node.hpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_NODE_HPP
26#define SHARE_VM_OPTO_NODE_HPP
27
28#include "libadt/vectset.hpp"
29#include "opto/compile.hpp"
30#include "opto/type.hpp"
31
32// Portions of code courtesy of Clifford Click
33
34// Optimization - Graph Style
35
36
37class AbstractLockNode;
38class AddNode;
39class AddPNode;
40class AliasInfo;
41class AllocateArrayNode;
42class AllocateNode;
43class ArrayCopyNode;
44class Block;
45class BoolNode;
46class BoxLockNode;
47class CMoveNode;
48class CallDynamicJavaNode;
49class CallJavaNode;
50class CallLeafNode;
51class CallNode;
52class CallRuntimeNode;
53class CallStaticJavaNode;
54class CatchNode;
55class CatchProjNode;
56class CheckCastPPNode;
57class ClearArrayNode;
58class CmpNode;
59class CodeBuffer;
60class ConstraintCastNode;
61class ConNode;
62class CountedLoopNode;
63class CountedLoopEndNode;
64class DecodeNarrowPtrNode;
65class DecodeNNode;
66class DecodeNKlassNode;
67class EncodeNarrowPtrNode;
68class EncodePNode;
69class EncodePKlassNode;
70class FastLockNode;
71class FastUnlockNode;
72class IfNode;
73class IfFalseNode;
74class IfTrueNode;
75class InitializeNode;
76class JVMState;
77class JumpNode;
78class JumpProjNode;
79class LoadNode;
80class LoadStoreNode;
81class LockNode;
82class LoopNode;
83class MachBranchNode;
84class MachCallDynamicJavaNode;
85class MachCallJavaNode;
86class MachCallLeafNode;
87class MachCallNode;
88class MachCallRuntimeNode;
89class MachCallStaticJavaNode;
90class MachConstantBaseNode;
91class MachConstantNode;
92class MachGotoNode;
93class MachIfNode;
94class MachNode;
95class MachNullCheckNode;
96class MachProjNode;
97class MachReturnNode;
98class MachSafePointNode;
99class MachSpillCopyNode;
100class MachTempNode;
101class MachMergeNode;
102class Matcher;
103class MemBarNode;
104class MemBarStoreStoreNode;
105class MemNode;
106class MergeMemNode;
107class MulNode;
108class MultiNode;
109class MultiBranchNode;
110class NeverBranchNode;
111class Node;
112class Node_Array;
113class Node_List;
114class Node_Stack;
115class NullCheckNode;
116class OopMap;
117class ParmNode;
118class PCTableNode;
119class PhaseCCP;
120class PhaseGVN;
121class PhaseIterGVN;
122class PhaseRegAlloc;
123class PhaseTransform;
124class PhaseValues;
125class PhiNode;
126class Pipeline;
127class ProjNode;
128class RegMask;
129class RegionNode;
130class RootNode;
131class SafePointNode;
132class SafePointScalarObjectNode;
133class StartNode;
134class State;
135class StoreNode;
136class SubNode;
137class Type;
138class TypeNode;
139class UnlockNode;
140class VectorNode;
141class LoadVectorNode;
142class StoreVectorNode;
143class VectorSet;
144typedef void (*NFunc)(Node&,void*);
145extern "C" {
146  typedef int (*C_sort_func_t)(const void *, const void *);
147}
148
149// The type of all node counts and indexes.
150// It must hold at least 16 bits, but must also be fast to load and store.
151// This type, if less than 32 bits, could limit the number of possible nodes.
152// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
153typedef unsigned int node_idx_t;
154
155
156#ifndef OPTO_DU_ITERATOR_ASSERT
157#ifdef ASSERT
158#define OPTO_DU_ITERATOR_ASSERT 1
159#else
160#define OPTO_DU_ITERATOR_ASSERT 0
161#endif
162#endif //OPTO_DU_ITERATOR_ASSERT
163
164#if OPTO_DU_ITERATOR_ASSERT
165class DUIterator;
166class DUIterator_Fast;
167class DUIterator_Last;
168#else
169typedef uint   DUIterator;
170typedef Node** DUIterator_Fast;
171typedef Node** DUIterator_Last;
172#endif
173
174// Node Sentinel
175#define NodeSentinel (Node*)-1
176
177// Unknown count frequency
178#define COUNT_UNKNOWN (-1.0f)
179
180//------------------------------Node-------------------------------------------
181// Nodes define actions in the program.  They create values, which have types.
182// They are both vertices in a directed graph and program primitives.  Nodes
183// are labeled; the label is the "opcode", the primitive function in the lambda
184// calculus sense that gives meaning to the Node.  Node inputs are ordered (so
185// that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
186// the Node's function.  These inputs also define a Type equation for the Node.
187// Solving these Type equations amounts to doing dataflow analysis.
188// Control and data are uniformly represented in the graph.  Finally, Nodes
189// have a unique dense integer index which is used to index into side arrays
190// whenever I have phase-specific information.
191
192class Node {
193  friend class VMStructs;
194
195  // Lots of restrictions on cloning Nodes
196  Node(const Node&);            // not defined; linker error to use these
197  Node &operator=(const Node &rhs);
198
199public:
200  friend class Compile;
201  #if OPTO_DU_ITERATOR_ASSERT
202  friend class DUIterator_Common;
203  friend class DUIterator;
204  friend class DUIterator_Fast;
205  friend class DUIterator_Last;
206  #endif
207
208  // Because Nodes come and go, I define an Arena of Node structures to pull
209  // from.  This should allow fast access to node creation & deletion.  This
210  // field is a local cache of a value defined in some "program fragment" for
211  // which these Nodes are just a part of.
212
213  inline void* operator new(size_t x) throw() {
214    Compile* C = Compile::current();
215    Node* n = (Node*)C->node_arena()->Amalloc_D(x);
216#ifdef ASSERT
217    n->_in = (Node**)n; // magic cookie for assertion check
218#endif
219    return (void*)n;
220  }
221
222  // Delete is a NOP
223  void operator delete( void *ptr ) {}
224  // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
225  void destruct();
226
227  // Create a new Node.  Required is the number is of inputs required for
228  // semantic correctness.
229  Node( uint required );
230
231  // Create a new Node with given input edges.
232  // This version requires use of the "edge-count" new.
233  // E.g.  new (C,3) FooNode( C, NULL, left, right );
234  Node( Node *n0 );
235  Node( Node *n0, Node *n1 );
236  Node( Node *n0, Node *n1, Node *n2 );
237  Node( Node *n0, Node *n1, Node *n2, Node *n3 );
238  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
239  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
240  Node( Node *n0, Node *n1, Node *n2, Node *n3,
241            Node *n4, Node *n5, Node *n6 );
242
243  // Clone an inherited Node given only the base Node type.
244  Node* clone() const;
245
246  // Clone a Node, immediately supplying one or two new edges.
247  // The first and second arguments, if non-null, replace in(1) and in(2),
248  // respectively.
249  Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
250    Node* nn = clone();
251    if (in1 != NULL)  nn->set_req(1, in1);
252    if (in2 != NULL)  nn->set_req(2, in2);
253    return nn;
254  }
255
256private:
257  // Shared setup for the above constructors.
258  // Handles all interactions with Compile::current.
259  // Puts initial values in all Node fields except _idx.
260  // Returns the initial value for _idx, which cannot
261  // be initialized by assignment.
262  inline int Init(int req);
263
264//----------------- input edge handling
265protected:
266  friend class PhaseCFG;        // Access to address of _in array elements
267  Node **_in;                   // Array of use-def references to Nodes
268  Node **_out;                  // Array of def-use references to Nodes
269
270  // Input edges are split into two categories.  Required edges are required
271  // for semantic correctness; order is important and NULLs are allowed.
272  // Precedence edges are used to help determine execution order and are
273  // added, e.g., for scheduling purposes.  They are unordered and not
274  // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
275  // are required, from _cnt to _max-1 are precedence edges.
276  node_idx_t _cnt;              // Total number of required Node inputs.
277
278  node_idx_t _max;              // Actual length of input array.
279
280  // Output edges are an unordered list of def-use edges which exactly
281  // correspond to required input edges which point from other nodes
282  // to this one.  Thus the count of the output edges is the number of
283  // users of this node.
284  node_idx_t _outcnt;           // Total number of Node outputs.
285
286  node_idx_t _outmax;           // Actual length of output array.
287
288  // Grow the actual input array to the next larger power-of-2 bigger than len.
289  void grow( uint len );
290  // Grow the output array to the next larger power-of-2 bigger than len.
291  void out_grow( uint len );
292
293 public:
294  // Each Node is assigned a unique small/dense number.  This number is used
295  // to index into auxiliary arrays of data and bitvectors.
296  // It is declared const to defend against inadvertant assignment,
297  // since it is used by clients as a naked field.
298  const node_idx_t _idx;
299
300  // Get the (read-only) number of input edges
301  uint req() const { return _cnt; }
302  uint len() const { return _max; }
303  // Get the (read-only) number of output edges
304  uint outcnt() const { return _outcnt; }
305
306#if OPTO_DU_ITERATOR_ASSERT
307  // Iterate over the out-edges of this node.  Deletions are illegal.
308  inline DUIterator outs() const;
309  // Use this when the out array might have changed to suppress asserts.
310  inline DUIterator& refresh_out_pos(DUIterator& i) const;
311  // Does the node have an out at this position?  (Used for iteration.)
312  inline bool has_out(DUIterator& i) const;
313  inline Node*    out(DUIterator& i) const;
314  // Iterate over the out-edges of this node.  All changes are illegal.
315  inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
316  inline Node*    fast_out(DUIterator_Fast& i) const;
317  // Iterate over the out-edges of this node, deleting one at a time.
318  inline DUIterator_Last last_outs(DUIterator_Last& min) const;
319  inline Node*    last_out(DUIterator_Last& i) const;
320  // The inline bodies of all these methods are after the iterator definitions.
321#else
322  // Iterate over the out-edges of this node.  Deletions are illegal.
323  // This iteration uses integral indexes, to decouple from array reallocations.
324  DUIterator outs() const  { return 0; }
325  // Use this when the out array might have changed to suppress asserts.
326  DUIterator refresh_out_pos(DUIterator i) const { return i; }
327
328  // Reference to the i'th output Node.  Error if out of bounds.
329  Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
330  // Does the node have an out at this position?  (Used for iteration.)
331  bool has_out(DUIterator i) const { return i < _outcnt; }
332
333  // Iterate over the out-edges of this node.  All changes are illegal.
334  // This iteration uses a pointer internal to the out array.
335  DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
336    Node** out = _out;
337    // Assign a limit pointer to the reference argument:
338    max = out + (ptrdiff_t)_outcnt;
339    // Return the base pointer:
340    return out;
341  }
342  Node*    fast_out(DUIterator_Fast i) const  { return *i; }
343  // Iterate over the out-edges of this node, deleting one at a time.
344  // This iteration uses a pointer internal to the out array.
345  DUIterator_Last last_outs(DUIterator_Last& min) const {
346    Node** out = _out;
347    // Assign a limit pointer to the reference argument:
348    min = out;
349    // Return the pointer to the start of the iteration:
350    return out + (ptrdiff_t)_outcnt - 1;
351  }
352  Node*    last_out(DUIterator_Last i) const  { return *i; }
353#endif
354
355  // Reference to the i'th input Node.  Error if out of bounds.
356  Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
357  // Reference to the i'th input Node.  NULL if out of bounds.
358  Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
359  // Reference to the i'th output Node.  Error if out of bounds.
360  // Use this accessor sparingly.  We are going trying to use iterators instead.
361  Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
362  // Return the unique out edge.
363  Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
364  // Delete out edge at position 'i' by moving last out edge to position 'i'
365  void  raw_del_out(uint i) {
366    assert(i < _outcnt,"oob");
367    assert(_outcnt > 0,"oob");
368    #if OPTO_DU_ITERATOR_ASSERT
369    // Record that a change happened here.
370    debug_only(_last_del = _out[i]; ++_del_tick);
371    #endif
372    _out[i] = _out[--_outcnt];
373    // Smash the old edge so it can't be used accidentally.
374    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
375  }
376
377#ifdef ASSERT
378  bool is_dead() const;
379#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
380#endif
381  // Check whether node has become unreachable
382  bool is_unreachable(PhaseIterGVN &igvn) const;
383
384  // Set a required input edge, also updates corresponding output edge
385  void add_req( Node *n ); // Append a NEW required input
386  void add_req( Node *n0, Node *n1 ) {
387    add_req(n0); add_req(n1); }
388  void add_req( Node *n0, Node *n1, Node *n2 ) {
389    add_req(n0); add_req(n1); add_req(n2); }
390  void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
391  void del_req( uint idx ); // Delete required edge & compact
392  void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
393  void ins_req( uint i, Node *n ); // Insert a NEW required input
394  void set_req( uint i, Node *n ) {
395    assert( is_not_dead(n), "can not use dead node");
396    assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
397    assert( !VerifyHashTableKeys || _hash_lock == 0,
398            "remove node from hash table before modifying it");
399    Node** p = &_in[i];    // cache this._in, across the del_out call
400    if (*p != NULL)  (*p)->del_out((Node *)this);
401    (*p) = n;
402    if (n != NULL)      n->add_out((Node *)this);
403    Compile::current()->record_modified_node(this);
404  }
405  // Light version of set_req() to init inputs after node creation.
406  void init_req( uint i, Node *n ) {
407    assert( i == 0 && this == n ||
408            is_not_dead(n), "can not use dead node");
409    assert( i < _cnt, "oob");
410    assert( !VerifyHashTableKeys || _hash_lock == 0,
411            "remove node from hash table before modifying it");
412    assert( _in[i] == NULL, "sanity");
413    _in[i] = n;
414    if (n != NULL)      n->add_out((Node *)this);
415    Compile::current()->record_modified_node(this);
416  }
417  // Find first occurrence of n among my edges:
418  int find_edge(Node* n);
419  int replace_edge(Node* old, Node* neww);
420  int replace_edges_in_range(Node* old, Node* neww, int start, int end);
421  // NULL out all inputs to eliminate incoming Def-Use edges.
422  // Return the number of edges between 'n' and 'this'
423  int  disconnect_inputs(Node *n, Compile *c);
424
425  // Quickly, return true if and only if I am Compile::current()->top().
426  bool is_top() const {
427    assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
428    return (_out == NULL);
429  }
430  // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
431  void setup_is_top();
432
433  // Strip away casting.  (It is depth-limited.)
434  Node* uncast() const;
435  // Return whether two Nodes are equivalent, after stripping casting.
436  bool eqv_uncast(const Node* n) const {
437    return (this->uncast() == n->uncast());
438  }
439
440  // Find out of current node that matches opcode.
441  Node* find_out_with(int opcode);
442  // Return true if the current node has an out that matches opcode.
443  bool has_out_with(int opcode);
444  // Return true if the current node has an out that matches any of the opcodes.
445  bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
446
447private:
448  static Node* uncast_helper(const Node* n);
449
450  // Add an output edge to the end of the list
451  void add_out( Node *n ) {
452    if (is_top())  return;
453    if( _outcnt == _outmax ) out_grow(_outcnt);
454    _out[_outcnt++] = n;
455  }
456  // Delete an output edge
457  void del_out( Node *n ) {
458    if (is_top())  return;
459    Node** outp = &_out[_outcnt];
460    // Find and remove n
461    do {
462      assert(outp > _out, "Missing Def-Use edge");
463    } while (*--outp != n);
464    *outp = _out[--_outcnt];
465    // Smash the old edge so it can't be used accidentally.
466    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
467    // Record that a change happened here.
468    #if OPTO_DU_ITERATOR_ASSERT
469    debug_only(_last_del = n; ++_del_tick);
470    #endif
471  }
472
473public:
474  // Globally replace this node by a given new node, updating all uses.
475  void replace_by(Node* new_node);
476  // Globally replace this node by a given new node, updating all uses
477  // and cutting input edges of old node.
478  void subsume_by(Node* new_node, Compile* c) {
479    replace_by(new_node);
480    disconnect_inputs(NULL, c);
481  }
482  void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
483  // Find the one non-null required input.  RegionNode only
484  Node *nonnull_req() const;
485  // Add or remove precedence edges
486  void add_prec( Node *n );
487  void rm_prec( uint i );
488  void set_prec( uint i, Node *n ) {
489    assert( is_not_dead(n), "can not use dead node");
490    assert( i >= _cnt, "not a precedence edge");
491    if (_in[i] != NULL) _in[i]->del_out((Node *)this);
492    _in[i] = n;
493    if (n != NULL) n->add_out((Node *)this);
494  }
495  // Set this node's index, used by cisc_version to replace current node
496  void set_idx(uint new_idx) {
497    const node_idx_t* ref = &_idx;
498    *(node_idx_t*)ref = new_idx;
499  }
500  // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
501  void swap_edges(uint i1, uint i2) {
502    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
503    // Def-Use info is unchanged
504    Node* n1 = in(i1);
505    Node* n2 = in(i2);
506    _in[i1] = n2;
507    _in[i2] = n1;
508    // If this node is in the hash table, make sure it doesn't need a rehash.
509    assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
510  }
511
512  // Iterators over input Nodes for a Node X are written as:
513  // for( i = 0; i < X.req(); i++ ) ... X[i] ...
514  // NOTE: Required edges can contain embedded NULL pointers.
515
516//----------------- Other Node Properties
517
518  // Generate class IDs for (some) ideal nodes so that it is possible to determine
519  // the type of a node using a non-virtual method call (the method is_<Node>() below).
520  //
521  // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
522  // the type of the node the ID represents; another subset of an ID's bits are reserved
523  // for the superclasses of the node represented by the ID.
524  //
525  // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
526  // returns false. A.is_A() returns true.
527  //
528  // If two classes, A and B, have the same superclass, a different bit of A's class id
529  // is reserved for A's type than for B's type. That bit is specified by the third
530  // parameter in the macro DEFINE_CLASS_ID.
531  //
532  // By convention, classes with deeper hierarchy are declared first. Moreover,
533  // classes with the same hierarchy depth are sorted by usage frequency.
534  //
535  // The query method masks the bits to cut off bits of subclasses and then compares
536  // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
537  //
538  //  Class_MachCall=30, ClassMask_MachCall=31
539  // 12               8               4               0
540  //  0   0   0   0   0   0   0   0   1   1   1   1   0
541  //                                  |   |   |   |
542  //                                  |   |   |   Bit_Mach=2
543  //                                  |   |   Bit_MachReturn=4
544  //                                  |   Bit_MachSafePoint=8
545  //                                  Bit_MachCall=16
546  //
547  //  Class_CountedLoop=56, ClassMask_CountedLoop=63
548  // 12               8               4               0
549  //  0   0   0   0   0   0   0   1   1   1   0   0   0
550  //                              |   |   |
551  //                              |   |   Bit_Region=8
552  //                              |   Bit_Loop=16
553  //                              Bit_CountedLoop=32
554
555  #define DEFINE_CLASS_ID(cl, supcl, subn) \
556  Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
557  Class_##cl = Class_##supcl + Bit_##cl , \
558  ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
559
560  // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
561  // so that it's values fits into 16 bits.
562  enum NodeClasses {
563    Bit_Node   = 0x0000,
564    Class_Node = 0x0000,
565    ClassMask_Node = 0xFFFF,
566
567    DEFINE_CLASS_ID(Multi, Node, 0)
568      DEFINE_CLASS_ID(SafePoint, Multi, 0)
569        DEFINE_CLASS_ID(Call,      SafePoint, 0)
570          DEFINE_CLASS_ID(CallJava,         Call, 0)
571            DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
572            DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
573          DEFINE_CLASS_ID(CallRuntime,      Call, 1)
574            DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
575          DEFINE_CLASS_ID(Allocate,         Call, 2)
576            DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
577          DEFINE_CLASS_ID(AbstractLock,     Call, 3)
578            DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
579            DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
580          DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
581      DEFINE_CLASS_ID(MultiBranch, Multi, 1)
582        DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
583          DEFINE_CLASS_ID(Catch,       PCTable, 0)
584          DEFINE_CLASS_ID(Jump,        PCTable, 1)
585        DEFINE_CLASS_ID(If,          MultiBranch, 1)
586          DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
587        DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
588      DEFINE_CLASS_ID(Start,       Multi, 2)
589      DEFINE_CLASS_ID(MemBar,      Multi, 3)
590        DEFINE_CLASS_ID(Initialize,       MemBar, 0)
591        DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
592
593    DEFINE_CLASS_ID(Mach,  Node, 1)
594      DEFINE_CLASS_ID(MachReturn, Mach, 0)
595        DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
596          DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
597            DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
598              DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
599              DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
600            DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
601              DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
602      DEFINE_CLASS_ID(MachBranch, Mach, 1)
603        DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
604        DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
605        DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
606      DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
607      DEFINE_CLASS_ID(MachTemp,         Mach, 3)
608      DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
609      DEFINE_CLASS_ID(MachConstant,     Mach, 5)
610      DEFINE_CLASS_ID(MachMerge,        Mach, 6)
611
612    DEFINE_CLASS_ID(Type,  Node, 2)
613      DEFINE_CLASS_ID(Phi,   Type, 0)
614      DEFINE_CLASS_ID(ConstraintCast, Type, 1)
615      DEFINE_CLASS_ID(CheckCastPP, Type, 2)
616      DEFINE_CLASS_ID(CMove, Type, 3)
617      DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
618      DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
619        DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
620        DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
621      DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
622        DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
623        DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
624
625    DEFINE_CLASS_ID(Proj,  Node, 3)
626      DEFINE_CLASS_ID(CatchProj, Proj, 0)
627      DEFINE_CLASS_ID(JumpProj,  Proj, 1)
628      DEFINE_CLASS_ID(IfTrue,    Proj, 2)
629      DEFINE_CLASS_ID(IfFalse,   Proj, 3)
630      DEFINE_CLASS_ID(Parm,      Proj, 4)
631      DEFINE_CLASS_ID(MachProj,  Proj, 5)
632
633    DEFINE_CLASS_ID(Mem,   Node, 4)
634      DEFINE_CLASS_ID(Load,  Mem, 0)
635        DEFINE_CLASS_ID(LoadVector,  Load, 0)
636      DEFINE_CLASS_ID(Store, Mem, 1)
637        DEFINE_CLASS_ID(StoreVector, Store, 0)
638      DEFINE_CLASS_ID(LoadStore, Mem, 2)
639
640    DEFINE_CLASS_ID(Region, Node, 5)
641      DEFINE_CLASS_ID(Loop, Region, 0)
642        DEFINE_CLASS_ID(Root,        Loop, 0)
643        DEFINE_CLASS_ID(CountedLoop, Loop, 1)
644
645    DEFINE_CLASS_ID(Sub,   Node, 6)
646      DEFINE_CLASS_ID(Cmp,   Sub, 0)
647        DEFINE_CLASS_ID(FastLock,   Cmp, 0)
648        DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
649
650    DEFINE_CLASS_ID(MergeMem, Node, 7)
651    DEFINE_CLASS_ID(Bool,     Node, 8)
652    DEFINE_CLASS_ID(AddP,     Node, 9)
653    DEFINE_CLASS_ID(BoxLock,  Node, 10)
654    DEFINE_CLASS_ID(Add,      Node, 11)
655    DEFINE_CLASS_ID(Mul,      Node, 12)
656    DEFINE_CLASS_ID(Vector,   Node, 13)
657    DEFINE_CLASS_ID(ClearArray, Node, 14)
658
659    _max_classes  = ClassMask_ClearArray
660  };
661  #undef DEFINE_CLASS_ID
662
663  // Flags are sorted by usage frequency.
664  enum NodeFlags {
665    Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
666    Flag_rematerialize               = Flag_is_Copy << 1,
667    Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
668    Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
669    Flag_is_Con                      = Flag_is_macro << 1,
670    Flag_is_cisc_alternate           = Flag_is_Con << 1,
671    Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
672    Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
673    Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
674    Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
675    Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
676    Flag_is_reduction                = Flag_has_call << 1,
677    Flag_is_expensive                = Flag_is_reduction << 1,
678    _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
679  };
680
681private:
682  jushort _class_id;
683  jushort _flags;
684
685protected:
686  // These methods should be called from constructors only.
687  void init_class_id(jushort c) {
688    assert(c <= _max_classes, "invalid node class");
689    _class_id = c; // cast out const
690  }
691  void init_flags(jushort fl) {
692    assert(fl <= _max_flags, "invalid node flag");
693    _flags |= fl;
694  }
695  void clear_flag(jushort fl) {
696    assert(fl <= _max_flags, "invalid node flag");
697    _flags &= ~fl;
698  }
699
700public:
701  const jushort class_id() const { return _class_id; }
702
703  const jushort flags() const { return _flags; }
704
705  void add_flag(jushort fl) { init_flags(fl); }
706
707  void remove_flag(jushort fl) { clear_flag(fl); }
708
709  // Return a dense integer opcode number
710  virtual int Opcode() const;
711
712  // Virtual inherited Node size
713  virtual uint size_of() const;
714
715  // Other interesting Node properties
716  #define DEFINE_CLASS_QUERY(type)                           \
717  bool is_##type() const {                                   \
718    return ((_class_id & ClassMask_##type) == Class_##type); \
719  }                                                          \
720  type##Node *as_##type() const {                            \
721    assert(is_##type(), "invalid node class");               \
722    return (type##Node*)this;                                \
723  }                                                          \
724  type##Node* isa_##type() const {                           \
725    return (is_##type()) ? as_##type() : NULL;               \
726  }
727
728  DEFINE_CLASS_QUERY(AbstractLock)
729  DEFINE_CLASS_QUERY(Add)
730  DEFINE_CLASS_QUERY(AddP)
731  DEFINE_CLASS_QUERY(Allocate)
732  DEFINE_CLASS_QUERY(AllocateArray)
733  DEFINE_CLASS_QUERY(ArrayCopy)
734  DEFINE_CLASS_QUERY(Bool)
735  DEFINE_CLASS_QUERY(BoxLock)
736  DEFINE_CLASS_QUERY(Call)
737  DEFINE_CLASS_QUERY(CallDynamicJava)
738  DEFINE_CLASS_QUERY(CallJava)
739  DEFINE_CLASS_QUERY(CallLeaf)
740  DEFINE_CLASS_QUERY(CallRuntime)
741  DEFINE_CLASS_QUERY(CallStaticJava)
742  DEFINE_CLASS_QUERY(Catch)
743  DEFINE_CLASS_QUERY(CatchProj)
744  DEFINE_CLASS_QUERY(CheckCastPP)
745  DEFINE_CLASS_QUERY(ConstraintCast)
746  DEFINE_CLASS_QUERY(ClearArray)
747  DEFINE_CLASS_QUERY(CMove)
748  DEFINE_CLASS_QUERY(Cmp)
749  DEFINE_CLASS_QUERY(CountedLoop)
750  DEFINE_CLASS_QUERY(CountedLoopEnd)
751  DEFINE_CLASS_QUERY(DecodeNarrowPtr)
752  DEFINE_CLASS_QUERY(DecodeN)
753  DEFINE_CLASS_QUERY(DecodeNKlass)
754  DEFINE_CLASS_QUERY(EncodeNarrowPtr)
755  DEFINE_CLASS_QUERY(EncodeP)
756  DEFINE_CLASS_QUERY(EncodePKlass)
757  DEFINE_CLASS_QUERY(FastLock)
758  DEFINE_CLASS_QUERY(FastUnlock)
759  DEFINE_CLASS_QUERY(If)
760  DEFINE_CLASS_QUERY(IfFalse)
761  DEFINE_CLASS_QUERY(IfTrue)
762  DEFINE_CLASS_QUERY(Initialize)
763  DEFINE_CLASS_QUERY(Jump)
764  DEFINE_CLASS_QUERY(JumpProj)
765  DEFINE_CLASS_QUERY(Load)
766  DEFINE_CLASS_QUERY(LoadStore)
767  DEFINE_CLASS_QUERY(Lock)
768  DEFINE_CLASS_QUERY(Loop)
769  DEFINE_CLASS_QUERY(Mach)
770  DEFINE_CLASS_QUERY(MachBranch)
771  DEFINE_CLASS_QUERY(MachCall)
772  DEFINE_CLASS_QUERY(MachCallDynamicJava)
773  DEFINE_CLASS_QUERY(MachCallJava)
774  DEFINE_CLASS_QUERY(MachCallLeaf)
775  DEFINE_CLASS_QUERY(MachCallRuntime)
776  DEFINE_CLASS_QUERY(MachCallStaticJava)
777  DEFINE_CLASS_QUERY(MachConstantBase)
778  DEFINE_CLASS_QUERY(MachConstant)
779  DEFINE_CLASS_QUERY(MachGoto)
780  DEFINE_CLASS_QUERY(MachIf)
781  DEFINE_CLASS_QUERY(MachNullCheck)
782  DEFINE_CLASS_QUERY(MachProj)
783  DEFINE_CLASS_QUERY(MachReturn)
784  DEFINE_CLASS_QUERY(MachSafePoint)
785  DEFINE_CLASS_QUERY(MachSpillCopy)
786  DEFINE_CLASS_QUERY(MachTemp)
787  DEFINE_CLASS_QUERY(MachMerge)
788  DEFINE_CLASS_QUERY(Mem)
789  DEFINE_CLASS_QUERY(MemBar)
790  DEFINE_CLASS_QUERY(MemBarStoreStore)
791  DEFINE_CLASS_QUERY(MergeMem)
792  DEFINE_CLASS_QUERY(Mul)
793  DEFINE_CLASS_QUERY(Multi)
794  DEFINE_CLASS_QUERY(MultiBranch)
795  DEFINE_CLASS_QUERY(Parm)
796  DEFINE_CLASS_QUERY(PCTable)
797  DEFINE_CLASS_QUERY(Phi)
798  DEFINE_CLASS_QUERY(Proj)
799  DEFINE_CLASS_QUERY(Region)
800  DEFINE_CLASS_QUERY(Root)
801  DEFINE_CLASS_QUERY(SafePoint)
802  DEFINE_CLASS_QUERY(SafePointScalarObject)
803  DEFINE_CLASS_QUERY(Start)
804  DEFINE_CLASS_QUERY(Store)
805  DEFINE_CLASS_QUERY(Sub)
806  DEFINE_CLASS_QUERY(Type)
807  DEFINE_CLASS_QUERY(Vector)
808  DEFINE_CLASS_QUERY(LoadVector)
809  DEFINE_CLASS_QUERY(StoreVector)
810  DEFINE_CLASS_QUERY(Unlock)
811
812  #undef DEFINE_CLASS_QUERY
813
814  // duplicate of is_MachSpillCopy()
815  bool is_SpillCopy () const {
816    return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
817  }
818
819  bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
820  // The data node which is safe to leave in dead loop during IGVN optimization.
821  bool is_dead_loop_safe() const {
822    return is_Phi() || (is_Proj() && in(0) == NULL) ||
823           ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
824            (!is_Proj() || !in(0)->is_Allocate()));
825  }
826
827  // is_Copy() returns copied edge index (0 or 1)
828  uint is_Copy() const { return (_flags & Flag_is_Copy); }
829
830  virtual bool is_CFG() const { return false; }
831
832  // If this node is control-dependent on a test, can it be
833  // rerouted to a dominating equivalent test?  This is usually
834  // true of non-CFG nodes, but can be false for operations which
835  // depend for their correct sequencing on more than one test.
836  // (In that case, hoisting to a dominating test may silently
837  // skip some other important test.)
838  virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
839
840  // When building basic blocks, I need to have a notion of block beginning
841  // Nodes, next block selector Nodes (block enders), and next block
842  // projections.  These calls need to work on their machine equivalents.  The
843  // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
844  bool is_block_start() const {
845    if ( is_Region() )
846      return this == (const Node*)in(0);
847    else
848      return is_Start();
849  }
850
851  // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
852  // Goto and Return.  This call also returns the block ending Node.
853  virtual const Node *is_block_proj() const;
854
855  // The node is a "macro" node which needs to be expanded before matching
856  bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
857  // The node is expensive: the best control is set during loop opts
858  bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
859
860  // An arithmetic node which accumulates a data in a loop.
861  // It must have the loop's phi as input and provide a def to the phi.
862  bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
863
864//----------------- Optimization
865
866  // Get the worst-case Type output for this Node.
867  virtual const class Type *bottom_type() const;
868
869  // If we find a better type for a node, try to record it permanently.
870  // Return true if this node actually changed.
871  // Be sure to do the hash_delete game in the "rehash" variant.
872  void raise_bottom_type(const Type* new_type);
873
874  // Get the address type with which this node uses and/or defs memory,
875  // or NULL if none.  The address type is conservatively wide.
876  // Returns non-null for calls, membars, loads, stores, etc.
877  // Returns TypePtr::BOTTOM if the node touches memory "broadly".
878  virtual const class TypePtr *adr_type() const { return NULL; }
879
880  // Return an existing node which computes the same function as this node.
881  // The optimistic combined algorithm requires this to return a Node which
882  // is a small number of steps away (e.g., one of my inputs).
883  virtual Node *Identity( PhaseTransform *phase );
884
885  // Return the set of values this Node can take on at runtime.
886  virtual const Type *Value( PhaseTransform *phase ) const;
887
888  // Return a node which is more "ideal" than the current node.
889  // The invariants on this call are subtle.  If in doubt, read the
890  // treatise in node.cpp above the default implemention AND TEST WITH
891  // +VerifyIterativeGVN!
892  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
893
894  // Some nodes have specific Ideal subgraph transformations only if they are
895  // unique users of specific nodes. Such nodes should be put on IGVN worklist
896  // for the transformations to happen.
897  bool has_special_unique_user() const;
898
899  // Skip Proj and CatchProj nodes chains. Check for Null and Top.
900  Node* find_exact_control(Node* ctrl);
901
902  // Check if 'this' node dominates or equal to 'sub'.
903  bool dominates(Node* sub, Node_List &nlist);
904
905protected:
906  bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
907public:
908
909  // See if there is valid pipeline info
910  static  const Pipeline *pipeline_class();
911  virtual const Pipeline *pipeline() const;
912
913  // Compute the latency from the def to this instruction of the ith input node
914  uint latency(uint i);
915
916  // Hash & compare functions, for pessimistic value numbering
917
918  // If the hash function returns the special sentinel value NO_HASH,
919  // the node is guaranteed never to compare equal to any other node.
920  // If we accidentally generate a hash with value NO_HASH the node
921  // won't go into the table and we'll lose a little optimization.
922  enum { NO_HASH = 0 };
923  virtual uint hash() const;
924  virtual uint cmp( const Node &n ) const;
925
926  // Operation appears to be iteratively computed (such as an induction variable)
927  // It is possible for this operation to return false for a loop-varying
928  // value, if it appears (by local graph inspection) to be computed by a simple conditional.
929  bool is_iteratively_computed();
930
931  // Determine if a node is Counted loop induction variable.
932  // The method is defined in loopnode.cpp.
933  const Node* is_loop_iv() const;
934
935  // Return a node with opcode "opc" and same inputs as "this" if one can
936  // be found; Otherwise return NULL;
937  Node* find_similar(int opc);
938
939  // Return the unique control out if only one. Null if none or more than one.
940  Node* unique_ctrl_out() const;
941
942  // Set control or add control as precedence edge
943  void ensure_control_or_add_prec(Node* c);
944
945//----------------- Code Generation
946
947  // Ideal register class for Matching.  Zero means unmatched instruction
948  // (these are cloned instead of converted to machine nodes).
949  virtual uint ideal_reg() const;
950
951  static const uint NotAMachineReg;   // must be > max. machine register
952
953  // Do we Match on this edge index or not?  Generally false for Control
954  // and true for everything else.  Weird for calls & returns.
955  virtual uint match_edge(uint idx) const;
956
957  // Register class output is returned in
958  virtual const RegMask &out_RegMask() const;
959  // Register class input is expected in
960  virtual const RegMask &in_RegMask(uint) const;
961  // Should we clone rather than spill this instruction?
962  bool rematerialize() const;
963
964  // Return JVM State Object if this Node carries debug info, or NULL otherwise
965  virtual JVMState* jvms() const;
966
967  // Print as assembly
968  virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
969  // Emit bytes starting at parameter 'ptr'
970  // Bump 'ptr' by the number of output bytes
971  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
972  // Size of instruction in bytes
973  virtual uint size(PhaseRegAlloc *ra_) const;
974
975  // Convenience function to extract an integer constant from a node.
976  // If it is not an integer constant (either Con, CastII, or Mach),
977  // return value_if_unknown.
978  jint find_int_con(jint value_if_unknown) const {
979    const TypeInt* t = find_int_type();
980    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
981  }
982  // Return the constant, knowing it is an integer constant already
983  jint get_int() const {
984    const TypeInt* t = find_int_type();
985    guarantee(t != NULL, "must be con");
986    return t->get_con();
987  }
988  // Here's where the work is done.  Can produce non-constant int types too.
989  const TypeInt* find_int_type() const;
990
991  // Same thing for long (and intptr_t, via type.hpp):
992  jlong get_long() const {
993    const TypeLong* t = find_long_type();
994    guarantee(t != NULL, "must be con");
995    return t->get_con();
996  }
997  jlong find_long_con(jint value_if_unknown) const {
998    const TypeLong* t = find_long_type();
999    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1000  }
1001  const TypeLong* find_long_type() const;
1002
1003  const TypePtr* get_ptr_type() const;
1004
1005  // These guys are called by code generated by ADLC:
1006  intptr_t get_ptr() const;
1007  intptr_t get_narrowcon() const;
1008  jdouble getd() const;
1009  jfloat getf() const;
1010
1011  // Nodes which are pinned into basic blocks
1012  virtual bool pinned() const { return false; }
1013
1014  // Nodes which use memory without consuming it, hence need antidependences
1015  // More specifically, needs_anti_dependence_check returns true iff the node
1016  // (a) does a load, and (b) does not perform a store (except perhaps to a
1017  // stack slot or some other unaliased location).
1018  bool needs_anti_dependence_check() const;
1019
1020  // Return which operand this instruction may cisc-spill. In other words,
1021  // return operand position that can convert from reg to memory access
1022  virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1023  bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1024
1025//----------------- Graph walking
1026public:
1027  // Walk and apply member functions recursively.
1028  // Supplied (this) pointer is root.
1029  void walk(NFunc pre, NFunc post, void *env);
1030  static void nop(Node &, void*); // Dummy empty function
1031  static void packregion( Node &n, void* );
1032private:
1033  void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1034
1035//----------------- Printing, etc
1036public:
1037#ifndef PRODUCT
1038  Node* find(int idx) const;         // Search the graph for the given idx.
1039  Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1040  void dump() const { dump("\n"); }  // Print this node.
1041  void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1042  void dump(int depth) const;        // Print this node, recursively to depth d
1043  void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1044  void dump_comp() const;            // Print this node in compact representation.
1045  // Print this node in compact representation.
1046  void dump_comp(const char* suffix, outputStream *st = tty) const;
1047  virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1048  virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1049  virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
1050  virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1051  // Print compact per-node info
1052  virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1053  void dump_related() const;             // Print related nodes (depends on node at hand).
1054  // Print related nodes up to given depths for input and output nodes.
1055  void dump_related(uint d_in, uint d_out) const;
1056  void dump_related_compact() const;     // Print related nodes in compact representation.
1057  // Collect related nodes.
1058  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1059  // Collect nodes starting from this node, explicitly including/excluding control and data links.
1060  void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1061
1062  // Node collectors, to be used in implementations of Node::rel().
1063  // Collect the entire data input graph. Include control inputs if requested.
1064  void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1065  // Collect the entire control input graph. Include data inputs if requested.
1066  void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1067  // Collect the entire output graph until hitting and including control nodes.
1068  void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1069
1070  void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1071  void verify() const;               // Check Def-Use info for my subgraph
1072  static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1073
1074  // This call defines a class-unique string used to identify class instances
1075  virtual const char *Name() const;
1076
1077  void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1078  // RegMask Print Functions
1079  void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1080  void dump_out_regmask() { out_RegMask().dump(); }
1081  static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1082  void fast_dump() const {
1083    tty->print("%4d: %-17s", _idx, Name());
1084    for (uint i = 0; i < len(); i++)
1085      if (in(i))
1086        tty->print(" %4d", in(i)->_idx);
1087      else
1088        tty->print(" NULL");
1089    tty->print("\n");
1090  }
1091#endif
1092#ifdef ASSERT
1093  void verify_construction();
1094  bool verify_jvms(const JVMState* jvms) const;
1095  int  _debug_idx;                     // Unique value assigned to every node.
1096  int   debug_idx() const              { return _debug_idx; }
1097  void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1098
1099  Node* _debug_orig;                   // Original version of this, if any.
1100  Node*  debug_orig() const            { return _debug_orig; }
1101  void   set_debug_orig(Node* orig);   // _debug_orig = orig
1102
1103  int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1104  void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1105  void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1106
1107  static void init_NodeProperty();
1108
1109  #if OPTO_DU_ITERATOR_ASSERT
1110  const Node* _last_del;               // The last deleted node.
1111  uint        _del_tick;               // Bumped when a deletion happens..
1112  #endif
1113#endif
1114};
1115
1116
1117#ifndef PRODUCT
1118
1119// Used in debugging code to avoid walking across dead or uninitialized edges.
1120inline bool NotANode(const Node* n) {
1121  if (n == NULL)                   return true;
1122  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1123  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1124  return false;
1125}
1126
1127#endif
1128
1129
1130//-----------------------------------------------------------------------------
1131// Iterators over DU info, and associated Node functions.
1132
1133#if OPTO_DU_ITERATOR_ASSERT
1134
1135// Common code for assertion checking on DU iterators.
1136class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1137#ifdef ASSERT
1138 protected:
1139  bool         _vdui;               // cached value of VerifyDUIterators
1140  const Node*  _node;               // the node containing the _out array
1141  uint         _outcnt;             // cached node->_outcnt
1142  uint         _del_tick;           // cached node->_del_tick
1143  Node*        _last;               // last value produced by the iterator
1144
1145  void sample(const Node* node);    // used by c'tor to set up for verifies
1146  void verify(const Node* node, bool at_end_ok = false);
1147  void verify_resync();
1148  void reset(const DUIterator_Common& that);
1149
1150// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1151  #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1152#else
1153  #define I_VDUI_ONLY(i,x) { }
1154#endif //ASSERT
1155};
1156
1157#define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1158
1159// Default DU iterator.  Allows appends onto the out array.
1160// Allows deletion from the out array only at the current point.
1161// Usage:
1162//  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1163//    Node* y = x->out(i);
1164//    ...
1165//  }
1166// Compiles in product mode to a unsigned integer index, which indexes
1167// onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1168// also reloads x->_outcnt.  If you delete, you must perform "--i" just
1169// before continuing the loop.  You must delete only the last-produced
1170// edge.  You must delete only a single copy of the last-produced edge,
1171// or else you must delete all copies at once (the first time the edge
1172// is produced by the iterator).
1173class DUIterator : public DUIterator_Common {
1174  friend class Node;
1175
1176  // This is the index which provides the product-mode behavior.
1177  // Whatever the product-mode version of the system does to the
1178  // DUI index is done to this index.  All other fields in
1179  // this class are used only for assertion checking.
1180  uint         _idx;
1181
1182  #ifdef ASSERT
1183  uint         _refresh_tick;    // Records the refresh activity.
1184
1185  void sample(const Node* node); // Initialize _refresh_tick etc.
1186  void verify(const Node* node, bool at_end_ok = false);
1187  void verify_increment();       // Verify an increment operation.
1188  void verify_resync();          // Verify that we can back up over a deletion.
1189  void verify_finish();          // Verify that the loop terminated properly.
1190  void refresh();                // Resample verification info.
1191  void reset(const DUIterator& that);  // Resample after assignment.
1192  #endif
1193
1194  DUIterator(const Node* node, int dummy_to_avoid_conversion)
1195    { _idx = 0;                         debug_only(sample(node)); }
1196
1197 public:
1198  // initialize to garbage; clear _vdui to disable asserts
1199  DUIterator()
1200    { /*initialize to garbage*/         debug_only(_vdui = false); }
1201
1202  void operator++(int dummy_to_specify_postfix_op)
1203    { _idx++;                           VDUI_ONLY(verify_increment()); }
1204
1205  void operator--()
1206    { VDUI_ONLY(verify_resync());       --_idx; }
1207
1208  ~DUIterator()
1209    { VDUI_ONLY(verify_finish()); }
1210
1211  void operator=(const DUIterator& that)
1212    { _idx = that._idx;                 debug_only(reset(that)); }
1213};
1214
1215DUIterator Node::outs() const
1216  { return DUIterator(this, 0); }
1217DUIterator& Node::refresh_out_pos(DUIterator& i) const
1218  { I_VDUI_ONLY(i, i.refresh());        return i; }
1219bool Node::has_out(DUIterator& i) const
1220  { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1221Node*    Node::out(DUIterator& i) const
1222  { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1223
1224
1225// Faster DU iterator.  Disallows insertions into the out array.
1226// Allows deletion from the out array only at the current point.
1227// Usage:
1228//  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1229//    Node* y = x->fast_out(i);
1230//    ...
1231//  }
1232// Compiles in product mode to raw Node** pointer arithmetic, with
1233// no reloading of pointers from the original node x.  If you delete,
1234// you must perform "--i; --imax" just before continuing the loop.
1235// If you delete multiple copies of the same edge, you must decrement
1236// imax, but not i, multiple times:  "--i, imax -= num_edges".
1237class DUIterator_Fast : public DUIterator_Common {
1238  friend class Node;
1239  friend class DUIterator_Last;
1240
1241  // This is the pointer which provides the product-mode behavior.
1242  // Whatever the product-mode version of the system does to the
1243  // DUI pointer is done to this pointer.  All other fields in
1244  // this class are used only for assertion checking.
1245  Node**       _outp;
1246
1247  #ifdef ASSERT
1248  void verify(const Node* node, bool at_end_ok = false);
1249  void verify_limit();
1250  void verify_resync();
1251  void verify_relimit(uint n);
1252  void reset(const DUIterator_Fast& that);
1253  #endif
1254
1255  // Note:  offset must be signed, since -1 is sometimes passed
1256  DUIterator_Fast(const Node* node, ptrdiff_t offset)
1257    { _outp = node->_out + offset;      debug_only(sample(node)); }
1258
1259 public:
1260  // initialize to garbage; clear _vdui to disable asserts
1261  DUIterator_Fast()
1262    { /*initialize to garbage*/         debug_only(_vdui = false); }
1263
1264  void operator++(int dummy_to_specify_postfix_op)
1265    { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1266
1267  void operator--()
1268    { VDUI_ONLY(verify_resync());       --_outp; }
1269
1270  void operator-=(uint n)   // applied to the limit only
1271    { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1272
1273  bool operator<(DUIterator_Fast& limit) {
1274    I_VDUI_ONLY(*this, this->verify(_node, true));
1275    I_VDUI_ONLY(limit, limit.verify_limit());
1276    return _outp < limit._outp;
1277  }
1278
1279  void operator=(const DUIterator_Fast& that)
1280    { _outp = that._outp;               debug_only(reset(that)); }
1281};
1282
1283DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1284  // Assign a limit pointer to the reference argument:
1285  imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1286  // Return the base pointer:
1287  return DUIterator_Fast(this, 0);
1288}
1289Node* Node::fast_out(DUIterator_Fast& i) const {
1290  I_VDUI_ONLY(i, i.verify(this));
1291  return debug_only(i._last=) *i._outp;
1292}
1293
1294
1295// Faster DU iterator.  Requires each successive edge to be removed.
1296// Does not allow insertion of any edges.
1297// Usage:
1298//  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1299//    Node* y = x->last_out(i);
1300//    ...
1301//  }
1302// Compiles in product mode to raw Node** pointer arithmetic, with
1303// no reloading of pointers from the original node x.
1304class DUIterator_Last : private DUIterator_Fast {
1305  friend class Node;
1306
1307  #ifdef ASSERT
1308  void verify(const Node* node, bool at_end_ok = false);
1309  void verify_limit();
1310  void verify_step(uint num_edges);
1311  #endif
1312
1313  // Note:  offset must be signed, since -1 is sometimes passed
1314  DUIterator_Last(const Node* node, ptrdiff_t offset)
1315    : DUIterator_Fast(node, offset) { }
1316
1317  void operator++(int dummy_to_specify_postfix_op) {} // do not use
1318  void operator<(int)                              {} // do not use
1319
1320 public:
1321  DUIterator_Last() { }
1322  // initialize to garbage
1323
1324  void operator--()
1325    { _outp--;              VDUI_ONLY(verify_step(1));  }
1326
1327  void operator-=(uint n)
1328    { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1329
1330  bool operator>=(DUIterator_Last& limit) {
1331    I_VDUI_ONLY(*this, this->verify(_node, true));
1332    I_VDUI_ONLY(limit, limit.verify_limit());
1333    return _outp >= limit._outp;
1334  }
1335
1336  void operator=(const DUIterator_Last& that)
1337    { DUIterator_Fast::operator=(that); }
1338};
1339
1340DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1341  // Assign a limit pointer to the reference argument:
1342  imin = DUIterator_Last(this, 0);
1343  // Return the initial pointer:
1344  return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1345}
1346Node* Node::last_out(DUIterator_Last& i) const {
1347  I_VDUI_ONLY(i, i.verify(this));
1348  return debug_only(i._last=) *i._outp;
1349}
1350
1351#endif //OPTO_DU_ITERATOR_ASSERT
1352
1353#undef I_VDUI_ONLY
1354#undef VDUI_ONLY
1355
1356// An Iterator that truly follows the iterator pattern.  Doesn't
1357// support deletion but could be made to.
1358//
1359//   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1360//     Node* m = i.get();
1361//
1362class SimpleDUIterator : public StackObj {
1363 private:
1364  Node* node;
1365  DUIterator_Fast i;
1366  DUIterator_Fast imax;
1367 public:
1368  SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1369  bool has_next() { return i < imax; }
1370  void next() { i++; }
1371  Node* get() { return node->fast_out(i); }
1372};
1373
1374
1375//-----------------------------------------------------------------------------
1376// Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1377// Abstractly provides an infinite array of Node*'s, initialized to NULL.
1378// Note that the constructor just zeros things, and since I use Arena
1379// allocation I do not need a destructor to reclaim storage.
1380class Node_Array : public ResourceObj {
1381  friend class VMStructs;
1382protected:
1383  Arena *_a;                    // Arena to allocate in
1384  uint   _max;
1385  Node **_nodes;
1386  void   grow( uint i );        // Grow array node to fit
1387public:
1388  Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1389    _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1390    for( int i = 0; i < OptoNodeListSize; i++ ) {
1391      _nodes[i] = NULL;
1392    }
1393  }
1394
1395  Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1396  Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1397  { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1398  Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1399  Node **adr() { return _nodes; }
1400  // Extend the mapping: index i maps to Node *n.
1401  void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1402  void insert( uint i, Node *n );
1403  void remove( uint i );        // Remove, preserving order
1404  void sort( C_sort_func_t func);
1405  void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1406  void clear();                 // Set all entries to NULL, keep storage
1407  uint Size() const { return _max; }
1408  void dump() const;
1409};
1410
1411class Node_List : public Node_Array {
1412  friend class VMStructs;
1413  uint _cnt;
1414public:
1415  Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1416  Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1417  bool contains(const Node* n) const {
1418    for (uint e = 0; e < size(); e++) {
1419      if (at(e) == n) return true;
1420    }
1421    return false;
1422  }
1423  void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1424  void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1425  void push( Node *b ) { map(_cnt++,b); }
1426  void yank( Node *n );         // Find and remove
1427  Node *pop() { return _nodes[--_cnt]; }
1428  Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1429  void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1430  uint size() const { return _cnt; }
1431  void dump() const;
1432};
1433
1434//------------------------------Unique_Node_List-------------------------------
1435class Unique_Node_List : public Node_List {
1436  friend class VMStructs;
1437  VectorSet _in_worklist;
1438  uint _clock_index;            // Index in list where to pop from next
1439public:
1440  Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1441  Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1442
1443  void remove( Node *n );
1444  bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1445  VectorSet &member_set(){ return _in_worklist; }
1446
1447  void push( Node *b ) {
1448    if( !_in_worklist.test_set(b->_idx) )
1449      Node_List::push(b);
1450  }
1451  Node *pop() {
1452    if( _clock_index >= size() ) _clock_index = 0;
1453    Node *b = at(_clock_index);
1454    map( _clock_index, Node_List::pop());
1455    if (size() != 0) _clock_index++; // Always start from 0
1456    _in_worklist >>= b->_idx;
1457    return b;
1458  }
1459  Node *remove( uint i ) {
1460    Node *b = Node_List::at(i);
1461    _in_worklist >>= b->_idx;
1462    map(i,Node_List::pop());
1463    return b;
1464  }
1465  void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1466  void  clear() {
1467    _in_worklist.Clear();        // Discards storage but grows automatically
1468    Node_List::clear();
1469    _clock_index = 0;
1470  }
1471
1472  // Used after parsing to remove useless nodes before Iterative GVN
1473  void remove_useless_nodes(VectorSet &useful);
1474
1475#ifndef PRODUCT
1476  void print_set() const { _in_worklist.print(); }
1477#endif
1478};
1479
1480// Inline definition of Compile::record_for_igvn must be deferred to this point.
1481inline void Compile::record_for_igvn(Node* n) {
1482  _for_igvn->push(n);
1483}
1484
1485//------------------------------Node_Stack-------------------------------------
1486class Node_Stack {
1487  friend class VMStructs;
1488protected:
1489  struct INode {
1490    Node *node; // Processed node
1491    uint  indx; // Index of next node's child
1492  };
1493  INode *_inode_top; // tos, stack grows up
1494  INode *_inode_max; // End of _inodes == _inodes + _max
1495  INode *_inodes;    // Array storage for the stack
1496  Arena *_a;         // Arena to allocate in
1497  void grow();
1498public:
1499  Node_Stack(int size) {
1500    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1501    _a = Thread::current()->resource_area();
1502    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1503    _inode_max = _inodes + max;
1504    _inode_top = _inodes - 1; // stack is empty
1505  }
1506
1507  Node_Stack(Arena *a, int size) : _a(a) {
1508    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1509    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1510    _inode_max = _inodes + max;
1511    _inode_top = _inodes - 1; // stack is empty
1512  }
1513
1514  void pop() {
1515    assert(_inode_top >= _inodes, "node stack underflow");
1516    --_inode_top;
1517  }
1518  void push(Node *n, uint i) {
1519    ++_inode_top;
1520    if (_inode_top >= _inode_max) grow();
1521    INode *top = _inode_top; // optimization
1522    top->node = n;
1523    top->indx = i;
1524  }
1525  Node *node() const {
1526    return _inode_top->node;
1527  }
1528  Node* node_at(uint i) const {
1529    assert(_inodes + i <= _inode_top, "in range");
1530    return _inodes[i].node;
1531  }
1532  uint index() const {
1533    return _inode_top->indx;
1534  }
1535  uint index_at(uint i) const {
1536    assert(_inodes + i <= _inode_top, "in range");
1537    return _inodes[i].indx;
1538  }
1539  void set_node(Node *n) {
1540    _inode_top->node = n;
1541  }
1542  void set_index(uint i) {
1543    _inode_top->indx = i;
1544  }
1545  uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1546  uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1547  bool is_nonempty() const { return (_inode_top >= _inodes); }
1548  bool is_empty() const { return (_inode_top < _inodes); }
1549  void clear() { _inode_top = _inodes - 1; } // retain storage
1550
1551  // Node_Stack is used to map nodes.
1552  Node* find(uint idx) const;
1553};
1554
1555
1556//-----------------------------Node_Notes--------------------------------------
1557// Debugging or profiling annotations loosely and sparsely associated
1558// with some nodes.  See Compile::node_notes_at for the accessor.
1559class Node_Notes VALUE_OBJ_CLASS_SPEC {
1560  friend class VMStructs;
1561  JVMState* _jvms;
1562
1563public:
1564  Node_Notes(JVMState* jvms = NULL) {
1565    _jvms = jvms;
1566  }
1567
1568  JVMState* jvms()            { return _jvms; }
1569  void  set_jvms(JVMState* x) {        _jvms = x; }
1570
1571  // True if there is nothing here.
1572  bool is_clear() {
1573    return (_jvms == NULL);
1574  }
1575
1576  // Make there be nothing here.
1577  void clear() {
1578    _jvms = NULL;
1579  }
1580
1581  // Make a new, clean node notes.
1582  static Node_Notes* make(Compile* C) {
1583    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1584    nn->clear();
1585    return nn;
1586  }
1587
1588  Node_Notes* clone(Compile* C) {
1589    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1590    (*nn) = (*this);
1591    return nn;
1592  }
1593
1594  // Absorb any information from source.
1595  bool update_from(Node_Notes* source) {
1596    bool changed = false;
1597    if (source != NULL) {
1598      if (source->jvms() != NULL) {
1599        set_jvms(source->jvms());
1600        changed = true;
1601      }
1602    }
1603    return changed;
1604  }
1605};
1606
1607// Inlined accessors for Compile::node_nodes that require the preceding class:
1608inline Node_Notes*
1609Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1610                           int idx, bool can_grow) {
1611  assert(idx >= 0, "oob");
1612  int block_idx = (idx >> _log2_node_notes_block_size);
1613  int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1614  if (grow_by >= 0) {
1615    if (!can_grow)  return NULL;
1616    grow_node_notes(arr, grow_by + 1);
1617  }
1618  // (Every element of arr is a sub-array of length _node_notes_block_size.)
1619  return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1620}
1621
1622inline bool
1623Compile::set_node_notes_at(int idx, Node_Notes* value) {
1624  if (value == NULL || value->is_clear())
1625    return false;  // nothing to write => write nothing
1626  Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1627  assert(loc != NULL, "");
1628  return loc->update_from(value);
1629}
1630
1631
1632//------------------------------TypeNode---------------------------------------
1633// Node with a Type constant.
1634class TypeNode : public Node {
1635protected:
1636  virtual uint hash() const;    // Check the type
1637  virtual uint cmp( const Node &n ) const;
1638  virtual uint size_of() const; // Size is bigger
1639  const Type* const _type;
1640public:
1641  void set_type(const Type* t) {
1642    assert(t != NULL, "sanity");
1643    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1644    *(const Type**)&_type = t;   // cast away const-ness
1645    // If this node is in the hash table, make sure it doesn't need a rehash.
1646    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1647  }
1648  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1649  TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1650    init_class_id(Class_Type);
1651  }
1652  virtual const Type *Value( PhaseTransform *phase ) const;
1653  virtual const Type *bottom_type() const;
1654  virtual       uint  ideal_reg() const;
1655#ifndef PRODUCT
1656  virtual void dump_spec(outputStream *st) const;
1657  virtual void dump_compact_spec(outputStream *st) const;
1658#endif
1659};
1660
1661#endif // SHARE_VM_OPTO_NODE_HPP
1662