1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_NODE_HPP
26#define SHARE_VM_OPTO_NODE_HPP
27
28#include "libadt/vectset.hpp"
29#include "opto/compile.hpp"
30#include "opto/type.hpp"
31
32// Portions of code courtesy of Clifford Click
33
34// Optimization - Graph Style
35
36
37class AbstractLockNode;
38class AddNode;
39class AddPNode;
40class AliasInfo;
41class AllocateArrayNode;
42class AllocateNode;
43class ArrayCopyNode;
44class Block;
45class BoolNode;
46class BoxLockNode;
47class CMoveNode;
48class CallDynamicJavaNode;
49class CallJavaNode;
50class CallLeafNode;
51class CallNode;
52class CallRuntimeNode;
53class CallStaticJavaNode;
54class CastIINode;
55class CatchNode;
56class CatchProjNode;
57class CheckCastPPNode;
58class ClearArrayNode;
59class CmpNode;
60class CodeBuffer;
61class ConstraintCastNode;
62class ConNode;
63class CompareAndSwapNode;
64class CompareAndExchangeNode;
65class CountedLoopNode;
66class CountedLoopEndNode;
67class DecodeNarrowPtrNode;
68class DecodeNNode;
69class DecodeNKlassNode;
70class EncodeNarrowPtrNode;
71class EncodePNode;
72class EncodePKlassNode;
73class FastLockNode;
74class FastUnlockNode;
75class IfNode;
76class IfFalseNode;
77class IfTrueNode;
78class InitializeNode;
79class JVMState;
80class JumpNode;
81class JumpProjNode;
82class LoadNode;
83class LoadStoreNode;
84class LockNode;
85class LoopNode;
86class MachBranchNode;
87class MachCallDynamicJavaNode;
88class MachCallJavaNode;
89class MachCallLeafNode;
90class MachCallNode;
91class MachCallRuntimeNode;
92class MachCallStaticJavaNode;
93class MachConstantBaseNode;
94class MachConstantNode;
95class MachGotoNode;
96class MachIfNode;
97class MachNode;
98class MachNullCheckNode;
99class MachProjNode;
100class MachReturnNode;
101class MachSafePointNode;
102class MachSpillCopyNode;
103class MachTempNode;
104class MachMergeNode;
105class Matcher;
106class MemBarNode;
107class MemBarStoreStoreNode;
108class MemNode;
109class MergeMemNode;
110class MulNode;
111class MultiNode;
112class MultiBranchNode;
113class NeverBranchNode;
114class Node;
115class Node_Array;
116class Node_List;
117class Node_Stack;
118class NullCheckNode;
119class OopMap;
120class ParmNode;
121class PCTableNode;
122class PhaseCCP;
123class PhaseGVN;
124class PhaseIterGVN;
125class PhaseRegAlloc;
126class PhaseTransform;
127class PhaseValues;
128class PhiNode;
129class Pipeline;
130class ProjNode;
131class RangeCheckNode;
132class RegMask;
133class RegionNode;
134class RootNode;
135class SafePointNode;
136class SafePointScalarObjectNode;
137class StartNode;
138class State;
139class StoreNode;
140class SubNode;
141class Type;
142class TypeNode;
143class UnlockNode;
144class VectorNode;
145class LoadVectorNode;
146class StoreVectorNode;
147class VectorSet;
148typedef void (*NFunc)(Node&,void*);
149extern "C" {
150  typedef int (*C_sort_func_t)(const void *, const void *);
151}
152
153// The type of all node counts and indexes.
154// It must hold at least 16 bits, but must also be fast to load and store.
155// This type, if less than 32 bits, could limit the number of possible nodes.
156// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
157typedef unsigned int node_idx_t;
158
159
160#ifndef OPTO_DU_ITERATOR_ASSERT
161#ifdef ASSERT
162#define OPTO_DU_ITERATOR_ASSERT 1
163#else
164#define OPTO_DU_ITERATOR_ASSERT 0
165#endif
166#endif //OPTO_DU_ITERATOR_ASSERT
167
168#if OPTO_DU_ITERATOR_ASSERT
169class DUIterator;
170class DUIterator_Fast;
171class DUIterator_Last;
172#else
173typedef uint   DUIterator;
174typedef Node** DUIterator_Fast;
175typedef Node** DUIterator_Last;
176#endif
177
178// Node Sentinel
179#define NodeSentinel (Node*)-1
180
181// Unknown count frequency
182#define COUNT_UNKNOWN (-1.0f)
183
184//------------------------------Node-------------------------------------------
185// Nodes define actions in the program.  They create values, which have types.
186// They are both vertices in a directed graph and program primitives.  Nodes
187// are labeled; the label is the "opcode", the primitive function in the lambda
188// calculus sense that gives meaning to the Node.  Node inputs are ordered (so
189// that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
190// the Node's function.  These inputs also define a Type equation for the Node.
191// Solving these Type equations amounts to doing dataflow analysis.
192// Control and data are uniformly represented in the graph.  Finally, Nodes
193// have a unique dense integer index which is used to index into side arrays
194// whenever I have phase-specific information.
195
196class Node {
197  friend class VMStructs;
198
199  // Lots of restrictions on cloning Nodes
200  Node(const Node&);            // not defined; linker error to use these
201  Node &operator=(const Node &rhs);
202
203public:
204  friend class Compile;
205  #if OPTO_DU_ITERATOR_ASSERT
206  friend class DUIterator_Common;
207  friend class DUIterator;
208  friend class DUIterator_Fast;
209  friend class DUIterator_Last;
210  #endif
211
212  // Because Nodes come and go, I define an Arena of Node structures to pull
213  // from.  This should allow fast access to node creation & deletion.  This
214  // field is a local cache of a value defined in some "program fragment" for
215  // which these Nodes are just a part of.
216
217  inline void* operator new(size_t x) throw() {
218    Compile* C = Compile::current();
219    Node* n = (Node*)C->node_arena()->Amalloc_D(x);
220    return (void*)n;
221  }
222
223  // Delete is a NOP
224  void operator delete( void *ptr ) {}
225  // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
226  void destruct();
227
228  // Create a new Node.  Required is the number is of inputs required for
229  // semantic correctness.
230  Node( uint required );
231
232  // Create a new Node with given input edges.
233  // This version requires use of the "edge-count" new.
234  // E.g.  new (C,3) FooNode( C, NULL, left, right );
235  Node( Node *n0 );
236  Node( Node *n0, Node *n1 );
237  Node( Node *n0, Node *n1, Node *n2 );
238  Node( Node *n0, Node *n1, Node *n2, Node *n3 );
239  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
240  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
241  Node( Node *n0, Node *n1, Node *n2, Node *n3,
242            Node *n4, Node *n5, Node *n6 );
243
244  // Clone an inherited Node given only the base Node type.
245  Node* clone() const;
246
247  // Clone a Node, immediately supplying one or two new edges.
248  // The first and second arguments, if non-null, replace in(1) and in(2),
249  // respectively.
250  Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
251    Node* nn = clone();
252    if (in1 != NULL)  nn->set_req(1, in1);
253    if (in2 != NULL)  nn->set_req(2, in2);
254    return nn;
255  }
256
257private:
258  // Shared setup for the above constructors.
259  // Handles all interactions with Compile::current.
260  // Puts initial values in all Node fields except _idx.
261  // Returns the initial value for _idx, which cannot
262  // be initialized by assignment.
263  inline int Init(int req);
264
265//----------------- input edge handling
266protected:
267  friend class PhaseCFG;        // Access to address of _in array elements
268  Node **_in;                   // Array of use-def references to Nodes
269  Node **_out;                  // Array of def-use references to Nodes
270
271  // Input edges are split into two categories.  Required edges are required
272  // for semantic correctness; order is important and NULLs are allowed.
273  // Precedence edges are used to help determine execution order and are
274  // added, e.g., for scheduling purposes.  They are unordered and not
275  // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
276  // are required, from _cnt to _max-1 are precedence edges.
277  node_idx_t _cnt;              // Total number of required Node inputs.
278
279  node_idx_t _max;              // Actual length of input array.
280
281  // Output edges are an unordered list of def-use edges which exactly
282  // correspond to required input edges which point from other nodes
283  // to this one.  Thus the count of the output edges is the number of
284  // users of this node.
285  node_idx_t _outcnt;           // Total number of Node outputs.
286
287  node_idx_t _outmax;           // Actual length of output array.
288
289  // Grow the actual input array to the next larger power-of-2 bigger than len.
290  void grow( uint len );
291  // Grow the output array to the next larger power-of-2 bigger than len.
292  void out_grow( uint len );
293
294 public:
295  // Each Node is assigned a unique small/dense number.  This number is used
296  // to index into auxiliary arrays of data and bit vectors.
297  // The field _idx is declared constant to defend against inadvertent assignments,
298  // since it is used by clients as a naked field. However, the field's value can be
299  // changed using the set_idx() method.
300  //
301  // The PhaseRenumberLive phase renumbers nodes based on liveness information.
302  // Therefore, it updates the value of the _idx field. The parse-time _idx is
303  // preserved in _parse_idx.
304  const node_idx_t _idx;
305  DEBUG_ONLY(const node_idx_t _parse_idx;)
306
307  // Get the (read-only) number of input edges
308  uint req() const { return _cnt; }
309  uint len() const { return _max; }
310  // Get the (read-only) number of output edges
311  uint outcnt() const { return _outcnt; }
312
313#if OPTO_DU_ITERATOR_ASSERT
314  // Iterate over the out-edges of this node.  Deletions are illegal.
315  inline DUIterator outs() const;
316  // Use this when the out array might have changed to suppress asserts.
317  inline DUIterator& refresh_out_pos(DUIterator& i) const;
318  // Does the node have an out at this position?  (Used for iteration.)
319  inline bool has_out(DUIterator& i) const;
320  inline Node*    out(DUIterator& i) const;
321  // Iterate over the out-edges of this node.  All changes are illegal.
322  inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
323  inline Node*    fast_out(DUIterator_Fast& i) const;
324  // Iterate over the out-edges of this node, deleting one at a time.
325  inline DUIterator_Last last_outs(DUIterator_Last& min) const;
326  inline Node*    last_out(DUIterator_Last& i) const;
327  // The inline bodies of all these methods are after the iterator definitions.
328#else
329  // Iterate over the out-edges of this node.  Deletions are illegal.
330  // This iteration uses integral indexes, to decouple from array reallocations.
331  DUIterator outs() const  { return 0; }
332  // Use this when the out array might have changed to suppress asserts.
333  DUIterator refresh_out_pos(DUIterator i) const { return i; }
334
335  // Reference to the i'th output Node.  Error if out of bounds.
336  Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
337  // Does the node have an out at this position?  (Used for iteration.)
338  bool has_out(DUIterator i) const { return i < _outcnt; }
339
340  // Iterate over the out-edges of this node.  All changes are illegal.
341  // This iteration uses a pointer internal to the out array.
342  DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
343    Node** out = _out;
344    // Assign a limit pointer to the reference argument:
345    max = out + (ptrdiff_t)_outcnt;
346    // Return the base pointer:
347    return out;
348  }
349  Node*    fast_out(DUIterator_Fast i) const  { return *i; }
350  // Iterate over the out-edges of this node, deleting one at a time.
351  // This iteration uses a pointer internal to the out array.
352  DUIterator_Last last_outs(DUIterator_Last& min) const {
353    Node** out = _out;
354    // Assign a limit pointer to the reference argument:
355    min = out;
356    // Return the pointer to the start of the iteration:
357    return out + (ptrdiff_t)_outcnt - 1;
358  }
359  Node*    last_out(DUIterator_Last i) const  { return *i; }
360#endif
361
362  // Reference to the i'th input Node.  Error if out of bounds.
363  Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
364  // Reference to the i'th input Node.  NULL if out of bounds.
365  Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
366  // Reference to the i'th output Node.  Error if out of bounds.
367  // Use this accessor sparingly.  We are going trying to use iterators instead.
368  Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
369  // Return the unique out edge.
370  Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
371  // Delete out edge at position 'i' by moving last out edge to position 'i'
372  void  raw_del_out(uint i) {
373    assert(i < _outcnt,"oob");
374    assert(_outcnt > 0,"oob");
375    #if OPTO_DU_ITERATOR_ASSERT
376    // Record that a change happened here.
377    debug_only(_last_del = _out[i]; ++_del_tick);
378    #endif
379    _out[i] = _out[--_outcnt];
380    // Smash the old edge so it can't be used accidentally.
381    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
382  }
383
384#ifdef ASSERT
385  bool is_dead() const;
386#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
387#endif
388  // Check whether node has become unreachable
389  bool is_unreachable(PhaseIterGVN &igvn) const;
390
391  // Set a required input edge, also updates corresponding output edge
392  void add_req( Node *n ); // Append a NEW required input
393  void add_req( Node *n0, Node *n1 ) {
394    add_req(n0); add_req(n1); }
395  void add_req( Node *n0, Node *n1, Node *n2 ) {
396    add_req(n0); add_req(n1); add_req(n2); }
397  void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
398  void del_req( uint idx ); // Delete required edge & compact
399  void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
400  void ins_req( uint i, Node *n ); // Insert a NEW required input
401  void set_req( uint i, Node *n ) {
402    assert( is_not_dead(n), "can not use dead node");
403    assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
404    assert( !VerifyHashTableKeys || _hash_lock == 0,
405            "remove node from hash table before modifying it");
406    Node** p = &_in[i];    // cache this._in, across the del_out call
407    if (*p != NULL)  (*p)->del_out((Node *)this);
408    (*p) = n;
409    if (n != NULL)      n->add_out((Node *)this);
410    Compile::current()->record_modified_node(this);
411  }
412  // Light version of set_req() to init inputs after node creation.
413  void init_req( uint i, Node *n ) {
414    assert( i == 0 && this == n ||
415            is_not_dead(n), "can not use dead node");
416    assert( i < _cnt, "oob");
417    assert( !VerifyHashTableKeys || _hash_lock == 0,
418            "remove node from hash table before modifying it");
419    assert( _in[i] == NULL, "sanity");
420    _in[i] = n;
421    if (n != NULL)      n->add_out((Node *)this);
422    Compile::current()->record_modified_node(this);
423  }
424  // Find first occurrence of n among my edges:
425  int find_edge(Node* n);
426  int find_prec_edge(Node* n) {
427    for (uint i = req(); i < len(); i++) {
428      if (_in[i] == n) return i;
429      if (_in[i] == NULL) {
430        DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == NULL, "Gap in prec edges!"); )
431        break;
432      }
433    }
434    return -1;
435  }
436  int replace_edge(Node* old, Node* neww);
437  int replace_edges_in_range(Node* old, Node* neww, int start, int end);
438  // NULL out all inputs to eliminate incoming Def-Use edges.
439  // Return the number of edges between 'n' and 'this'
440  int  disconnect_inputs(Node *n, Compile *c);
441
442  // Quickly, return true if and only if I am Compile::current()->top().
443  bool is_top() const {
444    assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
445    return (_out == NULL);
446  }
447  // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
448  void setup_is_top();
449
450  // Strip away casting.  (It is depth-limited.)
451  Node* uncast() const;
452  // Return whether two Nodes are equivalent, after stripping casting.
453  bool eqv_uncast(const Node* n) const {
454    return (this->uncast() == n->uncast());
455  }
456
457  // Find out of current node that matches opcode.
458  Node* find_out_with(int opcode);
459  // Return true if the current node has an out that matches opcode.
460  bool has_out_with(int opcode);
461  // Return true if the current node has an out that matches any of the opcodes.
462  bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
463
464private:
465  static Node* uncast_helper(const Node* n);
466
467  // Add an output edge to the end of the list
468  void add_out( Node *n ) {
469    if (is_top())  return;
470    if( _outcnt == _outmax ) out_grow(_outcnt);
471    _out[_outcnt++] = n;
472  }
473  // Delete an output edge
474  void del_out( Node *n ) {
475    if (is_top())  return;
476    Node** outp = &_out[_outcnt];
477    // Find and remove n
478    do {
479      assert(outp > _out, "Missing Def-Use edge");
480    } while (*--outp != n);
481    *outp = _out[--_outcnt];
482    // Smash the old edge so it can't be used accidentally.
483    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
484    // Record that a change happened here.
485    #if OPTO_DU_ITERATOR_ASSERT
486    debug_only(_last_del = n; ++_del_tick);
487    #endif
488  }
489  // Close gap after removing edge.
490  void close_prec_gap_at(uint gap) {
491    assert(_cnt <= gap && gap < _max, "no valid prec edge");
492    uint i = gap;
493    Node *last = NULL;
494    for (; i < _max-1; ++i) {
495      Node *next = _in[i+1];
496      if (next == NULL) break;
497      last = next;
498    }
499    _in[gap] = last; // Move last slot to empty one.
500    _in[i] = NULL;   // NULL out last slot.
501  }
502
503public:
504  // Globally replace this node by a given new node, updating all uses.
505  void replace_by(Node* new_node);
506  // Globally replace this node by a given new node, updating all uses
507  // and cutting input edges of old node.
508  void subsume_by(Node* new_node, Compile* c) {
509    replace_by(new_node);
510    disconnect_inputs(NULL, c);
511  }
512  void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
513  // Find the one non-null required input.  RegionNode only
514  Node *nonnull_req() const;
515  // Add or remove precedence edges
516  void add_prec( Node *n );
517  void rm_prec( uint i );
518
519  // Note: prec(i) will not necessarily point to n if edge already exists.
520  void set_prec( uint i, Node *n ) {
521    assert(i < _max, "oob: i=%d, _max=%d", i, _max);
522    assert(is_not_dead(n), "can not use dead node");
523    assert(i >= _cnt, "not a precedence edge");
524    // Avoid spec violation: duplicated prec edge.
525    if (_in[i] == n) return;
526    if (n == NULL || find_prec_edge(n) != -1) {
527      rm_prec(i);
528      return;
529    }
530    if (_in[i] != NULL) _in[i]->del_out((Node *)this);
531    _in[i] = n;
532    if (n != NULL) n->add_out((Node *)this);
533  }
534
535  // Set this node's index, used by cisc_version to replace current node
536  void set_idx(uint new_idx) {
537    const node_idx_t* ref = &_idx;
538    *(node_idx_t*)ref = new_idx;
539  }
540  // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
541  void swap_edges(uint i1, uint i2) {
542    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
543    // Def-Use info is unchanged
544    Node* n1 = in(i1);
545    Node* n2 = in(i2);
546    _in[i1] = n2;
547    _in[i2] = n1;
548    // If this node is in the hash table, make sure it doesn't need a rehash.
549    assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
550  }
551
552  // Iterators over input Nodes for a Node X are written as:
553  // for( i = 0; i < X.req(); i++ ) ... X[i] ...
554  // NOTE: Required edges can contain embedded NULL pointers.
555
556//----------------- Other Node Properties
557
558  // Generate class IDs for (some) ideal nodes so that it is possible to determine
559  // the type of a node using a non-virtual method call (the method is_<Node>() below).
560  //
561  // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
562  // the type of the node the ID represents; another subset of an ID's bits are reserved
563  // for the superclasses of the node represented by the ID.
564  //
565  // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
566  // returns false. A.is_A() returns true.
567  //
568  // If two classes, A and B, have the same superclass, a different bit of A's class id
569  // is reserved for A's type than for B's type. That bit is specified by the third
570  // parameter in the macro DEFINE_CLASS_ID.
571  //
572  // By convention, classes with deeper hierarchy are declared first. Moreover,
573  // classes with the same hierarchy depth are sorted by usage frequency.
574  //
575  // The query method masks the bits to cut off bits of subclasses and then compares
576  // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
577  //
578  //  Class_MachCall=30, ClassMask_MachCall=31
579  // 12               8               4               0
580  //  0   0   0   0   0   0   0   0   1   1   1   1   0
581  //                                  |   |   |   |
582  //                                  |   |   |   Bit_Mach=2
583  //                                  |   |   Bit_MachReturn=4
584  //                                  |   Bit_MachSafePoint=8
585  //                                  Bit_MachCall=16
586  //
587  //  Class_CountedLoop=56, ClassMask_CountedLoop=63
588  // 12               8               4               0
589  //  0   0   0   0   0   0   0   1   1   1   0   0   0
590  //                              |   |   |
591  //                              |   |   Bit_Region=8
592  //                              |   Bit_Loop=16
593  //                              Bit_CountedLoop=32
594
595  #define DEFINE_CLASS_ID(cl, supcl, subn) \
596  Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
597  Class_##cl = Class_##supcl + Bit_##cl , \
598  ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
599
600  // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
601  // so that it's values fits into 16 bits.
602  enum NodeClasses {
603    Bit_Node   = 0x0000,
604    Class_Node = 0x0000,
605    ClassMask_Node = 0xFFFF,
606
607    DEFINE_CLASS_ID(Multi, Node, 0)
608      DEFINE_CLASS_ID(SafePoint, Multi, 0)
609        DEFINE_CLASS_ID(Call,      SafePoint, 0)
610          DEFINE_CLASS_ID(CallJava,         Call, 0)
611            DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
612            DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
613          DEFINE_CLASS_ID(CallRuntime,      Call, 1)
614            DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
615          DEFINE_CLASS_ID(Allocate,         Call, 2)
616            DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
617          DEFINE_CLASS_ID(AbstractLock,     Call, 3)
618            DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
619            DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
620          DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
621      DEFINE_CLASS_ID(MultiBranch, Multi, 1)
622        DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
623          DEFINE_CLASS_ID(Catch,       PCTable, 0)
624          DEFINE_CLASS_ID(Jump,        PCTable, 1)
625        DEFINE_CLASS_ID(If,          MultiBranch, 1)
626          DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
627          DEFINE_CLASS_ID(RangeCheck, If, 1)
628        DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
629      DEFINE_CLASS_ID(Start,       Multi, 2)
630      DEFINE_CLASS_ID(MemBar,      Multi, 3)
631        DEFINE_CLASS_ID(Initialize,       MemBar, 0)
632        DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
633
634    DEFINE_CLASS_ID(Mach,  Node, 1)
635      DEFINE_CLASS_ID(MachReturn, Mach, 0)
636        DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
637          DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
638            DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
639              DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
640              DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
641            DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
642              DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
643      DEFINE_CLASS_ID(MachBranch, Mach, 1)
644        DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
645        DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
646        DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
647      DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
648      DEFINE_CLASS_ID(MachTemp,         Mach, 3)
649      DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
650      DEFINE_CLASS_ID(MachConstant,     Mach, 5)
651      DEFINE_CLASS_ID(MachMerge,        Mach, 6)
652
653    DEFINE_CLASS_ID(Type,  Node, 2)
654      DEFINE_CLASS_ID(Phi,   Type, 0)
655      DEFINE_CLASS_ID(ConstraintCast, Type, 1)
656        DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
657        DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
658      DEFINE_CLASS_ID(CMove, Type, 3)
659      DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
660      DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
661        DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
662        DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
663      DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
664        DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
665        DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
666
667    DEFINE_CLASS_ID(Proj,  Node, 3)
668      DEFINE_CLASS_ID(CatchProj, Proj, 0)
669      DEFINE_CLASS_ID(JumpProj,  Proj, 1)
670      DEFINE_CLASS_ID(IfTrue,    Proj, 2)
671      DEFINE_CLASS_ID(IfFalse,   Proj, 3)
672      DEFINE_CLASS_ID(Parm,      Proj, 4)
673      DEFINE_CLASS_ID(MachProj,  Proj, 5)
674
675    DEFINE_CLASS_ID(Mem,   Node, 4)
676      DEFINE_CLASS_ID(Load,  Mem, 0)
677        DEFINE_CLASS_ID(LoadVector,  Load, 0)
678      DEFINE_CLASS_ID(Store, Mem, 1)
679        DEFINE_CLASS_ID(StoreVector, Store, 0)
680      DEFINE_CLASS_ID(LoadStore, Mem, 2)
681        DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
682          DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
683        DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
684
685    DEFINE_CLASS_ID(Region, Node, 5)
686      DEFINE_CLASS_ID(Loop, Region, 0)
687        DEFINE_CLASS_ID(Root,        Loop, 0)
688        DEFINE_CLASS_ID(CountedLoop, Loop, 1)
689
690    DEFINE_CLASS_ID(Sub,   Node, 6)
691      DEFINE_CLASS_ID(Cmp,   Sub, 0)
692        DEFINE_CLASS_ID(FastLock,   Cmp, 0)
693        DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
694
695    DEFINE_CLASS_ID(MergeMem, Node, 7)
696    DEFINE_CLASS_ID(Bool,     Node, 8)
697    DEFINE_CLASS_ID(AddP,     Node, 9)
698    DEFINE_CLASS_ID(BoxLock,  Node, 10)
699    DEFINE_CLASS_ID(Add,      Node, 11)
700    DEFINE_CLASS_ID(Mul,      Node, 12)
701    DEFINE_CLASS_ID(Vector,   Node, 13)
702    DEFINE_CLASS_ID(ClearArray, Node, 14)
703
704    _max_classes  = ClassMask_ClearArray
705  };
706  #undef DEFINE_CLASS_ID
707
708  // Flags are sorted by usage frequency.
709  enum NodeFlags {
710    Flag_is_Copy                     = 0x01, // should be first bit to avoid shift
711    Flag_rematerialize               = Flag_is_Copy << 1,
712    Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
713    Flag_is_macro                    = Flag_needs_anti_dependence_check << 1,
714    Flag_is_Con                      = Flag_is_macro << 1,
715    Flag_is_cisc_alternate           = Flag_is_Con << 1,
716    Flag_is_dead_loop_safe           = Flag_is_cisc_alternate << 1,
717    Flag_may_be_short_branch         = Flag_is_dead_loop_safe << 1,
718    Flag_avoid_back_to_back_before   = Flag_may_be_short_branch << 1,
719    Flag_avoid_back_to_back_after    = Flag_avoid_back_to_back_before << 1,
720    Flag_has_call                    = Flag_avoid_back_to_back_after << 1,
721    Flag_is_reduction                = Flag_has_call << 1,
722    Flag_is_scheduled                = Flag_is_reduction << 1,
723    Flag_has_vector_mask_set         = Flag_is_scheduled << 1,
724    Flag_is_expensive                = Flag_has_vector_mask_set << 1,
725    _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
726  };
727
728private:
729  jushort _class_id;
730  jushort _flags;
731
732protected:
733  // These methods should be called from constructors only.
734  void init_class_id(jushort c) {
735    assert(c <= _max_classes, "invalid node class");
736    _class_id = c; // cast out const
737  }
738  void init_flags(jushort fl) {
739    assert(fl <= _max_flags, "invalid node flag");
740    _flags |= fl;
741  }
742  void clear_flag(jushort fl) {
743    assert(fl <= _max_flags, "invalid node flag");
744    _flags &= ~fl;
745  }
746
747public:
748  const jushort class_id() const { return _class_id; }
749
750  const jushort flags() const { return _flags; }
751
752  void add_flag(jushort fl) { init_flags(fl); }
753
754  void remove_flag(jushort fl) { clear_flag(fl); }
755
756  // Return a dense integer opcode number
757  virtual int Opcode() const;
758
759  // Virtual inherited Node size
760  virtual uint size_of() const;
761
762  // Other interesting Node properties
763  #define DEFINE_CLASS_QUERY(type)                           \
764  bool is_##type() const {                                   \
765    return ((_class_id & ClassMask_##type) == Class_##type); \
766  }                                                          \
767  type##Node *as_##type() const {                            \
768    assert(is_##type(), "invalid node class");               \
769    return (type##Node*)this;                                \
770  }                                                          \
771  type##Node* isa_##type() const {                           \
772    return (is_##type()) ? as_##type() : NULL;               \
773  }
774
775  DEFINE_CLASS_QUERY(AbstractLock)
776  DEFINE_CLASS_QUERY(Add)
777  DEFINE_CLASS_QUERY(AddP)
778  DEFINE_CLASS_QUERY(Allocate)
779  DEFINE_CLASS_QUERY(AllocateArray)
780  DEFINE_CLASS_QUERY(ArrayCopy)
781  DEFINE_CLASS_QUERY(Bool)
782  DEFINE_CLASS_QUERY(BoxLock)
783  DEFINE_CLASS_QUERY(Call)
784  DEFINE_CLASS_QUERY(CallDynamicJava)
785  DEFINE_CLASS_QUERY(CallJava)
786  DEFINE_CLASS_QUERY(CallLeaf)
787  DEFINE_CLASS_QUERY(CallRuntime)
788  DEFINE_CLASS_QUERY(CallStaticJava)
789  DEFINE_CLASS_QUERY(Catch)
790  DEFINE_CLASS_QUERY(CatchProj)
791  DEFINE_CLASS_QUERY(CheckCastPP)
792  DEFINE_CLASS_QUERY(CastII)
793  DEFINE_CLASS_QUERY(ConstraintCast)
794  DEFINE_CLASS_QUERY(ClearArray)
795  DEFINE_CLASS_QUERY(CMove)
796  DEFINE_CLASS_QUERY(Cmp)
797  DEFINE_CLASS_QUERY(CountedLoop)
798  DEFINE_CLASS_QUERY(CountedLoopEnd)
799  DEFINE_CLASS_QUERY(DecodeNarrowPtr)
800  DEFINE_CLASS_QUERY(DecodeN)
801  DEFINE_CLASS_QUERY(DecodeNKlass)
802  DEFINE_CLASS_QUERY(EncodeNarrowPtr)
803  DEFINE_CLASS_QUERY(EncodeP)
804  DEFINE_CLASS_QUERY(EncodePKlass)
805  DEFINE_CLASS_QUERY(FastLock)
806  DEFINE_CLASS_QUERY(FastUnlock)
807  DEFINE_CLASS_QUERY(If)
808  DEFINE_CLASS_QUERY(RangeCheck)
809  DEFINE_CLASS_QUERY(IfFalse)
810  DEFINE_CLASS_QUERY(IfTrue)
811  DEFINE_CLASS_QUERY(Initialize)
812  DEFINE_CLASS_QUERY(Jump)
813  DEFINE_CLASS_QUERY(JumpProj)
814  DEFINE_CLASS_QUERY(Load)
815  DEFINE_CLASS_QUERY(LoadStore)
816  DEFINE_CLASS_QUERY(Lock)
817  DEFINE_CLASS_QUERY(Loop)
818  DEFINE_CLASS_QUERY(Mach)
819  DEFINE_CLASS_QUERY(MachBranch)
820  DEFINE_CLASS_QUERY(MachCall)
821  DEFINE_CLASS_QUERY(MachCallDynamicJava)
822  DEFINE_CLASS_QUERY(MachCallJava)
823  DEFINE_CLASS_QUERY(MachCallLeaf)
824  DEFINE_CLASS_QUERY(MachCallRuntime)
825  DEFINE_CLASS_QUERY(MachCallStaticJava)
826  DEFINE_CLASS_QUERY(MachConstantBase)
827  DEFINE_CLASS_QUERY(MachConstant)
828  DEFINE_CLASS_QUERY(MachGoto)
829  DEFINE_CLASS_QUERY(MachIf)
830  DEFINE_CLASS_QUERY(MachNullCheck)
831  DEFINE_CLASS_QUERY(MachProj)
832  DEFINE_CLASS_QUERY(MachReturn)
833  DEFINE_CLASS_QUERY(MachSafePoint)
834  DEFINE_CLASS_QUERY(MachSpillCopy)
835  DEFINE_CLASS_QUERY(MachTemp)
836  DEFINE_CLASS_QUERY(MachMerge)
837  DEFINE_CLASS_QUERY(Mem)
838  DEFINE_CLASS_QUERY(MemBar)
839  DEFINE_CLASS_QUERY(MemBarStoreStore)
840  DEFINE_CLASS_QUERY(MergeMem)
841  DEFINE_CLASS_QUERY(Mul)
842  DEFINE_CLASS_QUERY(Multi)
843  DEFINE_CLASS_QUERY(MultiBranch)
844  DEFINE_CLASS_QUERY(Parm)
845  DEFINE_CLASS_QUERY(PCTable)
846  DEFINE_CLASS_QUERY(Phi)
847  DEFINE_CLASS_QUERY(Proj)
848  DEFINE_CLASS_QUERY(Region)
849  DEFINE_CLASS_QUERY(Root)
850  DEFINE_CLASS_QUERY(SafePoint)
851  DEFINE_CLASS_QUERY(SafePointScalarObject)
852  DEFINE_CLASS_QUERY(Start)
853  DEFINE_CLASS_QUERY(Store)
854  DEFINE_CLASS_QUERY(Sub)
855  DEFINE_CLASS_QUERY(Type)
856  DEFINE_CLASS_QUERY(Vector)
857  DEFINE_CLASS_QUERY(LoadVector)
858  DEFINE_CLASS_QUERY(StoreVector)
859  DEFINE_CLASS_QUERY(Unlock)
860
861  #undef DEFINE_CLASS_QUERY
862
863  // duplicate of is_MachSpillCopy()
864  bool is_SpillCopy () const {
865    return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
866  }
867
868  bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
869  // The data node which is safe to leave in dead loop during IGVN optimization.
870  bool is_dead_loop_safe() const {
871    return is_Phi() || (is_Proj() && in(0) == NULL) ||
872           ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
873            (!is_Proj() || !in(0)->is_Allocate()));
874  }
875
876  // is_Copy() returns copied edge index (0 or 1)
877  uint is_Copy() const { return (_flags & Flag_is_Copy); }
878
879  virtual bool is_CFG() const { return false; }
880
881  // If this node is control-dependent on a test, can it be
882  // rerouted to a dominating equivalent test?  This is usually
883  // true of non-CFG nodes, but can be false for operations which
884  // depend for their correct sequencing on more than one test.
885  // (In that case, hoisting to a dominating test may silently
886  // skip some other important test.)
887  virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
888
889  // When building basic blocks, I need to have a notion of block beginning
890  // Nodes, next block selector Nodes (block enders), and next block
891  // projections.  These calls need to work on their machine equivalents.  The
892  // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
893  bool is_block_start() const {
894    if ( is_Region() )
895      return this == (const Node*)in(0);
896    else
897      return is_Start();
898  }
899
900  // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
901  // Goto and Return.  This call also returns the block ending Node.
902  virtual const Node *is_block_proj() const;
903
904  // The node is a "macro" node which needs to be expanded before matching
905  bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
906  // The node is expensive: the best control is set during loop opts
907  bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
908
909  // An arithmetic node which accumulates a data in a loop.
910  // It must have the loop's phi as input and provide a def to the phi.
911  bool is_reduction() const { return (_flags & Flag_is_reduction) != 0; }
912
913  // The node is a CountedLoopEnd with a mask annotation so as to emit a restore context
914  bool has_vector_mask_set() const { return (_flags & Flag_has_vector_mask_set) != 0; }
915
916  // Used in lcm to mark nodes that have scheduled
917  bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
918
919//----------------- Optimization
920
921  // Get the worst-case Type output for this Node.
922  virtual const class Type *bottom_type() const;
923
924  // If we find a better type for a node, try to record it permanently.
925  // Return true if this node actually changed.
926  // Be sure to do the hash_delete game in the "rehash" variant.
927  void raise_bottom_type(const Type* new_type);
928
929  // Get the address type with which this node uses and/or defs memory,
930  // or NULL if none.  The address type is conservatively wide.
931  // Returns non-null for calls, membars, loads, stores, etc.
932  // Returns TypePtr::BOTTOM if the node touches memory "broadly".
933  virtual const class TypePtr *adr_type() const { return NULL; }
934
935  // Return an existing node which computes the same function as this node.
936  // The optimistic combined algorithm requires this to return a Node which
937  // is a small number of steps away (e.g., one of my inputs).
938  virtual Node* Identity(PhaseGVN* phase);
939
940  // Return the set of values this Node can take on at runtime.
941  virtual const Type* Value(PhaseGVN* phase) const;
942
943  // Return a node which is more "ideal" than the current node.
944  // The invariants on this call are subtle.  If in doubt, read the
945  // treatise in node.cpp above the default implemention AND TEST WITH
946  // +VerifyIterativeGVN!
947  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
948
949  // Some nodes have specific Ideal subgraph transformations only if they are
950  // unique users of specific nodes. Such nodes should be put on IGVN worklist
951  // for the transformations to happen.
952  bool has_special_unique_user() const;
953
954  // Skip Proj and CatchProj nodes chains. Check for Null and Top.
955  Node* find_exact_control(Node* ctrl);
956
957  // Check if 'this' node dominates or equal to 'sub'.
958  bool dominates(Node* sub, Node_List &nlist);
959
960protected:
961  bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
962public:
963
964  // See if there is valid pipeline info
965  static  const Pipeline *pipeline_class();
966  virtual const Pipeline *pipeline() const;
967
968  // Compute the latency from the def to this instruction of the ith input node
969  uint latency(uint i);
970
971  // Hash & compare functions, for pessimistic value numbering
972
973  // If the hash function returns the special sentinel value NO_HASH,
974  // the node is guaranteed never to compare equal to any other node.
975  // If we accidentally generate a hash with value NO_HASH the node
976  // won't go into the table and we'll lose a little optimization.
977  enum { NO_HASH = 0 };
978  virtual uint hash() const;
979  virtual uint cmp( const Node &n ) const;
980
981  // Operation appears to be iteratively computed (such as an induction variable)
982  // It is possible for this operation to return false for a loop-varying
983  // value, if it appears (by local graph inspection) to be computed by a simple conditional.
984  bool is_iteratively_computed();
985
986  // Determine if a node is Counted loop induction variable.
987  // The method is defined in loopnode.cpp.
988  const Node* is_loop_iv() const;
989
990  // Return a node with opcode "opc" and same inputs as "this" if one can
991  // be found; Otherwise return NULL;
992  Node* find_similar(int opc);
993
994  // Return the unique control out if only one. Null if none or more than one.
995  Node* unique_ctrl_out() const;
996
997  // Set control or add control as precedence edge
998  void ensure_control_or_add_prec(Node* c);
999
1000//----------------- Code Generation
1001
1002  // Ideal register class for Matching.  Zero means unmatched instruction
1003  // (these are cloned instead of converted to machine nodes).
1004  virtual uint ideal_reg() const;
1005
1006  static const uint NotAMachineReg;   // must be > max. machine register
1007
1008  // Do we Match on this edge index or not?  Generally false for Control
1009  // and true for everything else.  Weird for calls & returns.
1010  virtual uint match_edge(uint idx) const;
1011
1012  // Register class output is returned in
1013  virtual const RegMask &out_RegMask() const;
1014  // Register class input is expected in
1015  virtual const RegMask &in_RegMask(uint) const;
1016  // Should we clone rather than spill this instruction?
1017  bool rematerialize() const;
1018
1019  // Return JVM State Object if this Node carries debug info, or NULL otherwise
1020  virtual JVMState* jvms() const;
1021
1022  // Print as assembly
1023  virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1024  // Emit bytes starting at parameter 'ptr'
1025  // Bump 'ptr' by the number of output bytes
1026  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1027  // Size of instruction in bytes
1028  virtual uint size(PhaseRegAlloc *ra_) const;
1029
1030  // Convenience function to extract an integer constant from a node.
1031  // If it is not an integer constant (either Con, CastII, or Mach),
1032  // return value_if_unknown.
1033  jint find_int_con(jint value_if_unknown) const {
1034    const TypeInt* t = find_int_type();
1035    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1036  }
1037  // Return the constant, knowing it is an integer constant already
1038  jint get_int() const {
1039    const TypeInt* t = find_int_type();
1040    guarantee(t != NULL, "must be con");
1041    return t->get_con();
1042  }
1043  // Here's where the work is done.  Can produce non-constant int types too.
1044  const TypeInt* find_int_type() const;
1045
1046  // Same thing for long (and intptr_t, via type.hpp):
1047  jlong get_long() const {
1048    const TypeLong* t = find_long_type();
1049    guarantee(t != NULL, "must be con");
1050    return t->get_con();
1051  }
1052  jlong find_long_con(jint value_if_unknown) const {
1053    const TypeLong* t = find_long_type();
1054    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
1055  }
1056  const TypeLong* find_long_type() const;
1057
1058  const TypePtr* get_ptr_type() const;
1059
1060  // These guys are called by code generated by ADLC:
1061  intptr_t get_ptr() const;
1062  intptr_t get_narrowcon() const;
1063  jdouble getd() const;
1064  jfloat getf() const;
1065
1066  // Nodes which are pinned into basic blocks
1067  virtual bool pinned() const { return false; }
1068
1069  // Nodes which use memory without consuming it, hence need antidependences
1070  // More specifically, needs_anti_dependence_check returns true iff the node
1071  // (a) does a load, and (b) does not perform a store (except perhaps to a
1072  // stack slot or some other unaliased location).
1073  bool needs_anti_dependence_check() const;
1074
1075  // Return which operand this instruction may cisc-spill. In other words,
1076  // return operand position that can convert from reg to memory access
1077  virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1078  bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1079
1080//----------------- Graph walking
1081public:
1082  // Walk and apply member functions recursively.
1083  // Supplied (this) pointer is root.
1084  void walk(NFunc pre, NFunc post, void *env);
1085  static void nop(Node &, void*); // Dummy empty function
1086  static void packregion( Node &n, void* );
1087private:
1088  void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
1089
1090//----------------- Printing, etc
1091public:
1092#ifndef PRODUCT
1093  Node* find(int idx) const;         // Search the graph for the given idx.
1094  Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
1095  void dump() const { dump("\n"); }  // Print this node.
1096  void dump(const char* suffix, bool mark = false, outputStream *st = tty) const; // Print this node.
1097  void dump(int depth) const;        // Print this node, recursively to depth d
1098  void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1099  void dump_comp() const;            // Print this node in compact representation.
1100  // Print this node in compact representation.
1101  void dump_comp(const char* suffix, outputStream *st = tty) const;
1102  virtual void dump_req(outputStream *st = tty) const;    // Print required-edge info
1103  virtual void dump_prec(outputStream *st = tty) const;   // Print precedence-edge info
1104  virtual void dump_out(outputStream *st = tty) const;    // Print the output edge info
1105  virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1106  // Print compact per-node info
1107  virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1108  void dump_related() const;             // Print related nodes (depends on node at hand).
1109  // Print related nodes up to given depths for input and output nodes.
1110  void dump_related(uint d_in, uint d_out) const;
1111  void dump_related_compact() const;     // Print related nodes in compact representation.
1112  // Collect related nodes.
1113  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1114  // Collect nodes starting from this node, explicitly including/excluding control and data links.
1115  void collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const;
1116
1117  // Node collectors, to be used in implementations of Node::rel().
1118  // Collect the entire data input graph. Include control inputs if requested.
1119  void collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const;
1120  // Collect the entire control input graph. Include data inputs if requested.
1121  void collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const;
1122  // Collect the entire output graph until hitting and including control nodes.
1123  void collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const;
1124
1125  void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1126  void verify() const;               // Check Def-Use info for my subgraph
1127  static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1128
1129  // This call defines a class-unique string used to identify class instances
1130  virtual const char *Name() const;
1131
1132  void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1133  // RegMask Print Functions
1134  void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1135  void dump_out_regmask() { out_RegMask().dump(); }
1136  static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
1137  void fast_dump() const {
1138    tty->print("%4d: %-17s", _idx, Name());
1139    for (uint i = 0; i < len(); i++)
1140      if (in(i))
1141        tty->print(" %4d", in(i)->_idx);
1142      else
1143        tty->print(" NULL");
1144    tty->print("\n");
1145  }
1146#endif
1147#ifdef ASSERT
1148  void verify_construction();
1149  bool verify_jvms(const JVMState* jvms) const;
1150  int  _debug_idx;                     // Unique value assigned to every node.
1151  int   debug_idx() const              { return _debug_idx; }
1152  void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1153
1154  Node* _debug_orig;                   // Original version of this, if any.
1155  Node*  debug_orig() const            { return _debug_orig; }
1156  void   set_debug_orig(Node* orig);   // _debug_orig = orig
1157
1158  int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1159  void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1160  void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1161
1162  static void init_NodeProperty();
1163
1164  #if OPTO_DU_ITERATOR_ASSERT
1165  const Node* _last_del;               // The last deleted node.
1166  uint        _del_tick;               // Bumped when a deletion happens..
1167  #endif
1168#endif
1169};
1170
1171
1172#ifndef PRODUCT
1173
1174// Used in debugging code to avoid walking across dead or uninitialized edges.
1175inline bool NotANode(const Node* n) {
1176  if (n == NULL)                   return true;
1177  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1178  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1179  return false;
1180}
1181
1182#endif
1183
1184
1185//-----------------------------------------------------------------------------
1186// Iterators over DU info, and associated Node functions.
1187
1188#if OPTO_DU_ITERATOR_ASSERT
1189
1190// Common code for assertion checking on DU iterators.
1191class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1192#ifdef ASSERT
1193 protected:
1194  bool         _vdui;               // cached value of VerifyDUIterators
1195  const Node*  _node;               // the node containing the _out array
1196  uint         _outcnt;             // cached node->_outcnt
1197  uint         _del_tick;           // cached node->_del_tick
1198  Node*        _last;               // last value produced by the iterator
1199
1200  void sample(const Node* node);    // used by c'tor to set up for verifies
1201  void verify(const Node* node, bool at_end_ok = false);
1202  void verify_resync();
1203  void reset(const DUIterator_Common& that);
1204
1205// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1206  #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1207#else
1208  #define I_VDUI_ONLY(i,x) { }
1209#endif //ASSERT
1210};
1211
1212#define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1213
1214// Default DU iterator.  Allows appends onto the out array.
1215// Allows deletion from the out array only at the current point.
1216// Usage:
1217//  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1218//    Node* y = x->out(i);
1219//    ...
1220//  }
1221// Compiles in product mode to a unsigned integer index, which indexes
1222// onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1223// also reloads x->_outcnt.  If you delete, you must perform "--i" just
1224// before continuing the loop.  You must delete only the last-produced
1225// edge.  You must delete only a single copy of the last-produced edge,
1226// or else you must delete all copies at once (the first time the edge
1227// is produced by the iterator).
1228class DUIterator : public DUIterator_Common {
1229  friend class Node;
1230
1231  // This is the index which provides the product-mode behavior.
1232  // Whatever the product-mode version of the system does to the
1233  // DUI index is done to this index.  All other fields in
1234  // this class are used only for assertion checking.
1235  uint         _idx;
1236
1237  #ifdef ASSERT
1238  uint         _refresh_tick;    // Records the refresh activity.
1239
1240  void sample(const Node* node); // Initialize _refresh_tick etc.
1241  void verify(const Node* node, bool at_end_ok = false);
1242  void verify_increment();       // Verify an increment operation.
1243  void verify_resync();          // Verify that we can back up over a deletion.
1244  void verify_finish();          // Verify that the loop terminated properly.
1245  void refresh();                // Resample verification info.
1246  void reset(const DUIterator& that);  // Resample after assignment.
1247  #endif
1248
1249  DUIterator(const Node* node, int dummy_to_avoid_conversion)
1250    { _idx = 0;                         debug_only(sample(node)); }
1251
1252 public:
1253  // initialize to garbage; clear _vdui to disable asserts
1254  DUIterator()
1255    { /*initialize to garbage*/         debug_only(_vdui = false); }
1256
1257  void operator++(int dummy_to_specify_postfix_op)
1258    { _idx++;                           VDUI_ONLY(verify_increment()); }
1259
1260  void operator--()
1261    { VDUI_ONLY(verify_resync());       --_idx; }
1262
1263  ~DUIterator()
1264    { VDUI_ONLY(verify_finish()); }
1265
1266  void operator=(const DUIterator& that)
1267    { _idx = that._idx;                 debug_only(reset(that)); }
1268};
1269
1270DUIterator Node::outs() const
1271  { return DUIterator(this, 0); }
1272DUIterator& Node::refresh_out_pos(DUIterator& i) const
1273  { I_VDUI_ONLY(i, i.refresh());        return i; }
1274bool Node::has_out(DUIterator& i) const
1275  { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1276Node*    Node::out(DUIterator& i) const
1277  { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1278
1279
1280// Faster DU iterator.  Disallows insertions into the out array.
1281// Allows deletion from the out array only at the current point.
1282// Usage:
1283//  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1284//    Node* y = x->fast_out(i);
1285//    ...
1286//  }
1287// Compiles in product mode to raw Node** pointer arithmetic, with
1288// no reloading of pointers from the original node x.  If you delete,
1289// you must perform "--i; --imax" just before continuing the loop.
1290// If you delete multiple copies of the same edge, you must decrement
1291// imax, but not i, multiple times:  "--i, imax -= num_edges".
1292class DUIterator_Fast : public DUIterator_Common {
1293  friend class Node;
1294  friend class DUIterator_Last;
1295
1296  // This is the pointer which provides the product-mode behavior.
1297  // Whatever the product-mode version of the system does to the
1298  // DUI pointer is done to this pointer.  All other fields in
1299  // this class are used only for assertion checking.
1300  Node**       _outp;
1301
1302  #ifdef ASSERT
1303  void verify(const Node* node, bool at_end_ok = false);
1304  void verify_limit();
1305  void verify_resync();
1306  void verify_relimit(uint n);
1307  void reset(const DUIterator_Fast& that);
1308  #endif
1309
1310  // Note:  offset must be signed, since -1 is sometimes passed
1311  DUIterator_Fast(const Node* node, ptrdiff_t offset)
1312    { _outp = node->_out + offset;      debug_only(sample(node)); }
1313
1314 public:
1315  // initialize to garbage; clear _vdui to disable asserts
1316  DUIterator_Fast()
1317    { /*initialize to garbage*/         debug_only(_vdui = false); }
1318
1319  void operator++(int dummy_to_specify_postfix_op)
1320    { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1321
1322  void operator--()
1323    { VDUI_ONLY(verify_resync());       --_outp; }
1324
1325  void operator-=(uint n)   // applied to the limit only
1326    { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1327
1328  bool operator<(DUIterator_Fast& limit) {
1329    I_VDUI_ONLY(*this, this->verify(_node, true));
1330    I_VDUI_ONLY(limit, limit.verify_limit());
1331    return _outp < limit._outp;
1332  }
1333
1334  void operator=(const DUIterator_Fast& that)
1335    { _outp = that._outp;               debug_only(reset(that)); }
1336};
1337
1338DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1339  // Assign a limit pointer to the reference argument:
1340  imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1341  // Return the base pointer:
1342  return DUIterator_Fast(this, 0);
1343}
1344Node* Node::fast_out(DUIterator_Fast& i) const {
1345  I_VDUI_ONLY(i, i.verify(this));
1346  return debug_only(i._last=) *i._outp;
1347}
1348
1349
1350// Faster DU iterator.  Requires each successive edge to be removed.
1351// Does not allow insertion of any edges.
1352// Usage:
1353//  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1354//    Node* y = x->last_out(i);
1355//    ...
1356//  }
1357// Compiles in product mode to raw Node** pointer arithmetic, with
1358// no reloading of pointers from the original node x.
1359class DUIterator_Last : private DUIterator_Fast {
1360  friend class Node;
1361
1362  #ifdef ASSERT
1363  void verify(const Node* node, bool at_end_ok = false);
1364  void verify_limit();
1365  void verify_step(uint num_edges);
1366  #endif
1367
1368  // Note:  offset must be signed, since -1 is sometimes passed
1369  DUIterator_Last(const Node* node, ptrdiff_t offset)
1370    : DUIterator_Fast(node, offset) { }
1371
1372  void operator++(int dummy_to_specify_postfix_op) {} // do not use
1373  void operator<(int)                              {} // do not use
1374
1375 public:
1376  DUIterator_Last() { }
1377  // initialize to garbage
1378
1379  void operator--()
1380    { _outp--;              VDUI_ONLY(verify_step(1));  }
1381
1382  void operator-=(uint n)
1383    { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1384
1385  bool operator>=(DUIterator_Last& limit) {
1386    I_VDUI_ONLY(*this, this->verify(_node, true));
1387    I_VDUI_ONLY(limit, limit.verify_limit());
1388    return _outp >= limit._outp;
1389  }
1390
1391  void operator=(const DUIterator_Last& that)
1392    { DUIterator_Fast::operator=(that); }
1393};
1394
1395DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1396  // Assign a limit pointer to the reference argument:
1397  imin = DUIterator_Last(this, 0);
1398  // Return the initial pointer:
1399  return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1400}
1401Node* Node::last_out(DUIterator_Last& i) const {
1402  I_VDUI_ONLY(i, i.verify(this));
1403  return debug_only(i._last=) *i._outp;
1404}
1405
1406#endif //OPTO_DU_ITERATOR_ASSERT
1407
1408#undef I_VDUI_ONLY
1409#undef VDUI_ONLY
1410
1411// An Iterator that truly follows the iterator pattern.  Doesn't
1412// support deletion but could be made to.
1413//
1414//   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1415//     Node* m = i.get();
1416//
1417class SimpleDUIterator : public StackObj {
1418 private:
1419  Node* node;
1420  DUIterator_Fast i;
1421  DUIterator_Fast imax;
1422 public:
1423  SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1424  bool has_next() { return i < imax; }
1425  void next() { i++; }
1426  Node* get() { return node->fast_out(i); }
1427};
1428
1429
1430//-----------------------------------------------------------------------------
1431// Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1432// Abstractly provides an infinite array of Node*'s, initialized to NULL.
1433// Note that the constructor just zeros things, and since I use Arena
1434// allocation I do not need a destructor to reclaim storage.
1435class Node_Array : public ResourceObj {
1436  friend class VMStructs;
1437protected:
1438  Arena *_a;                    // Arena to allocate in
1439  uint   _max;
1440  Node **_nodes;
1441  void   grow( uint i );        // Grow array node to fit
1442public:
1443  Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1444    _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1445    for( int i = 0; i < OptoNodeListSize; i++ ) {
1446      _nodes[i] = NULL;
1447    }
1448  }
1449
1450  Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1451  Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1452  { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1453  Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1454  Node **adr() { return _nodes; }
1455  // Extend the mapping: index i maps to Node *n.
1456  void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1457  void insert( uint i, Node *n );
1458  void remove( uint i );        // Remove, preserving order
1459  void sort( C_sort_func_t func);
1460  void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1461  void clear();                 // Set all entries to NULL, keep storage
1462  uint Size() const { return _max; }
1463  void dump() const;
1464};
1465
1466class Node_List : public Node_Array {
1467  friend class VMStructs;
1468  uint _cnt;
1469public:
1470  Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1471  Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1472  bool contains(const Node* n) const {
1473    for (uint e = 0; e < size(); e++) {
1474      if (at(e) == n) return true;
1475    }
1476    return false;
1477  }
1478  void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1479  void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1480  void push( Node *b ) { map(_cnt++,b); }
1481  void yank( Node *n );         // Find and remove
1482  Node *pop() { return _nodes[--_cnt]; }
1483  Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1484  void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1485  uint size() const { return _cnt; }
1486  void dump() const;
1487  void dump_simple() const;
1488};
1489
1490//------------------------------Unique_Node_List-------------------------------
1491class Unique_Node_List : public Node_List {
1492  friend class VMStructs;
1493  VectorSet _in_worklist;
1494  uint _clock_index;            // Index in list where to pop from next
1495public:
1496  Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1497  Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1498
1499  void remove( Node *n );
1500  bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1501  VectorSet &member_set(){ return _in_worklist; }
1502
1503  void push( Node *b ) {
1504    if( !_in_worklist.test_set(b->_idx) )
1505      Node_List::push(b);
1506  }
1507  Node *pop() {
1508    if( _clock_index >= size() ) _clock_index = 0;
1509    Node *b = at(_clock_index);
1510    map( _clock_index, Node_List::pop());
1511    if (size() != 0) _clock_index++; // Always start from 0
1512    _in_worklist >>= b->_idx;
1513    return b;
1514  }
1515  Node *remove( uint i ) {
1516    Node *b = Node_List::at(i);
1517    _in_worklist >>= b->_idx;
1518    map(i,Node_List::pop());
1519    return b;
1520  }
1521  void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1522  void  clear() {
1523    _in_worklist.Clear();        // Discards storage but grows automatically
1524    Node_List::clear();
1525    _clock_index = 0;
1526  }
1527
1528  // Used after parsing to remove useless nodes before Iterative GVN
1529  void remove_useless_nodes(VectorSet &useful);
1530
1531#ifndef PRODUCT
1532  void print_set() const { _in_worklist.print(); }
1533#endif
1534};
1535
1536// Inline definition of Compile::record_for_igvn must be deferred to this point.
1537inline void Compile::record_for_igvn(Node* n) {
1538  _for_igvn->push(n);
1539}
1540
1541//------------------------------Node_Stack-------------------------------------
1542class Node_Stack {
1543  friend class VMStructs;
1544protected:
1545  struct INode {
1546    Node *node; // Processed node
1547    uint  indx; // Index of next node's child
1548  };
1549  INode *_inode_top; // tos, stack grows up
1550  INode *_inode_max; // End of _inodes == _inodes + _max
1551  INode *_inodes;    // Array storage for the stack
1552  Arena *_a;         // Arena to allocate in
1553  void grow();
1554public:
1555  Node_Stack(int size) {
1556    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1557    _a = Thread::current()->resource_area();
1558    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1559    _inode_max = _inodes + max;
1560    _inode_top = _inodes - 1; // stack is empty
1561  }
1562
1563  Node_Stack(Arena *a, int size) : _a(a) {
1564    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1565    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1566    _inode_max = _inodes + max;
1567    _inode_top = _inodes - 1; // stack is empty
1568  }
1569
1570  void pop() {
1571    assert(_inode_top >= _inodes, "node stack underflow");
1572    --_inode_top;
1573  }
1574  void push(Node *n, uint i) {
1575    ++_inode_top;
1576    if (_inode_top >= _inode_max) grow();
1577    INode *top = _inode_top; // optimization
1578    top->node = n;
1579    top->indx = i;
1580  }
1581  Node *node() const {
1582    return _inode_top->node;
1583  }
1584  Node* node_at(uint i) const {
1585    assert(_inodes + i <= _inode_top, "in range");
1586    return _inodes[i].node;
1587  }
1588  uint index() const {
1589    return _inode_top->indx;
1590  }
1591  uint index_at(uint i) const {
1592    assert(_inodes + i <= _inode_top, "in range");
1593    return _inodes[i].indx;
1594  }
1595  void set_node(Node *n) {
1596    _inode_top->node = n;
1597  }
1598  void set_index(uint i) {
1599    _inode_top->indx = i;
1600  }
1601  uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1602  uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1603  bool is_nonempty() const { return (_inode_top >= _inodes); }
1604  bool is_empty() const { return (_inode_top < _inodes); }
1605  void clear() { _inode_top = _inodes - 1; } // retain storage
1606
1607  // Node_Stack is used to map nodes.
1608  Node* find(uint idx) const;
1609};
1610
1611
1612//-----------------------------Node_Notes--------------------------------------
1613// Debugging or profiling annotations loosely and sparsely associated
1614// with some nodes.  See Compile::node_notes_at for the accessor.
1615class Node_Notes VALUE_OBJ_CLASS_SPEC {
1616  friend class VMStructs;
1617  JVMState* _jvms;
1618
1619public:
1620  Node_Notes(JVMState* jvms = NULL) {
1621    _jvms = jvms;
1622  }
1623
1624  JVMState* jvms()            { return _jvms; }
1625  void  set_jvms(JVMState* x) {        _jvms = x; }
1626
1627  // True if there is nothing here.
1628  bool is_clear() {
1629    return (_jvms == NULL);
1630  }
1631
1632  // Make there be nothing here.
1633  void clear() {
1634    _jvms = NULL;
1635  }
1636
1637  // Make a new, clean node notes.
1638  static Node_Notes* make(Compile* C) {
1639    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1640    nn->clear();
1641    return nn;
1642  }
1643
1644  Node_Notes* clone(Compile* C) {
1645    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1646    (*nn) = (*this);
1647    return nn;
1648  }
1649
1650  // Absorb any information from source.
1651  bool update_from(Node_Notes* source) {
1652    bool changed = false;
1653    if (source != NULL) {
1654      if (source->jvms() != NULL) {
1655        set_jvms(source->jvms());
1656        changed = true;
1657      }
1658    }
1659    return changed;
1660  }
1661};
1662
1663// Inlined accessors for Compile::node_nodes that require the preceding class:
1664inline Node_Notes*
1665Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1666                           int idx, bool can_grow) {
1667  assert(idx >= 0, "oob");
1668  int block_idx = (idx >> _log2_node_notes_block_size);
1669  int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1670  if (grow_by >= 0) {
1671    if (!can_grow)  return NULL;
1672    grow_node_notes(arr, grow_by + 1);
1673  }
1674  // (Every element of arr is a sub-array of length _node_notes_block_size.)
1675  return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1676}
1677
1678inline bool
1679Compile::set_node_notes_at(int idx, Node_Notes* value) {
1680  if (value == NULL || value->is_clear())
1681    return false;  // nothing to write => write nothing
1682  Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1683  assert(loc != NULL, "");
1684  return loc->update_from(value);
1685}
1686
1687
1688//------------------------------TypeNode---------------------------------------
1689// Node with a Type constant.
1690class TypeNode : public Node {
1691protected:
1692  virtual uint hash() const;    // Check the type
1693  virtual uint cmp( const Node &n ) const;
1694  virtual uint size_of() const; // Size is bigger
1695  const Type* const _type;
1696public:
1697  void set_type(const Type* t) {
1698    assert(t != NULL, "sanity");
1699    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1700    *(const Type**)&_type = t;   // cast away const-ness
1701    // If this node is in the hash table, make sure it doesn't need a rehash.
1702    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1703  }
1704  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1705  TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1706    init_class_id(Class_Type);
1707  }
1708  virtual const Type* Value(PhaseGVN* phase) const;
1709  virtual const Type *bottom_type() const;
1710  virtual       uint  ideal_reg() const;
1711#ifndef PRODUCT
1712  virtual void dump_spec(outputStream *st) const;
1713  virtual void dump_compact_spec(outputStream *st) const;
1714#endif
1715};
1716
1717#endif // SHARE_VM_OPTO_NODE_HPP
1718