( _offset < header_size ) st->print("+%d", _offset);
3673    else {
3674      BasicType basic_elem_type = elem()->basic_type();
3675      int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3676      int elem_size = type2aelembytes(basic_elem_type);
3677      st->print("[%d]", (_offset - array_base)/elem_size);
3678    }
3679  }
3680  st->print(" *");
3681  if (_instance_id == InstanceTop)
3682    st->print(",iid=top");
3683  else if (_instance_id != InstanceBot)
3684    st->print(",iid=%d",_instance_id);
3685}
3686#endif
3687
3688bool TypeAryPtr::empty(void) const {
3689  if (_ary->empty())       return true;
3690  return TypeOopPtr::empty();
3691}
3692
3693//------------------------------add_offset-------------------------------------
3694const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
3695  return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
3696}
3697
3698
3699//=============================================================================
3700
3701//------------------------------hash-------------------------------------------
3702// Type-specific hashing function.
3703int TypeNarrowPtr::hash(void) const {
3704  return _ptrtype->hash() + 7;
3705}
3706
3707bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
3708  return _ptrtype->singleton();
3709}
3710
3711bool TypeNarrowPtr::empty(void) const {
3712  return _ptrtype->empty();
3713}
3714
3715intptr_t TypeNarrowPtr::get_con() const {
3716  return _ptrtype->get_con();
3717}
3718
3719bool TypeNarrowPtr::eq( const Type *t ) const {
3720  const TypeNarrowPtr* tc = isa_same_narrowptr(t);
3721  if (tc != NULL) {
3722    if (_ptrtype->base() != tc->_ptrtype->base()) {
3723      return false;
3724    }
3725    return tc->_ptrtype->eq(_ptrtype);
3726  }
3727  return false;
3728}
3729
3730const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
3731  const TypePtr* odual = _ptrtype->dual()->is_ptr();
3732  return make_same_narrowptr(odual);
3733}
3734
3735
3736const Type *TypeNarrowPtr::filter( const Type *kills ) const {
3737  if (isa_same_narrowptr(kills)) {
3738    const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
3739    if (ft->empty())
3740      return Type::TOP;           // Canonical empty value
3741    if (ft->isa_ptr()) {
3742      return make_hash_same_narrowptr(ft->isa_ptr());
3743    }
3744    return ft;
3745  } else if (kills->isa_ptr()) {
3746    const Type* ft = _ptrtype->join(kills);
3747    if (ft->empty())
3748      return Type::TOP;           // Canonical empty value
3749    return ft;
3750  } else {
3751    return Type::TOP;
3752  }
3753}
3754
3755//------------------------------xmeet------------------------------------------
3756// Compute the MEET of two types.  It returns a new Type object.
3757const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
3758  // Perform a fast test for common case; meeting the same types together.
3759  if( this == t ) return this;  // Meeting same type-rep?
3760
3761  if (t->base() == base()) {
3762    const Type* result = _ptrtype->xmeet(t->make_ptr());
3763    if (result->isa_ptr()) {
3764      return make_hash_same_narrowptr(result->is_ptr());
3765    }
3766    return result;
3767  }
3768
3769  // Current "this->_base" is NarrowKlass or NarrowOop
3770  switch (t->base()) {          // switch on original type
3771
3772  case Int:                     // Mixing ints & oops happens when javac
3773  case Long:                    // reuses local variables
3774  case FloatTop:
3775  case FloatCon:
3776  case FloatBot:
3777  case DoubleTop:
3778  case DoubleCon:
3779  case DoubleBot:
3780  case AnyPtr:
3781  case RawPtr:
3782  case OopPtr:
3783  case InstPtr:
3784  case AryPtr:
3785  case MetadataPtr:
3786  case KlassPtr:
3787  case NarrowOop:
3788  case NarrowKlass:
3789
3790  case Bottom:                  // Ye Olde Default
3791    return Type::BOTTOM;
3792  case Top:
3793    return this;
3794
3795  default:                      // All else is a mistake
3796    typerr(t);
3797
3798  } // End of switch
3799
3800  return this;
3801}
3802
3803#ifndef PRODUCT
3804void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
3805  _ptrtype->dump2(d, depth, st);
3806}
3807#endif
3808
3809const TypeNarrowOop *TypeNarrowOop::BOTTOM;
3810const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
3811
3812
3813const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
3814  return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
3815}
3816
3817
3818#ifndef PRODUCT
3819void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
3820  st->print("narrowoop: ");
3821  TypeNarrowPtr::dump2(d, depth, st);
3822}
3823#endif
3824
3825const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
3826
3827const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
3828  return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
3829}
3830
3831#ifndef PRODUCT
3832void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
3833  st->print("narrowklass: ");
3834  TypeNarrowPtr::dump2(d, depth, st);
3835}
3836#endif
3837
3838
3839//------------------------------eq---------------------------------------------
3840// Structural equality check for Type representations
3841bool TypeMetadataPtr::eq( const Type *t ) const {
3842  const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
3843  ciMetadata* one = metadata();
3844  ciMetadata* two = a->metadata();
3845  if (one == NULL || two == NULL) {
3846    return (one == two) && TypePtr::eq(t);
3847  } else {
3848    return one->equals(two) && TypePtr::eq(t);
3849  }
3850}
3851
3852//------------------------------hash-------------------------------------------
3853// Type-specific hashing function.
3854int TypeMetadataPtr::hash(void) const {
3855  return
3856    (metadata() ? metadata()->hash() : 0) +
3857    TypePtr::hash();
3858}
3859
3860//------------------------------singleton--------------------------------------
3861// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3862// constants
3863bool TypeMetadataPtr::singleton(void) const {
3864  // detune optimizer to not generate constant metadta + constant offset as a constant!
3865  // TopPTR, Null, AnyNull, Constant are all singletons
3866  return (_offset == 0) && !below_centerline(_ptr);
3867}
3868
3869//------------------------------add_offset-------------------------------------
3870const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
3871  return make( _ptr, _metadata, xadd_offset(offset));
3872}
3873
3874//-----------------------------filter------------------------------------------
3875// Do not allow interface-vs.-noninterface joins to collapse to top.
3876const Type *TypeMetadataPtr::filter( const Type *kills ) const {
3877  const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
3878  if (ft == NULL || ft->empty())
3879    return Type::TOP;           // Canonical empty value
3880  return ft;
3881}
3882
3883 //------------------------------get_con----------------------------------------
3884intptr_t TypeMetadataPtr::get_con() const {
3885  assert( _ptr == Null || _ptr == Constant, "" );
3886  assert( _offset >= 0, "" );
3887
3888  if (_offset != 0) {
3889    // After being ported to the compiler interface, the compiler no longer
3890    // directly manipulates the addresses of oops.  Rather, it only has a pointer
3891    // to a handle at compile time.  This handle is embedded in the generated
3892    // code and dereferenced at the time the nmethod is made.  Until that time,
3893    // it is not reasonable to do arithmetic with the addresses of oops (we don't
3894    // have access to the addresses!).  This does not seem to currently happen,
3895    // but this assertion here is to help prevent its occurence.
3896    tty->print_cr("Found oop constant with non-zero offset");
3897    ShouldNotReachHere();
3898  }
3899
3900  return (intptr_t)metadata()->constant_encoding();
3901}
3902
3903//------------------------------cast_to_ptr_type-------------------------------
3904const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
3905  if( ptr == _ptr ) return this;
3906  return make(ptr, metadata(), _offset);
3907}
3908
3909//------------------------------meet-------------------------------------------
3910// Compute the MEET of two types.  It returns a new Type object.
3911const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
3912  // Perform a fast test for common case; meeting the same types together.
3913  if( this == t ) return this;  // Meeting same type-rep?
3914
3915  // Current "this->_base" is OopPtr
3916  switch (t->base()) {          // switch on original type
3917
3918  case Int:                     // Mixing ints & oops happens when javac
3919  case Long:                    // reuses local variables
3920  case FloatTop:
3921  case FloatCon:
3922  case FloatBot:
3923  case DoubleTop:
3924  case DoubleCon:
3925  case DoubleBot:
3926  case NarrowOop:
3927  case NarrowKlass:
3928  case Bottom:                  // Ye Olde Default
3929    return Type::BOTTOM;
3930  case Top:
3931    return this;
3932
3933  default:                      // All else is a mistake
3934    typerr(t);
3935
3936  case AnyPtr: {
3937    // Found an AnyPtr type vs self-OopPtr type
3938    const TypePtr *tp = t->is_ptr();
3939    int offset = meet_offset(tp->offset());
3940    PTR ptr = meet_ptr(tp->ptr());
3941    switch (tp->ptr()) {
3942    case Null:
3943      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
3944      // else fall through:
3945    case TopPTR:
3946    case AnyNull: {
3947      return make(ptr, NULL, offset);
3948    }
3949    case BotPTR:
3950    case NotNull:
3951      return TypePtr::make(AnyPtr, ptr, offset);
3952    default: typerr(t);
3953    }
3954  }
3955
3956  case RawPtr:
3957  case KlassPtr:
3958  case OopPtr:
3959  case InstPtr:
3960  case AryPtr:
3961    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3962
3963  case MetadataPtr: {
3964    const TypeMetadataPtr *tp = t->is_metadataptr();
3965    int offset = meet_offset(tp->offset());
3966    PTR tptr = tp->ptr();
3967    PTR ptr = meet_ptr(tptr);
3968    ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
3969    if (tptr == TopPTR || _ptr == TopPTR ||
3970        metadata()->equals(tp->metadata())) {
3971      return make(ptr, md, offset);
3972    }
3973    // metadata is different
3974    if( ptr == Constant ) {  // Cannot be equal constants, so...
3975      if( tptr == Constant && _ptr != Constant)  return t;
3976      if( _ptr == Constant && tptr != Constant)  return this;
3977      ptr = NotNull;            // Fall down in lattice
3978    }
3979    return make(ptr, NULL, offset);
3980    break;
3981  }
3982  } // End of switch
3983  return this;                  // Return the double constant
3984}
3985
3986
3987//------------------------------xdual------------------------------------------
3988// Dual of a pure metadata pointer.
3989const Type *TypeMetadataPtr::xdual() const {
3990  return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
3991}
3992
3993//------------------------------dump2------------------------------------------
3994#ifndef PRODUCT
3995void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3996  st->print("metadataptr:%s", ptr_msg[_ptr]);
3997  if( metadata() ) st->print(INTPTR_FORMAT, metadata());
3998  switch( _offset ) {
3999  case OffsetTop: st->print("+top"); break;
4000  case OffsetBot: st->print("+any"); break;
4001  case         0: break;
4002  default:        st->print("+%d",_offset); break;
4003  }
4004}
4005#endif
4006
4007
4008//=============================================================================
4009// Convenience common pre-built type.
4010const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4011
4012TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4013  TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4014}
4015
4016const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4017  return make(Constant, m, 0);
4018}
4019const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4020  return make(Constant, m, 0);
4021}
4022
4023//------------------------------make-------------------------------------------
4024// Create a meta data constant
4025const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4026  assert(m == NULL || !m->is_klass(), "wrong type");
4027  return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4028}
4029
4030
4031//=============================================================================
4032// Convenience common pre-built types.
4033
4034// Not-null object klass or below
4035const TypeKlassPtr *TypeKlassPtr::OBJECT;
4036const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4037
4038//------------------------------TypeKlassPtr-----------------------------------
4039TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4040  : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4041}
4042
4043//------------------------------make-------------------------------------------
4044// ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4045const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4046  assert( k != NULL, "Expect a non-NULL klass");
4047  assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4048  TypeKlassPtr *r =
4049    (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4050
4051  return r;
4052}
4053
4054//------------------------------eq---------------------------------------------
4055// Structural equality check for Type representations
4056bool TypeKlassPtr::eq( const Type *t ) const {
4057  const TypeKlassPtr *p = t->is_klassptr();
4058  return
4059    klass()->equals(p->klass()) &&
4060    TypePtr::eq(p);
4061}
4062
4063//------------------------------hash-------------------------------------------
4064// Type-specific hashing function.
4065int TypeKlassPtr::hash(void) const {
4066  return klass()->hash() + TypePtr::hash();
4067}
4068
4069//------------------------------singleton--------------------------------------
4070// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4071// constants
4072bool TypeKlassPtr::singleton(void) const {
4073  // detune optimizer to not generate constant klass + constant offset as a constant!
4074  // TopPTR, Null, AnyNull, Constant are all singletons
4075  return (_offset == 0) && !below_centerline(_ptr);
4076}
4077
4078//----------------------compute_klass------------------------------------------
4079// Compute the defining klass for this class
4080ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4081  // Compute _klass based on element type.
4082  ciKlass* k_ary = NULL;
4083  const TypeInstPtr *tinst;
4084  const TypeAryPtr *tary;
4085  const Type* el = elem();
4086  if (el->isa_narrowoop()) {
4087    el = el->make_ptr();
4088  }
4089
4090  // Get element klass
4091  if ((tinst = el->isa_instptr()) != NULL) {
4092    // Compute array klass from element klass
4093    k_ary = ciObjArrayKlass::make(tinst->klass());
4094  } else if ((tary = el->isa_aryptr()) != NULL) {
4095    // Compute array klass from element klass
4096    ciKlass* k_elem = tary->klass();
4097    // If element type is something like bottom[], k_elem will be null.
4098    if (k_elem != NULL)
4099      k_ary = ciObjArrayKlass::make(k_elem);
4100  } else if ((el->base() == Type::Top) ||
4101             (el->base() == Type::Bottom)) {
4102    // element type of Bottom occurs from meet of basic type
4103    // and object; Top occurs when doing join on Bottom.
4104    // Leave k_ary at NULL.
4105  } else {
4106    // Cannot compute array klass directly from basic type,
4107    // since subtypes of TypeInt all have basic type T_INT.
4108#ifdef ASSERT
4109    if (verify && el->isa_int()) {
4110      // Check simple cases when verifying klass.
4111      BasicType bt = T_ILLEGAL;
4112      if (el == TypeInt::BYTE) {
4113        bt = T_BYTE;
4114      } else if (el == TypeInt::SHORT) {
4115        bt = T_SHORT;
4116      } else if (el == TypeInt::CHAR) {
4117        bt = T_CHAR;
4118      } else if (el == TypeInt::INT) {
4119        bt = T_INT;
4120      } else {
4121        return _klass; // just return specified klass
4122      }
4123      return ciTypeArrayKlass::make(bt);
4124    }
4125#endif
4126    assert(!el->isa_int(),
4127           "integral arrays must be pre-equipped with a class");
4128    // Compute array klass directly from basic type
4129    k_ary = ciTypeArrayKlass::make(el->basic_type());
4130  }
4131  return k_ary;
4132}
4133
4134//------------------------------klass------------------------------------------
4135// Return the defining klass for this class
4136ciKlass* TypeAryPtr::klass() const {
4137  if( _klass ) return _klass;   // Return cached value, if possible
4138
4139  // Oops, need to compute _klass and cache it
4140  ciKlass* k_ary = compute_klass();
4141
4142  if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4143    // The _klass field acts as a cache of the underlying
4144    // ciKlass for this array type.  In order to set the field,
4145    // we need to cast away const-ness.
4146    //
4147    // IMPORTANT NOTE: we *never* set the _klass field for the
4148    // type TypeAryPtr::OOPS.  This Type is shared between all
4149    // active compilations.  However, the ciKlass which represents
4150    // this Type is *not* shared between compilations, so caching
4151    // this value would result in fetching a dangling pointer.
4152    //
4153    // Recomputing the underlying ciKlass for each request is
4154    // a bit less efficient than caching, but calls to
4155    // TypeAryPtr::OOPS->klass() are not common enough to matter.
4156    ((TypeAryPtr*)this)->_klass = k_ary;
4157    if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4158        _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4159      ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4160    }
4161  }
4162  return k_ary;
4163}
4164
4165
4166//------------------------------add_offset-------------------------------------
4167// Access internals of klass object
4168const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4169  return make( _ptr, klass(), xadd_offset(offset) );
4170}
4171
4172//------------------------------cast_to_ptr_type-------------------------------
4173const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4174  assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4175  if( ptr == _ptr ) return this;
4176  return make(ptr, _klass, _offset);
4177}
4178
4179
4180//-----------------------------cast_to_exactness-------------------------------
4181const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4182  if( klass_is_exact == _klass_is_exact ) return this;
4183  if (!UseExactTypes)  return this;
4184  return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4185}
4186
4187
4188//-----------------------------as_instance_type--------------------------------
4189// Corresponding type for an instance of the given class.
4190// It will be NotNull, and exact if and only if the klass type is exact.
4191const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4192  ciKlass* k = klass();
4193  bool    xk = klass_is_exact();
4194  //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4195  const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4196  toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4197  return toop->cast_to_exactness(xk)->is_oopptr();
4198}
4199
4200
4201//------------------------------xmeet------------------------------------------
4202// Compute the MEET of two types, return a new Type object.
4203const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4204  // Perform a fast test for common case; meeting the same types together.
4205  if( this == t ) return this;  // Meeting same type-rep?
4206
4207  // Current "this->_base" is Pointer
4208  switch (t->base()) {          // switch on original type
4209
4210  case Int:                     // Mixing ints & oops happens when javac
4211  case Long:                    // reuses local variables
4212  case FloatTop:
4213  case FloatCon:
4214  case FloatBot:
4215  case DoubleTop:
4216  case DoubleCon:
4217  case DoubleBot:
4218  case NarrowOop:
4219  case NarrowKlass:
4220  case Bottom:                  // Ye Olde Default
4221    return Type::BOTTOM;
4222  case Top:
4223    return this;
4224
4225  default:                      // All else is a mistake
4226    typerr(t);
4227
4228  case AnyPtr: {                // Meeting to AnyPtrs
4229    // Found an AnyPtr type vs self-KlassPtr type
4230    const TypePtr *tp = t->is_ptr();
4231    int offset = meet_offset(tp->offset());
4232    PTR ptr = meet_ptr(tp->ptr());
4233    switch (tp->ptr()) {
4234    case TopPTR:
4235      return this;
4236    case Null:
4237      if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4238    case AnyNull:
4239      return make( ptr, klass(), offset );
4240    case BotPTR:
4241    case NotNull:
4242      return TypePtr::make(AnyPtr, ptr, offset);
4243    default: typerr(t);
4244    }
4245  }
4246
4247  case RawPtr:
4248  case MetadataPtr:
4249  case OopPtr:
4250  case AryPtr:                  // Meet with AryPtr
4251  case InstPtr:                 // Meet with InstPtr
4252    return TypePtr::BOTTOM;
4253
4254  //
4255  //             A-top         }
4256  //           /   |   \       }  Tops
4257  //       B-top A-any C-top   }
4258  //          | /  |  \ |      }  Any-nulls
4259  //       B-any   |   C-any   }
4260  //          |    |    |
4261  //       B-con A-con C-con   } constants; not comparable across classes
4262  //          |    |    |
4263  //       B-not   |   C-not   }
4264  //          | \  |  / |      }  not-nulls
4265  //       B-bot A-not C-bot   }
4266  //           \   |   /       }  Bottoms
4267  //             A-bot         }
4268  //
4269
4270  case KlassPtr: {  // Meet two KlassPtr types
4271    const TypeKlassPtr *tkls = t->is_klassptr();
4272    int  off     = meet_offset(tkls->offset());
4273    PTR  ptr     = meet_ptr(tkls->ptr());
4274
4275    // Check for easy case; klasses are equal (and perhaps not loaded!)
4276    // If we have constants, then we created oops so classes are loaded
4277    // and we can handle the constants further down.  This case handles
4278    // not-loaded classes
4279    if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4280      return make( ptr, klass(), off );
4281    }
4282
4283    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4284    ciKlass* tkls_klass = tkls->klass();
4285    ciKlass* this_klass = this->klass();
4286    assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4287    assert( this_klass->is_loaded(), "This class should have been loaded.");
4288
4289    // If 'this' type is above the centerline and is a superclass of the
4290    // other, we can treat 'this' as having the same type as the other.
4291    if ((above_centerline(this->ptr())) &&
4292        tkls_klass->is_subtype_of(this_klass)) {
4293      this_klass = tkls_klass;
4294    }
4295    // If 'tinst' type is above the centerline and is a superclass of the
4296    // other, we can treat 'tinst' as having the same type as the other.
4297    if ((above_centerline(tkls->ptr())) &&
4298        this_klass->is_subtype_of(tkls_klass)) {
4299      tkls_klass = this_klass;
4300    }
4301
4302    // Check for classes now being equal
4303    if (tkls_klass->equals(this_klass)) {
4304      // If the klasses are equal, the constants may still differ.  Fall to
4305      // NotNull if they do (neither constant is NULL; that is a special case
4306      // handled elsewhere).
4307      if( ptr == Constant ) {
4308        if (this->_ptr == Constant && tkls->_ptr == Constant &&
4309            this->klass()->equals(tkls->klass()));
4310        else if (above_centerline(this->ptr()));
4311        else if (above_centerline(tkls->ptr()));
4312        else
4313          ptr = NotNull;
4314      }
4315      return make( ptr, this_klass, off );
4316    } // Else classes are not equal
4317
4318    // Since klasses are different, we require the LCA in the Java
4319    // class hierarchy - which means we have to fall to at least NotNull.
4320    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4321      ptr = NotNull;
4322    // Now we find the LCA of Java classes
4323    ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4324    return   make( ptr, k, off );
4325  } // End of case KlassPtr
4326
4327  } // End of switch
4328  return this;                  // Return the double constant
4329}
4330
4331//------------------------------xdual------------------------------------------
4332// Dual: compute field-by-field dual
4333const Type    *TypeKlassPtr::xdual() const {
4334  return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4335}
4336
4337//------------------------------get_con----------------------------------------
4338intptr_t TypeKlassPtr::get_con() const {
4339  assert( _ptr == Null || _ptr == Constant, "" );
4340  assert( _offset >= 0, "" );
4341
4342  if (_offset != 0) {
4343    // After being ported to the compiler interface, the compiler no longer
4344    // directly manipulates the addresses of oops.  Rather, it only has a pointer
4345    // to a handle at compile time.  This handle is embedded in the generated
4346    // code and dereferenced at the time the nmethod is made.  Until that time,
4347    // it is not reasonable to do arithmetic with the addresses of oops (we don't
4348    // have access to the addresses!).  This does not seem to currently happen,
4349    // but this assertion here is to help prevent its occurence.
4350    tty->print_cr("Found oop constant with non-zero offset");
4351    ShouldNotReachHere();
4352  }
4353
4354  return (intptr_t)klass()->constant_encoding();
4355}
4356//------------------------------dump2------------------------------------------
4357// Dump Klass Type
4358#ifndef PRODUCT
4359void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4360  switch( _ptr ) {
4361  case Constant:
4362    st->print("precise ");
4363  case NotNull:
4364    {
4365      const char *name = klass()->name()->as_utf8();
4366      if( name ) {
4367        st->print("klass %s: " INTPTR_FORMAT, name, klass());
4368      } else {
4369        ShouldNotReachHere();
4370      }
4371    }
4372  case BotPTR:
4373    if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4374  case TopPTR:
4375  case AnyNull:
4376    st->print(":%s", ptr_msg[_ptr]);
4377    if( _klass_is_exact ) st->print(":exact");
4378    break;
4379  }
4380
4381  if( _offset ) {               // Dump offset, if any
4382    if( _offset == OffsetBot )      { st->print("+any"); }
4383    else if( _offset == OffsetTop ) { st->print("+unknown"); }
4384    else                            { st->print("+%d", _offset); }
4385  }
4386
4387  st->print(" *");
4388}
4389#endif
4390
4391
4392
4393//=============================================================================
4394// Convenience common pre-built types.
4395
4396//------------------------------make-------------------------------------------
4397const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4398  return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4399}
4400
4401//------------------------------make-------------------------------------------
4402const TypeFunc *TypeFunc::make(ciMethod* method) {
4403  Compile* C = Compile::current();
4404  const TypeFunc* tf = C->last_tf(method); // check cache
4405  if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4406  const TypeTuple *domain;
4407  if (method->is_static()) {
4408    domain = TypeTuple::make_domain(NULL, method->signature());
4409  } else {
4410    domain = TypeTuple::make_domain(method->holder(), method->signature());
4411  }
4412  const TypeTuple *range  = TypeTuple::make_range(method->signature());
4413  tf = TypeFunc::make(domain, range);
4414  C->set_last_tf(method, tf);  // fill cache
4415  return tf;
4416}
4417
4418//------------------------------meet-------------------------------------------
4419// Compute the MEET of two types.  It returns a new Type object.
4420const Type *TypeFunc::xmeet( const Type *t ) const {
4421  // Perform a fast test for common case; meeting the same types together.
4422  if( this == t ) return this;  // Meeting same type-rep?
4423
4424  // Current "this->_base" is Func
4425  switch (t->base()) {          // switch on original type
4426
4427  case Bottom:                  // Ye Olde Default
4428    return t;
4429
4430  default:                      // All else is a mistake
4431    typerr(t);
4432
4433  case Top:
4434    break;
4435  }
4436  return this;                  // Return the double constant
4437}
4438
4439//------------------------------xdual------------------------------------------
4440// Dual: compute field-by-field dual
4441const Type *TypeFunc::xdual() const {
4442  return this;
4443}
4444
4445//------------------------------eq---------------------------------------------
4446// Structural equality check for Type representations
4447bool TypeFunc::eq( const Type *t ) const {
4448  const TypeFunc *a = (const TypeFunc*)t;
4449  return _domain == a->_domain &&
4450    _range == a->_range;
4451}
4452
4453//------------------------------hash-------------------------------------------
4454// Type-specific hashing function.
4455int TypeFunc::hash(void) const {
4456  return (intptr_t)_domain + (intptr_t)_range;
4457}
4458
4459//------------------------------dump2------------------------------------------
4460// Dump Function Type
4461#ifndef PRODUCT
4462void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4463  if( _range->_cnt <= Parms )
4464    st->print("void");
4465  else {
4466    uint i;
4467    for (i = Parms; i < _range->_cnt-1; i++) {
4468      _range->field_at(i)->dump2(d,depth,st);
4469      st->print("/");
4470    }
4471    _range->field_at(i)->dump2(d,depth,st);
4472  }
4473  st->print(" ");
4474  st->print("( ");
4475  if( !depth || d[this] ) {     // Check for recursive dump
4476    st->print("...)");
4477    return;
4478  }
4479  d.Insert((void*)this,(void*)this);    // Stop recursion
4480  if (Parms < _domain->_cnt)
4481    _domain->field_at(Parms)->dump2(d,depth-1,st);
4482  for (uint i = Parms+1; i < _domain->_cnt; i++) {
4483    st->print(", ");
4484    _domain->field_at(i)->dump2(d,depth-1,st);
4485  }
4486  st->print(" )");
4487}
4488#endif
4489
4490//------------------------------singleton--------------------------------------
4491// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4492// constants (Ldi nodes).  Singletons are integer, float or double constants
4493// or a single symbol.
4494bool TypeFunc::singleton(void) const {
4495  return false;                 // Never a singleton
4496}
4497
4498bool TypeFunc::empty(void) const {
4499  return false;                 // Never empty
4500}
4501
4502
4503BasicType TypeFunc::return_type() const{
4504  if (range()->cnt() == TypeFunc::Parms) {
4505    return T_VOID;
4506  }
4507  return range()->field_at(TypeFunc::Parms)->basic_type();
4508}
4509