1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "interpreter/linkResolver.hpp"
28#include "memory/resourceArea.hpp"
29#include "oops/method.hpp"
30#include "opto/addnode.hpp"
31#include "opto/c2compiler.hpp"
32#include "opto/castnode.hpp"
33#include "opto/idealGraphPrinter.hpp"
34#include "opto/locknode.hpp"
35#include "opto/memnode.hpp"
36#include "opto/opaquenode.hpp"
37#include "opto/parse.hpp"
38#include "opto/rootnode.hpp"
39#include "opto/runtime.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/handles.inline.hpp"
42#include "runtime/sharedRuntime.hpp"
43#include "utilities/copy.hpp"
44
45// Static array so we can figure out which bytecodes stop us from compiling
46// the most. Some of the non-static variables are needed in bytecodeInfo.cpp
47// and eventually should be encapsulated in a proper class (gri 8/18/98).
48
49#ifndef PRODUCT
50int nodes_created              = 0;
51int methods_parsed             = 0;
52int methods_seen               = 0;
53int blocks_parsed              = 0;
54int blocks_seen                = 0;
55
56int explicit_null_checks_inserted = 0;
57int explicit_null_checks_elided   = 0;
58int all_null_checks_found         = 0;
59int implicit_null_checks          = 0;
60
61bool Parse::BytecodeParseHistogram::_initialized = false;
62uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
63uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
64uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
65uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
66
67//------------------------------print_statistics-------------------------------
68void Parse::print_statistics() {
69  tty->print_cr("--- Compiler Statistics ---");
70  tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
71  tty->print("  Nodes created: %d", nodes_created);
72  tty->cr();
73  if (methods_seen != methods_parsed) {
74    tty->print_cr("Reasons for parse failures (NOT cumulative):");
75  }
76  tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
77
78  if (explicit_null_checks_inserted) {
79    tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,",
80                  explicit_null_checks_inserted, explicit_null_checks_elided,
81                  (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
82                  all_null_checks_found);
83  }
84  if (all_null_checks_found) {
85    tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
86                  (100*implicit_null_checks)/all_null_checks_found);
87  }
88  if (SharedRuntime::_implicit_null_throws) {
89    tty->print_cr("%d implicit null exceptions at runtime",
90                  SharedRuntime::_implicit_null_throws);
91  }
92
93  if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
94    BytecodeParseHistogram::print();
95  }
96}
97#endif
98
99//------------------------------ON STACK REPLACEMENT---------------------------
100
101// Construct a node which can be used to get incoming state for
102// on stack replacement.
103Node *Parse::fetch_interpreter_state(int index,
104                                     BasicType bt,
105                                     Node *local_addrs,
106                                     Node *local_addrs_base) {
107  Node *mem = memory(Compile::AliasIdxRaw);
108  Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
109  Node *ctl = control();
110
111  // Very similar to LoadNode::make, except we handle un-aligned longs and
112  // doubles on Sparc.  Intel can handle them just fine directly.
113  Node *l = NULL;
114  switch (bt) {                // Signature is flattened
115  case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
116  case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
117  case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
118  case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
119  case T_LONG:
120  case T_DOUBLE: {
121    // Since arguments are in reverse order, the argument address 'adr'
122    // refers to the back half of the long/double.  Recompute adr.
123    adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
124    if (Matcher::misaligned_doubles_ok) {
125      l = (bt == T_DOUBLE)
126        ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
127        : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
128    } else {
129      l = (bt == T_DOUBLE)
130        ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
131        : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
132    }
133    break;
134  }
135  default: ShouldNotReachHere();
136  }
137  return _gvn.transform(l);
138}
139
140// Helper routine to prevent the interpreter from handing
141// unexpected typestate to an OSR method.
142// The Node l is a value newly dug out of the interpreter frame.
143// The type is the type predicted by ciTypeFlow.  Note that it is
144// not a general type, but can only come from Type::get_typeflow_type.
145// The safepoint is a map which will feed an uncommon trap.
146Node* Parse::check_interpreter_type(Node* l, const Type* type,
147                                    SafePointNode* &bad_type_exit) {
148
149  const TypeOopPtr* tp = type->isa_oopptr();
150
151  // TypeFlow may assert null-ness if a type appears unloaded.
152  if (type == TypePtr::NULL_PTR ||
153      (tp != NULL && !tp->klass()->is_loaded())) {
154    // Value must be null, not a real oop.
155    Node* chk = _gvn.transform( new CmpPNode(l, null()) );
156    Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
157    IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
158    set_control(_gvn.transform( new IfTrueNode(iff) ));
159    Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
160    bad_type_exit->control()->add_req(bad_type);
161    l = null();
162  }
163
164  // Typeflow can also cut off paths from the CFG, based on
165  // types which appear unloaded, or call sites which appear unlinked.
166  // When paths are cut off, values at later merge points can rise
167  // toward more specific classes.  Make sure these specific classes
168  // are still in effect.
169  if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
170    // TypeFlow asserted a specific object type.  Value must have that type.
171    Node* bad_type_ctrl = NULL;
172    l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
173    bad_type_exit->control()->add_req(bad_type_ctrl);
174  }
175
176  BasicType bt_l = _gvn.type(l)->basic_type();
177  BasicType bt_t = type->basic_type();
178  assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
179  return l;
180}
181
182// Helper routine which sets up elements of the initial parser map when
183// performing a parse for on stack replacement.  Add values into map.
184// The only parameter contains the address of a interpreter arguments.
185void Parse::load_interpreter_state(Node* osr_buf) {
186  int index;
187  int max_locals = jvms()->loc_size();
188  int max_stack  = jvms()->stk_size();
189
190
191  // Mismatch between method and jvms can occur since map briefly held
192  // an OSR entry state (which takes up one RawPtr word).
193  assert(max_locals == method()->max_locals(), "sanity");
194  assert(max_stack  >= method()->max_stack(),  "sanity");
195  assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
196  assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
197
198  // Find the start block.
199  Block* osr_block = start_block();
200  assert(osr_block->start() == osr_bci(), "sanity");
201
202  // Set initial BCI.
203  set_parse_bci(osr_block->start());
204
205  // Set initial stack depth.
206  set_sp(osr_block->start_sp());
207
208  // Check bailouts.  We currently do not perform on stack replacement
209  // of loops in catch blocks or loops which branch with a non-empty stack.
210  if (sp() != 0) {
211    C->record_method_not_compilable("OSR starts with non-empty stack");
212    return;
213  }
214  // Do not OSR inside finally clauses:
215  if (osr_block->has_trap_at(osr_block->start())) {
216    C->record_method_not_compilable("OSR starts with an immediate trap");
217    return;
218  }
219
220  // Commute monitors from interpreter frame to compiler frame.
221  assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
222  int mcnt = osr_block->flow()->monitor_count();
223  Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
224  for (index = 0; index < mcnt; index++) {
225    // Make a BoxLockNode for the monitor.
226    Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
227
228
229    // Displaced headers and locked objects are interleaved in the
230    // temp OSR buffer.  We only copy the locked objects out here.
231    // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
232    Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
233    // Try and copy the displaced header to the BoxNode
234    Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
235
236
237    store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
238
239    // Build a bogus FastLockNode (no code will be generated) and push the
240    // monitor into our debug info.
241    const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
242    map()->push_monitor(flock);
243
244    // If the lock is our method synchronization lock, tuck it away in
245    // _sync_lock for return and rethrow exit paths.
246    if (index == 0 && method()->is_synchronized()) {
247      _synch_lock = flock;
248    }
249  }
250
251  // Use the raw liveness computation to make sure that unexpected
252  // values don't propagate into the OSR frame.
253  MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
254  if (!live_locals.is_valid()) {
255    // Degenerate or breakpointed method.
256    C->record_method_not_compilable("OSR in empty or breakpointed method");
257    return;
258  }
259
260  // Extract the needed locals from the interpreter frame.
261  Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
262
263  // find all the locals that the interpreter thinks contain live oops
264  const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
265  for (index = 0; index < max_locals; index++) {
266
267    if (!live_locals.at(index)) {
268      continue;
269    }
270
271    const Type *type = osr_block->local_type_at(index);
272
273    if (type->isa_oopptr() != NULL) {
274
275      // 6403625: Verify that the interpreter oopMap thinks that the oop is live
276      // else we might load a stale oop if the MethodLiveness disagrees with the
277      // result of the interpreter. If the interpreter says it is dead we agree
278      // by making the value go to top.
279      //
280
281      if (!live_oops.at(index)) {
282        if (C->log() != NULL) {
283          C->log()->elem("OSR_mismatch local_index='%d'",index);
284        }
285        set_local(index, null());
286        // and ignore it for the loads
287        continue;
288      }
289    }
290
291    // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
292    if (type == Type::TOP || type == Type::HALF) {
293      continue;
294    }
295    // If the type falls to bottom, then this must be a local that
296    // is mixing ints and oops or some such.  Forcing it to top
297    // makes it go dead.
298    if (type == Type::BOTTOM) {
299      continue;
300    }
301    // Construct code to access the appropriate local.
302    BasicType bt = type->basic_type();
303    if (type == TypePtr::NULL_PTR) {
304      // Ptr types are mixed together with T_ADDRESS but NULL is
305      // really for T_OBJECT types so correct it.
306      bt = T_OBJECT;
307    }
308    Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
309    set_local(index, value);
310  }
311
312  // Extract the needed stack entries from the interpreter frame.
313  for (index = 0; index < sp(); index++) {
314    const Type *type = osr_block->stack_type_at(index);
315    if (type != Type::TOP) {
316      // Currently the compiler bails out when attempting to on stack replace
317      // at a bci with a non-empty stack.  We should not reach here.
318      ShouldNotReachHere();
319    }
320  }
321
322  // End the OSR migration
323  make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
324                    CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
325                    "OSR_migration_end", TypeRawPtr::BOTTOM,
326                    osr_buf);
327
328  // Now that the interpreter state is loaded, make sure it will match
329  // at execution time what the compiler is expecting now:
330  SafePointNode* bad_type_exit = clone_map();
331  bad_type_exit->set_control(new RegionNode(1));
332
333  assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
334  for (index = 0; index < max_locals; index++) {
335    if (stopped())  break;
336    Node* l = local(index);
337    if (l->is_top())  continue;  // nothing here
338    const Type *type = osr_block->local_type_at(index);
339    if (type->isa_oopptr() != NULL) {
340      if (!live_oops.at(index)) {
341        // skip type check for dead oops
342        continue;
343      }
344    }
345    if (osr_block->flow()->local_type_at(index)->is_return_address()) {
346      // In our current system it's illegal for jsr addresses to be
347      // live into an OSR entry point because the compiler performs
348      // inlining of jsrs.  ciTypeFlow has a bailout that detect this
349      // case and aborts the compile if addresses are live into an OSR
350      // entry point.  Because of that we can assume that any address
351      // locals at the OSR entry point are dead.  Method liveness
352      // isn't precise enought to figure out that they are dead in all
353      // cases so simply skip checking address locals all
354      // together. Any type check is guaranteed to fail since the
355      // interpreter type is the result of a load which might have any
356      // value and the expected type is a constant.
357      continue;
358    }
359    set_local(index, check_interpreter_type(l, type, bad_type_exit));
360  }
361
362  for (index = 0; index < sp(); index++) {
363    if (stopped())  break;
364    Node* l = stack(index);
365    if (l->is_top())  continue;  // nothing here
366    const Type *type = osr_block->stack_type_at(index);
367    set_stack(index, check_interpreter_type(l, type, bad_type_exit));
368  }
369
370  if (bad_type_exit->control()->req() > 1) {
371    // Build an uncommon trap here, if any inputs can be unexpected.
372    bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
373    record_for_igvn(bad_type_exit->control());
374    SafePointNode* types_are_good = map();
375    set_map(bad_type_exit);
376    // The unexpected type happens because a new edge is active
377    // in the CFG, which typeflow had previously ignored.
378    // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
379    // This x will be typed as Integer if notReached is not yet linked.
380    // It could also happen due to a problem in ciTypeFlow analysis.
381    uncommon_trap(Deoptimization::Reason_constraint,
382                  Deoptimization::Action_reinterpret);
383    set_map(types_are_good);
384  }
385}
386
387//------------------------------Parse------------------------------------------
388// Main parser constructor.
389Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
390  : _exits(caller)
391{
392  // Init some variables
393  _caller = caller;
394  _method = parse_method;
395  _expected_uses = expected_uses;
396  _depth = 1 + (caller->has_method() ? caller->depth() : 0);
397  _wrote_final = false;
398  _wrote_volatile = false;
399  _wrote_stable = false;
400  _wrote_fields = false;
401  _alloc_with_final = NULL;
402  _entry_bci = InvocationEntryBci;
403  _tf = NULL;
404  _block = NULL;
405  _first_return = true;
406  _replaced_nodes_for_exceptions = false;
407  _new_idx = C->unique();
408  debug_only(_block_count = -1);
409  debug_only(_blocks = (Block*)-1);
410#ifndef PRODUCT
411  if (PrintCompilation || PrintOpto) {
412    // Make sure I have an inline tree, so I can print messages about it.
413    JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
414    InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
415  }
416  _max_switch_depth = 0;
417  _est_switch_depth = 0;
418#endif
419
420  if (parse_method->has_reserved_stack_access()) {
421    C->set_has_reserved_stack_access(true);
422  }
423
424  _tf = TypeFunc::make(method());
425  _iter.reset_to_method(method());
426  _flow = method()->get_flow_analysis();
427  if (_flow->failing()) {
428    C->record_method_not_compilable(_flow->failure_reason());
429  }
430
431#ifndef PRODUCT
432  if (_flow->has_irreducible_entry()) {
433    C->set_parsed_irreducible_loop(true);
434  }
435#endif
436
437  if (_expected_uses <= 0) {
438    _prof_factor = 1;
439  } else {
440    float prof_total = parse_method->interpreter_invocation_count();
441    if (prof_total <= _expected_uses) {
442      _prof_factor = 1;
443    } else {
444      _prof_factor = _expected_uses / prof_total;
445    }
446  }
447
448  CompileLog* log = C->log();
449  if (log != NULL) {
450    log->begin_head("parse method='%d' uses='%f'",
451                    log->identify(parse_method), expected_uses);
452    if (depth() == 1 && C->is_osr_compilation()) {
453      log->print(" osr_bci='%d'", C->entry_bci());
454    }
455    log->stamp();
456    log->end_head();
457  }
458
459  // Accumulate deoptimization counts.
460  // (The range_check and store_check counts are checked elsewhere.)
461  ciMethodData* md = method()->method_data();
462  for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
463    uint md_count = md->trap_count(reason);
464    if (md_count != 0) {
465      if (md_count == md->trap_count_limit())
466        md_count += md->overflow_trap_count();
467      uint total_count = C->trap_count(reason);
468      uint old_count   = total_count;
469      total_count += md_count;
470      // Saturate the add if it overflows.
471      if (total_count < old_count || total_count < md_count)
472        total_count = (uint)-1;
473      C->set_trap_count(reason, total_count);
474      if (log != NULL)
475        log->elem("observe trap='%s' count='%d' total='%d'",
476                  Deoptimization::trap_reason_name(reason),
477                  md_count, total_count);
478    }
479  }
480  // Accumulate total sum of decompilations, also.
481  C->set_decompile_count(C->decompile_count() + md->decompile_count());
482
483  _count_invocations = C->do_count_invocations();
484  _method_data_update = C->do_method_data_update();
485
486  if (log != NULL && method()->has_exception_handlers()) {
487    log->elem("observe that='has_exception_handlers'");
488  }
489
490  assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
491  assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
492
493  // Always register dependence if JVMTI is enabled, because
494  // either breakpoint setting or hotswapping of methods may
495  // cause deoptimization.
496  if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
497    C->dependencies()->assert_evol_method(method());
498  }
499
500  NOT_PRODUCT(methods_seen++);
501
502  // Do some special top-level things.
503  if (depth() == 1 && C->is_osr_compilation()) {
504    _entry_bci = C->entry_bci();
505    _flow = method()->get_osr_flow_analysis(osr_bci());
506    if (_flow->failing()) {
507      C->record_method_not_compilable(_flow->failure_reason());
508#ifndef PRODUCT
509      if (PrintOpto && (Verbose || WizardMode)) {
510        tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
511        if (Verbose) {
512          method()->print();
513          method()->print_codes();
514          _flow->print();
515        }
516      }
517#endif
518    }
519    _tf = C->tf();     // the OSR entry type is different
520  }
521
522#ifdef ASSERT
523  if (depth() == 1) {
524    assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
525    if (C->tf() != tf()) {
526      MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
527      assert(C->env()->system_dictionary_modification_counter_changed(),
528             "Must invalidate if TypeFuncs differ");
529    }
530  } else {
531    assert(!this->is_osr_parse(), "no recursive OSR");
532  }
533#endif
534
535#ifndef PRODUCT
536  methods_parsed++;
537  // add method size here to guarantee that inlined methods are added too
538  if (CITime)
539    _total_bytes_compiled += method()->code_size();
540
541  show_parse_info();
542#endif
543
544  if (failing()) {
545    if (log)  log->done("parse");
546    return;
547  }
548
549  gvn().set_type(root(), root()->bottom_type());
550  gvn().transform(top());
551
552  // Import the results of the ciTypeFlow.
553  init_blocks();
554
555  // Merge point for all normal exits
556  build_exits();
557
558  // Setup the initial JVM state map.
559  SafePointNode* entry_map = create_entry_map();
560
561  // Check for bailouts during map initialization
562  if (failing() || entry_map == NULL) {
563    if (log)  log->done("parse");
564    return;
565  }
566
567  Node_Notes* caller_nn = C->default_node_notes();
568  // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
569  if (DebugInlinedCalls || depth() == 1) {
570    C->set_default_node_notes(make_node_notes(caller_nn));
571  }
572
573  if (is_osr_parse()) {
574    Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
575    entry_map->set_req(TypeFunc::Parms+0, top());
576    set_map(entry_map);
577    load_interpreter_state(osr_buf);
578  } else {
579    set_map(entry_map);
580    do_method_entry();
581    if (depth() == 1 && C->age_code()) {
582      decrement_age();
583    }
584  }
585
586  if (depth() == 1 && !failing()) {
587    // Add check to deoptimize the nmethod if RTM state was changed
588    rtm_deopt();
589  }
590
591  // Check for bailouts during method entry or RTM state check setup.
592  if (failing()) {
593    if (log)  log->done("parse");
594    C->set_default_node_notes(caller_nn);
595    return;
596  }
597
598  entry_map = map();  // capture any changes performed by method setup code
599  assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
600
601  // We begin parsing as if we have just encountered a jump to the
602  // method entry.
603  Block* entry_block = start_block();
604  assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
605  set_map_clone(entry_map);
606  merge_common(entry_block, entry_block->next_path_num());
607
608#ifndef PRODUCT
609  BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
610  set_parse_histogram( parse_histogram_obj );
611#endif
612
613  // Parse all the basic blocks.
614  do_all_blocks();
615
616  C->set_default_node_notes(caller_nn);
617
618  // Check for bailouts during conversion to graph
619  if (failing()) {
620    if (log)  log->done("parse");
621    return;
622  }
623
624  // Fix up all exiting control flow.
625  set_map(entry_map);
626  do_exits();
627
628  if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
629                      C->unique(), C->live_nodes(), C->node_arena()->used());
630}
631
632//---------------------------do_all_blocks-------------------------------------
633void Parse::do_all_blocks() {
634  bool has_irreducible = flow()->has_irreducible_entry();
635
636  // Walk over all blocks in Reverse Post-Order.
637  while (true) {
638    bool progress = false;
639    for (int rpo = 0; rpo < block_count(); rpo++) {
640      Block* block = rpo_at(rpo);
641
642      if (block->is_parsed()) continue;
643
644      if (!block->is_merged()) {
645        // Dead block, no state reaches this block
646        continue;
647      }
648
649      // Prepare to parse this block.
650      load_state_from(block);
651
652      if (stopped()) {
653        // Block is dead.
654        continue;
655      }
656
657      NOT_PRODUCT(blocks_parsed++);
658
659      progress = true;
660      if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
661        // Not all preds have been parsed.  We must build phis everywhere.
662        // (Note that dead locals do not get phis built, ever.)
663        ensure_phis_everywhere();
664
665        if (block->is_SEL_head()) {
666          // Add predicate to single entry (not irreducible) loop head.
667          assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
668          // Need correct bci for predicate.
669          // It is fine to set it here since do_one_block() will set it anyway.
670          set_parse_bci(block->start());
671          add_predicate();
672          // Add new region for back branches.
673          int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
674          RegionNode *r = new RegionNode(edges+1);
675          _gvn.set_type(r, Type::CONTROL);
676          record_for_igvn(r);
677          r->init_req(edges, control());
678          set_control(r);
679          // Add new phis.
680          ensure_phis_everywhere();
681        }
682
683        // Leave behind an undisturbed copy of the map, for future merges.
684        set_map(clone_map());
685      }
686
687      if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
688        // In the absence of irreducible loops, the Region and Phis
689        // associated with a merge that doesn't involve a backedge can
690        // be simplified now since the RPO parsing order guarantees
691        // that any path which was supposed to reach here has already
692        // been parsed or must be dead.
693        Node* c = control();
694        Node* result = _gvn.transform_no_reclaim(control());
695        if (c != result && TraceOptoParse) {
696          tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
697        }
698        if (result != top()) {
699          record_for_igvn(result);
700        }
701      }
702
703      // Parse the block.
704      do_one_block();
705
706      // Check for bailouts.
707      if (failing())  return;
708    }
709
710    // with irreducible loops multiple passes might be necessary to parse everything
711    if (!has_irreducible || !progress) {
712      break;
713    }
714  }
715
716#ifndef PRODUCT
717  blocks_seen += block_count();
718
719  // Make sure there are no half-processed blocks remaining.
720  // Every remaining unprocessed block is dead and may be ignored now.
721  for (int rpo = 0; rpo < block_count(); rpo++) {
722    Block* block = rpo_at(rpo);
723    if (!block->is_parsed()) {
724      if (TraceOptoParse) {
725        tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
726      }
727      assert(!block->is_merged(), "no half-processed blocks");
728    }
729  }
730#endif
731}
732
733static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
734  switch (bt) {
735  case T_BYTE:
736    v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
737    v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
738    break;
739  case T_SHORT:
740    v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
741    v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
742    break;
743  case T_CHAR:
744    v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
745    break;
746  case T_BOOLEAN:
747    v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
748    break;
749  default:
750    break;
751  }
752  return v;
753}
754
755//-------------------------------build_exits----------------------------------
756// Build normal and exceptional exit merge points.
757void Parse::build_exits() {
758  // make a clone of caller to prevent sharing of side-effects
759  _exits.set_map(_exits.clone_map());
760  _exits.clean_stack(_exits.sp());
761  _exits.sync_jvms();
762
763  RegionNode* region = new RegionNode(1);
764  record_for_igvn(region);
765  gvn().set_type_bottom(region);
766  _exits.set_control(region);
767
768  // Note:  iophi and memphi are not transformed until do_exits.
769  Node* iophi  = new PhiNode(region, Type::ABIO);
770  Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
771  gvn().set_type_bottom(iophi);
772  gvn().set_type_bottom(memphi);
773  _exits.set_i_o(iophi);
774  _exits.set_all_memory(memphi);
775
776  // Add a return value to the exit state.  (Do not push it yet.)
777  if (tf()->range()->cnt() > TypeFunc::Parms) {
778    const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
779    if (ret_type->isa_int()) {
780      BasicType ret_bt = method()->return_type()->basic_type();
781      if (ret_bt == T_BOOLEAN ||
782          ret_bt == T_CHAR ||
783          ret_bt == T_BYTE ||
784          ret_bt == T_SHORT) {
785        ret_type = TypeInt::INT;
786      }
787    }
788
789    // Don't "bind" an unloaded return klass to the ret_phi. If the klass
790    // becomes loaded during the subsequent parsing, the loaded and unloaded
791    // types will not join when we transform and push in do_exits().
792    const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
793    if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
794      ret_type = TypeOopPtr::BOTTOM;
795    }
796    int         ret_size = type2size[ret_type->basic_type()];
797    Node*       ret_phi  = new PhiNode(region, ret_type);
798    gvn().set_type_bottom(ret_phi);
799    _exits.ensure_stack(ret_size);
800    assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
801    assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
802    _exits.set_argument(0, ret_phi);  // here is where the parser finds it
803    // Note:  ret_phi is not yet pushed, until do_exits.
804  }
805}
806
807
808//----------------------------build_start_state-------------------------------
809// Construct a state which contains only the incoming arguments from an
810// unknown caller.  The method & bci will be NULL & InvocationEntryBci.
811JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
812  int        arg_size = tf->domain()->cnt();
813  int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
814  JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
815  SafePointNode* map  = new SafePointNode(max_size, NULL);
816  record_for_igvn(map);
817  assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
818  Node_Notes* old_nn = default_node_notes();
819  if (old_nn != NULL && has_method()) {
820    Node_Notes* entry_nn = old_nn->clone(this);
821    JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
822    entry_jvms->set_offsets(0);
823    entry_jvms->set_bci(entry_bci());
824    entry_nn->set_jvms(entry_jvms);
825    set_default_node_notes(entry_nn);
826  }
827  uint i;
828  for (i = 0; i < (uint)arg_size; i++) {
829    Node* parm = initial_gvn()->transform(new ParmNode(start, i));
830    map->init_req(i, parm);
831    // Record all these guys for later GVN.
832    record_for_igvn(parm);
833  }
834  for (; i < map->req(); i++) {
835    map->init_req(i, top());
836  }
837  assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
838  set_default_node_notes(old_nn);
839  map->set_jvms(jvms);
840  jvms->set_map(map);
841  return jvms;
842}
843
844//-----------------------------make_node_notes---------------------------------
845Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
846  if (caller_nn == NULL)  return NULL;
847  Node_Notes* nn = caller_nn->clone(C);
848  JVMState* caller_jvms = nn->jvms();
849  JVMState* jvms = new (C) JVMState(method(), caller_jvms);
850  jvms->set_offsets(0);
851  jvms->set_bci(_entry_bci);
852  nn->set_jvms(jvms);
853  return nn;
854}
855
856
857//--------------------------return_values--------------------------------------
858void Compile::return_values(JVMState* jvms) {
859  GraphKit kit(jvms);
860  Node* ret = new ReturnNode(TypeFunc::Parms,
861                             kit.control(),
862                             kit.i_o(),
863                             kit.reset_memory(),
864                             kit.frameptr(),
865                             kit.returnadr());
866  // Add zero or 1 return values
867  int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
868  if (ret_size > 0) {
869    kit.inc_sp(-ret_size);  // pop the return value(s)
870    kit.sync_jvms();
871    ret->add_req(kit.argument(0));
872    // Note:  The second dummy edge is not needed by a ReturnNode.
873  }
874  // bind it to root
875  root()->add_req(ret);
876  record_for_igvn(ret);
877  initial_gvn()->transform_no_reclaim(ret);
878}
879
880//------------------------rethrow_exceptions-----------------------------------
881// Bind all exception states in the list into a single RethrowNode.
882void Compile::rethrow_exceptions(JVMState* jvms) {
883  GraphKit kit(jvms);
884  if (!kit.has_exceptions())  return;  // nothing to generate
885  // Load my combined exception state into the kit, with all phis transformed:
886  SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
887  Node* ex_oop = kit.use_exception_state(ex_map);
888  RethrowNode* exit = new RethrowNode(kit.control(),
889                                      kit.i_o(), kit.reset_memory(),
890                                      kit.frameptr(), kit.returnadr(),
891                                      // like a return but with exception input
892                                      ex_oop);
893  // bind to root
894  root()->add_req(exit);
895  record_for_igvn(exit);
896  initial_gvn()->transform_no_reclaim(exit);
897}
898
899//---------------------------do_exceptions-------------------------------------
900// Process exceptions arising from the current bytecode.
901// Send caught exceptions to the proper handler within this method.
902// Unhandled exceptions feed into _exit.
903void Parse::do_exceptions() {
904  if (!has_exceptions())  return;
905
906  if (failing()) {
907    // Pop them all off and throw them away.
908    while (pop_exception_state() != NULL) ;
909    return;
910  }
911
912  PreserveJVMState pjvms(this, false);
913
914  SafePointNode* ex_map;
915  while ((ex_map = pop_exception_state()) != NULL) {
916    if (!method()->has_exception_handlers()) {
917      // Common case:  Transfer control outward.
918      // Doing it this early allows the exceptions to common up
919      // even between adjacent method calls.
920      throw_to_exit(ex_map);
921    } else {
922      // Have to look at the exception first.
923      assert(stopped(), "catch_inline_exceptions trashes the map");
924      catch_inline_exceptions(ex_map);
925      stop_and_kill_map();      // we used up this exception state; kill it
926    }
927  }
928
929  // We now return to our regularly scheduled program:
930}
931
932//---------------------------throw_to_exit-------------------------------------
933// Merge the given map into an exception exit from this method.
934// The exception exit will handle any unlocking of receiver.
935// The ex_oop must be saved within the ex_map, unlike merge_exception.
936void Parse::throw_to_exit(SafePointNode* ex_map) {
937  // Pop the JVMS to (a copy of) the caller.
938  GraphKit caller;
939  caller.set_map_clone(_caller->map());
940  caller.set_bci(_caller->bci());
941  caller.set_sp(_caller->sp());
942  // Copy out the standard machine state:
943  for (uint i = 0; i < TypeFunc::Parms; i++) {
944    caller.map()->set_req(i, ex_map->in(i));
945  }
946  if (ex_map->has_replaced_nodes()) {
947    _replaced_nodes_for_exceptions = true;
948  }
949  caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
950  // ...and the exception:
951  Node*          ex_oop        = saved_ex_oop(ex_map);
952  SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
953  // Finally, collect the new exception state in my exits:
954  _exits.add_exception_state(caller_ex_map);
955}
956
957//------------------------------do_exits---------------------------------------
958void Parse::do_exits() {
959  set_parse_bci(InvocationEntryBci);
960
961  // Now peephole on the return bits
962  Node* region = _exits.control();
963  _exits.set_control(gvn().transform(region));
964
965  Node* iophi = _exits.i_o();
966  _exits.set_i_o(gvn().transform(iophi));
967
968  // Figure out if we need to emit the trailing barrier. The barrier is only
969  // needed in the constructors, and only in three cases:
970  //
971  // 1. The constructor wrote a final. The effects of all initializations
972  //    must be committed to memory before any code after the constructor
973  //    publishes the reference to the newly constructed object. Rather
974  //    than wait for the publication, we simply block the writes here.
975  //    Rather than put a barrier on only those writes which are required
976  //    to complete, we force all writes to complete.
977  //
978  // 2. On PPC64, also add MemBarRelease for constructors which write
979  //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
980  //    is set on PPC64, no sync instruction is issued after volatile
981  //    stores. We want to guarantee the same behavior as on platforms
982  //    with total store order, although this is not required by the Java
983  //    memory model. So as with finals, we add a barrier here.
984  //
985  // 3. Experimental VM option is used to force the barrier if any field
986  //    was written out in the constructor.
987  //
988  // "All bets are off" unless the first publication occurs after a
989  // normal return from the constructor.  We do not attempt to detect
990  // such unusual early publications.  But no barrier is needed on
991  // exceptional returns, since they cannot publish normally.
992  //
993  if (method()->is_initializer() &&
994        (wrote_final() ||
995           PPC64_ONLY(wrote_volatile() ||)
996           (AlwaysSafeConstructors && wrote_fields()))) {
997    _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
998
999    // If Memory barrier is created for final fields write
1000    // and allocation node does not escape the initialize method,
1001    // then barrier introduced by allocation node can be removed.
1002    if (DoEscapeAnalysis && alloc_with_final()) {
1003      AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn);
1004      alloc->compute_MemBar_redundancy(method());
1005    }
1006    if (PrintOpto && (Verbose || WizardMode)) {
1007      method()->print_name();
1008      tty->print_cr(" writes finals and needs a memory barrier");
1009    }
1010  }
1011
1012  // Any method can write a @Stable field; insert memory barriers
1013  // after those also. Can't bind predecessor allocation node (if any)
1014  // with barrier because allocation doesn't always dominate
1015  // MemBarRelease.
1016  if (wrote_stable()) {
1017    _exits.insert_mem_bar(Op_MemBarRelease);
1018    if (PrintOpto && (Verbose || WizardMode)) {
1019      method()->print_name();
1020      tty->print_cr(" writes @Stable and needs a memory barrier");
1021    }
1022  }
1023
1024  for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1025    // transform each slice of the original memphi:
1026    mms.set_memory(_gvn.transform(mms.memory()));
1027  }
1028
1029  if (tf()->range()->cnt() > TypeFunc::Parms) {
1030    const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1031    Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1032    if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1033      // In case of concurrent class loading, the type we set for the
1034      // ret_phi in build_exits() may have been too optimistic and the
1035      // ret_phi may be top now.
1036      // Otherwise, we've encountered an error and have to mark the method as
1037      // not compilable. Just using an assertion instead would be dangerous
1038      // as this could lead to an infinite compile loop in non-debug builds.
1039      {
1040        MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
1041        if (C->env()->system_dictionary_modification_counter_changed()) {
1042          C->record_failure(C2Compiler::retry_class_loading_during_parsing());
1043        } else {
1044          C->record_method_not_compilable("Can't determine return type.");
1045        }
1046      }
1047      return;
1048    }
1049    if (ret_type->isa_int()) {
1050      BasicType ret_bt = method()->return_type()->basic_type();
1051      ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1052    }
1053    _exits.push_node(ret_type->basic_type(), ret_phi);
1054  }
1055
1056  // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1057
1058  // Unlock along the exceptional paths.
1059  // This is done late so that we can common up equivalent exceptions
1060  // (e.g., null checks) arising from multiple points within this method.
1061  // See GraphKit::add_exception_state, which performs the commoning.
1062  bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1063
1064  // record exit from a method if compiled while Dtrace is turned on.
1065  if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1066    // First move the exception list out of _exits:
1067    GraphKit kit(_exits.transfer_exceptions_into_jvms());
1068    SafePointNode* normal_map = kit.map();  // keep this guy safe
1069    // Now re-collect the exceptions into _exits:
1070    SafePointNode* ex_map;
1071    while ((ex_map = kit.pop_exception_state()) != NULL) {
1072      Node* ex_oop = kit.use_exception_state(ex_map);
1073      // Force the exiting JVM state to have this method at InvocationEntryBci.
1074      // The exiting JVM state is otherwise a copy of the calling JVMS.
1075      JVMState* caller = kit.jvms();
1076      JVMState* ex_jvms = caller->clone_shallow(C);
1077      ex_jvms->set_map(kit.clone_map());
1078      ex_jvms->map()->set_jvms(ex_jvms);
1079      ex_jvms->set_bci(   InvocationEntryBci);
1080      kit.set_jvms(ex_jvms);
1081      if (do_synch) {
1082        // Add on the synchronized-method box/object combo
1083        kit.map()->push_monitor(_synch_lock);
1084        // Unlock!
1085        kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1086      }
1087      if (C->env()->dtrace_method_probes()) {
1088        kit.make_dtrace_method_exit(method());
1089      }
1090      if (_replaced_nodes_for_exceptions) {
1091        kit.map()->apply_replaced_nodes(_new_idx);
1092      }
1093      // Done with exception-path processing.
1094      ex_map = kit.make_exception_state(ex_oop);
1095      assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1096      // Pop the last vestige of this method:
1097      ex_map->set_jvms(caller->clone_shallow(C));
1098      ex_map->jvms()->set_map(ex_map);
1099      _exits.push_exception_state(ex_map);
1100    }
1101    assert(_exits.map() == normal_map, "keep the same return state");
1102  }
1103
1104  {
1105    // Capture very early exceptions (receiver null checks) from caller JVMS
1106    GraphKit caller(_caller);
1107    SafePointNode* ex_map;
1108    while ((ex_map = caller.pop_exception_state()) != NULL) {
1109      _exits.add_exception_state(ex_map);
1110    }
1111  }
1112  _exits.map()->apply_replaced_nodes(_new_idx);
1113}
1114
1115//-----------------------------create_entry_map-------------------------------
1116// Initialize our parser map to contain the types at method entry.
1117// For OSR, the map contains a single RawPtr parameter.
1118// Initial monitor locking for sync. methods is performed by do_method_entry.
1119SafePointNode* Parse::create_entry_map() {
1120  // Check for really stupid bail-out cases.
1121  uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1122  if (len >= 32760) {
1123    C->record_method_not_compilable("too many local variables");
1124    return NULL;
1125  }
1126
1127  // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1128  _caller->map()->delete_replaced_nodes();
1129
1130  // If this is an inlined method, we may have to do a receiver null check.
1131  if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1132    GraphKit kit(_caller);
1133    kit.null_check_receiver_before_call(method());
1134    _caller = kit.transfer_exceptions_into_jvms();
1135    if (kit.stopped()) {
1136      _exits.add_exception_states_from(_caller);
1137      _exits.set_jvms(_caller);
1138      return NULL;
1139    }
1140  }
1141
1142  assert(method() != NULL, "parser must have a method");
1143
1144  // Create an initial safepoint to hold JVM state during parsing
1145  JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1146  set_map(new SafePointNode(len, jvms));
1147  jvms->set_map(map());
1148  record_for_igvn(map());
1149  assert(jvms->endoff() == len, "correct jvms sizing");
1150
1151  SafePointNode* inmap = _caller->map();
1152  assert(inmap != NULL, "must have inmap");
1153  // In case of null check on receiver above
1154  map()->transfer_replaced_nodes_from(inmap, _new_idx);
1155
1156  uint i;
1157
1158  // Pass thru the predefined input parameters.
1159  for (i = 0; i < TypeFunc::Parms; i++) {
1160    map()->init_req(i, inmap->in(i));
1161  }
1162
1163  if (depth() == 1) {
1164    assert(map()->memory()->Opcode() == Op_Parm, "");
1165    // Insert the memory aliasing node
1166    set_all_memory(reset_memory());
1167  }
1168  assert(merged_memory(), "");
1169
1170  // Now add the locals which are initially bound to arguments:
1171  uint arg_size = tf()->domain()->cnt();
1172  ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1173  for (i = TypeFunc::Parms; i < arg_size; i++) {
1174    map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1175  }
1176
1177  // Clear out the rest of the map (locals and stack)
1178  for (i = arg_size; i < len; i++) {
1179    map()->init_req(i, top());
1180  }
1181
1182  SafePointNode* entry_map = stop();
1183  return entry_map;
1184}
1185
1186//-----------------------------do_method_entry--------------------------------
1187// Emit any code needed in the pseudo-block before BCI zero.
1188// The main thing to do is lock the receiver of a synchronized method.
1189void Parse::do_method_entry() {
1190  set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1191  set_sp(0);                      // Java Stack Pointer
1192
1193  NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1194
1195  if (C->env()->dtrace_method_probes()) {
1196    make_dtrace_method_entry(method());
1197  }
1198
1199  // If the method is synchronized, we need to construct a lock node, attach
1200  // it to the Start node, and pin it there.
1201  if (method()->is_synchronized()) {
1202    // Insert a FastLockNode right after the Start which takes as arguments
1203    // the current thread pointer, the "this" pointer & the address of the
1204    // stack slot pair used for the lock.  The "this" pointer is a projection
1205    // off the start node, but the locking spot has to be constructed by
1206    // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1207    // becomes the second argument to the FastLockNode call.  The
1208    // FastLockNode becomes the new control parent to pin it to the start.
1209
1210    // Setup Object Pointer
1211    Node *lock_obj = NULL;
1212    if(method()->is_static()) {
1213      ciInstance* mirror = _method->holder()->java_mirror();
1214      const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1215      lock_obj = makecon(t_lock);
1216    } else {                  // Else pass the "this" pointer,
1217      lock_obj = local(0);    // which is Parm0 from StartNode
1218    }
1219    // Clear out dead values from the debug info.
1220    kill_dead_locals();
1221    // Build the FastLockNode
1222    _synch_lock = shared_lock(lock_obj);
1223  }
1224
1225  // Feed profiling data for parameters to the type system so it can
1226  // propagate it as speculative types
1227  record_profiled_parameters_for_speculation();
1228
1229  if (depth() == 1) {
1230    increment_and_test_invocation_counter(Tier2CompileThreshold);
1231  }
1232}
1233
1234//------------------------------init_blocks------------------------------------
1235// Initialize our parser map to contain the types/monitors at method entry.
1236void Parse::init_blocks() {
1237  // Create the blocks.
1238  _block_count = flow()->block_count();
1239  _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1240
1241  // Initialize the structs.
1242  for (int rpo = 0; rpo < block_count(); rpo++) {
1243    Block* block = rpo_at(rpo);
1244    new(block) Block(this, rpo);
1245  }
1246
1247  // Collect predecessor and successor information.
1248  for (int rpo = 0; rpo < block_count(); rpo++) {
1249    Block* block = rpo_at(rpo);
1250    block->init_graph(this);
1251  }
1252}
1253
1254//-------------------------------init_node-------------------------------------
1255Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1256  _flow = outer->flow()->rpo_at(rpo);
1257  _pred_count = 0;
1258  _preds_parsed = 0;
1259  _count = 0;
1260  _is_parsed = false;
1261  _is_handler = false;
1262  _has_merged_backedge = false;
1263  _start_map = NULL;
1264  _num_successors = 0;
1265  _all_successors = 0;
1266  _successors = NULL;
1267  assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1268  assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1269  assert(_live_locals.size() == 0, "sanity");
1270
1271  // entry point has additional predecessor
1272  if (flow()->is_start())  _pred_count++;
1273  assert(flow()->is_start() == (this == outer->start_block()), "");
1274}
1275
1276//-------------------------------init_graph------------------------------------
1277void Parse::Block::init_graph(Parse* outer) {
1278  // Create the successor list for this parser block.
1279  GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1280  GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1281  int ns = tfs->length();
1282  int ne = tfe->length();
1283  _num_successors = ns;
1284  _all_successors = ns+ne;
1285  _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1286  int p = 0;
1287  for (int i = 0; i < ns+ne; i++) {
1288    ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1289    Block* block2 = outer->rpo_at(tf2->rpo());
1290    _successors[i] = block2;
1291
1292    // Accumulate pred info for the other block, too.
1293    if (i < ns) {
1294      block2->_pred_count++;
1295    } else {
1296      block2->_is_handler = true;
1297    }
1298
1299    #ifdef ASSERT
1300    // A block's successors must be distinguishable by BCI.
1301    // That is, no bytecode is allowed to branch to two different
1302    // clones of the same code location.
1303    for (int j = 0; j < i; j++) {
1304      Block* block1 = _successors[j];
1305      if (block1 == block2)  continue;  // duplicates are OK
1306      assert(block1->start() != block2->start(), "successors have unique bcis");
1307    }
1308    #endif
1309  }
1310
1311  // Note: We never call next_path_num along exception paths, so they
1312  // never get processed as "ready".  Also, the input phis of exception
1313  // handlers get specially processed, so that
1314}
1315
1316//---------------------------successor_for_bci---------------------------------
1317Parse::Block* Parse::Block::successor_for_bci(int bci) {
1318  for (int i = 0; i < all_successors(); i++) {
1319    Block* block2 = successor_at(i);
1320    if (block2->start() == bci)  return block2;
1321  }
1322  // We can actually reach here if ciTypeFlow traps out a block
1323  // due to an unloaded class, and concurrently with compilation the
1324  // class is then loaded, so that a later phase of the parser is
1325  // able to see more of the bytecode CFG.  Or, the flow pass and
1326  // the parser can have a minor difference of opinion about executability
1327  // of bytecodes.  For example, "obj.field = null" is executable even
1328  // if the field's type is an unloaded class; the flow pass used to
1329  // make a trap for such code.
1330  return NULL;
1331}
1332
1333
1334//-----------------------------stack_type_at-----------------------------------
1335const Type* Parse::Block::stack_type_at(int i) const {
1336  return get_type(flow()->stack_type_at(i));
1337}
1338
1339
1340//-----------------------------local_type_at-----------------------------------
1341const Type* Parse::Block::local_type_at(int i) const {
1342  // Make dead locals fall to bottom.
1343  if (_live_locals.size() == 0) {
1344    MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1345    // This bitmap can be zero length if we saw a breakpoint.
1346    // In such cases, pretend they are all live.
1347    ((Block*)this)->_live_locals = live_locals;
1348  }
1349  if (_live_locals.size() > 0 && !_live_locals.at(i))
1350    return Type::BOTTOM;
1351
1352  return get_type(flow()->local_type_at(i));
1353}
1354
1355
1356#ifndef PRODUCT
1357
1358//----------------------------name_for_bc--------------------------------------
1359// helper method for BytecodeParseHistogram
1360static const char* name_for_bc(int i) {
1361  return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1362}
1363
1364//----------------------------BytecodeParseHistogram------------------------------------
1365Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1366  _parser   = p;
1367  _compiler = c;
1368  if( ! _initialized ) { _initialized = true; reset(); }
1369}
1370
1371//----------------------------current_count------------------------------------
1372int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1373  switch( bph_type ) {
1374  case BPH_transforms: { return _parser->gvn().made_progress(); }
1375  case BPH_values:     { return _parser->gvn().made_new_values(); }
1376  default: { ShouldNotReachHere(); return 0; }
1377  }
1378}
1379
1380//----------------------------initialized--------------------------------------
1381bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1382
1383//----------------------------reset--------------------------------------------
1384void Parse::BytecodeParseHistogram::reset() {
1385  int i = Bytecodes::number_of_codes;
1386  while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1387}
1388
1389//----------------------------set_initial_state--------------------------------
1390// Record info when starting to parse one bytecode
1391void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1392  if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1393    _initial_bytecode    = bc;
1394    _initial_node_count  = _compiler->unique();
1395    _initial_transforms  = current_count(BPH_transforms);
1396    _initial_values      = current_count(BPH_values);
1397  }
1398}
1399
1400//----------------------------record_change--------------------------------
1401// Record results of parsing one bytecode
1402void Parse::BytecodeParseHistogram::record_change() {
1403  if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1404    ++_bytecodes_parsed[_initial_bytecode];
1405    _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1406    _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1407    _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1408  }
1409}
1410
1411
1412//----------------------------print--------------------------------------------
1413void Parse::BytecodeParseHistogram::print(float cutoff) {
1414  ResourceMark rm;
1415  // print profile
1416  int total  = 0;
1417  int i      = 0;
1418  for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1419  int abs_sum = 0;
1420  tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1421  tty->print_cr("Histogram of %d parsed bytecodes:", total);
1422  if( total == 0 ) { return; }
1423  tty->cr();
1424  tty->print_cr("absolute:  count of compiled bytecodes of this type");
1425  tty->print_cr("relative:  percentage contribution to compiled nodes");
1426  tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1427  tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1428  tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1429  tty->print_cr("values  :  Average number of node values improved per bytecode");
1430  tty->print_cr("name    :  Bytecode name");
1431  tty->cr();
1432  tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1433  tty->print_cr("----------------------------------------------------------------------");
1434  while (--i > 0) {
1435    int       abs = _bytecodes_parsed[i];
1436    float     rel = abs * 100.0F / total;
1437    float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1438    float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1439    float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1440    float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1441    if (cutoff <= rel) {
1442      tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1443      abs_sum += abs;
1444    }
1445  }
1446  tty->print_cr("----------------------------------------------------------------------");
1447  float rel_sum = abs_sum * 100.0F / total;
1448  tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1449  tty->print_cr("----------------------------------------------------------------------");
1450  tty->cr();
1451}
1452#endif
1453
1454//----------------------------load_state_from----------------------------------
1455// Load block/map/sp.  But not do not touch iter/bci.
1456void Parse::load_state_from(Block* block) {
1457  set_block(block);
1458  // load the block's JVM state:
1459  set_map(block->start_map());
1460  set_sp( block->start_sp());
1461}
1462
1463
1464//-----------------------------record_state------------------------------------
1465void Parse::Block::record_state(Parse* p) {
1466  assert(!is_merged(), "can only record state once, on 1st inflow");
1467  assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1468  set_start_map(p->stop());
1469}
1470
1471
1472//------------------------------do_one_block-----------------------------------
1473void Parse::do_one_block() {
1474  if (TraceOptoParse) {
1475    Block *b = block();
1476    int ns = b->num_successors();
1477    int nt = b->all_successors();
1478
1479    tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1480                  block()->rpo(), block()->start(), block()->limit());
1481    for (int i = 0; i < nt; i++) {
1482      tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1483    }
1484    if (b->is_loop_head()) tty->print("  lphd");
1485    tty->cr();
1486  }
1487
1488  assert(block()->is_merged(), "must be merged before being parsed");
1489  block()->mark_parsed();
1490
1491  // Set iterator to start of block.
1492  iter().reset_to_bci(block()->start());
1493
1494  CompileLog* log = C->log();
1495
1496  // Parse bytecodes
1497  while (!stopped() && !failing()) {
1498    iter().next();
1499
1500    // Learn the current bci from the iterator:
1501    set_parse_bci(iter().cur_bci());
1502
1503    if (bci() == block()->limit()) {
1504      // Do not walk into the next block until directed by do_all_blocks.
1505      merge(bci());
1506      break;
1507    }
1508    assert(bci() < block()->limit(), "bci still in block");
1509
1510    if (log != NULL) {
1511      // Output an optional context marker, to help place actions
1512      // that occur during parsing of this BC.  If there is no log
1513      // output until the next context string, this context string
1514      // will be silently ignored.
1515      log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1516    }
1517
1518    if (block()->has_trap_at(bci())) {
1519      // We must respect the flow pass's traps, because it will refuse
1520      // to produce successors for trapping blocks.
1521      int trap_index = block()->flow()->trap_index();
1522      assert(trap_index != 0, "trap index must be valid");
1523      uncommon_trap(trap_index);
1524      break;
1525    }
1526
1527    NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1528
1529#ifdef ASSERT
1530    int pre_bc_sp = sp();
1531    int inputs, depth;
1532    bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1533    assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1534#endif //ASSERT
1535
1536    do_one_bytecode();
1537
1538    assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1539           "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1540
1541    do_exceptions();
1542
1543    NOT_PRODUCT( parse_histogram()->record_change(); );
1544
1545    if (log != NULL)
1546      log->clear_context();  // skip marker if nothing was printed
1547
1548    // Fall into next bytecode.  Each bytecode normally has 1 sequential
1549    // successor which is typically made ready by visiting this bytecode.
1550    // If the successor has several predecessors, then it is a merge
1551    // point, starts a new basic block, and is handled like other basic blocks.
1552  }
1553}
1554
1555
1556//------------------------------merge------------------------------------------
1557void Parse::set_parse_bci(int bci) {
1558  set_bci(bci);
1559  Node_Notes* nn = C->default_node_notes();
1560  if (nn == NULL)  return;
1561
1562  // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1563  if (!DebugInlinedCalls && depth() > 1) {
1564    return;
1565  }
1566
1567  // Update the JVMS annotation, if present.
1568  JVMState* jvms = nn->jvms();
1569  if (jvms != NULL && jvms->bci() != bci) {
1570    // Update the JVMS.
1571    jvms = jvms->clone_shallow(C);
1572    jvms->set_bci(bci);
1573    nn->set_jvms(jvms);
1574  }
1575}
1576
1577//------------------------------merge------------------------------------------
1578// Merge the current mapping into the basic block starting at bci
1579void Parse::merge(int target_bci) {
1580  Block* target = successor_for_bci(target_bci);
1581  if (target == NULL) { handle_missing_successor(target_bci); return; }
1582  assert(!target->is_ready(), "our arrival must be expected");
1583  int pnum = target->next_path_num();
1584  merge_common(target, pnum);
1585}
1586
1587//-------------------------merge_new_path--------------------------------------
1588// Merge the current mapping into the basic block, using a new path
1589void Parse::merge_new_path(int target_bci) {
1590  Block* target = successor_for_bci(target_bci);
1591  if (target == NULL) { handle_missing_successor(target_bci); return; }
1592  assert(!target->is_ready(), "new path into frozen graph");
1593  int pnum = target->add_new_path();
1594  merge_common(target, pnum);
1595}
1596
1597//-------------------------merge_exception-------------------------------------
1598// Merge the current mapping into the basic block starting at bci
1599// The ex_oop must be pushed on the stack, unlike throw_to_exit.
1600void Parse::merge_exception(int target_bci) {
1601  assert(sp() == 1, "must have only the throw exception on the stack");
1602  Block* target = successor_for_bci(target_bci);
1603  if (target == NULL) { handle_missing_successor(target_bci); return; }
1604  assert(target->is_handler(), "exceptions are handled by special blocks");
1605  int pnum = target->add_new_path();
1606  merge_common(target, pnum);
1607}
1608
1609//--------------------handle_missing_successor---------------------------------
1610void Parse::handle_missing_successor(int target_bci) {
1611#ifndef PRODUCT
1612  Block* b = block();
1613  int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1614  tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1615#endif
1616  ShouldNotReachHere();
1617}
1618
1619//--------------------------merge_common---------------------------------------
1620void Parse::merge_common(Parse::Block* target, int pnum) {
1621  if (TraceOptoParse) {
1622    tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1623  }
1624
1625  // Zap extra stack slots to top
1626  assert(sp() == target->start_sp(), "");
1627  clean_stack(sp());
1628
1629  if (!target->is_merged()) {   // No prior mapping at this bci
1630    if (TraceOptoParse) { tty->print(" with empty state");  }
1631
1632    // If this path is dead, do not bother capturing it as a merge.
1633    // It is "as if" we had 1 fewer predecessors from the beginning.
1634    if (stopped()) {
1635      if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1636      return;
1637    }
1638
1639    // Make a region if we know there are multiple or unpredictable inputs.
1640    // (Also, if this is a plain fall-through, we might see another region,
1641    // which must not be allowed into this block's map.)
1642    if (pnum > PhiNode::Input         // Known multiple inputs.
1643        || target->is_handler()       // These have unpredictable inputs.
1644        || target->is_loop_head()     // Known multiple inputs
1645        || control()->is_Region()) {  // We must hide this guy.
1646
1647      int current_bci = bci();
1648      set_parse_bci(target->start()); // Set target bci
1649      if (target->is_SEL_head()) {
1650        DEBUG_ONLY( target->mark_merged_backedge(block()); )
1651        if (target->start() == 0) {
1652          // Add loop predicate for the special case when
1653          // there are backbranches to the method entry.
1654          add_predicate();
1655        }
1656      }
1657      // Add a Region to start the new basic block.  Phis will be added
1658      // later lazily.
1659      int edges = target->pred_count();
1660      if (edges < pnum)  edges = pnum;  // might be a new path!
1661      RegionNode *r = new RegionNode(edges+1);
1662      gvn().set_type(r, Type::CONTROL);
1663      record_for_igvn(r);
1664      // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1665      // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1666      r->init_req(pnum, control());
1667      set_control(r);
1668      set_parse_bci(current_bci); // Restore bci
1669    }
1670
1671    // Convert the existing Parser mapping into a mapping at this bci.
1672    store_state_to(target);
1673    assert(target->is_merged(), "do not come here twice");
1674
1675  } else {                      // Prior mapping at this bci
1676    if (TraceOptoParse) {  tty->print(" with previous state"); }
1677#ifdef ASSERT
1678    if (target->is_SEL_head()) {
1679      target->mark_merged_backedge(block());
1680    }
1681#endif
1682    // We must not manufacture more phis if the target is already parsed.
1683    bool nophi = target->is_parsed();
1684
1685    SafePointNode* newin = map();// Hang on to incoming mapping
1686    Block* save_block = block(); // Hang on to incoming block;
1687    load_state_from(target);    // Get prior mapping
1688
1689    assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1690    assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1691    assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1692    assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1693
1694    // Iterate over my current mapping and the old mapping.
1695    // Where different, insert Phi functions.
1696    // Use any existing Phi functions.
1697    assert(control()->is_Region(), "must be merging to a region");
1698    RegionNode* r = control()->as_Region();
1699
1700    // Compute where to merge into
1701    // Merge incoming control path
1702    r->init_req(pnum, newin->control());
1703
1704    if (pnum == 1) {            // Last merge for this Region?
1705      if (!block()->flow()->is_irreducible_entry()) {
1706        Node* result = _gvn.transform_no_reclaim(r);
1707        if (r != result && TraceOptoParse) {
1708          tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1709        }
1710      }
1711      record_for_igvn(r);
1712    }
1713
1714    // Update all the non-control inputs to map:
1715    assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1716    bool check_elide_phi = target->is_SEL_backedge(save_block);
1717    for (uint j = 1; j < newin->req(); j++) {
1718      Node* m = map()->in(j);   // Current state of target.
1719      Node* n = newin->in(j);   // Incoming change to target state.
1720      PhiNode* phi;
1721      if (m->is_Phi() && m->as_Phi()->region() == r)
1722        phi = m->as_Phi();
1723      else
1724        phi = NULL;
1725      if (m != n) {             // Different; must merge
1726        switch (j) {
1727        // Frame pointer and Return Address never changes
1728        case TypeFunc::FramePtr:// Drop m, use the original value
1729        case TypeFunc::ReturnAdr:
1730          break;
1731        case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1732          assert(phi == NULL, "the merge contains phis, not vice versa");
1733          merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1734          continue;
1735        default:                // All normal stuff
1736          if (phi == NULL) {
1737            const JVMState* jvms = map()->jvms();
1738            if (EliminateNestedLocks &&
1739                jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1740              // BoxLock nodes are not commoning.
1741              // Use old BoxLock node as merged box.
1742              assert(newin->jvms()->is_monitor_box(j), "sanity");
1743              // This assert also tests that nodes are BoxLock.
1744              assert(BoxLockNode::same_slot(n, m), "sanity");
1745              C->gvn_replace_by(n, m);
1746            } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1747              phi = ensure_phi(j, nophi);
1748            }
1749          }
1750          break;
1751        }
1752      }
1753      // At this point, n might be top if:
1754      //  - there is no phi (because TypeFlow detected a conflict), or
1755      //  - the corresponding control edges is top (a dead incoming path)
1756      // It is a bug if we create a phi which sees a garbage value on a live path.
1757
1758      if (phi != NULL) {
1759        assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1760        assert(phi->region() == r, "");
1761        phi->set_req(pnum, n);  // Then add 'n' to the merge
1762        if (pnum == PhiNode::Input) {
1763          // Last merge for this Phi.
1764          // So far, Phis have had a reasonable type from ciTypeFlow.
1765          // Now _gvn will join that with the meet of current inputs.
1766          // BOTTOM is never permissible here, 'cause pessimistically
1767          // Phis of pointers cannot lose the basic pointer type.
1768          debug_only(const Type* bt1 = phi->bottom_type());
1769          assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1770          map()->set_req(j, _gvn.transform_no_reclaim(phi));
1771          debug_only(const Type* bt2 = phi->bottom_type());
1772          assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1773          record_for_igvn(phi);
1774        }
1775      }
1776    } // End of for all values to be merged
1777
1778    if (pnum == PhiNode::Input &&
1779        !r->in(0)) {         // The occasional useless Region
1780      assert(control() == r, "");
1781      set_control(r->nonnull_req());
1782    }
1783
1784    map()->merge_replaced_nodes_with(newin);
1785
1786    // newin has been subsumed into the lazy merge, and is now dead.
1787    set_block(save_block);
1788
1789    stop();                     // done with this guy, for now
1790  }
1791
1792  if (TraceOptoParse) {
1793    tty->print_cr(" on path %d", pnum);
1794  }
1795
1796  // Done with this parser state.
1797  assert(stopped(), "");
1798}
1799
1800
1801//--------------------------merge_memory_edges---------------------------------
1802void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1803  // (nophi means we must not create phis, because we already parsed here)
1804  assert(n != NULL, "");
1805  // Merge the inputs to the MergeMems
1806  MergeMemNode* m = merged_memory();
1807
1808  assert(control()->is_Region(), "must be merging to a region");
1809  RegionNode* r = control()->as_Region();
1810
1811  PhiNode* base = NULL;
1812  MergeMemNode* remerge = NULL;
1813  for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1814    Node *p = mms.force_memory();
1815    Node *q = mms.memory2();
1816    if (mms.is_empty() && nophi) {
1817      // Trouble:  No new splits allowed after a loop body is parsed.
1818      // Instead, wire the new split into a MergeMem on the backedge.
1819      // The optimizer will sort it out, slicing the phi.
1820      if (remerge == NULL) {
1821        assert(base != NULL, "");
1822        assert(base->in(0) != NULL, "should not be xformed away");
1823        remerge = MergeMemNode::make(base->in(pnum));
1824        gvn().set_type(remerge, Type::MEMORY);
1825        base->set_req(pnum, remerge);
1826      }
1827      remerge->set_memory_at(mms.alias_idx(), q);
1828      continue;
1829    }
1830    assert(!q->is_MergeMem(), "");
1831    PhiNode* phi;
1832    if (p != q) {
1833      phi = ensure_memory_phi(mms.alias_idx(), nophi);
1834    } else {
1835      if (p->is_Phi() && p->as_Phi()->region() == r)
1836        phi = p->as_Phi();
1837      else
1838        phi = NULL;
1839    }
1840    // Insert q into local phi
1841    if (phi != NULL) {
1842      assert(phi->region() == r, "");
1843      p = phi;
1844      phi->set_req(pnum, q);
1845      if (mms.at_base_memory()) {
1846        base = phi;  // delay transforming it
1847      } else if (pnum == 1) {
1848        record_for_igvn(phi);
1849        p = _gvn.transform_no_reclaim(phi);
1850      }
1851      mms.set_memory(p);// store back through the iterator
1852    }
1853  }
1854  // Transform base last, in case we must fiddle with remerging.
1855  if (base != NULL && pnum == 1) {
1856    record_for_igvn(base);
1857    m->set_base_memory( _gvn.transform_no_reclaim(base) );
1858  }
1859}
1860
1861
1862//------------------------ensure_phis_everywhere-------------------------------
1863void Parse::ensure_phis_everywhere() {
1864  ensure_phi(TypeFunc::I_O);
1865
1866  // Ensure a phi on all currently known memories.
1867  for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1868    ensure_memory_phi(mms.alias_idx());
1869    debug_only(mms.set_memory());  // keep the iterator happy
1870  }
1871
1872  // Note:  This is our only chance to create phis for memory slices.
1873  // If we miss a slice that crops up later, it will have to be
1874  // merged into the base-memory phi that we are building here.
1875  // Later, the optimizer will comb out the knot, and build separate
1876  // phi-loops for each memory slice that matters.
1877
1878  // Monitors must nest nicely and not get confused amongst themselves.
1879  // Phi-ify everything up to the monitors, though.
1880  uint monoff = map()->jvms()->monoff();
1881  uint nof_monitors = map()->jvms()->nof_monitors();
1882
1883  assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1884  bool check_elide_phi = block()->is_SEL_head();
1885  for (uint i = TypeFunc::Parms; i < monoff; i++) {
1886    if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1887      ensure_phi(i);
1888    }
1889  }
1890
1891  // Even monitors need Phis, though they are well-structured.
1892  // This is true for OSR methods, and also for the rare cases where
1893  // a monitor object is the subject of a replace_in_map operation.
1894  // See bugs 4426707 and 5043395.
1895  for (uint m = 0; m < nof_monitors; m++) {
1896    ensure_phi(map()->jvms()->monitor_obj_offset(m));
1897  }
1898}
1899
1900
1901//-----------------------------add_new_path------------------------------------
1902// Add a previously unaccounted predecessor to this block.
1903int Parse::Block::add_new_path() {
1904  // If there is no map, return the lowest unused path number.
1905  if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1906
1907  SafePointNode* map = start_map();
1908  if (!map->control()->is_Region())
1909    return pred_count()+1;  // there may be a region some day
1910  RegionNode* r = map->control()->as_Region();
1911
1912  // Add new path to the region.
1913  uint pnum = r->req();
1914  r->add_req(NULL);
1915
1916  for (uint i = 1; i < map->req(); i++) {
1917    Node* n = map->in(i);
1918    if (i == TypeFunc::Memory) {
1919      // Ensure a phi on all currently known memories.
1920      for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1921        Node* phi = mms.memory();
1922        if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1923          assert(phi->req() == pnum, "must be same size as region");
1924          phi->add_req(NULL);
1925        }
1926      }
1927    } else {
1928      if (n->is_Phi() && n->as_Phi()->region() == r) {
1929        assert(n->req() == pnum, "must be same size as region");
1930        n->add_req(NULL);
1931      }
1932    }
1933  }
1934
1935  return pnum;
1936}
1937
1938//------------------------------ensure_phi-------------------------------------
1939// Turn the idx'th entry of the current map into a Phi
1940PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1941  SafePointNode* map = this->map();
1942  Node* region = map->control();
1943  assert(region->is_Region(), "");
1944
1945  Node* o = map->in(idx);
1946  assert(o != NULL, "");
1947
1948  if (o == top())  return NULL; // TOP always merges into TOP
1949
1950  if (o->is_Phi() && o->as_Phi()->region() == region) {
1951    return o->as_Phi();
1952  }
1953
1954  // Now use a Phi here for merging
1955  assert(!nocreate, "Cannot build a phi for a block already parsed.");
1956  const JVMState* jvms = map->jvms();
1957  const Type* t = NULL;
1958  if (jvms->is_loc(idx)) {
1959    t = block()->local_type_at(idx - jvms->locoff());
1960  } else if (jvms->is_stk(idx)) {
1961    t = block()->stack_type_at(idx - jvms->stkoff());
1962  } else if (jvms->is_mon(idx)) {
1963    assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1964    t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1965  } else if ((uint)idx < TypeFunc::Parms) {
1966    t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1967  } else {
1968    assert(false, "no type information for this phi");
1969  }
1970
1971  // If the type falls to bottom, then this must be a local that
1972  // is mixing ints and oops or some such.  Forcing it to top
1973  // makes it go dead.
1974  if (t == Type::BOTTOM) {
1975    map->set_req(idx, top());
1976    return NULL;
1977  }
1978
1979  // Do not create phis for top either.
1980  // A top on a non-null control flow must be an unused even after the.phi.
1981  if (t == Type::TOP || t == Type::HALF) {
1982    map->set_req(idx, top());
1983    return NULL;
1984  }
1985
1986  PhiNode* phi = PhiNode::make(region, o, t);
1987  gvn().set_type(phi, t);
1988  if (C->do_escape_analysis()) record_for_igvn(phi);
1989  map->set_req(idx, phi);
1990  return phi;
1991}
1992
1993//--------------------------ensure_memory_phi----------------------------------
1994// Turn the idx'th slice of the current memory into a Phi
1995PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1996  MergeMemNode* mem = merged_memory();
1997  Node* region = control();
1998  assert(region->is_Region(), "");
1999
2000  Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2001  assert(o != NULL && o != top(), "");
2002
2003  PhiNode* phi;
2004  if (o->is_Phi() && o->as_Phi()->region() == region) {
2005    phi = o->as_Phi();
2006    if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2007      // clone the shared base memory phi to make a new memory split
2008      assert(!nocreate, "Cannot build a phi for a block already parsed.");
2009      const Type* t = phi->bottom_type();
2010      const TypePtr* adr_type = C->get_adr_type(idx);
2011      phi = phi->slice_memory(adr_type);
2012      gvn().set_type(phi, t);
2013    }
2014    return phi;
2015  }
2016
2017  // Now use a Phi here for merging
2018  assert(!nocreate, "Cannot build a phi for a block already parsed.");
2019  const Type* t = o->bottom_type();
2020  const TypePtr* adr_type = C->get_adr_type(idx);
2021  phi = PhiNode::make(region, o, t, adr_type);
2022  gvn().set_type(phi, t);
2023  if (idx == Compile::AliasIdxBot)
2024    mem->set_base_memory(phi);
2025  else
2026    mem->set_memory_at(idx, phi);
2027  return phi;
2028}
2029
2030//------------------------------call_register_finalizer-----------------------
2031// Check the klass of the receiver and call register_finalizer if the
2032// class need finalization.
2033void Parse::call_register_finalizer() {
2034  Node* receiver = local(0);
2035  assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
2036         "must have non-null instance type");
2037
2038  const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2039  if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
2040    // The type isn't known exactly so see if CHA tells us anything.
2041    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2042    if (!Dependencies::has_finalizable_subclass(ik)) {
2043      // No finalizable subclasses so skip the dynamic check.
2044      C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2045      return;
2046    }
2047  }
2048
2049  // Insert a dynamic test for whether the instance needs
2050  // finalization.  In general this will fold up since the concrete
2051  // class is often visible so the access flags are constant.
2052  Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2053  Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2054
2055  Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2056  Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2057
2058  Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2059  Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2060  Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2061
2062  IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2063
2064  RegionNode* result_rgn = new RegionNode(3);
2065  record_for_igvn(result_rgn);
2066
2067  Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2068  result_rgn->init_req(1, skip_register);
2069
2070  Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2071  set_control(needs_register);
2072  if (stopped()) {
2073    // There is no slow path.
2074    result_rgn->init_req(2, top());
2075  } else {
2076    Node *call = make_runtime_call(RC_NO_LEAF,
2077                                   OptoRuntime::register_finalizer_Type(),
2078                                   OptoRuntime::register_finalizer_Java(),
2079                                   NULL, TypePtr::BOTTOM,
2080                                   receiver);
2081    make_slow_call_ex(call, env()->Throwable_klass(), true);
2082
2083    Node* fast_io  = call->in(TypeFunc::I_O);
2084    Node* fast_mem = call->in(TypeFunc::Memory);
2085    // These two phis are pre-filled with copies of of the fast IO and Memory
2086    Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2087    Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2088
2089    result_rgn->init_req(2, control());
2090    io_phi    ->init_req(2, i_o());
2091    mem_phi   ->init_req(2, reset_memory());
2092
2093    set_all_memory( _gvn.transform(mem_phi) );
2094    set_i_o(        _gvn.transform(io_phi) );
2095  }
2096
2097  set_control( _gvn.transform(result_rgn) );
2098}
2099
2100// Add check to deoptimize if RTM state is not ProfileRTM
2101void Parse::rtm_deopt() {
2102#if INCLUDE_RTM_OPT
2103  if (C->profile_rtm()) {
2104    assert(C->method() != NULL, "only for normal compilations");
2105    assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2106    assert(depth() == 1, "generate check only for main compiled method");
2107
2108    // Set starting bci for uncommon trap.
2109    set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2110
2111    // Load the rtm_state from the MethodData.
2112    const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2113    Node* mdo = makecon(adr_type);
2114    int offset = MethodData::rtm_state_offset_in_bytes();
2115    Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2116    Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2117
2118    // Separate Load from Cmp by Opaque.
2119    // In expand_macro_nodes() it will be replaced either
2120    // with this load when there are locks in the code
2121    // or with ProfileRTM (cmp->in(2)) otherwise so that
2122    // the check will fold.
2123    Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2124    Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2125    Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2126    Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2127    // Branch to failure if state was changed
2128    { BuildCutout unless(this, tst, PROB_ALWAYS);
2129      uncommon_trap(Deoptimization::Reason_rtm_state_change,
2130                    Deoptimization::Action_make_not_entrant);
2131    }
2132  }
2133#endif
2134}
2135
2136void Parse::decrement_age() {
2137  MethodCounters* mc = method()->ensure_method_counters();
2138  if (mc == NULL) {
2139    C->record_failure("Must have MCs");
2140    return;
2141  }
2142  assert(!is_osr_parse(), "Not doing this for OSRs");
2143
2144  // Set starting bci for uncommon trap.
2145  set_parse_bci(0);
2146
2147  const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2148  Node* mc_adr = makecon(adr_type);
2149  Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2150  Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2151  Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2152  store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2153  Node *chk   = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2154  Node* tst   = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2155  { BuildCutout unless(this, tst, PROB_ALWAYS);
2156    uncommon_trap(Deoptimization::Reason_tenured,
2157                  Deoptimization::Action_make_not_entrant);
2158  }
2159}
2160
2161//------------------------------return_current---------------------------------
2162// Append current _map to _exit_return
2163void Parse::return_current(Node* value) {
2164  if (RegisterFinalizersAtInit &&
2165      method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2166    call_register_finalizer();
2167  }
2168
2169  // Do not set_parse_bci, so that return goo is credited to the return insn.
2170  set_bci(InvocationEntryBci);
2171  if (method()->is_synchronized() && GenerateSynchronizationCode) {
2172    shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2173  }
2174  if (C->env()->dtrace_method_probes()) {
2175    make_dtrace_method_exit(method());
2176  }
2177  SafePointNode* exit_return = _exits.map();
2178  exit_return->in( TypeFunc::Control  )->add_req( control() );
2179  exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2180  Node *mem = exit_return->in( TypeFunc::Memory   );
2181  for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2182    if (mms.is_empty()) {
2183      // get a copy of the base memory, and patch just this one input
2184      const TypePtr* adr_type = mms.adr_type(C);
2185      Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2186      assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2187      gvn().set_type_bottom(phi);
2188      phi->del_req(phi->req()-1);  // prepare to re-patch
2189      mms.set_memory(phi);
2190    }
2191    mms.memory()->add_req(mms.memory2());
2192  }
2193
2194  // frame pointer is always same, already captured
2195  if (value != NULL) {
2196    // If returning oops to an interface-return, there is a silent free
2197    // cast from oop to interface allowed by the Verifier.  Make it explicit
2198    // here.
2199    Node* phi = _exits.argument(0);
2200    const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2201    if (tr && tr->klass()->is_loaded() &&
2202        tr->klass()->is_interface()) {
2203      const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2204      if (tp && tp->klass()->is_loaded() &&
2205          !tp->klass()->is_interface()) {
2206        // sharpen the type eagerly; this eases certain assert checking
2207        if (tp->higher_equal(TypeInstPtr::NOTNULL))
2208          tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2209        value = _gvn.transform(new CheckCastPPNode(0, value, tr));
2210      }
2211    } else {
2212      // Also handle returns of oop-arrays to an arrays-of-interface return
2213      const TypeInstPtr* phi_tip;
2214      const TypeInstPtr* val_tip;
2215      Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip);
2216      if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() &&
2217          val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) {
2218        value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type()));
2219      }
2220    }
2221    phi->add_req(value);
2222  }
2223
2224  if (_first_return) {
2225    _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2226    _first_return = false;
2227  } else {
2228    _exits.map()->merge_replaced_nodes_with(map());
2229  }
2230
2231  stop_and_kill_map();          // This CFG path dies here
2232}
2233
2234
2235//------------------------------add_safepoint----------------------------------
2236void Parse::add_safepoint() {
2237  // See if we can avoid this safepoint.  No need for a SafePoint immediately
2238  // after a Call (except Leaf Call) or another SafePoint.
2239  Node *proj = control();
2240  bool add_poll_param = SafePointNode::needs_polling_address_input();
2241  uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2242  if( proj->is_Proj() ) {
2243    Node *n0 = proj->in(0);
2244    if( n0->is_Catch() ) {
2245      n0 = n0->in(0)->in(0);
2246      assert( n0->is_Call(), "expect a call here" );
2247    }
2248    if( n0->is_Call() ) {
2249      if( n0->as_Call()->guaranteed_safepoint() )
2250        return;
2251    } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2252      return;
2253    }
2254  }
2255
2256  // Clear out dead values from the debug info.
2257  kill_dead_locals();
2258
2259  // Clone the JVM State
2260  SafePointNode *sfpnt = new SafePointNode(parms, NULL);
2261
2262  // Capture memory state BEFORE a SafePoint.  Since we can block at a
2263  // SafePoint we need our GC state to be safe; i.e. we need all our current
2264  // write barriers (card marks) to not float down after the SafePoint so we
2265  // must read raw memory.  Likewise we need all oop stores to match the card
2266  // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2267  // state on a deopt).
2268
2269  // We do not need to WRITE the memory state after a SafePoint.  The control
2270  // edge will keep card-marks and oop-stores from floating up from below a
2271  // SafePoint and our true dependency added here will keep them from floating
2272  // down below a SafePoint.
2273
2274  // Clone the current memory state
2275  Node* mem = MergeMemNode::make(map()->memory());
2276
2277  mem = _gvn.transform(mem);
2278
2279  // Pass control through the safepoint
2280  sfpnt->init_req(TypeFunc::Control  , control());
2281  // Fix edges normally used by a call
2282  sfpnt->init_req(TypeFunc::I_O      , top() );
2283  sfpnt->init_req(TypeFunc::Memory   , mem   );
2284  sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2285  sfpnt->init_req(TypeFunc::FramePtr , top() );
2286
2287  // Create a node for the polling address
2288  if( add_poll_param ) {
2289    Node *polladr = ConPNode::make((address)os::get_polling_page());
2290    sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2291  }
2292
2293  // Fix up the JVM State edges
2294  add_safepoint_edges(sfpnt);
2295  Node *transformed_sfpnt = _gvn.transform(sfpnt);
2296  set_control(transformed_sfpnt);
2297
2298  // Provide an edge from root to safepoint.  This makes the safepoint
2299  // appear useful until the parse has completed.
2300  if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2301    assert(C->root() != NULL, "Expect parse is still valid");
2302    C->root()->add_prec(transformed_sfpnt);
2303  }
2304}
2305
2306#ifndef PRODUCT
2307//------------------------show_parse_info--------------------------------------
2308void Parse::show_parse_info() {
2309  InlineTree* ilt = NULL;
2310  if (C->ilt() != NULL) {
2311    JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2312    ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2313  }
2314  if (PrintCompilation && Verbose) {
2315    if (depth() == 1) {
2316      if( ilt->count_inlines() ) {
2317        tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2318                     ilt->count_inline_bcs());
2319        tty->cr();
2320      }
2321    } else {
2322      if (method()->is_synchronized())         tty->print("s");
2323      if (method()->has_exception_handlers())  tty->print("!");
2324      // Check this is not the final compiled version
2325      if (C->trap_can_recompile()) {
2326        tty->print("-");
2327      } else {
2328        tty->print(" ");
2329      }
2330      method()->print_short_name();
2331      if (is_osr_parse()) {
2332        tty->print(" @ %d", osr_bci());
2333      }
2334      tty->print(" (%d bytes)",method()->code_size());
2335      if (ilt->count_inlines()) {
2336        tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2337                   ilt->count_inline_bcs());
2338      }
2339      tty->cr();
2340    }
2341  }
2342  if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2343    // Print that we succeeded; suppress this message on the first osr parse.
2344
2345    if (method()->is_synchronized())         tty->print("s");
2346    if (method()->has_exception_handlers())  tty->print("!");
2347    // Check this is not the final compiled version
2348    if (C->trap_can_recompile() && depth() == 1) {
2349      tty->print("-");
2350    } else {
2351      tty->print(" ");
2352    }
2353    if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2354    for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2355    method()->print_short_name();
2356    if (is_osr_parse()) {
2357      tty->print(" @ %d", osr_bci());
2358    }
2359    if (ilt->caller_bci() != -1) {
2360      tty->print(" @ %d", ilt->caller_bci());
2361    }
2362    tty->print(" (%d bytes)",method()->code_size());
2363    if (ilt->count_inlines()) {
2364      tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2365                 ilt->count_inline_bcs());
2366    }
2367    tty->cr();
2368  }
2369}
2370
2371
2372//------------------------------dump-------------------------------------------
2373// Dump information associated with the bytecodes of current _method
2374void Parse::dump() {
2375  if( method() != NULL ) {
2376    // Iterate over bytecodes
2377    ciBytecodeStream iter(method());
2378    for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2379      dump_bci( iter.cur_bci() );
2380      tty->cr();
2381    }
2382  }
2383}
2384
2385// Dump information associated with a byte code index, 'bci'
2386void Parse::dump_bci(int bci) {
2387  // Output info on merge-points, cloning, and within _jsr..._ret
2388  // NYI
2389  tty->print(" bci:%d", bci);
2390}
2391
2392#endif
2393