type.cpp revision 3602:da91efe96a93
1130803Smarcel/*
2130803Smarcel * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3130803Smarcel * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4130803Smarcel *
5130803Smarcel * This code is free software; you can redistribute it and/or modify it
6130803Smarcel * under the terms of the GNU General Public License version 2 only, as
7130803Smarcel * published by the Free Software Foundation.
8130803Smarcel *
9130803Smarcel * This code is distributed in the hope that it will be useful, but WITHOUT
10130803Smarcel * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11130803Smarcel * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12130803Smarcel * version 2 for more details (a copy is included in the LICENSE file that
13130803Smarcel * accompanied this code).
14130803Smarcel *
15130803Smarcel * You should have received a copy of the GNU General Public License version
16130803Smarcel * 2 along with this work; if not, write to the Free Software Foundation,
17130803Smarcel * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18130803Smarcel *
19130803Smarcel * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20130803Smarcel * or visit www.oracle.com if you need additional information or have any
21130803Smarcel * questions.
22130803Smarcel *
23130803Smarcel */
24130803Smarcel
25130803Smarcel#include "precompiled.hpp"
26130803Smarcel#include "ci/ciMethodData.hpp"
27#include "ci/ciTypeFlow.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "compiler/compileLog.hpp"
31#include "libadt/dict.hpp"
32#include "memory/gcLocker.hpp"
33#include "memory/oopFactory.hpp"
34#include "memory/resourceArea.hpp"
35#include "oops/instanceKlass.hpp"
36#include "oops/instanceMirrorKlass.hpp"
37#include "oops/objArrayKlass.hpp"
38#include "oops/typeArrayKlass.hpp"
39#include "opto/matcher.hpp"
40#include "opto/node.hpp"
41#include "opto/opcodes.hpp"
42#include "opto/type.hpp"
43
44// Portions of code courtesy of Clifford Click
45
46// Optimization - Graph Style
47
48// Dictionary of types shared among compilations.
49Dict* Type::_shared_type_dict = NULL;
50
51// Array which maps compiler types to Basic Types
52Type::TypeInfo Type::_type_info[Type::lastype] = {
53  { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
54  { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
55  { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
56  { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
57  { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
58  { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
59  { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
60  { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
61  { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
62
63#if defined(IA32) || defined(AMD64)
64  { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
65  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
66  { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
67  { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
68#else
69  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
70  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
71  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
72  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
73#endif // IA32 || AMD64
74  { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
75  { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
76  { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
77  { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
78  { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
79  { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
80  { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
81  { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
82  { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
83  { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
84  { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
85  { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
86  { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
87  { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
88  { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
89  { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
90  { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
91  { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
92};
93
94// Map ideal registers (machine types) to ideal types
95const Type *Type::mreg2type[_last_machine_leaf];
96
97// Map basic types to canonical Type* pointers.
98const Type* Type::     _const_basic_type[T_CONFLICT+1];
99
100// Map basic types to constant-zero Types.
101const Type* Type::            _zero_type[T_CONFLICT+1];
102
103// Map basic types to array-body alias types.
104const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
105
106//=============================================================================
107// Convenience common pre-built types.
108const Type *Type::ABIO;         // State-of-machine only
109const Type *Type::BOTTOM;       // All values
110const Type *Type::CONTROL;      // Control only
111const Type *Type::DOUBLE;       // All doubles
112const Type *Type::FLOAT;        // All floats
113const Type *Type::HALF;         // Placeholder half of doublewide type
114const Type *Type::MEMORY;       // Abstract store only
115const Type *Type::RETURN_ADDRESS;
116const Type *Type::TOP;          // No values in set
117
118//------------------------------get_const_type---------------------------
119const Type* Type::get_const_type(ciType* type) {
120  if (type == NULL) {
121    return NULL;
122  } else if (type->is_primitive_type()) {
123    return get_const_basic_type(type->basic_type());
124  } else {
125    return TypeOopPtr::make_from_klass(type->as_klass());
126  }
127}
128
129//---------------------------array_element_basic_type---------------------------------
130// Mapping to the array element's basic type.
131BasicType Type::array_element_basic_type() const {
132  BasicType bt = basic_type();
133  if (bt == T_INT) {
134    if (this == TypeInt::INT)   return T_INT;
135    if (this == TypeInt::CHAR)  return T_CHAR;
136    if (this == TypeInt::BYTE)  return T_BYTE;
137    if (this == TypeInt::BOOL)  return T_BOOLEAN;
138    if (this == TypeInt::SHORT) return T_SHORT;
139    return T_VOID;
140  }
141  return bt;
142}
143
144//---------------------------get_typeflow_type---------------------------------
145// Import a type produced by ciTypeFlow.
146const Type* Type::get_typeflow_type(ciType* type) {
147  switch (type->basic_type()) {
148
149  case ciTypeFlow::StateVector::T_BOTTOM:
150    assert(type == ciTypeFlow::StateVector::bottom_type(), "");
151    return Type::BOTTOM;
152
153  case ciTypeFlow::StateVector::T_TOP:
154    assert(type == ciTypeFlow::StateVector::top_type(), "");
155    return Type::TOP;
156
157  case ciTypeFlow::StateVector::T_NULL:
158    assert(type == ciTypeFlow::StateVector::null_type(), "");
159    return TypePtr::NULL_PTR;
160
161  case ciTypeFlow::StateVector::T_LONG2:
162    // The ciTypeFlow pass pushes a long, then the half.
163    // We do the same.
164    assert(type == ciTypeFlow::StateVector::long2_type(), "");
165    return TypeInt::TOP;
166
167  case ciTypeFlow::StateVector::T_DOUBLE2:
168    // The ciTypeFlow pass pushes double, then the half.
169    // Our convention is the same.
170    assert(type == ciTypeFlow::StateVector::double2_type(), "");
171    return Type::TOP;
172
173  case T_ADDRESS:
174    assert(type->is_return_address(), "");
175    return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
176
177  default:
178    // make sure we did not mix up the cases:
179    assert(type != ciTypeFlow::StateVector::bottom_type(), "");
180    assert(type != ciTypeFlow::StateVector::top_type(), "");
181    assert(type != ciTypeFlow::StateVector::null_type(), "");
182    assert(type != ciTypeFlow::StateVector::long2_type(), "");
183    assert(type != ciTypeFlow::StateVector::double2_type(), "");
184    assert(!type->is_return_address(), "");
185
186    return Type::get_const_type(type);
187  }
188}
189
190
191//------------------------------make-------------------------------------------
192// Create a simple Type, with default empty symbol sets.  Then hashcons it
193// and look for an existing copy in the type dictionary.
194const Type *Type::make( enum TYPES t ) {
195  return (new Type(t))->hashcons();
196}
197
198//------------------------------cmp--------------------------------------------
199int Type::cmp( const Type *const t1, const Type *const t2 ) {
200  if( t1->_base != t2->_base )
201    return 1;                   // Missed badly
202  assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
203  return !t1->eq(t2);           // Return ZERO if equal
204}
205
206//------------------------------hash-------------------------------------------
207int Type::uhash( const Type *const t ) {
208  return t->hash();
209}
210
211#define SMALLINT ((juint)3)  // a value too insignificant to consider widening
212
213//--------------------------Initialize_shared----------------------------------
214void Type::Initialize_shared(Compile* current) {
215  // This method does not need to be locked because the first system
216  // compilations (stub compilations) occur serially.  If they are
217  // changed to proceed in parallel, then this section will need
218  // locking.
219
220  Arena* save = current->type_arena();
221  Arena* shared_type_arena = new (mtCompiler)Arena();
222
223  current->set_type_arena(shared_type_arena);
224  _shared_type_dict =
225    new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
226                                  shared_type_arena, 128 );
227  current->set_type_dict(_shared_type_dict);
228
229  // Make shared pre-built types.
230  CONTROL = make(Control);      // Control only
231  TOP     = make(Top);          // No values in set
232  MEMORY  = make(Memory);       // Abstract store only
233  ABIO    = make(Abio);         // State-of-machine only
234  RETURN_ADDRESS=make(Return_Address);
235  FLOAT   = make(FloatBot);     // All floats
236  DOUBLE  = make(DoubleBot);    // All doubles
237  BOTTOM  = make(Bottom);       // Everything
238  HALF    = make(Half);         // Placeholder half of doublewide type
239
240  TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
241  TypeF::ONE  = TypeF::make(1.0); // Float 1
242
243  TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
244  TypeD::ONE  = TypeD::make(1.0); // Double 1
245
246  TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
247  TypeInt::ZERO    = TypeInt::make( 0);  //  0
248  TypeInt::ONE     = TypeInt::make( 1);  //  1
249  TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
250  TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
251  TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
252  TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
253  TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
254  TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
255  TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
256  TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
257  TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
258  TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
259  TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
260  TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
261  TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
262  TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
263  TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
264  // CmpL is overloaded both as the bytecode computation returning
265  // a trinary (-1,0,+1) integer result AND as an efficient long
266  // compare returning optimizer ideal-type flags.
267  assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
268  assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
269  assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
270  assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
271  assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
272
273  TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
274  TypeLong::ZERO    = TypeLong::make( 0);        //  0
275  TypeLong::ONE     = TypeLong::make( 1);        //  1
276  TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
277  TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
278  TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
279  TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
280
281  const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
282  fboth[0] = Type::CONTROL;
283  fboth[1] = Type::CONTROL;
284  TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
285
286  const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
287  ffalse[0] = Type::CONTROL;
288  ffalse[1] = Type::TOP;
289  TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
290
291  const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
292  fneither[0] = Type::TOP;
293  fneither[1] = Type::TOP;
294  TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
295
296  const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
297  ftrue[0] = Type::TOP;
298  ftrue[1] = Type::CONTROL;
299  TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
300
301  const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
302  floop[0] = Type::CONTROL;
303  floop[1] = TypeInt::INT;
304  TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
305
306  TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
307  TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
308  TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
309
310  TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
311  TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
312
313  const Type **fmembar = TypeTuple::fields(0);
314  TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
315
316  const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
317  fsc[0] = TypeInt::CC;
318  fsc[1] = Type::MEMORY;
319  TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
320
321  TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
322  TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
323  TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
324  TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
325                                           false, 0, oopDesc::mark_offset_in_bytes());
326  TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
327                                           false, 0, oopDesc::klass_offset_in_bytes());
328  TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
329
330  TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
331
332  TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
333  TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
334
335  mreg2type[Op_Node] = Type::BOTTOM;
336  mreg2type[Op_Set ] = 0;
337  mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
338  mreg2type[Op_RegI] = TypeInt::INT;
339  mreg2type[Op_RegP] = TypePtr::BOTTOM;
340  mreg2type[Op_RegF] = Type::FLOAT;
341  mreg2type[Op_RegD] = Type::DOUBLE;
342  mreg2type[Op_RegL] = TypeLong::LONG;
343  mreg2type[Op_RegFlags] = TypeInt::CC;
344
345  TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
346
347  TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
348
349#ifdef _LP64
350  if (UseCompressedOops) {
351    assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
352    TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
353  } else
354#endif
355  {
356    // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
357    TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
358  }
359  TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
360  TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
361  TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
362  TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
363  TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
364  TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
365  TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
366
367  // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
368  TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
369  TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
370  TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
371  TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
372  TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
373  TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
374  TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
375  TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
376  TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
377  TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
378  TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
379
380  TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
381  TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
382
383  const Type **fi2c = TypeTuple::fields(2);
384  fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
385  fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
386  TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
387
388  const Type **intpair = TypeTuple::fields(2);
389  intpair[0] = TypeInt::INT;
390  intpair[1] = TypeInt::INT;
391  TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
392
393  const Type **longpair = TypeTuple::fields(2);
394  longpair[0] = TypeLong::LONG;
395  longpair[1] = TypeLong::LONG;
396  TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
397
398  _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
399  _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
400  _const_basic_type[T_CHAR]    = TypeInt::CHAR;
401  _const_basic_type[T_BYTE]    = TypeInt::BYTE;
402  _const_basic_type[T_SHORT]   = TypeInt::SHORT;
403  _const_basic_type[T_INT]     = TypeInt::INT;
404  _const_basic_type[T_LONG]    = TypeLong::LONG;
405  _const_basic_type[T_FLOAT]   = Type::FLOAT;
406  _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
407  _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
408  _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
409  _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
410  _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
411  _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
412
413  _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
414  _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
415  _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
416  _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
417  _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
418  _zero_type[T_INT]     = TypeInt::ZERO;
419  _zero_type[T_LONG]    = TypeLong::ZERO;
420  _zero_type[T_FLOAT]   = TypeF::ZERO;
421  _zero_type[T_DOUBLE]  = TypeD::ZERO;
422  _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
423  _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
424  _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
425  _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
426
427  // get_zero_type() should not happen for T_CONFLICT
428  _zero_type[T_CONFLICT]= NULL;
429
430  // Vector predefined types, it needs initialized _const_basic_type[].
431  if (Matcher::vector_size_supported(T_BYTE,4)) {
432    TypeVect::VECTS = TypeVect::make(T_BYTE,4);
433  }
434  if (Matcher::vector_size_supported(T_FLOAT,2)) {
435    TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
436  }
437  if (Matcher::vector_size_supported(T_FLOAT,4)) {
438    TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
439  }
440  if (Matcher::vector_size_supported(T_FLOAT,8)) {
441    TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
442  }
443  mreg2type[Op_VecS] = TypeVect::VECTS;
444  mreg2type[Op_VecD] = TypeVect::VECTD;
445  mreg2type[Op_VecX] = TypeVect::VECTX;
446  mreg2type[Op_VecY] = TypeVect::VECTY;
447
448  // Restore working type arena.
449  current->set_type_arena(save);
450  current->set_type_dict(NULL);
451}
452
453//------------------------------Initialize-------------------------------------
454void Type::Initialize(Compile* current) {
455  assert(current->type_arena() != NULL, "must have created type arena");
456
457  if (_shared_type_dict == NULL) {
458    Initialize_shared(current);
459  }
460
461  Arena* type_arena = current->type_arena();
462
463  // Create the hash-cons'ing dictionary with top-level storage allocation
464  Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
465  current->set_type_dict(tdic);
466
467  // Transfer the shared types.
468  DictI i(_shared_type_dict);
469  for( ; i.test(); ++i ) {
470    Type* t = (Type*)i._value;
471    tdic->Insert(t,t);  // New Type, insert into Type table
472  }
473}
474
475//------------------------------hashcons---------------------------------------
476// Do the hash-cons trick.  If the Type already exists in the type table,
477// delete the current Type and return the existing Type.  Otherwise stick the
478// current Type in the Type table.
479const Type *Type::hashcons(void) {
480  debug_only(base());           // Check the assertion in Type::base().
481  // Look up the Type in the Type dictionary
482  Dict *tdic = type_dict();
483  Type* old = (Type*)(tdic->Insert(this, this, false));
484  if( old ) {                   // Pre-existing Type?
485    if( old != this )           // Yes, this guy is not the pre-existing?
486      delete this;              // Yes, Nuke this guy
487    assert( old->_dual, "" );
488    return old;                 // Return pre-existing
489  }
490
491  // Every type has a dual (to make my lattice symmetric).
492  // Since we just discovered a new Type, compute its dual right now.
493  assert( !_dual, "" );         // No dual yet
494  _dual = xdual();              // Compute the dual
495  if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
496    _dual = this;
497    return this;
498  }
499  assert( !_dual->_dual, "" );  // No reverse dual yet
500  assert( !(*tdic)[_dual], "" ); // Dual not in type system either
501  // New Type, insert into Type table
502  tdic->Insert((void*)_dual,(void*)_dual);
503  ((Type*)_dual)->_dual = this; // Finish up being symmetric
504#ifdef ASSERT
505  Type *dual_dual = (Type*)_dual->xdual();
506  assert( eq(dual_dual), "xdual(xdual()) should be identity" );
507  delete dual_dual;
508#endif
509  return this;                  // Return new Type
510}
511
512//------------------------------eq---------------------------------------------
513// Structural equality check for Type representations
514bool Type::eq( const Type * ) const {
515  return true;                  // Nothing else can go wrong
516}
517
518//------------------------------hash-------------------------------------------
519// Type-specific hashing function.
520int Type::hash(void) const {
521  return _base;
522}
523
524//------------------------------is_finite--------------------------------------
525// Has a finite value
526bool Type::is_finite() const {
527  return false;
528}
529
530//------------------------------is_nan-----------------------------------------
531// Is not a number (NaN)
532bool Type::is_nan()    const {
533  return false;
534}
535
536//----------------------interface_vs_oop---------------------------------------
537#ifdef ASSERT
538bool Type::interface_vs_oop(const Type *t) const {
539  bool result = false;
540
541  const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
542  const TypePtr*    t_ptr =    t->make_ptr();
543  if( this_ptr == NULL || t_ptr == NULL )
544    return result;
545
546  const TypeInstPtr* this_inst = this_ptr->isa_instptr();
547  const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
548  if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
549    bool this_interface = this_inst->klass()->is_interface();
550    bool    t_interface =    t_inst->klass()->is_interface();
551    result = this_interface ^ t_interface;
552  }
553
554  return result;
555}
556#endif
557
558//------------------------------meet-------------------------------------------
559// Compute the MEET of two types.  NOT virtual.  It enforces that meet is
560// commutative and the lattice is symmetric.
561const Type *Type::meet( const Type *t ) const {
562  if (isa_narrowoop() && t->isa_narrowoop()) {
563    const Type* result = make_ptr()->meet(t->make_ptr());
564    return result->make_narrowoop();
565  }
566
567  const Type *mt = xmeet(t);
568  if (isa_narrowoop() || t->isa_narrowoop()) return mt;
569#ifdef ASSERT
570  assert( mt == t->xmeet(this), "meet not commutative" );
571  const Type* dual_join = mt->_dual;
572  const Type *t2t    = dual_join->xmeet(t->_dual);
573  const Type *t2this = dual_join->xmeet(   _dual);
574
575  // Interface meet Oop is Not Symmetric:
576  // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
577  // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
578
579  if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
580    tty->print_cr("=== Meet Not Symmetric ===");
581    tty->print("t   =                   ");         t->dump(); tty->cr();
582    tty->print("this=                   ");            dump(); tty->cr();
583    tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
584
585    tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
586    tty->print("this_dual=              ");     _dual->dump(); tty->cr();
587    tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
588
589    tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
590    tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
591
592    fatal("meet not symmetric" );
593  }
594#endif
595  return mt;
596}
597
598//------------------------------xmeet------------------------------------------
599// Compute the MEET of two types.  It returns a new Type object.
600const Type *Type::xmeet( const Type *t ) const {
601  // Perform a fast test for common case; meeting the same types together.
602  if( this == t ) return this;  // Meeting same type-rep?
603
604  // Meeting TOP with anything?
605  if( _base == Top ) return t;
606
607  // Meeting BOTTOM with anything?
608  if( _base == Bottom ) return BOTTOM;
609
610  // Current "this->_base" is one of: Bad, Multi, Control, Top,
611  // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
612  switch (t->base()) {  // Switch on original type
613
614  // Cut in half the number of cases I must handle.  Only need cases for when
615  // the given enum "t->type" is less than or equal to the local enum "type".
616  case FloatCon:
617  case DoubleCon:
618  case Int:
619  case Long:
620    return t->xmeet(this);
621
622  case OopPtr:
623    return t->xmeet(this);
624
625  case InstPtr:
626    return t->xmeet(this);
627
628  case MetadataPtr:
629  case KlassPtr:
630    return t->xmeet(this);
631
632  case AryPtr:
633    return t->xmeet(this);
634
635  case NarrowOop:
636    return t->xmeet(this);
637
638  case Bad:                     // Type check
639  default:                      // Bogus type not in lattice
640    typerr(t);
641    return Type::BOTTOM;
642
643  case Bottom:                  // Ye Olde Default
644    return t;
645
646  case FloatTop:
647    if( _base == FloatTop ) return this;
648  case FloatBot:                // Float
649    if( _base == FloatBot || _base == FloatTop ) return FLOAT;
650    if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
651    typerr(t);
652    return Type::BOTTOM;
653
654  case DoubleTop:
655    if( _base == DoubleTop ) return this;
656  case DoubleBot:               // Double
657    if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
658    if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
659    typerr(t);
660    return Type::BOTTOM;
661
662  // These next few cases must match exactly or it is a compile-time error.
663  case Control:                 // Control of code
664  case Abio:                    // State of world outside of program
665  case Memory:
666    if( _base == t->_base )  return this;
667    typerr(t);
668    return Type::BOTTOM;
669
670  case Top:                     // Top of the lattice
671    return this;
672  }
673
674  // The type is unchanged
675  return this;
676}
677
678//-----------------------------filter------------------------------------------
679const Type *Type::filter( const Type *kills ) const {
680  const Type* ft = join(kills);
681  if (ft->empty())
682    return Type::TOP;           // Canonical empty value
683  return ft;
684}
685
686//------------------------------xdual------------------------------------------
687// Compute dual right now.
688const Type::TYPES Type::dual_type[Type::lastype] = {
689  Bad,          // Bad
690  Control,      // Control
691  Bottom,       // Top
692  Bad,          // Int - handled in v-call
693  Bad,          // Long - handled in v-call
694  Half,         // Half
695  Bad,          // NarrowOop - handled in v-call
696
697  Bad,          // Tuple - handled in v-call
698  Bad,          // Array - handled in v-call
699  Bad,          // VectorS - handled in v-call
700  Bad,          // VectorD - handled in v-call
701  Bad,          // VectorX - handled in v-call
702  Bad,          // VectorY - handled in v-call
703
704  Bad,          // AnyPtr - handled in v-call
705  Bad,          // RawPtr - handled in v-call
706  Bad,          // OopPtr - handled in v-call
707  Bad,          // InstPtr - handled in v-call
708  Bad,          // AryPtr - handled in v-call
709
710  Bad,          //  MetadataPtr - handled in v-call
711  Bad,          // KlassPtr - handled in v-call
712
713  Bad,          // Function - handled in v-call
714  Abio,         // Abio
715  Return_Address,// Return_Address
716  Memory,       // Memory
717  FloatBot,     // FloatTop
718  FloatCon,     // FloatCon
719  FloatTop,     // FloatBot
720  DoubleBot,    // DoubleTop
721  DoubleCon,    // DoubleCon
722  DoubleTop,    // DoubleBot
723  Top           // Bottom
724};
725
726const Type *Type::xdual() const {
727  // Note: the base() accessor asserts the sanity of _base.
728  assert(_type_info[base()].dual_type != Bad, "implement with v-call");
729  return new Type(_type_info[_base].dual_type);
730}
731
732//------------------------------has_memory-------------------------------------
733bool Type::has_memory() const {
734  Type::TYPES tx = base();
735  if (tx == Memory) return true;
736  if (tx == Tuple) {
737    const TypeTuple *t = is_tuple();
738    for (uint i=0; i < t->cnt(); i++) {
739      tx = t->field_at(i)->base();
740      if (tx == Memory)  return true;
741    }
742  }
743  return false;
744}
745
746#ifndef PRODUCT
747//------------------------------dump2------------------------------------------
748void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
749  st->print(_type_info[_base].msg);
750}
751
752//------------------------------dump-------------------------------------------
753void Type::dump_on(outputStream *st) const {
754  ResourceMark rm;
755  Dict d(cmpkey,hashkey);       // Stop recursive type dumping
756  dump2(d,1, st);
757  if (is_ptr_to_narrowoop()) {
758    st->print(" [narrow]");
759  }
760}
761#endif
762
763//------------------------------singleton--------------------------------------
764// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
765// constants (Ldi nodes).  Singletons are integer, float or double constants.
766bool Type::singleton(void) const {
767  return _base == Top || _base == Half;
768}
769
770//------------------------------empty------------------------------------------
771// TRUE if Type is a type with no values, FALSE otherwise.
772bool Type::empty(void) const {
773  switch (_base) {
774  case DoubleTop:
775  case FloatTop:
776  case Top:
777    return true;
778
779  case Half:
780  case Abio:
781  case Return_Address:
782  case Memory:
783  case Bottom:
784  case FloatBot:
785  case DoubleBot:
786    return false;  // never a singleton, therefore never empty
787  }
788
789  ShouldNotReachHere();
790  return false;
791}
792
793//------------------------------dump_stats-------------------------------------
794// Dump collected statistics to stderr
795#ifndef PRODUCT
796void Type::dump_stats() {
797  tty->print("Types made: %d\n", type_dict()->Size());
798}
799#endif
800
801//------------------------------typerr-----------------------------------------
802void Type::typerr( const Type *t ) const {
803#ifndef PRODUCT
804  tty->print("\nError mixing types: ");
805  dump();
806  tty->print(" and ");
807  t->dump();
808  tty->print("\n");
809#endif
810  ShouldNotReachHere();
811}
812
813
814//=============================================================================
815// Convenience common pre-built types.
816const TypeF *TypeF::ZERO;       // Floating point zero
817const TypeF *TypeF::ONE;        // Floating point one
818
819//------------------------------make-------------------------------------------
820// Create a float constant
821const TypeF *TypeF::make(float f) {
822  return (TypeF*)(new TypeF(f))->hashcons();
823}
824
825//------------------------------meet-------------------------------------------
826// Compute the MEET of two types.  It returns a new Type object.
827const Type *TypeF::xmeet( const Type *t ) const {
828  // Perform a fast test for common case; meeting the same types together.
829  if( this == t ) return this;  // Meeting same type-rep?
830
831  // Current "this->_base" is FloatCon
832  switch (t->base()) {          // Switch on original type
833  case AnyPtr:                  // Mixing with oops happens when javac
834  case RawPtr:                  // reuses local variables
835  case OopPtr:
836  case InstPtr:
837  case AryPtr:
838  case MetadataPtr:
839  case KlassPtr:
840  case NarrowOop:
841  case Int:
842  case Long:
843  case DoubleTop:
844  case DoubleCon:
845  case DoubleBot:
846  case Bottom:                  // Ye Olde Default
847    return Type::BOTTOM;
848
849  case FloatBot:
850    return t;
851
852  default:                      // All else is a mistake
853    typerr(t);
854
855  case FloatCon:                // Float-constant vs Float-constant?
856    if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
857                                // must compare bitwise as positive zero, negative zero and NaN have
858                                // all the same representation in C++
859      return FLOAT;             // Return generic float
860                                // Equal constants
861  case Top:
862  case FloatTop:
863    break;                      // Return the float constant
864  }
865  return this;                  // Return the float constant
866}
867
868//------------------------------xdual------------------------------------------
869// Dual: symmetric
870const Type *TypeF::xdual() const {
871  return this;
872}
873
874//------------------------------eq---------------------------------------------
875// Structural equality check for Type representations
876bool TypeF::eq( const Type *t ) const {
877  if( g_isnan(_f) ||
878      g_isnan(t->getf()) ) {
879    // One or both are NANs.  If both are NANs return true, else false.
880    return (g_isnan(_f) && g_isnan(t->getf()));
881  }
882  if (_f == t->getf()) {
883    // (NaN is impossible at this point, since it is not equal even to itself)
884    if (_f == 0.0) {
885      // difference between positive and negative zero
886      if (jint_cast(_f) != jint_cast(t->getf()))  return false;
887    }
888    return true;
889  }
890  return false;
891}
892
893//------------------------------hash-------------------------------------------
894// Type-specific hashing function.
895int TypeF::hash(void) const {
896  return *(int*)(&_f);
897}
898
899//------------------------------is_finite--------------------------------------
900// Has a finite value
901bool TypeF::is_finite() const {
902  return g_isfinite(getf()) != 0;
903}
904
905//------------------------------is_nan-----------------------------------------
906// Is not a number (NaN)
907bool TypeF::is_nan()    const {
908  return g_isnan(getf()) != 0;
909}
910
911//------------------------------dump2------------------------------------------
912// Dump float constant Type
913#ifndef PRODUCT
914void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
915  Type::dump2(d,depth, st);
916  st->print("%f", _f);
917}
918#endif
919
920//------------------------------singleton--------------------------------------
921// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
922// constants (Ldi nodes).  Singletons are integer, float or double constants
923// or a single symbol.
924bool TypeF::singleton(void) const {
925  return true;                  // Always a singleton
926}
927
928bool TypeF::empty(void) const {
929  return false;                 // always exactly a singleton
930}
931
932//=============================================================================
933// Convenience common pre-built types.
934const TypeD *TypeD::ZERO;       // Floating point zero
935const TypeD *TypeD::ONE;        // Floating point one
936
937//------------------------------make-------------------------------------------
938const TypeD *TypeD::make(double d) {
939  return (TypeD*)(new TypeD(d))->hashcons();
940}
941
942//------------------------------meet-------------------------------------------
943// Compute the MEET of two types.  It returns a new Type object.
944const Type *TypeD::xmeet( const Type *t ) const {
945  // Perform a fast test for common case; meeting the same types together.
946  if( this == t ) return this;  // Meeting same type-rep?
947
948  // Current "this->_base" is DoubleCon
949  switch (t->base()) {          // Switch on original type
950  case AnyPtr:                  // Mixing with oops happens when javac
951  case RawPtr:                  // reuses local variables
952  case OopPtr:
953  case InstPtr:
954  case AryPtr:
955  case MetadataPtr:
956  case KlassPtr:
957  case NarrowOop:
958  case Int:
959  case Long:
960  case FloatTop:
961  case FloatCon:
962  case FloatBot:
963  case Bottom:                  // Ye Olde Default
964    return Type::BOTTOM;
965
966  case DoubleBot:
967    return t;
968
969  default:                      // All else is a mistake
970    typerr(t);
971
972  case DoubleCon:               // Double-constant vs Double-constant?
973    if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
974      return DOUBLE;            // Return generic double
975  case Top:
976  case DoubleTop:
977    break;
978  }
979  return this;                  // Return the double constant
980}
981
982//------------------------------xdual------------------------------------------
983// Dual: symmetric
984const Type *TypeD::xdual() const {
985  return this;
986}
987
988//------------------------------eq---------------------------------------------
989// Structural equality check for Type representations
990bool TypeD::eq( const Type *t ) const {
991  if( g_isnan(_d) ||
992      g_isnan(t->getd()) ) {
993    // One or both are NANs.  If both are NANs return true, else false.
994    return (g_isnan(_d) && g_isnan(t->getd()));
995  }
996  if (_d == t->getd()) {
997    // (NaN is impossible at this point, since it is not equal even to itself)
998    if (_d == 0.0) {
999      // difference between positive and negative zero
1000      if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1001    }
1002    return true;
1003  }
1004  return false;
1005}
1006
1007//------------------------------hash-------------------------------------------
1008// Type-specific hashing function.
1009int TypeD::hash(void) const {
1010  return *(int*)(&_d);
1011}
1012
1013//------------------------------is_finite--------------------------------------
1014// Has a finite value
1015bool TypeD::is_finite() const {
1016  return g_isfinite(getd()) != 0;
1017}
1018
1019//------------------------------is_nan-----------------------------------------
1020// Is not a number (NaN)
1021bool TypeD::is_nan()    const {
1022  return g_isnan(getd()) != 0;
1023}
1024
1025//------------------------------dump2------------------------------------------
1026// Dump double constant Type
1027#ifndef PRODUCT
1028void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1029  Type::dump2(d,depth,st);
1030  st->print("%f", _d);
1031}
1032#endif
1033
1034//------------------------------singleton--------------------------------------
1035// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1036// constants (Ldi nodes).  Singletons are integer, float or double constants
1037// or a single symbol.
1038bool TypeD::singleton(void) const {
1039  return true;                  // Always a singleton
1040}
1041
1042bool TypeD::empty(void) const {
1043  return false;                 // always exactly a singleton
1044}
1045
1046//=============================================================================
1047// Convience common pre-built types.
1048const TypeInt *TypeInt::MINUS_1;// -1
1049const TypeInt *TypeInt::ZERO;   // 0
1050const TypeInt *TypeInt::ONE;    // 1
1051const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1052const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1053const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1054const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1055const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1056const TypeInt *TypeInt::CC_LE;  // [-1,0]
1057const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1058const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1059const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1060const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1061const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1062const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1063const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1064const TypeInt *TypeInt::INT;    // 32-bit integers
1065const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1066
1067//------------------------------TypeInt----------------------------------------
1068TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1069}
1070
1071//------------------------------make-------------------------------------------
1072const TypeInt *TypeInt::make( jint lo ) {
1073  return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1074}
1075
1076static int normalize_int_widen( jint lo, jint hi, int w ) {
1077  // Certain normalizations keep us sane when comparing types.
1078  // The 'SMALLINT' covers constants and also CC and its relatives.
1079  if (lo <= hi) {
1080    if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1081    if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1082  } else {
1083    if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1084    if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1085  }
1086  return w;
1087}
1088
1089const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1090  w = normalize_int_widen(lo, hi, w);
1091  return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1092}
1093
1094//------------------------------meet-------------------------------------------
1095// Compute the MEET of two types.  It returns a new Type representation object
1096// with reference count equal to the number of Types pointing at it.
1097// Caller should wrap a Types around it.
1098const Type *TypeInt::xmeet( const Type *t ) const {
1099  // Perform a fast test for common case; meeting the same types together.
1100  if( this == t ) return this;  // Meeting same type?
1101
1102  // Currently "this->_base" is a TypeInt
1103  switch (t->base()) {          // Switch on original type
1104  case AnyPtr:                  // Mixing with oops happens when javac
1105  case RawPtr:                  // reuses local variables
1106  case OopPtr:
1107  case InstPtr:
1108  case AryPtr:
1109  case MetadataPtr:
1110  case KlassPtr:
1111  case NarrowOop:
1112  case Long:
1113  case FloatTop:
1114  case FloatCon:
1115  case FloatBot:
1116  case DoubleTop:
1117  case DoubleCon:
1118  case DoubleBot:
1119  case Bottom:                  // Ye Olde Default
1120    return Type::BOTTOM;
1121  default:                      // All else is a mistake
1122    typerr(t);
1123  case Top:                     // No change
1124    return this;
1125  case Int:                     // Int vs Int?
1126    break;
1127  }
1128
1129  // Expand covered set
1130  const TypeInt *r = t->is_int();
1131  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1132}
1133
1134//------------------------------xdual------------------------------------------
1135// Dual: reverse hi & lo; flip widen
1136const Type *TypeInt::xdual() const {
1137  int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1138  return new TypeInt(_hi,_lo,w);
1139}
1140
1141//------------------------------widen------------------------------------------
1142// Only happens for optimistic top-down optimizations.
1143const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1144  // Coming from TOP or such; no widening
1145  if( old->base() != Int ) return this;
1146  const TypeInt *ot = old->is_int();
1147
1148  // If new guy is equal to old guy, no widening
1149  if( _lo == ot->_lo && _hi == ot->_hi )
1150    return old;
1151
1152  // If new guy contains old, then we widened
1153  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1154    // New contains old
1155    // If new guy is already wider than old, no widening
1156    if( _widen > ot->_widen ) return this;
1157    // If old guy was a constant, do not bother
1158    if (ot->_lo == ot->_hi)  return this;
1159    // Now widen new guy.
1160    // Check for widening too far
1161    if (_widen == WidenMax) {
1162      int max = max_jint;
1163      int min = min_jint;
1164      if (limit->isa_int()) {
1165        max = limit->is_int()->_hi;
1166        min = limit->is_int()->_lo;
1167      }
1168      if (min < _lo && _hi < max) {
1169        // If neither endpoint is extremal yet, push out the endpoint
1170        // which is closer to its respective limit.
1171        if (_lo >= 0 ||                 // easy common case
1172            (juint)(_lo - min) >= (juint)(max - _hi)) {
1173          // Try to widen to an unsigned range type of 31 bits:
1174          return make(_lo, max, WidenMax);
1175        } else {
1176          return make(min, _hi, WidenMax);
1177        }
1178      }
1179      return TypeInt::INT;
1180    }
1181    // Returned widened new guy
1182    return make(_lo,_hi,_widen+1);
1183  }
1184
1185  // If old guy contains new, then we probably widened too far & dropped to
1186  // bottom.  Return the wider fellow.
1187  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1188    return old;
1189
1190  //fatal("Integer value range is not subset");
1191  //return this;
1192  return TypeInt::INT;
1193}
1194
1195//------------------------------narrow---------------------------------------
1196// Only happens for pessimistic optimizations.
1197const Type *TypeInt::narrow( const Type *old ) const {
1198  if (_lo >= _hi)  return this;   // already narrow enough
1199  if (old == NULL)  return this;
1200  const TypeInt* ot = old->isa_int();
1201  if (ot == NULL)  return this;
1202  jint olo = ot->_lo;
1203  jint ohi = ot->_hi;
1204
1205  // If new guy is equal to old guy, no narrowing
1206  if (_lo == olo && _hi == ohi)  return old;
1207
1208  // If old guy was maximum range, allow the narrowing
1209  if (olo == min_jint && ohi == max_jint)  return this;
1210
1211  if (_lo < olo || _hi > ohi)
1212    return this;                // doesn't narrow; pretty wierd
1213
1214  // The new type narrows the old type, so look for a "death march".
1215  // See comments on PhaseTransform::saturate.
1216  juint nrange = _hi - _lo;
1217  juint orange = ohi - olo;
1218  if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1219    // Use the new type only if the range shrinks a lot.
1220    // We do not want the optimizer computing 2^31 point by point.
1221    return old;
1222  }
1223
1224  return this;
1225}
1226
1227//-----------------------------filter------------------------------------------
1228const Type *TypeInt::filter( const Type *kills ) const {
1229  const TypeInt* ft = join(kills)->isa_int();
1230  if (ft == NULL || ft->empty())
1231    return Type::TOP;           // Canonical empty value
1232  if (ft->_widen < this->_widen) {
1233    // Do not allow the value of kill->_widen to affect the outcome.
1234    // The widen bits must be allowed to run freely through the graph.
1235    ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1236  }
1237  return ft;
1238}
1239
1240//------------------------------eq---------------------------------------------
1241// Structural equality check for Type representations
1242bool TypeInt::eq( const Type *t ) const {
1243  const TypeInt *r = t->is_int(); // Handy access
1244  return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1245}
1246
1247//------------------------------hash-------------------------------------------
1248// Type-specific hashing function.
1249int TypeInt::hash(void) const {
1250  return _lo+_hi+_widen+(int)Type::Int;
1251}
1252
1253//------------------------------is_finite--------------------------------------
1254// Has a finite value
1255bool TypeInt::is_finite() const {
1256  return true;
1257}
1258
1259//------------------------------dump2------------------------------------------
1260// Dump TypeInt
1261#ifndef PRODUCT
1262static const char* intname(char* buf, jint n) {
1263  if (n == min_jint)
1264    return "min";
1265  else if (n < min_jint + 10000)
1266    sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1267  else if (n == max_jint)
1268    return "max";
1269  else if (n > max_jint - 10000)
1270    sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1271  else
1272    sprintf(buf, INT32_FORMAT, n);
1273  return buf;
1274}
1275
1276void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1277  char buf[40], buf2[40];
1278  if (_lo == min_jint && _hi == max_jint)
1279    st->print("int");
1280  else if (is_con())
1281    st->print("int:%s", intname(buf, get_con()));
1282  else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1283    st->print("bool");
1284  else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1285    st->print("byte");
1286  else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1287    st->print("char");
1288  else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1289    st->print("short");
1290  else if (_hi == max_jint)
1291    st->print("int:>=%s", intname(buf, _lo));
1292  else if (_lo == min_jint)
1293    st->print("int:<=%s", intname(buf, _hi));
1294  else
1295    st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1296
1297  if (_widen != 0 && this != TypeInt::INT)
1298    st->print(":%.*s", _widen, "wwww");
1299}
1300#endif
1301
1302//------------------------------singleton--------------------------------------
1303// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1304// constants.
1305bool TypeInt::singleton(void) const {
1306  return _lo >= _hi;
1307}
1308
1309bool TypeInt::empty(void) const {
1310  return _lo > _hi;
1311}
1312
1313//=============================================================================
1314// Convenience common pre-built types.
1315const TypeLong *TypeLong::MINUS_1;// -1
1316const TypeLong *TypeLong::ZERO; // 0
1317const TypeLong *TypeLong::ONE;  // 1
1318const TypeLong *TypeLong::POS;  // >=0
1319const TypeLong *TypeLong::LONG; // 64-bit integers
1320const TypeLong *TypeLong::INT;  // 32-bit subrange
1321const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1322
1323//------------------------------TypeLong---------------------------------------
1324TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1325}
1326
1327//------------------------------make-------------------------------------------
1328const TypeLong *TypeLong::make( jlong lo ) {
1329  return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1330}
1331
1332static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1333  // Certain normalizations keep us sane when comparing types.
1334  // The 'SMALLINT' covers constants.
1335  if (lo <= hi) {
1336    if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1337    if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1338  } else {
1339    if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1340    if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1341  }
1342  return w;
1343}
1344
1345const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1346  w = normalize_long_widen(lo, hi, w);
1347  return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1348}
1349
1350
1351//------------------------------meet-------------------------------------------
1352// Compute the MEET of two types.  It returns a new Type representation object
1353// with reference count equal to the number of Types pointing at it.
1354// Caller should wrap a Types around it.
1355const Type *TypeLong::xmeet( const Type *t ) const {
1356  // Perform a fast test for common case; meeting the same types together.
1357  if( this == t ) return this;  // Meeting same type?
1358
1359  // Currently "this->_base" is a TypeLong
1360  switch (t->base()) {          // Switch on original type
1361  case AnyPtr:                  // Mixing with oops happens when javac
1362  case RawPtr:                  // reuses local variables
1363  case OopPtr:
1364  case InstPtr:
1365  case AryPtr:
1366  case MetadataPtr:
1367  case KlassPtr:
1368  case NarrowOop:
1369  case Int:
1370  case FloatTop:
1371  case FloatCon:
1372  case FloatBot:
1373  case DoubleTop:
1374  case DoubleCon:
1375  case DoubleBot:
1376  case Bottom:                  // Ye Olde Default
1377    return Type::BOTTOM;
1378  default:                      // All else is a mistake
1379    typerr(t);
1380  case Top:                     // No change
1381    return this;
1382  case Long:                    // Long vs Long?
1383    break;
1384  }
1385
1386  // Expand covered set
1387  const TypeLong *r = t->is_long(); // Turn into a TypeLong
1388  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1389}
1390
1391//------------------------------xdual------------------------------------------
1392// Dual: reverse hi & lo; flip widen
1393const Type *TypeLong::xdual() const {
1394  int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1395  return new TypeLong(_hi,_lo,w);
1396}
1397
1398//------------------------------widen------------------------------------------
1399// Only happens for optimistic top-down optimizations.
1400const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1401  // Coming from TOP or such; no widening
1402  if( old->base() != Long ) return this;
1403  const TypeLong *ot = old->is_long();
1404
1405  // If new guy is equal to old guy, no widening
1406  if( _lo == ot->_lo && _hi == ot->_hi )
1407    return old;
1408
1409  // If new guy contains old, then we widened
1410  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1411    // New contains old
1412    // If new guy is already wider than old, no widening
1413    if( _widen > ot->_widen ) return this;
1414    // If old guy was a constant, do not bother
1415    if (ot->_lo == ot->_hi)  return this;
1416    // Now widen new guy.
1417    // Check for widening too far
1418    if (_widen == WidenMax) {
1419      jlong max = max_jlong;
1420      jlong min = min_jlong;
1421      if (limit->isa_long()) {
1422        max = limit->is_long()->_hi;
1423        min = limit->is_long()->_lo;
1424      }
1425      if (min < _lo && _hi < max) {
1426        // If neither endpoint is extremal yet, push out the endpoint
1427        // which is closer to its respective limit.
1428        if (_lo >= 0 ||                 // easy common case
1429            (julong)(_lo - min) >= (julong)(max - _hi)) {
1430          // Try to widen to an unsigned range type of 32/63 bits:
1431          if (max >= max_juint && _hi < max_juint)
1432            return make(_lo, max_juint, WidenMax);
1433          else
1434            return make(_lo, max, WidenMax);
1435        } else {
1436          return make(min, _hi, WidenMax);
1437        }
1438      }
1439      return TypeLong::LONG;
1440    }
1441    // Returned widened new guy
1442    return make(_lo,_hi,_widen+1);
1443  }
1444
1445  // If old guy contains new, then we probably widened too far & dropped to
1446  // bottom.  Return the wider fellow.
1447  if ( ot->_lo <= _lo && ot->_hi >= _hi )
1448    return old;
1449
1450  //  fatal("Long value range is not subset");
1451  // return this;
1452  return TypeLong::LONG;
1453}
1454
1455//------------------------------narrow----------------------------------------
1456// Only happens for pessimistic optimizations.
1457const Type *TypeLong::narrow( const Type *old ) const {
1458  if (_lo >= _hi)  return this;   // already narrow enough
1459  if (old == NULL)  return this;
1460  const TypeLong* ot = old->isa_long();
1461  if (ot == NULL)  return this;
1462  jlong olo = ot->_lo;
1463  jlong ohi = ot->_hi;
1464
1465  // If new guy is equal to old guy, no narrowing
1466  if (_lo == olo && _hi == ohi)  return old;
1467
1468  // If old guy was maximum range, allow the narrowing
1469  if (olo == min_jlong && ohi == max_jlong)  return this;
1470
1471  if (_lo < olo || _hi > ohi)
1472    return this;                // doesn't narrow; pretty wierd
1473
1474  // The new type narrows the old type, so look for a "death march".
1475  // See comments on PhaseTransform::saturate.
1476  julong nrange = _hi - _lo;
1477  julong orange = ohi - olo;
1478  if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1479    // Use the new type only if the range shrinks a lot.
1480    // We do not want the optimizer computing 2^31 point by point.
1481    return old;
1482  }
1483
1484  return this;
1485}
1486
1487//-----------------------------filter------------------------------------------
1488const Type *TypeLong::filter( const Type *kills ) const {
1489  const TypeLong* ft = join(kills)->isa_long();
1490  if (ft == NULL || ft->empty())
1491    return Type::TOP;           // Canonical empty value
1492  if (ft->_widen < this->_widen) {
1493    // Do not allow the value of kill->_widen to affect the outcome.
1494    // The widen bits must be allowed to run freely through the graph.
1495    ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1496  }
1497  return ft;
1498}
1499
1500//------------------------------eq---------------------------------------------
1501// Structural equality check for Type representations
1502bool TypeLong::eq( const Type *t ) const {
1503  const TypeLong *r = t->is_long(); // Handy access
1504  return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1505}
1506
1507//------------------------------hash-------------------------------------------
1508// Type-specific hashing function.
1509int TypeLong::hash(void) const {
1510  return (int)(_lo+_hi+_widen+(int)Type::Long);
1511}
1512
1513//------------------------------is_finite--------------------------------------
1514// Has a finite value
1515bool TypeLong::is_finite() const {
1516  return true;
1517}
1518
1519//------------------------------dump2------------------------------------------
1520// Dump TypeLong
1521#ifndef PRODUCT
1522static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1523  if (n > x) {
1524    if (n >= x + 10000)  return NULL;
1525    sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
1526  } else if (n < x) {
1527    if (n <= x - 10000)  return NULL;
1528    sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
1529  } else {
1530    return xname;
1531  }
1532  return buf;
1533}
1534
1535static const char* longname(char* buf, jlong n) {
1536  const char* str;
1537  if (n == min_jlong)
1538    return "min";
1539  else if (n < min_jlong + 10000)
1540    sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
1541  else if (n == max_jlong)
1542    return "max";
1543  else if (n > max_jlong - 10000)
1544    sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
1545  else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1546    return str;
1547  else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1548    return str;
1549  else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1550    return str;
1551  else
1552    sprintf(buf, INT64_FORMAT, n);
1553  return buf;
1554}
1555
1556void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1557  char buf[80], buf2[80];
1558  if (_lo == min_jlong && _hi == max_jlong)
1559    st->print("long");
1560  else if (is_con())
1561    st->print("long:%s", longname(buf, get_con()));
1562  else if (_hi == max_jlong)
1563    st->print("long:>=%s", longname(buf, _lo));
1564  else if (_lo == min_jlong)
1565    st->print("long:<=%s", longname(buf, _hi));
1566  else
1567    st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1568
1569  if (_widen != 0 && this != TypeLong::LONG)
1570    st->print(":%.*s", _widen, "wwww");
1571}
1572#endif
1573
1574//------------------------------singleton--------------------------------------
1575// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1576// constants
1577bool TypeLong::singleton(void) const {
1578  return _lo >= _hi;
1579}
1580
1581bool TypeLong::empty(void) const {
1582  return _lo > _hi;
1583}
1584
1585//=============================================================================
1586// Convenience common pre-built types.
1587const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1588const TypeTuple *TypeTuple::IFFALSE;
1589const TypeTuple *TypeTuple::IFTRUE;
1590const TypeTuple *TypeTuple::IFNEITHER;
1591const TypeTuple *TypeTuple::LOOPBODY;
1592const TypeTuple *TypeTuple::MEMBAR;
1593const TypeTuple *TypeTuple::STORECONDITIONAL;
1594const TypeTuple *TypeTuple::START_I2C;
1595const TypeTuple *TypeTuple::INT_PAIR;
1596const TypeTuple *TypeTuple::LONG_PAIR;
1597
1598
1599//------------------------------make-------------------------------------------
1600// Make a TypeTuple from the range of a method signature
1601const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1602  ciType* return_type = sig->return_type();
1603  uint total_fields = TypeFunc::Parms + return_type->size();
1604  const Type **field_array = fields(total_fields);
1605  switch (return_type->basic_type()) {
1606  case T_LONG:
1607    field_array[TypeFunc::Parms]   = TypeLong::LONG;
1608    field_array[TypeFunc::Parms+1] = Type::HALF;
1609    break;
1610  case T_DOUBLE:
1611    field_array[TypeFunc::Parms]   = Type::DOUBLE;
1612    field_array[TypeFunc::Parms+1] = Type::HALF;
1613    break;
1614  case T_OBJECT:
1615  case T_ARRAY:
1616  case T_BOOLEAN:
1617  case T_CHAR:
1618  case T_FLOAT:
1619  case T_BYTE:
1620  case T_SHORT:
1621  case T_INT:
1622    field_array[TypeFunc::Parms] = get_const_type(return_type);
1623    break;
1624  case T_VOID:
1625    break;
1626  default:
1627    ShouldNotReachHere();
1628  }
1629  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1630}
1631
1632// Make a TypeTuple from the domain of a method signature
1633const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1634  uint total_fields = TypeFunc::Parms + sig->size();
1635
1636  uint pos = TypeFunc::Parms;
1637  const Type **field_array;
1638  if (recv != NULL) {
1639    total_fields++;
1640    field_array = fields(total_fields);
1641    // Use get_const_type here because it respects UseUniqueSubclasses:
1642    field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
1643  } else {
1644    field_array = fields(total_fields);
1645  }
1646
1647  int i = 0;
1648  while (pos < total_fields) {
1649    ciType* type = sig->type_at(i);
1650
1651    switch (type->basic_type()) {
1652    case T_LONG:
1653      field_array[pos++] = TypeLong::LONG;
1654      field_array[pos++] = Type::HALF;
1655      break;
1656    case T_DOUBLE:
1657      field_array[pos++] = Type::DOUBLE;
1658      field_array[pos++] = Type::HALF;
1659      break;
1660    case T_OBJECT:
1661    case T_ARRAY:
1662    case T_BOOLEAN:
1663    case T_CHAR:
1664    case T_FLOAT:
1665    case T_BYTE:
1666    case T_SHORT:
1667    case T_INT:
1668      field_array[pos++] = get_const_type(type);
1669      break;
1670    default:
1671      ShouldNotReachHere();
1672    }
1673    i++;
1674  }
1675  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1676}
1677
1678const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1679  return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1680}
1681
1682//------------------------------fields-----------------------------------------
1683// Subroutine call type with space allocated for argument types
1684const Type **TypeTuple::fields( uint arg_cnt ) {
1685  const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1686  flds[TypeFunc::Control  ] = Type::CONTROL;
1687  flds[TypeFunc::I_O      ] = Type::ABIO;
1688  flds[TypeFunc::Memory   ] = Type::MEMORY;
1689  flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1690  flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1691
1692  return flds;
1693}
1694
1695//------------------------------meet-------------------------------------------
1696// Compute the MEET of two types.  It returns a new Type object.
1697const Type *TypeTuple::xmeet( const Type *t ) const {
1698  // Perform a fast test for common case; meeting the same types together.
1699  if( this == t ) return this;  // Meeting same type-rep?
1700
1701  // Current "this->_base" is Tuple
1702  switch (t->base()) {          // switch on original type
1703
1704  case Bottom:                  // Ye Olde Default
1705    return t;
1706
1707  default:                      // All else is a mistake
1708    typerr(t);
1709
1710  case Tuple: {                 // Meeting 2 signatures?
1711    const TypeTuple *x = t->is_tuple();
1712    assert( _cnt == x->_cnt, "" );
1713    const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1714    for( uint i=0; i<_cnt; i++ )
1715      fields[i] = field_at(i)->xmeet( x->field_at(i) );
1716    return TypeTuple::make(_cnt,fields);
1717  }
1718  case Top:
1719    break;
1720  }
1721  return this;                  // Return the double constant
1722}
1723
1724//------------------------------xdual------------------------------------------
1725// Dual: compute field-by-field dual
1726const Type *TypeTuple::xdual() const {
1727  const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1728  for( uint i=0; i<_cnt; i++ )
1729    fields[i] = _fields[i]->dual();
1730  return new TypeTuple(_cnt,fields);
1731}
1732
1733//------------------------------eq---------------------------------------------
1734// Structural equality check for Type representations
1735bool TypeTuple::eq( const Type *t ) const {
1736  const TypeTuple *s = (const TypeTuple *)t;
1737  if (_cnt != s->_cnt)  return false;  // Unequal field counts
1738  for (uint i = 0; i < _cnt; i++)
1739    if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1740      return false;             // Missed
1741  return true;
1742}
1743
1744//------------------------------hash-------------------------------------------
1745// Type-specific hashing function.
1746int TypeTuple::hash(void) const {
1747  intptr_t sum = _cnt;
1748  for( uint i=0; i<_cnt; i++ )
1749    sum += (intptr_t)_fields[i];     // Hash on pointers directly
1750  return sum;
1751}
1752
1753//------------------------------dump2------------------------------------------
1754// Dump signature Type
1755#ifndef PRODUCT
1756void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1757  st->print("{");
1758  if( !depth || d[this] ) {     // Check for recursive print
1759    st->print("...}");
1760    return;
1761  }
1762  d.Insert((void*)this, (void*)this);   // Stop recursion
1763  if( _cnt ) {
1764    uint i;
1765    for( i=0; i<_cnt-1; i++ ) {
1766      st->print("%d:", i);
1767      _fields[i]->dump2(d, depth-1, st);
1768      st->print(", ");
1769    }
1770    st->print("%d:", i);
1771    _fields[i]->dump2(d, depth-1, st);
1772  }
1773  st->print("}");
1774}
1775#endif
1776
1777//------------------------------singleton--------------------------------------
1778// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1779// constants (Ldi nodes).  Singletons are integer, float or double constants
1780// or a single symbol.
1781bool TypeTuple::singleton(void) const {
1782  return false;                 // Never a singleton
1783}
1784
1785bool TypeTuple::empty(void) const {
1786  for( uint i=0; i<_cnt; i++ ) {
1787    if (_fields[i]->empty())  return true;
1788  }
1789  return false;
1790}
1791
1792//=============================================================================
1793// Convenience common pre-built types.
1794
1795inline const TypeInt* normalize_array_size(const TypeInt* size) {
1796  // Certain normalizations keep us sane when comparing types.
1797  // We do not want arrayOop variables to differ only by the wideness
1798  // of their index types.  Pick minimum wideness, since that is the
1799  // forced wideness of small ranges anyway.
1800  if (size->_widen != Type::WidenMin)
1801    return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1802  else
1803    return size;
1804}
1805
1806//------------------------------make-------------------------------------------
1807const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
1808  if (UseCompressedOops && elem->isa_oopptr()) {
1809    elem = elem->make_narrowoop();
1810  }
1811  size = normalize_array_size(size);
1812  return (TypeAry*)(new TypeAry(elem,size))->hashcons();
1813}
1814
1815//------------------------------meet-------------------------------------------
1816// Compute the MEET of two types.  It returns a new Type object.
1817const Type *TypeAry::xmeet( const Type *t ) const {
1818  // Perform a fast test for common case; meeting the same types together.
1819  if( this == t ) return this;  // Meeting same type-rep?
1820
1821  // Current "this->_base" is Ary
1822  switch (t->base()) {          // switch on original type
1823
1824  case Bottom:                  // Ye Olde Default
1825    return t;
1826
1827  default:                      // All else is a mistake
1828    typerr(t);
1829
1830  case Array: {                 // Meeting 2 arrays?
1831    const TypeAry *a = t->is_ary();
1832    return TypeAry::make(_elem->meet(a->_elem),
1833                         _size->xmeet(a->_size)->is_int());
1834  }
1835  case Top:
1836    break;
1837  }
1838  return this;                  // Return the double constant
1839}
1840
1841//------------------------------xdual------------------------------------------
1842// Dual: compute field-by-field dual
1843const Type *TypeAry::xdual() const {
1844  const TypeInt* size_dual = _size->dual()->is_int();
1845  size_dual = normalize_array_size(size_dual);
1846  return new TypeAry( _elem->dual(), size_dual);
1847}
1848
1849//------------------------------eq---------------------------------------------
1850// Structural equality check for Type representations
1851bool TypeAry::eq( const Type *t ) const {
1852  const TypeAry *a = (const TypeAry*)t;
1853  return _elem == a->_elem &&
1854    _size == a->_size;
1855}
1856
1857//------------------------------hash-------------------------------------------
1858// Type-specific hashing function.
1859int TypeAry::hash(void) const {
1860  return (intptr_t)_elem + (intptr_t)_size;
1861}
1862
1863//----------------------interface_vs_oop---------------------------------------
1864#ifdef ASSERT
1865bool TypeAry::interface_vs_oop(const Type *t) const {
1866  const TypeAry* t_ary = t->is_ary();
1867  if (t_ary) {
1868    return _elem->interface_vs_oop(t_ary->_elem);
1869  }
1870  return false;
1871}
1872#endif
1873
1874//------------------------------dump2------------------------------------------
1875#ifndef PRODUCT
1876void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1877  _elem->dump2(d, depth, st);
1878  st->print("[");
1879  _size->dump2(d, depth, st);
1880  st->print("]");
1881}
1882#endif
1883
1884//------------------------------singleton--------------------------------------
1885// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1886// constants (Ldi nodes).  Singletons are integer, float or double constants
1887// or a single symbol.
1888bool TypeAry::singleton(void) const {
1889  return false;                 // Never a singleton
1890}
1891
1892bool TypeAry::empty(void) const {
1893  return _elem->empty() || _size->empty();
1894}
1895
1896//--------------------------ary_must_be_exact----------------------------------
1897bool TypeAry::ary_must_be_exact() const {
1898  if (!UseExactTypes)       return false;
1899  // This logic looks at the element type of an array, and returns true
1900  // if the element type is either a primitive or a final instance class.
1901  // In such cases, an array built on this ary must have no subclasses.
1902  if (_elem == BOTTOM)      return false;  // general array not exact
1903  if (_elem == TOP   )      return false;  // inverted general array not exact
1904  const TypeOopPtr*  toop = NULL;
1905  if (UseCompressedOops && _elem->isa_narrowoop()) {
1906    toop = _elem->make_ptr()->isa_oopptr();
1907  } else {
1908    toop = _elem->isa_oopptr();
1909  }
1910  if (!toop)                return true;   // a primitive type, like int
1911  ciKlass* tklass = toop->klass();
1912  if (tklass == NULL)       return false;  // unloaded class
1913  if (!tklass->is_loaded()) return false;  // unloaded class
1914  const TypeInstPtr* tinst;
1915  if (_elem->isa_narrowoop())
1916    tinst = _elem->make_ptr()->isa_instptr();
1917  else
1918    tinst = _elem->isa_instptr();
1919  if (tinst)
1920    return tklass->as_instance_klass()->is_final();
1921  const TypeAryPtr*  tap;
1922  if (_elem->isa_narrowoop())
1923    tap = _elem->make_ptr()->isa_aryptr();
1924  else
1925    tap = _elem->isa_aryptr();
1926  if (tap)
1927    return tap->ary()->ary_must_be_exact();
1928  return false;
1929}
1930
1931//==============================TypeVect=======================================
1932// Convenience common pre-built types.
1933const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
1934const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
1935const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
1936const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
1937
1938//------------------------------make-------------------------------------------
1939const TypeVect* TypeVect::make(const Type *elem, uint length) {
1940  BasicType elem_bt = elem->array_element_basic_type();
1941  assert(is_java_primitive(elem_bt), "only primitive types in vector");
1942  assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
1943  assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
1944  int size = length * type2aelembytes(elem_bt);
1945  switch (Matcher::vector_ideal_reg(size)) {
1946  case Op_VecS:
1947    return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
1948  case Op_VecD:
1949  case Op_RegD:
1950    return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
1951  case Op_VecX:
1952    return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
1953  case Op_VecY:
1954    return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
1955  }
1956 ShouldNotReachHere();
1957  return NULL;
1958}
1959
1960//------------------------------meet-------------------------------------------
1961// Compute the MEET of two types.  It returns a new Type object.
1962const Type *TypeVect::xmeet( const Type *t ) const {
1963  // Perform a fast test for common case; meeting the same types together.
1964  if( this == t ) return this;  // Meeting same type-rep?
1965
1966  // Current "this->_base" is Vector
1967  switch (t->base()) {          // switch on original type
1968
1969  case Bottom:                  // Ye Olde Default
1970    return t;
1971
1972  default:                      // All else is a mistake
1973    typerr(t);
1974
1975  case VectorS:
1976  case VectorD:
1977  case VectorX:
1978  case VectorY: {                // Meeting 2 vectors?
1979    const TypeVect* v = t->is_vect();
1980    assert(  base() == v->base(), "");
1981    assert(length() == v->length(), "");
1982    assert(element_basic_type() == v->element_basic_type(), "");
1983    return TypeVect::make(_elem->xmeet(v->_elem), _length);
1984  }
1985  case Top:
1986    break;
1987  }
1988  return this;
1989}
1990
1991//------------------------------xdual------------------------------------------
1992// Dual: compute field-by-field dual
1993const Type *TypeVect::xdual() const {
1994  return new TypeVect(base(), _elem->dual(), _length);
1995}
1996
1997//------------------------------eq---------------------------------------------
1998// Structural equality check for Type representations
1999bool TypeVect::eq(const Type *t) const {
2000  const TypeVect *v = t->is_vect();
2001  return (_elem == v->_elem) && (_length == v->_length);
2002}
2003
2004//------------------------------hash-------------------------------------------
2005// Type-specific hashing function.
2006int TypeVect::hash(void) const {
2007  return (intptr_t)_elem + (intptr_t)_length;
2008}
2009
2010//------------------------------singleton--------------------------------------
2011// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2012// constants (Ldi nodes).  Vector is singleton if all elements are the same
2013// constant value (when vector is created with Replicate code).
2014bool TypeVect::singleton(void) const {
2015// There is no Con node for vectors yet.
2016//  return _elem->singleton();
2017  return false;
2018}
2019
2020bool TypeVect::empty(void) const {
2021  return _elem->empty();
2022}
2023
2024//------------------------------dump2------------------------------------------
2025#ifndef PRODUCT
2026void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2027  switch (base()) {
2028  case VectorS:
2029    st->print("vectors["); break;
2030  case VectorD:
2031    st->print("vectord["); break;
2032  case VectorX:
2033    st->print("vectorx["); break;
2034  case VectorY:
2035    st->print("vectory["); break;
2036  default:
2037    ShouldNotReachHere();
2038  }
2039  st->print("%d]:{", _length);
2040  _elem->dump2(d, depth, st);
2041  st->print("}");
2042}
2043#endif
2044
2045
2046//=============================================================================
2047// Convenience common pre-built types.
2048const TypePtr *TypePtr::NULL_PTR;
2049const TypePtr *TypePtr::NOTNULL;
2050const TypePtr *TypePtr::BOTTOM;
2051
2052//------------------------------meet-------------------------------------------
2053// Meet over the PTR enum
2054const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2055  //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2056  { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2057  { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2058  { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2059  { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2060  { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2061  { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2062};
2063
2064//------------------------------make-------------------------------------------
2065const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
2066  return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
2067}
2068
2069//------------------------------cast_to_ptr_type-------------------------------
2070const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2071  assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2072  if( ptr == _ptr ) return this;
2073  return make(_base, ptr, _offset);
2074}
2075
2076//------------------------------get_con----------------------------------------
2077intptr_t TypePtr::get_con() const {
2078  assert( _ptr == Null, "" );
2079  return _offset;
2080}
2081
2082//------------------------------meet-------------------------------------------
2083// Compute the MEET of two types.  It returns a new Type object.
2084const Type *TypePtr::xmeet( const Type *t ) const {
2085  // Perform a fast test for common case; meeting the same types together.
2086  if( this == t ) return this;  // Meeting same type-rep?
2087
2088  // Current "this->_base" is AnyPtr
2089  switch (t->base()) {          // switch on original type
2090  case Int:                     // Mixing ints & oops happens when javac
2091  case Long:                    // reuses local variables
2092  case FloatTop:
2093  case FloatCon:
2094  case FloatBot:
2095  case DoubleTop:
2096  case DoubleCon:
2097  case DoubleBot:
2098  case NarrowOop:
2099  case Bottom:                  // Ye Olde Default
2100    return Type::BOTTOM;
2101  case Top:
2102    return this;
2103
2104  case AnyPtr: {                // Meeting to AnyPtrs
2105    const TypePtr *tp = t->is_ptr();
2106    return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
2107  }
2108  case RawPtr:                  // For these, flip the call around to cut down
2109  case OopPtr:
2110  case InstPtr:                 // on the cases I have to handle.
2111  case AryPtr:
2112  case MetadataPtr:
2113  case KlassPtr:
2114    return t->xmeet(this);      // Call in reverse direction
2115  default:                      // All else is a mistake
2116    typerr(t);
2117
2118  }
2119  return this;
2120}
2121
2122//------------------------------meet_offset------------------------------------
2123int TypePtr::meet_offset( int offset ) const {
2124  // Either is 'TOP' offset?  Return the other offset!
2125  if( _offset == OffsetTop ) return offset;
2126  if( offset == OffsetTop ) return _offset;
2127  // If either is different, return 'BOTTOM' offset
2128  if( _offset != offset ) return OffsetBot;
2129  return _offset;
2130}
2131
2132//------------------------------dual_offset------------------------------------
2133int TypePtr::dual_offset( ) const {
2134  if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2135  if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2136  return _offset;               // Map everything else into self
2137}
2138
2139//------------------------------xdual------------------------------------------
2140// Dual: compute field-by-field dual
2141const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2142  BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2143};
2144const Type *TypePtr::xdual() const {
2145  return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2146}
2147
2148//------------------------------xadd_offset------------------------------------
2149int TypePtr::xadd_offset( intptr_t offset ) const {
2150  // Adding to 'TOP' offset?  Return 'TOP'!
2151  if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2152  // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2153  if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2154  // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2155  offset += (intptr_t)_offset;
2156  if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2157
2158  // assert( _offset >= 0 && _offset+offset >= 0, "" );
2159  // It is possible to construct a negative offset during PhaseCCP
2160
2161  return (int)offset;        // Sum valid offsets
2162}
2163
2164//------------------------------add_offset-------------------------------------
2165const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2166  return make( AnyPtr, _ptr, xadd_offset(offset) );
2167}
2168
2169//------------------------------eq---------------------------------------------
2170// Structural equality check for Type representations
2171bool TypePtr::eq( const Type *t ) const {
2172  const TypePtr *a = (const TypePtr*)t;
2173  return _ptr == a->ptr() && _offset == a->offset();
2174}
2175
2176//------------------------------hash-------------------------------------------
2177// Type-specific hashing function.
2178int TypePtr::hash(void) const {
2179  return _ptr + _offset;
2180}
2181
2182//------------------------------dump2------------------------------------------
2183const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2184  "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2185};
2186
2187#ifndef PRODUCT
2188void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2189  if( _ptr == Null ) st->print("NULL");
2190  else st->print("%s *", ptr_msg[_ptr]);
2191  if( _offset == OffsetTop ) st->print("+top");
2192  else if( _offset == OffsetBot ) st->print("+bot");
2193  else if( _offset ) st->print("+%d", _offset);
2194}
2195#endif
2196
2197//------------------------------singleton--------------------------------------
2198// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2199// constants
2200bool TypePtr::singleton(void) const {
2201  // TopPTR, Null, AnyNull, Constant are all singletons
2202  return (_offset != OffsetBot) && !below_centerline(_ptr);
2203}
2204
2205bool TypePtr::empty(void) const {
2206  return (_offset == OffsetTop) || above_centerline(_ptr);
2207}
2208
2209//=============================================================================
2210// Convenience common pre-built types.
2211const TypeRawPtr *TypeRawPtr::BOTTOM;
2212const TypeRawPtr *TypeRawPtr::NOTNULL;
2213
2214//------------------------------make-------------------------------------------
2215const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2216  assert( ptr != Constant, "what is the constant?" );
2217  assert( ptr != Null, "Use TypePtr for NULL" );
2218  return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2219}
2220
2221const TypeRawPtr *TypeRawPtr::make( address bits ) {
2222  assert( bits, "Use TypePtr for NULL" );
2223  return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2224}
2225
2226//------------------------------cast_to_ptr_type-------------------------------
2227const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2228  assert( ptr != Constant, "what is the constant?" );
2229  assert( ptr != Null, "Use TypePtr for NULL" );
2230  assert( _bits==0, "Why cast a constant address?");
2231  if( ptr == _ptr ) return this;
2232  return make(ptr);
2233}
2234
2235//------------------------------get_con----------------------------------------
2236intptr_t TypeRawPtr::get_con() const {
2237  assert( _ptr == Null || _ptr == Constant, "" );
2238  return (intptr_t)_bits;
2239}
2240
2241//------------------------------meet-------------------------------------------
2242// Compute the MEET of two types.  It returns a new Type object.
2243const Type *TypeRawPtr::xmeet( const Type *t ) const {
2244  // Perform a fast test for common case; meeting the same types together.
2245  if( this == t ) return this;  // Meeting same type-rep?
2246
2247  // Current "this->_base" is RawPtr
2248  switch( t->base() ) {         // switch on original type
2249  case Bottom:                  // Ye Olde Default
2250    return t;
2251  case Top:
2252    return this;
2253  case AnyPtr:                  // Meeting to AnyPtrs
2254    break;
2255  case RawPtr: {                // might be top, bot, any/not or constant
2256    enum PTR tptr = t->is_ptr()->ptr();
2257    enum PTR ptr = meet_ptr( tptr );
2258    if( ptr == Constant ) {     // Cannot be equal constants, so...
2259      if( tptr == Constant && _ptr != Constant)  return t;
2260      if( _ptr == Constant && tptr != Constant)  return this;
2261      ptr = NotNull;            // Fall down in lattice
2262    }
2263    return make( ptr );
2264  }
2265
2266  case OopPtr:
2267  case InstPtr:
2268  case AryPtr:
2269  case MetadataPtr:
2270  case KlassPtr:
2271    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2272  default:                      // All else is a mistake
2273    typerr(t);
2274  }
2275
2276  // Found an AnyPtr type vs self-RawPtr type
2277  const TypePtr *tp = t->is_ptr();
2278  switch (tp->ptr()) {
2279  case TypePtr::TopPTR:  return this;
2280  case TypePtr::BotPTR:  return t;
2281  case TypePtr::Null:
2282    if( _ptr == TypePtr::TopPTR ) return t;
2283    return TypeRawPtr::BOTTOM;
2284  case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2285  case TypePtr::AnyNull:
2286    if( _ptr == TypePtr::Constant) return this;
2287    return make( meet_ptr(TypePtr::AnyNull) );
2288  default: ShouldNotReachHere();
2289  }
2290  return this;
2291}
2292
2293//------------------------------xdual------------------------------------------
2294// Dual: compute field-by-field dual
2295const Type *TypeRawPtr::xdual() const {
2296  return new TypeRawPtr( dual_ptr(), _bits );
2297}
2298
2299//------------------------------add_offset-------------------------------------
2300const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2301  if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2302  if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2303  if( offset == 0 ) return this; // No change
2304  switch (_ptr) {
2305  case TypePtr::TopPTR:
2306  case TypePtr::BotPTR:
2307  case TypePtr::NotNull:
2308    return this;
2309  case TypePtr::Null:
2310  case TypePtr::Constant: {
2311    address bits = _bits+offset;
2312    if ( bits == 0 ) return TypePtr::NULL_PTR;
2313    return make( bits );
2314  }
2315  default:  ShouldNotReachHere();
2316  }
2317  return NULL;                  // Lint noise
2318}
2319
2320//------------------------------eq---------------------------------------------
2321// Structural equality check for Type representations
2322bool TypeRawPtr::eq( const Type *t ) const {
2323  const TypeRawPtr *a = (const TypeRawPtr*)t;
2324  return _bits == a->_bits && TypePtr::eq(t);
2325}
2326
2327//------------------------------hash-------------------------------------------
2328// Type-specific hashing function.
2329int TypeRawPtr::hash(void) const {
2330  return (intptr_t)_bits + TypePtr::hash();
2331}
2332
2333//------------------------------dump2------------------------------------------
2334#ifndef PRODUCT
2335void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2336  if( _ptr == Constant )
2337    st->print(INTPTR_FORMAT, _bits);
2338  else
2339    st->print("rawptr:%s", ptr_msg[_ptr]);
2340}
2341#endif
2342
2343//=============================================================================
2344// Convenience common pre-built type.
2345const TypeOopPtr *TypeOopPtr::BOTTOM;
2346
2347//------------------------------TypeOopPtr-------------------------------------
2348TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
2349  : TypePtr(t, ptr, offset),
2350    _const_oop(o), _klass(k),
2351    _klass_is_exact(xk),
2352    _is_ptr_to_narrowoop(false),
2353    _instance_id(instance_id) {
2354#ifdef _LP64
2355  if (UseCompressedOops && _offset != 0) {
2356    if (_offset == oopDesc::klass_offset_in_bytes()) {
2357      _is_ptr_to_narrowoop = UseCompressedKlassPointers;
2358    } else if (klass() == NULL) {
2359      // Array with unknown body type
2360      assert(this->isa_aryptr(), "only arrays without klass");
2361      _is_ptr_to_narrowoop = true;
2362    } else if (this->isa_aryptr()) {
2363      _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
2364                             _offset != arrayOopDesc::length_offset_in_bytes());
2365    } else if (klass()->is_instance_klass()) {
2366      ciInstanceKlass* ik = klass()->as_instance_klass();
2367      ciField* field = NULL;
2368      if (this->isa_klassptr()) {
2369        // Perm objects don't use compressed references
2370      } else if (_offset == OffsetBot || _offset == OffsetTop) {
2371        // unsafe access
2372        _is_ptr_to_narrowoop = true;
2373      } else { // exclude unsafe ops
2374        assert(this->isa_instptr(), "must be an instance ptr.");
2375
2376        if (klass() == ciEnv::current()->Class_klass() &&
2377            (_offset == java_lang_Class::klass_offset_in_bytes() ||
2378             _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2379          // Special hidden fields from the Class.
2380          assert(this->isa_instptr(), "must be an instance ptr.");
2381          _is_ptr_to_narrowoop = false;
2382        } else if (klass() == ciEnv::current()->Class_klass() &&
2383                   _offset >= instanceMirrorKlass::offset_of_static_fields()) {
2384          // Static fields
2385          assert(o != NULL, "must be constant");
2386          ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2387          ciField* field = k->get_field_by_offset(_offset, true);
2388          assert(field != NULL, "missing field");
2389          BasicType basic_elem_type = field->layout_type();
2390          _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2391                                  basic_elem_type == T_ARRAY);
2392        } else {
2393          // Instance fields which contains a compressed oop references.
2394          field = ik->get_field_by_offset(_offset, false);
2395          if (field != NULL) {
2396            BasicType basic_elem_type = field->layout_type();
2397            _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2398                                    basic_elem_type == T_ARRAY);
2399          } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2400            // Compile::find_alias_type() cast exactness on all types to verify
2401            // that it does not affect alias type.
2402            _is_ptr_to_narrowoop = true;
2403          } else {
2404            // Type for the copy start in LibraryCallKit::inline_native_clone().
2405            _is_ptr_to_narrowoop = true;
2406          }
2407        }
2408      }
2409    }
2410  }
2411#endif
2412}
2413
2414//------------------------------make-------------------------------------------
2415const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2416                                   int offset, int instance_id) {
2417  assert(ptr != Constant, "no constant generic pointers");
2418  ciKlass*  k = Compile::current()->env()->Object_klass();
2419  bool      xk = false;
2420  ciObject* o = NULL;
2421  return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
2422}
2423
2424
2425//------------------------------cast_to_ptr_type-------------------------------
2426const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2427  assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2428  if( ptr == _ptr ) return this;
2429  return make(ptr, _offset, _instance_id);
2430}
2431
2432//-----------------------------cast_to_instance_id----------------------------
2433const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2434  // There are no instances of a general oop.
2435  // Return self unchanged.
2436  return this;
2437}
2438
2439//-----------------------------cast_to_exactness-------------------------------
2440const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2441  // There is no such thing as an exact general oop.
2442  // Return self unchanged.
2443  return this;
2444}
2445
2446
2447//------------------------------as_klass_type----------------------------------
2448// Return the klass type corresponding to this instance or array type.
2449// It is the type that is loaded from an object of this type.
2450const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2451  ciKlass* k = klass();
2452  bool    xk = klass_is_exact();
2453  if (k == NULL)
2454    return TypeKlassPtr::OBJECT;
2455  else
2456    return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2457}
2458
2459
2460//------------------------------meet-------------------------------------------
2461// Compute the MEET of two types.  It returns a new Type object.
2462const Type *TypeOopPtr::xmeet( const Type *t ) const {
2463  // Perform a fast test for common case; meeting the same types together.
2464  if( this == t ) return this;  // Meeting same type-rep?
2465
2466  // Current "this->_base" is OopPtr
2467  switch (t->base()) {          // switch on original type
2468
2469  case Int:                     // Mixing ints & oops happens when javac
2470  case Long:                    // reuses local variables
2471  case FloatTop:
2472  case FloatCon:
2473  case FloatBot:
2474  case DoubleTop:
2475  case DoubleCon:
2476  case DoubleBot:
2477  case NarrowOop:
2478  case Bottom:                  // Ye Olde Default
2479    return Type::BOTTOM;
2480  case Top:
2481    return this;
2482
2483  default:                      // All else is a mistake
2484    typerr(t);
2485
2486  case RawPtr:
2487  case MetadataPtr:
2488  case KlassPtr:
2489    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2490
2491  case AnyPtr: {
2492    // Found an AnyPtr type vs self-OopPtr type
2493    const TypePtr *tp = t->is_ptr();
2494    int offset = meet_offset(tp->offset());
2495    PTR ptr = meet_ptr(tp->ptr());
2496    switch (tp->ptr()) {
2497    case Null:
2498      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2499      // else fall through:
2500    case TopPTR:
2501    case AnyNull: {
2502      int instance_id = meet_instance_id(InstanceTop);
2503      return make(ptr, offset, instance_id);
2504    }
2505    case BotPTR:
2506    case NotNull:
2507      return TypePtr::make(AnyPtr, ptr, offset);
2508    default: typerr(t);
2509    }
2510  }
2511
2512  case OopPtr: {                 // Meeting to other OopPtrs
2513    const TypeOopPtr *tp = t->is_oopptr();
2514    int instance_id = meet_instance_id(tp->instance_id());
2515    return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
2516  }
2517
2518  case InstPtr:                  // For these, flip the call around to cut down
2519  case AryPtr:
2520    return t->xmeet(this);      // Call in reverse direction
2521
2522  } // End of switch
2523  return this;                  // Return the double constant
2524}
2525
2526
2527//------------------------------xdual------------------------------------------
2528// Dual of a pure heap pointer.  No relevant klass or oop information.
2529const Type *TypeOopPtr::xdual() const {
2530  assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2531  assert(const_oop() == NULL,             "no constants here");
2532  return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
2533}
2534
2535//--------------------------make_from_klass_common-----------------------------
2536// Computes the element-type given a klass.
2537const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2538  if (klass->is_instance_klass()) {
2539    Compile* C = Compile::current();
2540    Dependencies* deps = C->dependencies();
2541    assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2542    // Element is an instance
2543    bool klass_is_exact = false;
2544    if (klass->is_loaded()) {
2545      // Try to set klass_is_exact.
2546      ciInstanceKlass* ik = klass->as_instance_klass();
2547      klass_is_exact = ik->is_final();
2548      if (!klass_is_exact && klass_change
2549          && deps != NULL && UseUniqueSubclasses) {
2550        ciInstanceKlass* sub = ik->unique_concrete_subklass();
2551        if (sub != NULL) {
2552          deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2553          klass = ik = sub;
2554          klass_is_exact = sub->is_final();
2555        }
2556      }
2557      if (!klass_is_exact && try_for_exact
2558          && deps != NULL && UseExactTypes) {
2559        if (!ik->is_interface() && !ik->has_subklass()) {
2560          // Add a dependence; if concrete subclass added we need to recompile
2561          deps->assert_leaf_type(ik);
2562          klass_is_exact = true;
2563        }
2564      }
2565    }
2566    return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2567  } else if (klass->is_obj_array_klass()) {
2568    // Element is an object array. Recursively call ourself.
2569    const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2570    bool xk = etype->klass_is_exact();
2571    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2572    // We used to pass NotNull in here, asserting that the sub-arrays
2573    // are all not-null.  This is not true in generally, as code can
2574    // slam NULLs down in the subarrays.
2575    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2576    return arr;
2577  } else if (klass->is_type_array_klass()) {
2578    // Element is an typeArray
2579    const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2580    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2581    // We used to pass NotNull in here, asserting that the array pointer
2582    // is not-null. That was not true in general.
2583    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2584    return arr;
2585  } else {
2586    ShouldNotReachHere();
2587    return NULL;
2588  }
2589}
2590
2591//------------------------------make_from_constant-----------------------------
2592// Make a java pointer from an oop constant
2593const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
2594    assert(!o->is_null_object(), "null object not yet handled here.");
2595    ciKlass* klass = o->klass();
2596    if (klass->is_instance_klass()) {
2597      // Element is an instance
2598      if (require_constant) {
2599        if (!o->can_be_constant())  return NULL;
2600      } else if (!o->should_be_constant()) {
2601        return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2602      }
2603      return TypeInstPtr::make(o);
2604    } else if (klass->is_obj_array_klass()) {
2605      // Element is an object array. Recursively call ourself.
2606    const Type *etype =
2607      TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2608      const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2609      // We used to pass NotNull in here, asserting that the sub-arrays
2610      // are all not-null.  This is not true in generally, as code can
2611      // slam NULLs down in the subarrays.
2612      if (require_constant) {
2613        if (!o->can_be_constant())  return NULL;
2614      } else if (!o->should_be_constant()) {
2615        return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2616      }
2617    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2618    return arr;
2619    } else if (klass->is_type_array_klass()) {
2620      // Element is an typeArray
2621    const Type* etype =
2622      (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2623      const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2624      // We used to pass NotNull in here, asserting that the array pointer
2625      // is not-null. That was not true in general.
2626      if (require_constant) {
2627        if (!o->can_be_constant())  return NULL;
2628      } else if (!o->should_be_constant()) {
2629        return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2630      }
2631    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2632    return arr;
2633  }
2634
2635  fatal("unhandled object type");
2636  return NULL;
2637}
2638
2639//------------------------------get_con----------------------------------------
2640intptr_t TypeOopPtr::get_con() const {
2641  assert( _ptr == Null || _ptr == Constant, "" );
2642  assert( _offset >= 0, "" );
2643
2644  if (_offset != 0) {
2645    // After being ported to the compiler interface, the compiler no longer
2646    // directly manipulates the addresses of oops.  Rather, it only has a pointer
2647    // to a handle at compile time.  This handle is embedded in the generated
2648    // code and dereferenced at the time the nmethod is made.  Until that time,
2649    // it is not reasonable to do arithmetic with the addresses of oops (we don't
2650    // have access to the addresses!).  This does not seem to currently happen,
2651    // but this assertion here is to help prevent its occurence.
2652    tty->print_cr("Found oop constant with non-zero offset");
2653    ShouldNotReachHere();
2654  }
2655
2656  return (intptr_t)const_oop()->constant_encoding();
2657}
2658
2659
2660//-----------------------------filter------------------------------------------
2661// Do not allow interface-vs.-noninterface joins to collapse to top.
2662const Type *TypeOopPtr::filter( const Type *kills ) const {
2663
2664  const Type* ft = join(kills);
2665  const TypeInstPtr* ftip = ft->isa_instptr();
2666  const TypeInstPtr* ktip = kills->isa_instptr();
2667  const TypeKlassPtr* ftkp = ft->isa_klassptr();
2668  const TypeKlassPtr* ktkp = kills->isa_klassptr();
2669
2670  if (ft->empty()) {
2671    // Check for evil case of 'this' being a class and 'kills' expecting an
2672    // interface.  This can happen because the bytecodes do not contain
2673    // enough type info to distinguish a Java-level interface variable
2674    // from a Java-level object variable.  If we meet 2 classes which
2675    // both implement interface I, but their meet is at 'j/l/O' which
2676    // doesn't implement I, we have no way to tell if the result should
2677    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2678    // into a Phi which "knows" it's an Interface type we'll have to
2679    // uplift the type.
2680    if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2681      return kills;             // Uplift to interface
2682    if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
2683      return kills;             // Uplift to interface
2684
2685    return Type::TOP;           // Canonical empty value
2686  }
2687
2688  // If we have an interface-typed Phi or cast and we narrow to a class type,
2689  // the join should report back the class.  However, if we have a J/L/Object
2690  // class-typed Phi and an interface flows in, it's possible that the meet &
2691  // join report an interface back out.  This isn't possible but happens
2692  // because the type system doesn't interact well with interfaces.
2693  if (ftip != NULL && ktip != NULL &&
2694      ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2695      ktip->is_loaded() && !ktip->klass()->is_interface()) {
2696    // Happens in a CTW of rt.jar, 320-341, no extra flags
2697    assert(!ftip->klass_is_exact(), "interface could not be exact");
2698    return ktip->cast_to_ptr_type(ftip->ptr());
2699  }
2700  // Interface klass type could be exact in opposite to interface type,
2701  // return it here instead of incorrect Constant ptr J/L/Object (6894807).
2702  if (ftkp != NULL && ktkp != NULL &&
2703      ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
2704      !ftkp->klass_is_exact() && // Keep exact interface klass
2705      ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
2706    return ktkp->cast_to_ptr_type(ftkp->ptr());
2707  }
2708
2709  return ft;
2710}
2711
2712//------------------------------eq---------------------------------------------
2713// Structural equality check for Type representations
2714bool TypeOopPtr::eq( const Type *t ) const {
2715  const TypeOopPtr *a = (const TypeOopPtr*)t;
2716  if (_klass_is_exact != a->_klass_is_exact ||
2717      _instance_id != a->_instance_id)  return false;
2718  ciObject* one = const_oop();
2719  ciObject* two = a->const_oop();
2720  if (one == NULL || two == NULL) {
2721    return (one == two) && TypePtr::eq(t);
2722  } else {
2723    return one->equals(two) && TypePtr::eq(t);
2724  }
2725}
2726
2727//------------------------------hash-------------------------------------------
2728// Type-specific hashing function.
2729int TypeOopPtr::hash(void) const {
2730  return
2731    (const_oop() ? const_oop()->hash() : 0) +
2732    _klass_is_exact +
2733    _instance_id +
2734    TypePtr::hash();
2735}
2736
2737//------------------------------dump2------------------------------------------
2738#ifndef PRODUCT
2739void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2740  st->print("oopptr:%s", ptr_msg[_ptr]);
2741  if( _klass_is_exact ) st->print(":exact");
2742  if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2743  switch( _offset ) {
2744  case OffsetTop: st->print("+top"); break;
2745  case OffsetBot: st->print("+any"); break;
2746  case         0: break;
2747  default:        st->print("+%d",_offset); break;
2748  }
2749  if (_instance_id == InstanceTop)
2750    st->print(",iid=top");
2751  else if (_instance_id != InstanceBot)
2752    st->print(",iid=%d",_instance_id);
2753}
2754#endif
2755
2756//------------------------------singleton--------------------------------------
2757// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2758// constants
2759bool TypeOopPtr::singleton(void) const {
2760  // detune optimizer to not generate constant oop + constant offset as a constant!
2761  // TopPTR, Null, AnyNull, Constant are all singletons
2762  return (_offset == 0) && !below_centerline(_ptr);
2763}
2764
2765//------------------------------add_offset-------------------------------------
2766const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
2767  return make( _ptr, xadd_offset(offset), _instance_id);
2768}
2769
2770//------------------------------meet_instance_id--------------------------------
2771int TypeOopPtr::meet_instance_id( int instance_id ) const {
2772  // Either is 'TOP' instance?  Return the other instance!
2773  if( _instance_id == InstanceTop ) return  instance_id;
2774  if(  instance_id == InstanceTop ) return _instance_id;
2775  // If either is different, return 'BOTTOM' instance
2776  if( _instance_id != instance_id ) return InstanceBot;
2777  return _instance_id;
2778}
2779
2780//------------------------------dual_instance_id--------------------------------
2781int TypeOopPtr::dual_instance_id( ) const {
2782  if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2783  if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2784  return _instance_id;              // Map everything else into self
2785}
2786
2787
2788//=============================================================================
2789// Convenience common pre-built types.
2790const TypeInstPtr *TypeInstPtr::NOTNULL;
2791const TypeInstPtr *TypeInstPtr::BOTTOM;
2792const TypeInstPtr *TypeInstPtr::MIRROR;
2793const TypeInstPtr *TypeInstPtr::MARK;
2794const TypeInstPtr *TypeInstPtr::KLASS;
2795
2796//------------------------------TypeInstPtr-------------------------------------
2797TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
2798 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
2799   assert(k != NULL &&
2800          (k->is_loaded() || o == NULL),
2801          "cannot have constants with non-loaded klass");
2802};
2803
2804//------------------------------make-------------------------------------------
2805const TypeInstPtr *TypeInstPtr::make(PTR ptr,
2806                                     ciKlass* k,
2807                                     bool xk,
2808                                     ciObject* o,
2809                                     int offset,
2810                                     int instance_id) {
2811  assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
2812  // Either const_oop() is NULL or else ptr is Constant
2813  assert( (!o && ptr != Constant) || (o && ptr == Constant),
2814          "constant pointers must have a value supplied" );
2815  // Ptr is never Null
2816  assert( ptr != Null, "NULL pointers are not typed" );
2817
2818  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
2819  if (!UseExactTypes)  xk = false;
2820  if (ptr == Constant) {
2821    // Note:  This case includes meta-object constants, such as methods.
2822    xk = true;
2823  } else if (k->is_loaded()) {
2824    ciInstanceKlass* ik = k->as_instance_klass();
2825    if (!xk && ik->is_final())     xk = true;   // no inexact final klass
2826    if (xk && ik->is_interface())  xk = false;  // no exact interface
2827  }
2828
2829  // Now hash this baby
2830  TypeInstPtr *result =
2831    (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
2832
2833  return result;
2834}
2835
2836
2837//------------------------------cast_to_ptr_type-------------------------------
2838const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
2839  if( ptr == _ptr ) return this;
2840  // Reconstruct _sig info here since not a problem with later lazy
2841  // construction, _sig will show up on demand.
2842  return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
2843}
2844
2845
2846//-----------------------------cast_to_exactness-------------------------------
2847const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
2848  if( klass_is_exact == _klass_is_exact ) return this;
2849  if (!UseExactTypes)  return this;
2850  if (!_klass->is_loaded())  return this;
2851  ciInstanceKlass* ik = _klass->as_instance_klass();
2852  if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
2853  if( ik->is_interface() )              return this;  // cannot set xk
2854  return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
2855}
2856
2857//-----------------------------cast_to_instance_id----------------------------
2858const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
2859  if( instance_id == _instance_id ) return this;
2860  return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
2861}
2862
2863//------------------------------xmeet_unloaded---------------------------------
2864// Compute the MEET of two InstPtrs when at least one is unloaded.
2865// Assume classes are different since called after check for same name/class-loader
2866const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
2867    int off = meet_offset(tinst->offset());
2868    PTR ptr = meet_ptr(tinst->ptr());
2869    int instance_id = meet_instance_id(tinst->instance_id());
2870
2871    const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
2872    const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
2873    if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
2874      //
2875      // Meet unloaded class with java/lang/Object
2876      //
2877      // Meet
2878      //          |                     Unloaded Class
2879      //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
2880      //  ===================================================================
2881      //   TOP    | ..........................Unloaded......................|
2882      //  AnyNull |  U-AN    |................Unloaded......................|
2883      // Constant | ... O-NN .................................. |   O-BOT   |
2884      //  NotNull | ... O-NN .................................. |   O-BOT   |
2885      //  BOTTOM  | ........................Object-BOTTOM ..................|
2886      //
2887      assert(loaded->ptr() != TypePtr::Null, "insanity check");
2888      //
2889      if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
2890      else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
2891      else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
2892      else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
2893        if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
2894        else                                      { return TypeInstPtr::NOTNULL; }
2895      }
2896      else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
2897
2898      return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
2899    }
2900
2901    // Both are unloaded, not the same class, not Object
2902    // Or meet unloaded with a different loaded class, not java/lang/Object
2903    if( ptr != TypePtr::BotPTR ) {
2904      return TypeInstPtr::NOTNULL;
2905    }
2906    return TypeInstPtr::BOTTOM;
2907}
2908
2909
2910//------------------------------meet-------------------------------------------
2911// Compute the MEET of two types.  It returns a new Type object.
2912const Type *TypeInstPtr::xmeet( const Type *t ) const {
2913  // Perform a fast test for common case; meeting the same types together.
2914  if( this == t ) return this;  // Meeting same type-rep?
2915
2916  // Current "this->_base" is Pointer
2917  switch (t->base()) {          // switch on original type
2918
2919  case Int:                     // Mixing ints & oops happens when javac
2920  case Long:                    // reuses local variables
2921  case FloatTop:
2922  case FloatCon:
2923  case FloatBot:
2924  case DoubleTop:
2925  case DoubleCon:
2926  case DoubleBot:
2927  case NarrowOop:
2928  case Bottom:                  // Ye Olde Default
2929    return Type::BOTTOM;
2930  case Top:
2931    return this;
2932
2933  default:                      // All else is a mistake
2934    typerr(t);
2935
2936  case MetadataPtr:
2937  case KlassPtr:
2938  case RawPtr: return TypePtr::BOTTOM;
2939
2940  case AryPtr: {                // All arrays inherit from Object class
2941    const TypeAryPtr *tp = t->is_aryptr();
2942    int offset = meet_offset(tp->offset());
2943    PTR ptr = meet_ptr(tp->ptr());
2944    int instance_id = meet_instance_id(tp->instance_id());
2945    switch (ptr) {
2946    case TopPTR:
2947    case AnyNull:                // Fall 'down' to dual of object klass
2948      if (klass()->equals(ciEnv::current()->Object_klass())) {
2949        return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2950      } else {
2951        // cannot subclass, so the meet has to fall badly below the centerline
2952        ptr = NotNull;
2953        instance_id = InstanceBot;
2954        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
2955      }
2956    case Constant:
2957    case NotNull:
2958    case BotPTR:                // Fall down to object klass
2959      // LCA is object_klass, but if we subclass from the top we can do better
2960      if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
2961        // If 'this' (InstPtr) is above the centerline and it is Object class
2962        // then we can subclass in the Java class hierarchy.
2963        if (klass()->equals(ciEnv::current()->Object_klass())) {
2964          // that is, tp's array type is a subtype of my klass
2965          return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
2966                                  tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2967        }
2968      }
2969      // The other case cannot happen, since I cannot be a subtype of an array.
2970      // The meet falls down to Object class below centerline.
2971      if( ptr == Constant )
2972         ptr = NotNull;
2973      instance_id = InstanceBot;
2974      return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
2975    default: typerr(t);
2976    }
2977  }
2978
2979  case OopPtr: {                // Meeting to OopPtrs
2980    // Found a OopPtr type vs self-InstPtr type
2981    const TypeOopPtr *tp = t->is_oopptr();
2982    int offset = meet_offset(tp->offset());
2983    PTR ptr = meet_ptr(tp->ptr());
2984    switch (tp->ptr()) {
2985    case TopPTR:
2986    case AnyNull: {
2987      int instance_id = meet_instance_id(InstanceTop);
2988      return make(ptr, klass(), klass_is_exact(),
2989                  (ptr == Constant ? const_oop() : NULL), offset, instance_id);
2990    }
2991    case NotNull:
2992    case BotPTR: {
2993      int instance_id = meet_instance_id(tp->instance_id());
2994      return TypeOopPtr::make(ptr, offset, instance_id);
2995    }
2996    default: typerr(t);
2997    }
2998  }
2999
3000  case AnyPtr: {                // Meeting to AnyPtrs
3001    // Found an AnyPtr type vs self-InstPtr type
3002    const TypePtr *tp = t->is_ptr();
3003    int offset = meet_offset(tp->offset());
3004    PTR ptr = meet_ptr(tp->ptr());
3005    switch (tp->ptr()) {
3006    case Null:
3007      if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
3008      // else fall through to AnyNull
3009    case TopPTR:
3010    case AnyNull: {
3011      int instance_id = meet_instance_id(InstanceTop);
3012      return make( ptr, klass(), klass_is_exact(),
3013                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
3014    }
3015    case NotNull:
3016    case BotPTR:
3017      return TypePtr::make( AnyPtr, ptr, offset );
3018    default: typerr(t);
3019    }
3020  }
3021
3022  /*
3023                 A-top         }
3024               /   |   \       }  Tops
3025           B-top A-any C-top   }
3026              | /  |  \ |      }  Any-nulls
3027           B-any   |   C-any   }
3028              |    |    |
3029           B-con A-con C-con   } constants; not comparable across classes
3030              |    |    |
3031           B-not   |   C-not   }
3032              | \  |  / |      }  not-nulls
3033           B-bot A-not C-bot   }
3034               \   |   /       }  Bottoms
3035                 A-bot         }
3036  */
3037
3038  case InstPtr: {                // Meeting 2 Oops?
3039    // Found an InstPtr sub-type vs self-InstPtr type
3040    const TypeInstPtr *tinst = t->is_instptr();
3041    int off = meet_offset( tinst->offset() );
3042    PTR ptr = meet_ptr( tinst->ptr() );
3043    int instance_id = meet_instance_id(tinst->instance_id());
3044
3045    // Check for easy case; klasses are equal (and perhaps not loaded!)
3046    // If we have constants, then we created oops so classes are loaded
3047    // and we can handle the constants further down.  This case handles
3048    // both-not-loaded or both-loaded classes
3049    if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3050      return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
3051    }
3052
3053    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3054    ciKlass* tinst_klass = tinst->klass();
3055    ciKlass* this_klass  = this->klass();
3056    bool tinst_xk = tinst->klass_is_exact();
3057    bool this_xk  = this->klass_is_exact();
3058    if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3059      // One of these classes has not been loaded
3060      const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3061#ifndef PRODUCT
3062      if( PrintOpto && Verbose ) {
3063        tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3064        tty->print("  this == "); this->dump(); tty->cr();
3065        tty->print(" tinst == "); tinst->dump(); tty->cr();
3066      }
3067#endif
3068      return unloaded_meet;
3069    }
3070
3071    // Handle mixing oops and interfaces first.
3072    if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
3073      ciKlass *tmp = tinst_klass; // Swap interface around
3074      tinst_klass = this_klass;
3075      this_klass = tmp;
3076      bool tmp2 = tinst_xk;
3077      tinst_xk = this_xk;
3078      this_xk = tmp2;
3079    }
3080    if (tinst_klass->is_interface() &&
3081        !(this_klass->is_interface() ||
3082          // Treat java/lang/Object as an honorary interface,
3083          // because we need a bottom for the interface hierarchy.
3084          this_klass == ciEnv::current()->Object_klass())) {
3085      // Oop meets interface!
3086
3087      // See if the oop subtypes (implements) interface.
3088      ciKlass *k;
3089      bool xk;
3090      if( this_klass->is_subtype_of( tinst_klass ) ) {
3091        // Oop indeed subtypes.  Now keep oop or interface depending
3092        // on whether we are both above the centerline or either is
3093        // below the centerline.  If we are on the centerline
3094        // (e.g., Constant vs. AnyNull interface), use the constant.
3095        k  = below_centerline(ptr) ? tinst_klass : this_klass;
3096        // If we are keeping this_klass, keep its exactness too.
3097        xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3098      } else {                  // Does not implement, fall to Object
3099        // Oop does not implement interface, so mixing falls to Object
3100        // just like the verifier does (if both are above the
3101        // centerline fall to interface)
3102        k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3103        xk = above_centerline(ptr) ? tinst_xk : false;
3104        // Watch out for Constant vs. AnyNull interface.
3105        if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3106        instance_id = InstanceBot;
3107      }
3108      ciObject* o = NULL;  // the Constant value, if any
3109      if (ptr == Constant) {
3110        // Find out which constant.
3111        o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3112      }
3113      return make( ptr, k, xk, o, off, instance_id );
3114    }
3115
3116    // Either oop vs oop or interface vs interface or interface vs Object
3117
3118    // !!! Here's how the symmetry requirement breaks down into invariants:
3119    // If we split one up & one down AND they subtype, take the down man.
3120    // If we split one up & one down AND they do NOT subtype, "fall hard".
3121    // If both are up and they subtype, take the subtype class.
3122    // If both are up and they do NOT subtype, "fall hard".
3123    // If both are down and they subtype, take the supertype class.
3124    // If both are down and they do NOT subtype, "fall hard".
3125    // Constants treated as down.
3126
3127    // Now, reorder the above list; observe that both-down+subtype is also
3128    // "fall hard"; "fall hard" becomes the default case:
3129    // If we split one up & one down AND they subtype, take the down man.
3130    // If both are up and they subtype, take the subtype class.
3131
3132    // If both are down and they subtype, "fall hard".
3133    // If both are down and they do NOT subtype, "fall hard".
3134    // If both are up and they do NOT subtype, "fall hard".
3135    // If we split one up & one down AND they do NOT subtype, "fall hard".
3136
3137    // If a proper subtype is exact, and we return it, we return it exactly.
3138    // If a proper supertype is exact, there can be no subtyping relationship!
3139    // If both types are equal to the subtype, exactness is and-ed below the
3140    // centerline and or-ed above it.  (N.B. Constants are always exact.)
3141
3142    // Check for subtyping:
3143    ciKlass *subtype = NULL;
3144    bool subtype_exact = false;
3145    if( tinst_klass->equals(this_klass) ) {
3146      subtype = this_klass;
3147      subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3148    } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3149      subtype = this_klass;     // Pick subtyping class
3150      subtype_exact = this_xk;
3151    } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3152      subtype = tinst_klass;    // Pick subtyping class
3153      subtype_exact = tinst_xk;
3154    }
3155
3156    if( subtype ) {
3157      if( above_centerline(ptr) ) { // both are up?
3158        this_klass = tinst_klass = subtype;
3159        this_xk = tinst_xk = subtype_exact;
3160      } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3161        this_klass = tinst_klass; // tinst is down; keep down man
3162        this_xk = tinst_xk;
3163      } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3164        tinst_klass = this_klass; // this is down; keep down man
3165        tinst_xk = this_xk;
3166      } else {
3167        this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3168      }
3169    }
3170
3171    // Check for classes now being equal
3172    if (tinst_klass->equals(this_klass)) {
3173      // If the klasses are equal, the constants may still differ.  Fall to
3174      // NotNull if they do (neither constant is NULL; that is a special case
3175      // handled elsewhere).
3176      ciObject* o = NULL;             // Assume not constant when done
3177      ciObject* this_oop  = const_oop();
3178      ciObject* tinst_oop = tinst->const_oop();
3179      if( ptr == Constant ) {
3180        if (this_oop != NULL && tinst_oop != NULL &&
3181            this_oop->equals(tinst_oop) )
3182          o = this_oop;
3183        else if (above_centerline(this ->_ptr))
3184          o = tinst_oop;
3185        else if (above_centerline(tinst ->_ptr))
3186          o = this_oop;
3187        else
3188          ptr = NotNull;
3189      }
3190      return make( ptr, this_klass, this_xk, o, off, instance_id );
3191    } // Else classes are not equal
3192
3193    // Since klasses are different, we require a LCA in the Java
3194    // class hierarchy - which means we have to fall to at least NotNull.
3195    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3196      ptr = NotNull;
3197    instance_id = InstanceBot;
3198
3199    // Now we find the LCA of Java classes
3200    ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3201    return make( ptr, k, false, NULL, off, instance_id );
3202  } // End of case InstPtr
3203
3204  } // End of switch
3205  return this;                  // Return the double constant
3206}
3207
3208
3209//------------------------java_mirror_type--------------------------------------
3210ciType* TypeInstPtr::java_mirror_type() const {
3211  // must be a singleton type
3212  if( const_oop() == NULL )  return NULL;
3213
3214  // must be of type java.lang.Class
3215  if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3216
3217  return const_oop()->as_instance()->java_mirror_type();
3218}
3219
3220
3221//------------------------------xdual------------------------------------------
3222// Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3223// inheritance mechanism.
3224const Type *TypeInstPtr::xdual() const {
3225  return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
3226}
3227
3228//------------------------------eq---------------------------------------------
3229// Structural equality check for Type representations
3230bool TypeInstPtr::eq( const Type *t ) const {
3231  const TypeInstPtr *p = t->is_instptr();
3232  return
3233    klass()->equals(p->klass()) &&
3234    TypeOopPtr::eq(p);          // Check sub-type stuff
3235}
3236
3237//------------------------------hash-------------------------------------------
3238// Type-specific hashing function.
3239int TypeInstPtr::hash(void) const {
3240  int hash = klass()->hash() + TypeOopPtr::hash();
3241  return hash;
3242}
3243
3244//------------------------------dump2------------------------------------------
3245// Dump oop Type
3246#ifndef PRODUCT
3247void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3248  // Print the name of the klass.
3249  klass()->print_name_on(st);
3250
3251  switch( _ptr ) {
3252  case Constant:
3253    // TO DO: Make CI print the hex address of the underlying oop.
3254    if (WizardMode || Verbose) {
3255      const_oop()->print_oop(st);
3256    }
3257  case BotPTR:
3258    if (!WizardMode && !Verbose) {
3259      if( _klass_is_exact ) st->print(":exact");
3260      break;
3261    }
3262  case TopPTR:
3263  case AnyNull:
3264  case NotNull:
3265    st->print(":%s", ptr_msg[_ptr]);
3266    if( _klass_is_exact ) st->print(":exact");
3267    break;
3268  }
3269
3270  if( _offset ) {               // Dump offset, if any
3271    if( _offset == OffsetBot )      st->print("+any");
3272    else if( _offset == OffsetTop ) st->print("+unknown");
3273    else st->print("+%d", _offset);
3274  }
3275
3276  st->print(" *");
3277  if (_instance_id == InstanceTop)
3278    st->print(",iid=top");
3279  else if (_instance_id != InstanceBot)
3280    st->print(",iid=%d",_instance_id);
3281}
3282#endif
3283
3284//------------------------------add_offset-------------------------------------
3285const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
3286  return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
3287}
3288
3289//=============================================================================
3290// Convenience common pre-built types.
3291const TypeAryPtr *TypeAryPtr::RANGE;
3292const TypeAryPtr *TypeAryPtr::OOPS;
3293const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3294const TypeAryPtr *TypeAryPtr::BYTES;
3295const TypeAryPtr *TypeAryPtr::SHORTS;
3296const TypeAryPtr *TypeAryPtr::CHARS;
3297const TypeAryPtr *TypeAryPtr::INTS;
3298const TypeAryPtr *TypeAryPtr::LONGS;
3299const TypeAryPtr *TypeAryPtr::FLOATS;
3300const TypeAryPtr *TypeAryPtr::DOUBLES;
3301
3302//------------------------------make-------------------------------------------
3303const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3304  assert(!(k == NULL && ary->_elem->isa_int()),
3305         "integral arrays must be pre-equipped with a class");
3306  if (!xk)  xk = ary->ary_must_be_exact();
3307  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3308  if (!UseExactTypes)  xk = (ptr == Constant);
3309  return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
3310}
3311
3312//------------------------------make-------------------------------------------
3313const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3314  assert(!(k == NULL && ary->_elem->isa_int()),
3315         "integral arrays must be pre-equipped with a class");
3316  assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3317  if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3318  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3319  if (!UseExactTypes)  xk = (ptr == Constant);
3320  return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
3321}
3322
3323//------------------------------cast_to_ptr_type-------------------------------
3324const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3325  if( ptr == _ptr ) return this;
3326  return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
3327}
3328
3329
3330//-----------------------------cast_to_exactness-------------------------------
3331const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3332  if( klass_is_exact == _klass_is_exact ) return this;
3333  if (!UseExactTypes)  return this;
3334  if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3335  return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
3336}
3337
3338//-----------------------------cast_to_instance_id----------------------------
3339const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3340  if( instance_id == _instance_id ) return this;
3341  return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
3342}
3343
3344//-----------------------------narrow_size_type-------------------------------
3345// Local cache for arrayOopDesc::max_array_length(etype),
3346// which is kind of slow (and cached elsewhere by other users).
3347static jint max_array_length_cache[T_CONFLICT+1];
3348static jint max_array_length(BasicType etype) {
3349  jint& cache = max_array_length_cache[etype];
3350  jint res = cache;
3351  if (res == 0) {
3352    switch (etype) {
3353    case T_NARROWOOP:
3354      etype = T_OBJECT;
3355      break;
3356    case T_CONFLICT:
3357    case T_ILLEGAL:
3358    case T_VOID:
3359      etype = T_BYTE;           // will produce conservatively high value
3360    }
3361    cache = res = arrayOopDesc::max_array_length(etype);
3362  }
3363  return res;
3364}
3365
3366// Narrow the given size type to the index range for the given array base type.
3367// Return NULL if the resulting int type becomes empty.
3368const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3369  jint hi = size->_hi;
3370  jint lo = size->_lo;
3371  jint min_lo = 0;
3372  jint max_hi = max_array_length(elem()->basic_type());
3373  //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3374  bool chg = false;
3375  if (lo < min_lo) { lo = min_lo; chg = true; }
3376  if (hi > max_hi) { hi = max_hi; chg = true; }
3377  // Negative length arrays will produce weird intermediate dead fast-path code
3378  if (lo > hi)
3379    return TypeInt::ZERO;
3380  if (!chg)
3381    return size;
3382  return TypeInt::make(lo, hi, Type::WidenMin);
3383}
3384
3385//-------------------------------cast_to_size----------------------------------
3386const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3387  assert(new_size != NULL, "");
3388  new_size = narrow_size_type(new_size);
3389  if (new_size == size())  return this;
3390  const TypeAry* new_ary = TypeAry::make(elem(), new_size);
3391  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3392}
3393
3394
3395//------------------------------eq---------------------------------------------
3396// Structural equality check for Type representations
3397bool TypeAryPtr::eq( const Type *t ) const {
3398  const TypeAryPtr *p = t->is_aryptr();
3399  return
3400    _ary == p->_ary &&  // Check array
3401    TypeOopPtr::eq(p);  // Check sub-parts
3402}
3403
3404//------------------------------hash-------------------------------------------
3405// Type-specific hashing function.
3406int TypeAryPtr::hash(void) const {
3407  return (intptr_t)_ary + TypeOopPtr::hash();
3408}
3409
3410//------------------------------meet-------------------------------------------
3411// Compute the MEET of two types.  It returns a new Type object.
3412const Type *TypeAryPtr::xmeet( const Type *t ) const {
3413  // Perform a fast test for common case; meeting the same types together.
3414  if( this == t ) return this;  // Meeting same type-rep?
3415  // Current "this->_base" is Pointer
3416  switch (t->base()) {          // switch on original type
3417
3418  // Mixing ints & oops happens when javac reuses local variables
3419  case Int:
3420  case Long:
3421  case FloatTop:
3422  case FloatCon:
3423  case FloatBot:
3424  case DoubleTop:
3425  case DoubleCon:
3426  case DoubleBot:
3427  case NarrowOop:
3428  case Bottom:                  // Ye Olde Default
3429    return Type::BOTTOM;
3430  case Top:
3431    return this;
3432
3433  default:                      // All else is a mistake
3434    typerr(t);
3435
3436  case OopPtr: {                // Meeting to OopPtrs
3437    // Found a OopPtr type vs self-AryPtr type
3438    const TypeOopPtr *tp = t->is_oopptr();
3439    int offset = meet_offset(tp->offset());
3440    PTR ptr = meet_ptr(tp->ptr());
3441    switch (tp->ptr()) {
3442    case TopPTR:
3443    case AnyNull: {
3444      int instance_id = meet_instance_id(InstanceTop);
3445      return make(ptr, (ptr == Constant ? const_oop() : NULL),
3446                  _ary, _klass, _klass_is_exact, offset, instance_id);
3447    }
3448    case BotPTR:
3449    case NotNull: {
3450      int instance_id = meet_instance_id(tp->instance_id());
3451      return TypeOopPtr::make(ptr, offset, instance_id);
3452    }
3453    default: ShouldNotReachHere();
3454    }
3455  }
3456
3457  case AnyPtr: {                // Meeting two AnyPtrs
3458    // Found an AnyPtr type vs self-AryPtr type
3459    const TypePtr *tp = t->is_ptr();
3460    int offset = meet_offset(tp->offset());
3461    PTR ptr = meet_ptr(tp->ptr());
3462    switch (tp->ptr()) {
3463    case TopPTR:
3464      return this;
3465    case BotPTR:
3466    case NotNull:
3467      return TypePtr::make(AnyPtr, ptr, offset);
3468    case Null:
3469      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3470      // else fall through to AnyNull
3471    case AnyNull: {
3472      int instance_id = meet_instance_id(InstanceTop);
3473      return make( ptr, (ptr == Constant ? const_oop() : NULL),
3474                  _ary, _klass, _klass_is_exact, offset, instance_id);
3475    }
3476    default: ShouldNotReachHere();
3477    }
3478  }
3479
3480  case MetadataPtr:
3481  case KlassPtr:
3482  case RawPtr: return TypePtr::BOTTOM;
3483
3484  case AryPtr: {                // Meeting 2 references?
3485    const TypeAryPtr *tap = t->is_aryptr();
3486    int off = meet_offset(tap->offset());
3487    const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
3488    PTR ptr = meet_ptr(tap->ptr());
3489    int instance_id = meet_instance_id(tap->instance_id());
3490    ciKlass* lazy_klass = NULL;
3491    if (tary->_elem->isa_int()) {
3492      // Integral array element types have irrelevant lattice relations.
3493      // It is the klass that determines array layout, not the element type.
3494      if (_klass == NULL)
3495        lazy_klass = tap->_klass;
3496      else if (tap->_klass == NULL || tap->_klass == _klass) {
3497        lazy_klass = _klass;
3498      } else {
3499        // Something like byte[int+] meets char[int+].
3500        // This must fall to bottom, not (int[-128..65535])[int+].
3501        instance_id = InstanceBot;
3502        tary = TypeAry::make(Type::BOTTOM, tary->_size);
3503      }
3504    } else // Non integral arrays.
3505    // Must fall to bottom if exact klasses in upper lattice
3506    // are not equal or super klass is exact.
3507    if ( above_centerline(ptr) && klass() != tap->klass() &&
3508         // meet with top[] and bottom[] are processed further down:
3509         tap ->_klass != NULL  && this->_klass != NULL   &&
3510         // both are exact and not equal:
3511        ((tap ->_klass_is_exact && this->_klass_is_exact) ||
3512         // 'tap'  is exact and super or unrelated:
3513         (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
3514         // 'this' is exact and super or unrelated:
3515         (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
3516      tary = TypeAry::make(Type::BOTTOM, tary->_size);
3517      return make( NotNull, NULL, tary, lazy_klass, false, off, InstanceBot );
3518    }
3519
3520    bool xk = false;
3521    switch (tap->ptr()) {
3522    case AnyNull:
3523    case TopPTR:
3524      // Compute new klass on demand, do not use tap->_klass
3525      xk = (tap->_klass_is_exact | this->_klass_is_exact);
3526      return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
3527    case Constant: {
3528      ciObject* o = const_oop();
3529      if( _ptr == Constant ) {
3530        if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3531          xk = (klass() == tap->klass());
3532          ptr = NotNull;
3533          o = NULL;
3534          instance_id = InstanceBot;
3535        } else {
3536          xk = true;
3537        }
3538      } else if( above_centerline(_ptr) ) {
3539        o = tap->const_oop();
3540        xk = true;
3541      } else {
3542        // Only precise for identical arrays
3543        xk = this->_klass_is_exact && (klass() == tap->klass());
3544      }
3545      return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
3546    }
3547    case NotNull:
3548    case BotPTR:
3549      // Compute new klass on demand, do not use tap->_klass
3550      if (above_centerline(this->_ptr))
3551            xk = tap->_klass_is_exact;
3552      else if (above_centerline(tap->_ptr))
3553            xk = this->_klass_is_exact;
3554      else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3555              (klass() == tap->klass()); // Only precise for identical arrays
3556      return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
3557    default: ShouldNotReachHere();
3558    }
3559  }
3560
3561  // All arrays inherit from Object class
3562  case InstPtr: {
3563    const TypeInstPtr *tp = t->is_instptr();
3564    int offset = meet_offset(tp->offset());
3565    PTR ptr = meet_ptr(tp->ptr());
3566    int instance_id = meet_instance_id(tp->instance_id());
3567    switch (ptr) {
3568    case TopPTR:
3569    case AnyNull:                // Fall 'down' to dual of object klass
3570      if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3571        return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3572      } else {
3573        // cannot subclass, so the meet has to fall badly below the centerline
3574        ptr = NotNull;
3575        instance_id = InstanceBot;
3576        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3577      }
3578    case Constant:
3579    case NotNull:
3580    case BotPTR:                // Fall down to object klass
3581      // LCA is object_klass, but if we subclass from the top we can do better
3582      if (above_centerline(tp->ptr())) {
3583        // If 'tp'  is above the centerline and it is Object class
3584        // then we can subclass in the Java class hierarchy.
3585        if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3586          // that is, my array type is a subtype of 'tp' klass
3587          return make( ptr, (ptr == Constant ? const_oop() : NULL),
3588                       _ary, _klass, _klass_is_exact, offset, instance_id );
3589        }
3590      }
3591      // The other case cannot happen, since t cannot be a subtype of an array.
3592      // The meet falls down to Object class below centerline.
3593      if( ptr == Constant )
3594         ptr = NotNull;
3595      instance_id = InstanceBot;
3596      return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3597    default: typerr(t);
3598    }
3599  }
3600  }
3601  return this;                  // Lint noise
3602}
3603
3604//------------------------------xdual------------------------------------------
3605// Dual: compute field-by-field dual
3606const Type *TypeAryPtr::xdual() const {
3607  return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
3608}
3609
3610//----------------------interface_vs_oop---------------------------------------
3611#ifdef ASSERT
3612bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3613  const TypeAryPtr* t_aryptr = t->isa_aryptr();
3614  if (t_aryptr) {
3615    return _ary->interface_vs_oop(t_aryptr->_ary);
3616  }
3617  return false;
3618}
3619#endif
3620
3621//------------------------------dump2------------------------------------------
3622#ifndef PRODUCT
3623void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3624  _ary->dump2(d,depth,st);
3625  switch( _ptr ) {
3626  case Constant:
3627    const_oop()->print(st);
3628    break;
3629  case BotPTR:
3630    if (!WizardMode && !Verbose) {
3631      if( _klass_is_exact ) st->print(":exact");
3632      break;
3633    }
3634  case TopPTR:
3635  case AnyNull:
3636  case NotNull:
3637    st->print(":%s", ptr_msg[_ptr]);
3638    if( _klass_is_exact ) st->print(":exact");
3639    break;
3640  }
3641
3642  if( _offset != 0 ) {
3643    int header_size = objArrayOopDesc::header_size() * wordSize;
3644    if( _offset == OffsetTop )       st->print("+undefined");
3645    else if( _offset == OffsetBot )  st->print("+any");
3646    else if( _offset < header_size ) st->print("+%d", _offset);
3647    else {
3648      BasicType basic_elem_type = elem()->basic_type();
3649      int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3650      int elem_size = type2aelembytes(basic_elem_type);
3651      st->print("[%d]", (_offset - array_base)/elem_size);
3652    }
3653  }
3654  st->print(" *");
3655  if (_instance_id == InstanceTop)
3656    st->print(",iid=top");
3657  else if (_instance_id != InstanceBot)
3658    st->print(",iid=%d",_instance_id);
3659}
3660#endif
3661
3662bool TypeAryPtr::empty(void) const {
3663  if (_ary->empty())       return true;
3664  return TypeOopPtr::empty();
3665}
3666
3667//------------------------------add_offset-------------------------------------
3668const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
3669  return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
3670}
3671
3672
3673//=============================================================================
3674const TypeNarrowOop *TypeNarrowOop::BOTTOM;
3675const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
3676
3677
3678const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
3679  return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
3680}
3681
3682//------------------------------hash-------------------------------------------
3683// Type-specific hashing function.
3684int TypeNarrowOop::hash(void) const {
3685  return _ptrtype->hash() + 7;
3686}
3687
3688
3689bool TypeNarrowOop::eq( const Type *t ) const {
3690  const TypeNarrowOop* tc = t->isa_narrowoop();
3691  if (tc != NULL) {
3692    if (_ptrtype->base() != tc->_ptrtype->base()) {
3693      return false;
3694    }
3695    return tc->_ptrtype->eq(_ptrtype);
3696  }
3697  return false;
3698}
3699
3700bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
3701  return _ptrtype->singleton();
3702}
3703
3704bool TypeNarrowOop::empty(void) const {
3705  return _ptrtype->empty();
3706}
3707
3708//------------------------------xmeet------------------------------------------
3709// Compute the MEET of two types.  It returns a new Type object.
3710const Type *TypeNarrowOop::xmeet( const Type *t ) const {
3711  // Perform a fast test for common case; meeting the same types together.
3712  if( this == t ) return this;  // Meeting same type-rep?
3713
3714
3715  // Current "this->_base" is OopPtr
3716  switch (t->base()) {          // switch on original type
3717
3718  case Int:                     // Mixing ints & oops happens when javac
3719  case Long:                    // reuses local variables
3720  case FloatTop:
3721  case FloatCon:
3722  case FloatBot:
3723  case DoubleTop:
3724  case DoubleCon:
3725  case DoubleBot:
3726  case AnyPtr:
3727  case RawPtr:
3728  case OopPtr:
3729  case InstPtr:
3730  case AryPtr:
3731  case MetadataPtr:
3732  case KlassPtr:
3733
3734  case Bottom:                  // Ye Olde Default
3735    return Type::BOTTOM;
3736  case Top:
3737    return this;
3738
3739  case NarrowOop: {
3740    const Type* result = _ptrtype->xmeet(t->make_ptr());
3741    if (result->isa_ptr()) {
3742      return TypeNarrowOop::make(result->is_ptr());
3743    }
3744    return result;
3745  }
3746
3747  default:                      // All else is a mistake
3748    typerr(t);
3749
3750  } // End of switch
3751
3752  return this;
3753}
3754
3755const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
3756  const TypePtr* odual = _ptrtype->dual()->is_ptr();
3757  return new TypeNarrowOop(odual);
3758}
3759
3760const Type *TypeNarrowOop::filter( const Type *kills ) const {
3761  if (kills->isa_narrowoop()) {
3762    const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
3763    if (ft->empty())
3764      return Type::TOP;           // Canonical empty value
3765    if (ft->isa_ptr()) {
3766      return make(ft->isa_ptr());
3767    }
3768    return ft;
3769  } else if (kills->isa_ptr()) {
3770    const Type* ft = _ptrtype->join(kills);
3771    if (ft->empty())
3772      return Type::TOP;           // Canonical empty value
3773    return ft;
3774  } else {
3775    return Type::TOP;
3776  }
3777}
3778
3779
3780intptr_t TypeNarrowOop::get_con() const {
3781  return _ptrtype->get_con();
3782}
3783
3784#ifndef PRODUCT
3785void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
3786  st->print("narrowoop: ");
3787  _ptrtype->dump2(d, depth, st);
3788}
3789#endif
3790
3791
3792
3793//------------------------------eq---------------------------------------------
3794// Structural equality check for Type representations
3795bool TypeMetadataPtr::eq( const Type *t ) const {
3796  const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
3797  ciMetadata* one = metadata();
3798  ciMetadata* two = a->metadata();
3799  if (one == NULL || two == NULL) {
3800    return (one == two) && TypePtr::eq(t);
3801  } else {
3802    return one->equals(two) && TypePtr::eq(t);
3803  }
3804}
3805
3806//------------------------------hash-------------------------------------------
3807// Type-specific hashing function.
3808int TypeMetadataPtr::hash(void) const {
3809  return
3810    (metadata() ? metadata()->hash() : 0) +
3811    TypePtr::hash();
3812}
3813
3814//------------------------------singleton--------------------------------------
3815// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3816// constants
3817bool TypeMetadataPtr::singleton(void) const {
3818  // detune optimizer to not generate constant metadta + constant offset as a constant!
3819  // TopPTR, Null, AnyNull, Constant are all singletons
3820  return (_offset == 0) && !below_centerline(_ptr);
3821}
3822
3823//------------------------------add_offset-------------------------------------
3824const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
3825  return make( _ptr, _metadata, xadd_offset(offset));
3826}
3827
3828//-----------------------------filter------------------------------------------
3829// Do not allow interface-vs.-noninterface joins to collapse to top.
3830const Type *TypeMetadataPtr::filter( const Type *kills ) const {
3831  const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
3832  if (ft == NULL || ft->empty())
3833    return Type::TOP;           // Canonical empty value
3834  return ft;
3835}
3836
3837 //------------------------------get_con----------------------------------------
3838intptr_t TypeMetadataPtr::get_con() const {
3839  assert( _ptr == Null || _ptr == Constant, "" );
3840  assert( _offset >= 0, "" );
3841
3842  if (_offset != 0) {
3843    // After being ported to the compiler interface, the compiler no longer
3844    // directly manipulates the addresses of oops.  Rather, it only has a pointer
3845    // to a handle at compile time.  This handle is embedded in the generated
3846    // code and dereferenced at the time the nmethod is made.  Until that time,
3847    // it is not reasonable to do arithmetic with the addresses of oops (we don't
3848    // have access to the addresses!).  This does not seem to currently happen,
3849    // but this assertion here is to help prevent its occurence.
3850    tty->print_cr("Found oop constant with non-zero offset");
3851    ShouldNotReachHere();
3852  }
3853
3854  return (intptr_t)metadata()->constant_encoding();
3855}
3856
3857//------------------------------cast_to_ptr_type-------------------------------
3858const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
3859  if( ptr == _ptr ) return this;
3860  return make(ptr, metadata(), _offset);
3861}
3862
3863//------------------------------meet-------------------------------------------
3864// Compute the MEET of two types.  It returns a new Type object.
3865const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
3866  // Perform a fast test for common case; meeting the same types together.
3867  if( this == t ) return this;  // Meeting same type-rep?
3868
3869  // Current "this->_base" is OopPtr
3870  switch (t->base()) {          // switch on original type
3871
3872  case Int:                     // Mixing ints & oops happens when javac
3873  case Long:                    // reuses local variables
3874  case FloatTop:
3875  case FloatCon:
3876  case FloatBot:
3877  case DoubleTop:
3878  case DoubleCon:
3879  case DoubleBot:
3880  case NarrowOop:
3881  case Bottom:                  // Ye Olde Default
3882    return Type::BOTTOM;
3883  case Top:
3884    return this;
3885
3886  default:                      // All else is a mistake
3887    typerr(t);
3888
3889  case AnyPtr: {
3890    // Found an AnyPtr type vs self-OopPtr type
3891    const TypePtr *tp = t->is_ptr();
3892    int offset = meet_offset(tp->offset());
3893    PTR ptr = meet_ptr(tp->ptr());
3894    switch (tp->ptr()) {
3895    case Null:
3896      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
3897      // else fall through:
3898    case TopPTR:
3899    case AnyNull: {
3900      return make(ptr, NULL, offset);
3901    }
3902    case BotPTR:
3903    case NotNull:
3904      return TypePtr::make(AnyPtr, ptr, offset);
3905    default: typerr(t);
3906    }
3907  }
3908
3909  case RawPtr:
3910  case KlassPtr:
3911  case OopPtr:
3912  case InstPtr:
3913  case AryPtr:
3914    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3915
3916  case MetadataPtr:
3917    ShouldNotReachHere();
3918    break;
3919
3920  } // End of switch
3921  return this;                  // Return the double constant
3922}
3923
3924
3925//------------------------------xdual------------------------------------------
3926// Dual of a pure metadata pointer.
3927const Type *TypeMetadataPtr::xdual() const {
3928  return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
3929}
3930
3931//------------------------------dump2------------------------------------------
3932#ifndef PRODUCT
3933void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3934  st->print("metadataptr:%s", ptr_msg[_ptr]);
3935  if( metadata() ) st->print(INTPTR_FORMAT, metadata());
3936  switch( _offset ) {
3937  case OffsetTop: st->print("+top"); break;
3938  case OffsetBot: st->print("+any"); break;
3939  case         0: break;
3940  default:        st->print("+%d",_offset); break;
3941  }
3942}
3943#endif
3944
3945
3946//=============================================================================
3947// Convenience common pre-built type.
3948const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
3949
3950TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
3951  TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
3952}
3953
3954const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
3955  return make(Constant, m, 0);
3956}
3957const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
3958  return make(Constant, m, 0);
3959}
3960
3961//------------------------------make-------------------------------------------
3962// Create a meta data constant
3963const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
3964  assert(m == NULL || !m->is_klass(), "wrong type");
3965  return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
3966}
3967
3968
3969//=============================================================================
3970// Convenience common pre-built types.
3971
3972// Not-null object klass or below
3973const TypeKlassPtr *TypeKlassPtr::OBJECT;
3974const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
3975
3976//------------------------------TypeKlassPtr-----------------------------------
3977TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
3978  : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
3979}
3980
3981//------------------------------make-------------------------------------------
3982// ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
3983const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
3984  assert( k != NULL, "Expect a non-NULL klass");
3985  assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
3986  TypeKlassPtr *r =
3987    (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
3988
3989  return r;
3990}
3991
3992//------------------------------eq---------------------------------------------
3993// Structural equality check for Type representations
3994bool TypeKlassPtr::eq( const Type *t ) const {
3995  const TypeKlassPtr *p = t->is_klassptr();
3996  return
3997    klass()->equals(p->klass()) &&
3998    TypePtr::eq(p);
3999}
4000
4001//------------------------------hash-------------------------------------------
4002// Type-specific hashing function.
4003int TypeKlassPtr::hash(void) const {
4004  return klass()->hash() + TypePtr::hash();
4005}
4006
4007//------------------------------singleton--------------------------------------
4008// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4009// constants
4010bool TypeKlassPtr::singleton(void) const {
4011  // detune optimizer to not generate constant klass + constant offset as a constant!
4012  // TopPTR, Null, AnyNull, Constant are all singletons
4013  return (_offset == 0) && !below_centerline(_ptr);
4014}
4015
4016//----------------------compute_klass------------------------------------------
4017// Compute the defining klass for this class
4018ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4019  // Compute _klass based on element type.
4020  ciKlass* k_ary = NULL;
4021  const TypeInstPtr *tinst;
4022  const TypeAryPtr *tary;
4023  const Type* el = elem();
4024  if (el->isa_narrowoop()) {
4025    el = el->make_ptr();
4026  }
4027
4028  // Get element klass
4029  if ((tinst = el->isa_instptr()) != NULL) {
4030    // Compute array klass from element klass
4031    k_ary = ciObjArrayKlass::make(tinst->klass());
4032  } else if ((tary = el->isa_aryptr()) != NULL) {
4033    // Compute array klass from element klass
4034    ciKlass* k_elem = tary->klass();
4035    // If element type is something like bottom[], k_elem will be null.
4036    if (k_elem != NULL)
4037      k_ary = ciObjArrayKlass::make(k_elem);
4038  } else if ((el->base() == Type::Top) ||
4039             (el->base() == Type::Bottom)) {
4040    // element type of Bottom occurs from meet of basic type
4041    // and object; Top occurs when doing join on Bottom.
4042    // Leave k_ary at NULL.
4043  } else {
4044    // Cannot compute array klass directly from basic type,
4045    // since subtypes of TypeInt all have basic type T_INT.
4046#ifdef ASSERT
4047    if (verify && el->isa_int()) {
4048      // Check simple cases when verifying klass.
4049      BasicType bt = T_ILLEGAL;
4050      if (el == TypeInt::BYTE) {
4051        bt = T_BYTE;
4052      } else if (el == TypeInt::SHORT) {
4053        bt = T_SHORT;
4054      } else if (el == TypeInt::CHAR) {
4055        bt = T_CHAR;
4056      } else if (el == TypeInt::INT) {
4057        bt = T_INT;
4058      } else {
4059        return _klass; // just return specified klass
4060      }
4061      return ciTypeArrayKlass::make(bt);
4062    }
4063#endif
4064    assert(!el->isa_int(),
4065           "integral arrays must be pre-equipped with a class");
4066    // Compute array klass directly from basic type
4067    k_ary = ciTypeArrayKlass::make(el->basic_type());
4068  }
4069  return k_ary;
4070}
4071
4072//------------------------------klass------------------------------------------
4073// Return the defining klass for this class
4074ciKlass* TypeAryPtr::klass() const {
4075  if( _klass ) return _klass;   // Return cached value, if possible
4076
4077  // Oops, need to compute _klass and cache it
4078  ciKlass* k_ary = compute_klass();
4079
4080  if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4081    // The _klass field acts as a cache of the underlying
4082    // ciKlass for this array type.  In order to set the field,
4083    // we need to cast away const-ness.
4084    //
4085    // IMPORTANT NOTE: we *never* set the _klass field for the
4086    // type TypeAryPtr::OOPS.  This Type is shared between all
4087    // active compilations.  However, the ciKlass which represents
4088    // this Type is *not* shared between compilations, so caching
4089    // this value would result in fetching a dangling pointer.
4090    //
4091    // Recomputing the underlying ciKlass for each request is
4092    // a bit less efficient than caching, but calls to
4093    // TypeAryPtr::OOPS->klass() are not common enough to matter.
4094    ((TypeAryPtr*)this)->_klass = k_ary;
4095    if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4096        _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4097      ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4098    }
4099  }
4100  return k_ary;
4101}
4102
4103
4104//------------------------------add_offset-------------------------------------
4105// Access internals of klass object
4106const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4107  return make( _ptr, klass(), xadd_offset(offset) );
4108}
4109
4110//------------------------------cast_to_ptr_type-------------------------------
4111const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4112  assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4113  if( ptr == _ptr ) return this;
4114  return make(ptr, _klass, _offset);
4115}
4116
4117
4118//-----------------------------cast_to_exactness-------------------------------
4119const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4120  if( klass_is_exact == _klass_is_exact ) return this;
4121  if (!UseExactTypes)  return this;
4122  return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4123}
4124
4125
4126//-----------------------------as_instance_type--------------------------------
4127// Corresponding type for an instance of the given class.
4128// It will be NotNull, and exact if and only if the klass type is exact.
4129const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4130  ciKlass* k = klass();
4131  bool    xk = klass_is_exact();
4132  //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4133  const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4134  toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4135  return toop->cast_to_exactness(xk)->is_oopptr();
4136}
4137
4138
4139//------------------------------xmeet------------------------------------------
4140// Compute the MEET of two types, return a new Type object.
4141const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4142  // Perform a fast test for common case; meeting the same types together.
4143  if( this == t ) return this;  // Meeting same type-rep?
4144
4145  // Current "this->_base" is Pointer
4146  switch (t->base()) {          // switch on original type
4147
4148  case Int:                     // Mixing ints & oops happens when javac
4149  case Long:                    // reuses local variables
4150  case FloatTop:
4151  case FloatCon:
4152  case FloatBot:
4153  case DoubleTop:
4154  case DoubleCon:
4155  case DoubleBot:
4156  case NarrowOop:
4157  case Bottom:                  // Ye Olde Default
4158    return Type::BOTTOM;
4159  case Top:
4160    return this;
4161
4162  default:                      // All else is a mistake
4163    typerr(t);
4164
4165  case AnyPtr: {                // Meeting to AnyPtrs
4166    // Found an AnyPtr type vs self-KlassPtr type
4167    const TypePtr *tp = t->is_ptr();
4168    int offset = meet_offset(tp->offset());
4169    PTR ptr = meet_ptr(tp->ptr());
4170    switch (tp->ptr()) {
4171    case TopPTR:
4172      return this;
4173    case Null:
4174      if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
4175    case AnyNull:
4176      return make( ptr, klass(), offset );
4177    case BotPTR:
4178    case NotNull:
4179      return TypePtr::make(AnyPtr, ptr, offset);
4180    default: typerr(t);
4181    }
4182  }
4183
4184  case RawPtr:
4185  case MetadataPtr:
4186  case OopPtr:
4187  case AryPtr:                  // Meet with AryPtr
4188  case InstPtr:                 // Meet with InstPtr
4189    return TypePtr::BOTTOM;
4190
4191  //
4192  //             A-top         }
4193  //           /   |   \       }  Tops
4194  //       B-top A-any C-top   }
4195  //          | /  |  \ |      }  Any-nulls
4196  //       B-any   |   C-any   }
4197  //          |    |    |
4198  //       B-con A-con C-con   } constants; not comparable across classes
4199  //          |    |    |
4200  //       B-not   |   C-not   }
4201  //          | \  |  / |      }  not-nulls
4202  //       B-bot A-not C-bot   }
4203  //           \   |   /       }  Bottoms
4204  //             A-bot         }
4205  //
4206
4207  case KlassPtr: {  // Meet two KlassPtr types
4208    const TypeKlassPtr *tkls = t->is_klassptr();
4209    int  off     = meet_offset(tkls->offset());
4210    PTR  ptr     = meet_ptr(tkls->ptr());
4211
4212    // Check for easy case; klasses are equal (and perhaps not loaded!)
4213    // If we have constants, then we created oops so classes are loaded
4214    // and we can handle the constants further down.  This case handles
4215    // not-loaded classes
4216    if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4217      return make( ptr, klass(), off );
4218    }
4219
4220    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4221    ciKlass* tkls_klass = tkls->klass();
4222    ciKlass* this_klass = this->klass();
4223    assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4224    assert( this_klass->is_loaded(), "This class should have been loaded.");
4225
4226    // If 'this' type is above the centerline and is a superclass of the
4227    // other, we can treat 'this' as having the same type as the other.
4228    if ((above_centerline(this->ptr())) &&
4229        tkls_klass->is_subtype_of(this_klass)) {
4230      this_klass = tkls_klass;
4231    }
4232    // If 'tinst' type is above the centerline and is a superclass of the
4233    // other, we can treat 'tinst' as having the same type as the other.
4234    if ((above_centerline(tkls->ptr())) &&
4235        this_klass->is_subtype_of(tkls_klass)) {
4236      tkls_klass = this_klass;
4237    }
4238
4239    // Check for classes now being equal
4240    if (tkls_klass->equals(this_klass)) {
4241      // If the klasses are equal, the constants may still differ.  Fall to
4242      // NotNull if they do (neither constant is NULL; that is a special case
4243      // handled elsewhere).
4244      if( ptr == Constant ) {
4245        if (this->_ptr == Constant && tkls->_ptr == Constant &&
4246            this->klass()->equals(tkls->klass()));
4247        else if (above_centerline(this->ptr()));
4248        else if (above_centerline(tkls->ptr()));
4249        else
4250          ptr = NotNull;
4251      }
4252      return make( ptr, this_klass, off );
4253    } // Else classes are not equal
4254
4255    // Since klasses are different, we require the LCA in the Java
4256    // class hierarchy - which means we have to fall to at least NotNull.
4257    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4258      ptr = NotNull;
4259    // Now we find the LCA of Java classes
4260    ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4261    return   make( ptr, k, off );
4262  } // End of case KlassPtr
4263
4264  } // End of switch
4265  return this;                  // Return the double constant
4266}
4267
4268//------------------------------xdual------------------------------------------
4269// Dual: compute field-by-field dual
4270const Type    *TypeKlassPtr::xdual() const {
4271  return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4272}
4273
4274//------------------------------get_con----------------------------------------
4275intptr_t TypeKlassPtr::get_con() const {
4276  assert( _ptr == Null || _ptr == Constant, "" );
4277  assert( _offset >= 0, "" );
4278
4279  if (_offset != 0) {
4280    // After being ported to the compiler interface, the compiler no longer
4281    // directly manipulates the addresses of oops.  Rather, it only has a pointer
4282    // to a handle at compile time.  This handle is embedded in the generated
4283    // code and dereferenced at the time the nmethod is made.  Until that time,
4284    // it is not reasonable to do arithmetic with the addresses of oops (we don't
4285    // have access to the addresses!).  This does not seem to currently happen,
4286    // but this assertion here is to help prevent its occurence.
4287    tty->print_cr("Found oop constant with non-zero offset");
4288    ShouldNotReachHere();
4289  }
4290
4291  return (intptr_t)klass()->constant_encoding();
4292}
4293//------------------------------dump2------------------------------------------
4294// Dump Klass Type
4295#ifndef PRODUCT
4296void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4297  switch( _ptr ) {
4298  case Constant:
4299    st->print("precise ");
4300  case NotNull:
4301    {
4302      const char *name = klass()->name()->as_utf8();
4303      if( name ) {
4304        st->print("klass %s: " INTPTR_FORMAT, name, klass());
4305      } else {
4306        ShouldNotReachHere();
4307      }
4308    }
4309  case BotPTR:
4310    if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4311  case TopPTR:
4312  case AnyNull:
4313    st->print(":%s", ptr_msg[_ptr]);
4314    if( _klass_is_exact ) st->print(":exact");
4315    break;
4316  }
4317
4318  if( _offset ) {               // Dump offset, if any
4319    if( _offset == OffsetBot )      { st->print("+any"); }
4320    else if( _offset == OffsetTop ) { st->print("+unknown"); }
4321    else                            { st->print("+%d", _offset); }
4322  }
4323
4324  st->print(" *");
4325}
4326#endif
4327
4328
4329
4330//=============================================================================
4331// Convenience common pre-built types.
4332
4333//------------------------------make-------------------------------------------
4334const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4335  return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4336}
4337
4338//------------------------------make-------------------------------------------
4339const TypeFunc *TypeFunc::make(ciMethod* method) {
4340  Compile* C = Compile::current();
4341  const TypeFunc* tf = C->last_tf(method); // check cache
4342  if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4343  const TypeTuple *domain;
4344  if (method->is_static()) {
4345    domain = TypeTuple::make_domain(NULL, method->signature());
4346  } else {
4347    domain = TypeTuple::make_domain(method->holder(), method->signature());
4348  }
4349  const TypeTuple *range  = TypeTuple::make_range(method->signature());
4350  tf = TypeFunc::make(domain, range);
4351  C->set_last_tf(method, tf);  // fill cache
4352  return tf;
4353}
4354
4355//------------------------------meet-------------------------------------------
4356// Compute the MEET of two types.  It returns a new Type object.
4357const Type *TypeFunc::xmeet( const Type *t ) const {
4358  // Perform a fast test for common case; meeting the same types together.
4359  if( this == t ) return this;  // Meeting same type-rep?
4360
4361  // Current "this->_base" is Func
4362  switch (t->base()) {          // switch on original type
4363
4364  case Bottom:                  // Ye Olde Default
4365    return t;
4366
4367  default:                      // All else is a mistake
4368    typerr(t);
4369
4370  case Top:
4371    break;
4372  }
4373  return this;                  // Return the double constant
4374}
4375
4376//------------------------------xdual------------------------------------------
4377// Dual: compute field-by-field dual
4378const Type *TypeFunc::xdual() const {
4379  return this;
4380}
4381
4382//------------------------------eq---------------------------------------------
4383// Structural equality check for Type representations
4384bool TypeFunc::eq( const Type *t ) const {
4385  const TypeFunc *a = (const TypeFunc*)t;
4386  return _domain == a->_domain &&
4387    _range == a->_range;
4388}
4389
4390//------------------------------hash-------------------------------------------
4391// Type-specific hashing function.
4392int TypeFunc::hash(void) const {
4393  return (intptr_t)_domain + (intptr_t)_range;
4394}
4395
4396//------------------------------dump2------------------------------------------
4397// Dump Function Type
4398#ifndef PRODUCT
4399void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4400  if( _range->_cnt <= Parms )
4401    st->print("void");
4402  else {
4403    uint i;
4404    for (i = Parms; i < _range->_cnt-1; i++) {
4405      _range->field_at(i)->dump2(d,depth,st);
4406      st->print("/");
4407    }
4408    _range->field_at(i)->dump2(d,depth,st);
4409  }
4410  st->print(" ");
4411  st->print("( ");
4412  if( !depth || d[this] ) {     // Check for recursive dump
4413    st->print("...)");
4414    return;
4415  }
4416  d.Insert((void*)this,(void*)this);    // Stop recursion
4417  if (Parms < _domain->_cnt)
4418    _domain->field_at(Parms)->dump2(d,depth-1,st);
4419  for (uint i = Parms+1; i < _domain->_cnt; i++) {
4420    st->print(", ");
4421    _domain->field_at(i)->dump2(d,depth-1,st);
4422  }
4423  st->print(" )");
4424}
4425#endif
4426
4427//------------------------------singleton--------------------------------------
4428// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4429// constants (Ldi nodes).  Singletons are integer, float or double constants
4430// or a single symbol.
4431bool TypeFunc::singleton(void) const {
4432  return false;                 // Never a singleton
4433}
4434
4435bool TypeFunc::empty(void) const {
4436  return false;                 // Never empty
4437}
4438
4439
4440BasicType TypeFunc::return_type() const{
4441  if (range()->cnt() == TypeFunc::Parms) {
4442    return T_VOID;
4443  }
4444  return range()->field_at(TypeFunc::Parms)->basic_type();
4445}
4446