node.hpp revision 3724:8e47bac5643a
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_NODE_HPP
26#define SHARE_VM_OPTO_NODE_HPP
27
28#include "libadt/port.hpp"
29#include "libadt/vectset.hpp"
30#include "opto/compile.hpp"
31#include "opto/type.hpp"
32
33// Portions of code courtesy of Clifford Click
34
35// Optimization - Graph Style
36
37
38class AbstractLockNode;
39class AddNode;
40class AddPNode;
41class AliasInfo;
42class AllocateArrayNode;
43class AllocateNode;
44class Block;
45class Block_Array;
46class BoolNode;
47class BoxLockNode;
48class CMoveNode;
49class CallDynamicJavaNode;
50class CallJavaNode;
51class CallLeafNode;
52class CallNode;
53class CallRuntimeNode;
54class CallStaticJavaNode;
55class CatchNode;
56class CatchProjNode;
57class CheckCastPPNode;
58class ClearArrayNode;
59class CmpNode;
60class CodeBuffer;
61class ConstraintCastNode;
62class ConNode;
63class CountedLoopNode;
64class CountedLoopEndNode;
65class DecodeNarrowPtrNode;
66class DecodeNNode;
67class DecodeNKlassNode;
68class EncodeNarrowPtrNode;
69class EncodePNode;
70class EncodePKlassNode;
71class FastLockNode;
72class FastUnlockNode;
73class IfNode;
74class IfFalseNode;
75class IfTrueNode;
76class InitializeNode;
77class JVMState;
78class JumpNode;
79class JumpProjNode;
80class LoadNode;
81class LoadStoreNode;
82class LockNode;
83class LoopNode;
84class MachBranchNode;
85class MachCallDynamicJavaNode;
86class MachCallJavaNode;
87class MachCallLeafNode;
88class MachCallNode;
89class MachCallRuntimeNode;
90class MachCallStaticJavaNode;
91class MachConstantBaseNode;
92class MachConstantNode;
93class MachGotoNode;
94class MachIfNode;
95class MachNode;
96class MachNullCheckNode;
97class MachProjNode;
98class MachReturnNode;
99class MachSafePointNode;
100class MachSpillCopyNode;
101class MachTempNode;
102class Matcher;
103class MemBarNode;
104class MemBarStoreStoreNode;
105class MemNode;
106class MergeMemNode;
107class MulNode;
108class MultiNode;
109class MultiBranchNode;
110class NeverBranchNode;
111class Node;
112class Node_Array;
113class Node_List;
114class Node_Stack;
115class NullCheckNode;
116class OopMap;
117class ParmNode;
118class PCTableNode;
119class PhaseCCP;
120class PhaseGVN;
121class PhaseIterGVN;
122class PhaseRegAlloc;
123class PhaseTransform;
124class PhaseValues;
125class PhiNode;
126class Pipeline;
127class ProjNode;
128class RegMask;
129class RegionNode;
130class RootNode;
131class SafePointNode;
132class SafePointScalarObjectNode;
133class StartNode;
134class State;
135class StoreNode;
136class SubNode;
137class Type;
138class TypeNode;
139class UnlockNode;
140class VectorNode;
141class LoadVectorNode;
142class StoreVectorNode;
143class VectorSet;
144typedef void (*NFunc)(Node&,void*);
145extern "C" {
146  typedef int (*C_sort_func_t)(const void *, const void *);
147}
148
149// The type of all node counts and indexes.
150// It must hold at least 16 bits, but must also be fast to load and store.
151// This type, if less than 32 bits, could limit the number of possible nodes.
152// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
153typedef unsigned int node_idx_t;
154
155
156#ifndef OPTO_DU_ITERATOR_ASSERT
157#ifdef ASSERT
158#define OPTO_DU_ITERATOR_ASSERT 1
159#else
160#define OPTO_DU_ITERATOR_ASSERT 0
161#endif
162#endif //OPTO_DU_ITERATOR_ASSERT
163
164#if OPTO_DU_ITERATOR_ASSERT
165class DUIterator;
166class DUIterator_Fast;
167class DUIterator_Last;
168#else
169typedef uint   DUIterator;
170typedef Node** DUIterator_Fast;
171typedef Node** DUIterator_Last;
172#endif
173
174// Node Sentinel
175#define NodeSentinel (Node*)-1
176
177// Unknown count frequency
178#define COUNT_UNKNOWN (-1.0f)
179
180//------------------------------Node-------------------------------------------
181// Nodes define actions in the program.  They create values, which have types.
182// They are both vertices in a directed graph and program primitives.  Nodes
183// are labeled; the label is the "opcode", the primitive function in the lambda
184// calculus sense that gives meaning to the Node.  Node inputs are ordered (so
185// that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
186// the Node's function.  These inputs also define a Type equation for the Node.
187// Solving these Type equations amounts to doing dataflow analysis.
188// Control and data are uniformly represented in the graph.  Finally, Nodes
189// have a unique dense integer index which is used to index into side arrays
190// whenever I have phase-specific information.
191
192class Node {
193  friend class VMStructs;
194
195  // Lots of restrictions on cloning Nodes
196  Node(const Node&);            // not defined; linker error to use these
197  Node &operator=(const Node &rhs);
198
199public:
200  friend class Compile;
201  #if OPTO_DU_ITERATOR_ASSERT
202  friend class DUIterator_Common;
203  friend class DUIterator;
204  friend class DUIterator_Fast;
205  friend class DUIterator_Last;
206  #endif
207
208  // Because Nodes come and go, I define an Arena of Node structures to pull
209  // from.  This should allow fast access to node creation & deletion.  This
210  // field is a local cache of a value defined in some "program fragment" for
211  // which these Nodes are just a part of.
212
213  // New Operator that takes a Compile pointer, this will eventually
214  // be the "new" New operator.
215  inline void* operator new( size_t x, Compile* C) {
216    Node* n = (Node*)C->node_arena()->Amalloc_D(x);
217#ifdef ASSERT
218    n->_in = (Node**)n; // magic cookie for assertion check
219#endif
220    n->_out = (Node**)C;
221    return (void*)n;
222  }
223
224  // Delete is a NOP
225  void operator delete( void *ptr ) {}
226  // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
227  void destruct();
228
229  // Create a new Node.  Required is the number is of inputs required for
230  // semantic correctness.
231  Node( uint required );
232
233  // Create a new Node with given input edges.
234  // This version requires use of the "edge-count" new.
235  // E.g.  new (C,3) FooNode( C, NULL, left, right );
236  Node( Node *n0 );
237  Node( Node *n0, Node *n1 );
238  Node( Node *n0, Node *n1, Node *n2 );
239  Node( Node *n0, Node *n1, Node *n2, Node *n3 );
240  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
241  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
242  Node( Node *n0, Node *n1, Node *n2, Node *n3,
243            Node *n4, Node *n5, Node *n6 );
244
245  // Clone an inherited Node given only the base Node type.
246  Node* clone() const;
247
248  // Clone a Node, immediately supplying one or two new edges.
249  // The first and second arguments, if non-null, replace in(1) and in(2),
250  // respectively.
251  Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
252    Node* nn = clone();
253    if (in1 != NULL)  nn->set_req(1, in1);
254    if (in2 != NULL)  nn->set_req(2, in2);
255    return nn;
256  }
257
258private:
259  // Shared setup for the above constructors.
260  // Handles all interactions with Compile::current.
261  // Puts initial values in all Node fields except _idx.
262  // Returns the initial value for _idx, which cannot
263  // be initialized by assignment.
264  inline int Init(int req, Compile* C);
265
266//----------------- input edge handling
267protected:
268  friend class PhaseCFG;        // Access to address of _in array elements
269  Node **_in;                   // Array of use-def references to Nodes
270  Node **_out;                  // Array of def-use references to Nodes
271
272  // Input edges are split into two categories.  Required edges are required
273  // for semantic correctness; order is important and NULLs are allowed.
274  // Precedence edges are used to help determine execution order and are
275  // added, e.g., for scheduling purposes.  They are unordered and not
276  // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
277  // are required, from _cnt to _max-1 are precedence edges.
278  node_idx_t _cnt;              // Total number of required Node inputs.
279
280  node_idx_t _max;              // Actual length of input array.
281
282  // Output edges are an unordered list of def-use edges which exactly
283  // correspond to required input edges which point from other nodes
284  // to this one.  Thus the count of the output edges is the number of
285  // users of this node.
286  node_idx_t _outcnt;           // Total number of Node outputs.
287
288  node_idx_t _outmax;           // Actual length of output array.
289
290  // Grow the actual input array to the next larger power-of-2 bigger than len.
291  void grow( uint len );
292  // Grow the output array to the next larger power-of-2 bigger than len.
293  void out_grow( uint len );
294
295 public:
296  // Each Node is assigned a unique small/dense number.  This number is used
297  // to index into auxiliary arrays of data and bitvectors.
298  // It is declared const to defend against inadvertant assignment,
299  // since it is used by clients as a naked field.
300  const node_idx_t _idx;
301
302  // Get the (read-only) number of input edges
303  uint req() const { return _cnt; }
304  uint len() const { return _max; }
305  // Get the (read-only) number of output edges
306  uint outcnt() const { return _outcnt; }
307
308#if OPTO_DU_ITERATOR_ASSERT
309  // Iterate over the out-edges of this node.  Deletions are illegal.
310  inline DUIterator outs() const;
311  // Use this when the out array might have changed to suppress asserts.
312  inline DUIterator& refresh_out_pos(DUIterator& i) const;
313  // Does the node have an out at this position?  (Used for iteration.)
314  inline bool has_out(DUIterator& i) const;
315  inline Node*    out(DUIterator& i) const;
316  // Iterate over the out-edges of this node.  All changes are illegal.
317  inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
318  inline Node*    fast_out(DUIterator_Fast& i) const;
319  // Iterate over the out-edges of this node, deleting one at a time.
320  inline DUIterator_Last last_outs(DUIterator_Last& min) const;
321  inline Node*    last_out(DUIterator_Last& i) const;
322  // The inline bodies of all these methods are after the iterator definitions.
323#else
324  // Iterate over the out-edges of this node.  Deletions are illegal.
325  // This iteration uses integral indexes, to decouple from array reallocations.
326  DUIterator outs() const  { return 0; }
327  // Use this when the out array might have changed to suppress asserts.
328  DUIterator refresh_out_pos(DUIterator i) const { return i; }
329
330  // Reference to the i'th output Node.  Error if out of bounds.
331  Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
332  // Does the node have an out at this position?  (Used for iteration.)
333  bool has_out(DUIterator i) const { return i < _outcnt; }
334
335  // Iterate over the out-edges of this node.  All changes are illegal.
336  // This iteration uses a pointer internal to the out array.
337  DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
338    Node** out = _out;
339    // Assign a limit pointer to the reference argument:
340    max = out + (ptrdiff_t)_outcnt;
341    // Return the base pointer:
342    return out;
343  }
344  Node*    fast_out(DUIterator_Fast i) const  { return *i; }
345  // Iterate over the out-edges of this node, deleting one at a time.
346  // This iteration uses a pointer internal to the out array.
347  DUIterator_Last last_outs(DUIterator_Last& min) const {
348    Node** out = _out;
349    // Assign a limit pointer to the reference argument:
350    min = out;
351    // Return the pointer to the start of the iteration:
352    return out + (ptrdiff_t)_outcnt - 1;
353  }
354  Node*    last_out(DUIterator_Last i) const  { return *i; }
355#endif
356
357  // Reference to the i'th input Node.  Error if out of bounds.
358  Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
359  // Reference to the i'th output Node.  Error if out of bounds.
360  // Use this accessor sparingly.  We are going trying to use iterators instead.
361  Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
362  // Return the unique out edge.
363  Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
364  // Delete out edge at position 'i' by moving last out edge to position 'i'
365  void  raw_del_out(uint i) {
366    assert(i < _outcnt,"oob");
367    assert(_outcnt > 0,"oob");
368    #if OPTO_DU_ITERATOR_ASSERT
369    // Record that a change happened here.
370    debug_only(_last_del = _out[i]; ++_del_tick);
371    #endif
372    _out[i] = _out[--_outcnt];
373    // Smash the old edge so it can't be used accidentally.
374    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
375  }
376
377#ifdef ASSERT
378  bool is_dead() const;
379#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
380#endif
381
382  // Set a required input edge, also updates corresponding output edge
383  void add_req( Node *n ); // Append a NEW required input
384  void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
385  void del_req( uint idx ); // Delete required edge & compact
386  void ins_req( uint i, Node *n ); // Insert a NEW required input
387  void set_req( uint i, Node *n ) {
388    assert( is_not_dead(n), "can not use dead node");
389    assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
390    assert( !VerifyHashTableKeys || _hash_lock == 0,
391            "remove node from hash table before modifying it");
392    Node** p = &_in[i];    // cache this._in, across the del_out call
393    if (*p != NULL)  (*p)->del_out((Node *)this);
394    (*p) = n;
395    if (n != NULL)      n->add_out((Node *)this);
396  }
397  // Light version of set_req() to init inputs after node creation.
398  void init_req( uint i, Node *n ) {
399    assert( i == 0 && this == n ||
400            is_not_dead(n), "can not use dead node");
401    assert( i < _cnt, "oob");
402    assert( !VerifyHashTableKeys || _hash_lock == 0,
403            "remove node from hash table before modifying it");
404    assert( _in[i] == NULL, "sanity");
405    _in[i] = n;
406    if (n != NULL)      n->add_out((Node *)this);
407  }
408  // Find first occurrence of n among my edges:
409  int find_edge(Node* n);
410  int replace_edge(Node* old, Node* neww);
411  // NULL out all inputs to eliminate incoming Def-Use edges.
412  // Return the number of edges between 'n' and 'this'
413  int  disconnect_inputs(Node *n);
414
415  // Quickly, return true if and only if I am Compile::current()->top().
416  bool is_top() const {
417    assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
418    return (_out == NULL);
419  }
420  // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
421  void setup_is_top();
422
423  // Strip away casting.  (It is depth-limited.)
424  Node* uncast() const;
425  // Return whether two Nodes are equivalent, after stripping casting.
426  bool eqv_uncast(const Node* n) const {
427    return (this->uncast() == n->uncast());
428  }
429
430private:
431  static Node* uncast_helper(const Node* n);
432
433  // Add an output edge to the end of the list
434  void add_out( Node *n ) {
435    if (is_top())  return;
436    if( _outcnt == _outmax ) out_grow(_outcnt);
437    _out[_outcnt++] = n;
438  }
439  // Delete an output edge
440  void del_out( Node *n ) {
441    if (is_top())  return;
442    Node** outp = &_out[_outcnt];
443    // Find and remove n
444    do {
445      assert(outp > _out, "Missing Def-Use edge");
446    } while (*--outp != n);
447    *outp = _out[--_outcnt];
448    // Smash the old edge so it can't be used accidentally.
449    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
450    // Record that a change happened here.
451    #if OPTO_DU_ITERATOR_ASSERT
452    debug_only(_last_del = n; ++_del_tick);
453    #endif
454  }
455
456public:
457  // Globally replace this node by a given new node, updating all uses.
458  void replace_by(Node* new_node);
459  // Globally replace this node by a given new node, updating all uses
460  // and cutting input edges of old node.
461  void subsume_by(Node* new_node) {
462    replace_by(new_node);
463    disconnect_inputs(NULL);
464  }
465  void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
466  // Find the one non-null required input.  RegionNode only
467  Node *nonnull_req() const;
468  // Add or remove precedence edges
469  void add_prec( Node *n );
470  void rm_prec( uint i );
471  void set_prec( uint i, Node *n ) {
472    assert( is_not_dead(n), "can not use dead node");
473    assert( i >= _cnt, "not a precedence edge");
474    if (_in[i] != NULL) _in[i]->del_out((Node *)this);
475    _in[i] = n;
476    if (n != NULL) n->add_out((Node *)this);
477  }
478  // Set this node's index, used by cisc_version to replace current node
479  void set_idx(uint new_idx) {
480    const node_idx_t* ref = &_idx;
481    *(node_idx_t*)ref = new_idx;
482  }
483  // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
484  void swap_edges(uint i1, uint i2) {
485    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
486    // Def-Use info is unchanged
487    Node* n1 = in(i1);
488    Node* n2 = in(i2);
489    _in[i1] = n2;
490    _in[i2] = n1;
491    // If this node is in the hash table, make sure it doesn't need a rehash.
492    assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
493  }
494
495  // Iterators over input Nodes for a Node X are written as:
496  // for( i = 0; i < X.req(); i++ ) ... X[i] ...
497  // NOTE: Required edges can contain embedded NULL pointers.
498
499//----------------- Other Node Properties
500
501  // Generate class id for some ideal nodes to avoid virtual query
502  // methods is_<Node>().
503  // Class id is the set of bits corresponded to the node class and all its
504  // super classes so that queries for super classes are also valid.
505  // Subclasses of the same super class have different assigned bit
506  // (the third parameter in the macro DEFINE_CLASS_ID).
507  // Classes with deeper hierarchy are declared first.
508  // Classes with the same hierarchy depth are sorted by usage frequency.
509  //
510  // The query method masks the bits to cut off bits of subclasses
511  // and then compare the result with the class id
512  // (see the macro DEFINE_CLASS_QUERY below).
513  //
514  //  Class_MachCall=30, ClassMask_MachCall=31
515  // 12               8               4               0
516  //  0   0   0   0   0   0   0   0   1   1   1   1   0
517  //                                  |   |   |   |
518  //                                  |   |   |   Bit_Mach=2
519  //                                  |   |   Bit_MachReturn=4
520  //                                  |   Bit_MachSafePoint=8
521  //                                  Bit_MachCall=16
522  //
523  //  Class_CountedLoop=56, ClassMask_CountedLoop=63
524  // 12               8               4               0
525  //  0   0   0   0   0   0   0   1   1   1   0   0   0
526  //                              |   |   |
527  //                              |   |   Bit_Region=8
528  //                              |   Bit_Loop=16
529  //                              Bit_CountedLoop=32
530
531  #define DEFINE_CLASS_ID(cl, supcl, subn) \
532  Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
533  Class_##cl = Class_##supcl + Bit_##cl , \
534  ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
535
536  // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
537  // so that it's values fits into 16 bits.
538  enum NodeClasses {
539    Bit_Node   = 0x0000,
540    Class_Node = 0x0000,
541    ClassMask_Node = 0xFFFF,
542
543    DEFINE_CLASS_ID(Multi, Node, 0)
544      DEFINE_CLASS_ID(SafePoint, Multi, 0)
545        DEFINE_CLASS_ID(Call,      SafePoint, 0)
546          DEFINE_CLASS_ID(CallJava,         Call, 0)
547            DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
548            DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
549          DEFINE_CLASS_ID(CallRuntime,      Call, 1)
550            DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
551          DEFINE_CLASS_ID(Allocate,         Call, 2)
552            DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
553          DEFINE_CLASS_ID(AbstractLock,     Call, 3)
554            DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
555            DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
556      DEFINE_CLASS_ID(MultiBranch, Multi, 1)
557        DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
558          DEFINE_CLASS_ID(Catch,       PCTable, 0)
559          DEFINE_CLASS_ID(Jump,        PCTable, 1)
560        DEFINE_CLASS_ID(If,          MultiBranch, 1)
561          DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
562        DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
563      DEFINE_CLASS_ID(Start,       Multi, 2)
564      DEFINE_CLASS_ID(MemBar,      Multi, 3)
565        DEFINE_CLASS_ID(Initialize,       MemBar, 0)
566        DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
567
568    DEFINE_CLASS_ID(Mach,  Node, 1)
569      DEFINE_CLASS_ID(MachReturn, Mach, 0)
570        DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
571          DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
572            DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
573              DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
574              DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
575            DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
576              DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
577      DEFINE_CLASS_ID(MachBranch, Mach, 1)
578        DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
579        DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
580        DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
581      DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
582      DEFINE_CLASS_ID(MachTemp,         Mach, 3)
583      DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
584      DEFINE_CLASS_ID(MachConstant,     Mach, 5)
585
586    DEFINE_CLASS_ID(Type,  Node, 2)
587      DEFINE_CLASS_ID(Phi,   Type, 0)
588      DEFINE_CLASS_ID(ConstraintCast, Type, 1)
589      DEFINE_CLASS_ID(CheckCastPP, Type, 2)
590      DEFINE_CLASS_ID(CMove, Type, 3)
591      DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
592      DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
593        DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
594        DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
595      DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
596        DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
597        DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
598
599    DEFINE_CLASS_ID(Proj,  Node, 3)
600      DEFINE_CLASS_ID(CatchProj, Proj, 0)
601      DEFINE_CLASS_ID(JumpProj,  Proj, 1)
602      DEFINE_CLASS_ID(IfTrue,    Proj, 2)
603      DEFINE_CLASS_ID(IfFalse,   Proj, 3)
604      DEFINE_CLASS_ID(Parm,      Proj, 4)
605      DEFINE_CLASS_ID(MachProj,  Proj, 5)
606
607    DEFINE_CLASS_ID(Mem,   Node, 4)
608      DEFINE_CLASS_ID(Load,  Mem, 0)
609        DEFINE_CLASS_ID(LoadVector,  Load, 0)
610      DEFINE_CLASS_ID(Store, Mem, 1)
611        DEFINE_CLASS_ID(StoreVector, Store, 0)
612      DEFINE_CLASS_ID(LoadStore, Mem, 2)
613
614    DEFINE_CLASS_ID(Region, Node, 5)
615      DEFINE_CLASS_ID(Loop, Region, 0)
616        DEFINE_CLASS_ID(Root,        Loop, 0)
617        DEFINE_CLASS_ID(CountedLoop, Loop, 1)
618
619    DEFINE_CLASS_ID(Sub,   Node, 6)
620      DEFINE_CLASS_ID(Cmp,   Sub, 0)
621        DEFINE_CLASS_ID(FastLock,   Cmp, 0)
622        DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
623
624    DEFINE_CLASS_ID(MergeMem, Node, 7)
625    DEFINE_CLASS_ID(Bool,     Node, 8)
626    DEFINE_CLASS_ID(AddP,     Node, 9)
627    DEFINE_CLASS_ID(BoxLock,  Node, 10)
628    DEFINE_CLASS_ID(Add,      Node, 11)
629    DEFINE_CLASS_ID(Mul,      Node, 12)
630    DEFINE_CLASS_ID(Vector,   Node, 13)
631    DEFINE_CLASS_ID(ClearArray, Node, 14)
632
633    _max_classes  = ClassMask_ClearArray
634  };
635  #undef DEFINE_CLASS_ID
636
637  // Flags are sorted by usage frequency.
638  enum NodeFlags {
639    Flag_is_Copy             = 0x01, // should be first bit to avoid shift
640    Flag_rematerialize       = Flag_is_Copy << 1,
641    Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
642    Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
643    Flag_is_Con              = Flag_is_macro << 1,
644    Flag_is_cisc_alternate   = Flag_is_Con << 1,
645    Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
646    Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
647    Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
648    Flag_has_call            = Flag_avoid_back_to_back << 1,
649    _max_flags = (Flag_has_call << 1) - 1 // allow flags combination
650  };
651
652private:
653  jushort _class_id;
654  jushort _flags;
655
656protected:
657  // These methods should be called from constructors only.
658  void init_class_id(jushort c) {
659    assert(c <= _max_classes, "invalid node class");
660    _class_id = c; // cast out const
661  }
662  void init_flags(jushort fl) {
663    assert(fl <= _max_flags, "invalid node flag");
664    _flags |= fl;
665  }
666  void clear_flag(jushort fl) {
667    assert(fl <= _max_flags, "invalid node flag");
668    _flags &= ~fl;
669  }
670
671public:
672  const jushort class_id() const { return _class_id; }
673
674  const jushort flags() const { return _flags; }
675
676  // Return a dense integer opcode number
677  virtual int Opcode() const;
678
679  // Virtual inherited Node size
680  virtual uint size_of() const;
681
682  // Other interesting Node properties
683  #define DEFINE_CLASS_QUERY(type)                           \
684  bool is_##type() const {                                   \
685    return ((_class_id & ClassMask_##type) == Class_##type); \
686  }                                                          \
687  type##Node *as_##type() const {                            \
688    assert(is_##type(), "invalid node class");               \
689    return (type##Node*)this;                                \
690  }                                                          \
691  type##Node* isa_##type() const {                           \
692    return (is_##type()) ? as_##type() : NULL;               \
693  }
694
695  DEFINE_CLASS_QUERY(AbstractLock)
696  DEFINE_CLASS_QUERY(Add)
697  DEFINE_CLASS_QUERY(AddP)
698  DEFINE_CLASS_QUERY(Allocate)
699  DEFINE_CLASS_QUERY(AllocateArray)
700  DEFINE_CLASS_QUERY(Bool)
701  DEFINE_CLASS_QUERY(BoxLock)
702  DEFINE_CLASS_QUERY(Call)
703  DEFINE_CLASS_QUERY(CallDynamicJava)
704  DEFINE_CLASS_QUERY(CallJava)
705  DEFINE_CLASS_QUERY(CallLeaf)
706  DEFINE_CLASS_QUERY(CallRuntime)
707  DEFINE_CLASS_QUERY(CallStaticJava)
708  DEFINE_CLASS_QUERY(Catch)
709  DEFINE_CLASS_QUERY(CatchProj)
710  DEFINE_CLASS_QUERY(CheckCastPP)
711  DEFINE_CLASS_QUERY(ConstraintCast)
712  DEFINE_CLASS_QUERY(ClearArray)
713  DEFINE_CLASS_QUERY(CMove)
714  DEFINE_CLASS_QUERY(Cmp)
715  DEFINE_CLASS_QUERY(CountedLoop)
716  DEFINE_CLASS_QUERY(CountedLoopEnd)
717  DEFINE_CLASS_QUERY(DecodeNarrowPtr)
718  DEFINE_CLASS_QUERY(DecodeN)
719  DEFINE_CLASS_QUERY(DecodeNKlass)
720  DEFINE_CLASS_QUERY(EncodeNarrowPtr)
721  DEFINE_CLASS_QUERY(EncodeP)
722  DEFINE_CLASS_QUERY(EncodePKlass)
723  DEFINE_CLASS_QUERY(FastLock)
724  DEFINE_CLASS_QUERY(FastUnlock)
725  DEFINE_CLASS_QUERY(If)
726  DEFINE_CLASS_QUERY(IfFalse)
727  DEFINE_CLASS_QUERY(IfTrue)
728  DEFINE_CLASS_QUERY(Initialize)
729  DEFINE_CLASS_QUERY(Jump)
730  DEFINE_CLASS_QUERY(JumpProj)
731  DEFINE_CLASS_QUERY(Load)
732  DEFINE_CLASS_QUERY(LoadStore)
733  DEFINE_CLASS_QUERY(Lock)
734  DEFINE_CLASS_QUERY(Loop)
735  DEFINE_CLASS_QUERY(Mach)
736  DEFINE_CLASS_QUERY(MachBranch)
737  DEFINE_CLASS_QUERY(MachCall)
738  DEFINE_CLASS_QUERY(MachCallDynamicJava)
739  DEFINE_CLASS_QUERY(MachCallJava)
740  DEFINE_CLASS_QUERY(MachCallLeaf)
741  DEFINE_CLASS_QUERY(MachCallRuntime)
742  DEFINE_CLASS_QUERY(MachCallStaticJava)
743  DEFINE_CLASS_QUERY(MachConstantBase)
744  DEFINE_CLASS_QUERY(MachConstant)
745  DEFINE_CLASS_QUERY(MachGoto)
746  DEFINE_CLASS_QUERY(MachIf)
747  DEFINE_CLASS_QUERY(MachNullCheck)
748  DEFINE_CLASS_QUERY(MachProj)
749  DEFINE_CLASS_QUERY(MachReturn)
750  DEFINE_CLASS_QUERY(MachSafePoint)
751  DEFINE_CLASS_QUERY(MachSpillCopy)
752  DEFINE_CLASS_QUERY(MachTemp)
753  DEFINE_CLASS_QUERY(Mem)
754  DEFINE_CLASS_QUERY(MemBar)
755  DEFINE_CLASS_QUERY(MemBarStoreStore)
756  DEFINE_CLASS_QUERY(MergeMem)
757  DEFINE_CLASS_QUERY(Mul)
758  DEFINE_CLASS_QUERY(Multi)
759  DEFINE_CLASS_QUERY(MultiBranch)
760  DEFINE_CLASS_QUERY(Parm)
761  DEFINE_CLASS_QUERY(PCTable)
762  DEFINE_CLASS_QUERY(Phi)
763  DEFINE_CLASS_QUERY(Proj)
764  DEFINE_CLASS_QUERY(Region)
765  DEFINE_CLASS_QUERY(Root)
766  DEFINE_CLASS_QUERY(SafePoint)
767  DEFINE_CLASS_QUERY(SafePointScalarObject)
768  DEFINE_CLASS_QUERY(Start)
769  DEFINE_CLASS_QUERY(Store)
770  DEFINE_CLASS_QUERY(Sub)
771  DEFINE_CLASS_QUERY(Type)
772  DEFINE_CLASS_QUERY(Vector)
773  DEFINE_CLASS_QUERY(LoadVector)
774  DEFINE_CLASS_QUERY(StoreVector)
775  DEFINE_CLASS_QUERY(Unlock)
776
777  #undef DEFINE_CLASS_QUERY
778
779  // duplicate of is_MachSpillCopy()
780  bool is_SpillCopy () const {
781    return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
782  }
783
784  bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
785  // The data node which is safe to leave in dead loop during IGVN optimization.
786  bool is_dead_loop_safe() const {
787    return is_Phi() || (is_Proj() && in(0) == NULL) ||
788           ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
789            (!is_Proj() || !in(0)->is_Allocate()));
790  }
791
792  // is_Copy() returns copied edge index (0 or 1)
793  uint is_Copy() const { return (_flags & Flag_is_Copy); }
794
795  virtual bool is_CFG() const { return false; }
796
797  // If this node is control-dependent on a test, can it be
798  // rerouted to a dominating equivalent test?  This is usually
799  // true of non-CFG nodes, but can be false for operations which
800  // depend for their correct sequencing on more than one test.
801  // (In that case, hoisting to a dominating test may silently
802  // skip some other important test.)
803  virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
804
805  // When building basic blocks, I need to have a notion of block beginning
806  // Nodes, next block selector Nodes (block enders), and next block
807  // projections.  These calls need to work on their machine equivalents.  The
808  // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
809  bool is_block_start() const {
810    if ( is_Region() )
811      return this == (const Node*)in(0);
812    else
813      return is_Start();
814  }
815
816  // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
817  // Goto and Return.  This call also returns the block ending Node.
818  virtual const Node *is_block_proj() const;
819
820  // The node is a "macro" node which needs to be expanded before matching
821  bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
822
823//----------------- Optimization
824
825  // Get the worst-case Type output for this Node.
826  virtual const class Type *bottom_type() const;
827
828  // If we find a better type for a node, try to record it permanently.
829  // Return true if this node actually changed.
830  // Be sure to do the hash_delete game in the "rehash" variant.
831  void raise_bottom_type(const Type* new_type);
832
833  // Get the address type with which this node uses and/or defs memory,
834  // or NULL if none.  The address type is conservatively wide.
835  // Returns non-null for calls, membars, loads, stores, etc.
836  // Returns TypePtr::BOTTOM if the node touches memory "broadly".
837  virtual const class TypePtr *adr_type() const { return NULL; }
838
839  // Return an existing node which computes the same function as this node.
840  // The optimistic combined algorithm requires this to return a Node which
841  // is a small number of steps away (e.g., one of my inputs).
842  virtual Node *Identity( PhaseTransform *phase );
843
844  // Return the set of values this Node can take on at runtime.
845  virtual const Type *Value( PhaseTransform *phase ) const;
846
847  // Return a node which is more "ideal" than the current node.
848  // The invariants on this call are subtle.  If in doubt, read the
849  // treatise in node.cpp above the default implemention AND TEST WITH
850  // +VerifyIterativeGVN!
851  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
852
853  // Some nodes have specific Ideal subgraph transformations only if they are
854  // unique users of specific nodes. Such nodes should be put on IGVN worklist
855  // for the transformations to happen.
856  bool has_special_unique_user() const;
857
858  // Skip Proj and CatchProj nodes chains. Check for Null and Top.
859  Node* find_exact_control(Node* ctrl);
860
861  // Check if 'this' node dominates or equal to 'sub'.
862  bool dominates(Node* sub, Node_List &nlist);
863
864protected:
865  bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
866public:
867
868  // Idealize graph, using DU info.  Done after constant propagation
869  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
870
871  // See if there is valid pipeline info
872  static  const Pipeline *pipeline_class();
873  virtual const Pipeline *pipeline() const;
874
875  // Compute the latency from the def to this instruction of the ith input node
876  uint latency(uint i);
877
878  // Hash & compare functions, for pessimistic value numbering
879
880  // If the hash function returns the special sentinel value NO_HASH,
881  // the node is guaranteed never to compare equal to any other node.
882  // If we accidentally generate a hash with value NO_HASH the node
883  // won't go into the table and we'll lose a little optimization.
884  enum { NO_HASH = 0 };
885  virtual uint hash() const;
886  virtual uint cmp( const Node &n ) const;
887
888  // Operation appears to be iteratively computed (such as an induction variable)
889  // It is possible for this operation to return false for a loop-varying
890  // value, if it appears (by local graph inspection) to be computed by a simple conditional.
891  bool is_iteratively_computed();
892
893  // Determine if a node is Counted loop induction variable.
894  // The method is defined in loopnode.cpp.
895  const Node* is_loop_iv() const;
896
897  // Return a node with opcode "opc" and same inputs as "this" if one can
898  // be found; Otherwise return NULL;
899  Node* find_similar(int opc);
900
901  // Return the unique control out if only one. Null if none or more than one.
902  Node* unique_ctrl_out();
903
904//----------------- Code Generation
905
906  // Ideal register class for Matching.  Zero means unmatched instruction
907  // (these are cloned instead of converted to machine nodes).
908  virtual uint ideal_reg() const;
909
910  static const uint NotAMachineReg;   // must be > max. machine register
911
912  // Do we Match on this edge index or not?  Generally false for Control
913  // and true for everything else.  Weird for calls & returns.
914  virtual uint match_edge(uint idx) const;
915
916  // Register class output is returned in
917  virtual const RegMask &out_RegMask() const;
918  // Register class input is expected in
919  virtual const RegMask &in_RegMask(uint) const;
920  // Should we clone rather than spill this instruction?
921  bool rematerialize() const;
922
923  // Return JVM State Object if this Node carries debug info, or NULL otherwise
924  virtual JVMState* jvms() const;
925
926  // Print as assembly
927  virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
928  // Emit bytes starting at parameter 'ptr'
929  // Bump 'ptr' by the number of output bytes
930  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
931  // Size of instruction in bytes
932  virtual uint size(PhaseRegAlloc *ra_) const;
933
934  // Convenience function to extract an integer constant from a node.
935  // If it is not an integer constant (either Con, CastII, or Mach),
936  // return value_if_unknown.
937  jint find_int_con(jint value_if_unknown) const {
938    const TypeInt* t = find_int_type();
939    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
940  }
941  // Return the constant, knowing it is an integer constant already
942  jint get_int() const {
943    const TypeInt* t = find_int_type();
944    guarantee(t != NULL, "must be con");
945    return t->get_con();
946  }
947  // Here's where the work is done.  Can produce non-constant int types too.
948  const TypeInt* find_int_type() const;
949
950  // Same thing for long (and intptr_t, via type.hpp):
951  jlong get_long() const {
952    const TypeLong* t = find_long_type();
953    guarantee(t != NULL, "must be con");
954    return t->get_con();
955  }
956  jlong find_long_con(jint value_if_unknown) const {
957    const TypeLong* t = find_long_type();
958    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
959  }
960  const TypeLong* find_long_type() const;
961
962  // These guys are called by code generated by ADLC:
963  intptr_t get_ptr() const;
964  intptr_t get_narrowcon() const;
965  jdouble getd() const;
966  jfloat getf() const;
967
968  // Nodes which are pinned into basic blocks
969  virtual bool pinned() const { return false; }
970
971  // Nodes which use memory without consuming it, hence need antidependences
972  // More specifically, needs_anti_dependence_check returns true iff the node
973  // (a) does a load, and (b) does not perform a store (except perhaps to a
974  // stack slot or some other unaliased location).
975  bool needs_anti_dependence_check() const;
976
977  // Return which operand this instruction may cisc-spill. In other words,
978  // return operand position that can convert from reg to memory access
979  virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
980  bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
981
982//----------------- Graph walking
983public:
984  // Walk and apply member functions recursively.
985  // Supplied (this) pointer is root.
986  void walk(NFunc pre, NFunc post, void *env);
987  static void nop(Node &, void*); // Dummy empty function
988  static void packregion( Node &n, void* );
989private:
990  void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
991
992//----------------- Printing, etc
993public:
994#ifndef PRODUCT
995  Node* find(int idx) const;         // Search the graph for the given idx.
996  Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
997  void dump() const;                 // Print this node,
998  void dump(int depth) const;        // Print this node, recursively to depth d
999  void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1000  virtual void dump_req() const;     // Print required-edge info
1001  virtual void dump_prec() const;    // Print precedence-edge info
1002  virtual void dump_out() const;     // Print the output edge info
1003  virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1004  void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
1005  void verify() const;               // Check Def-Use info for my subgraph
1006  static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
1007
1008  // This call defines a class-unique string used to identify class instances
1009  virtual const char *Name() const;
1010
1011  void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1012  // RegMask Print Functions
1013  void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1014  void dump_out_regmask() { out_RegMask().dump(); }
1015  static int _in_dump_cnt;
1016  static bool in_dump() { return _in_dump_cnt > 0; }
1017  void fast_dump() const {
1018    tty->print("%4d: %-17s", _idx, Name());
1019    for (uint i = 0; i < len(); i++)
1020      if (in(i))
1021        tty->print(" %4d", in(i)->_idx);
1022      else
1023        tty->print(" NULL");
1024    tty->print("\n");
1025  }
1026#endif
1027#ifdef ASSERT
1028  void verify_construction();
1029  bool verify_jvms(const JVMState* jvms) const;
1030  int  _debug_idx;                     // Unique value assigned to every node.
1031  int   debug_idx() const              { return _debug_idx; }
1032  void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1033
1034  Node* _debug_orig;                   // Original version of this, if any.
1035  Node*  debug_orig() const            { return _debug_orig; }
1036  void   set_debug_orig(Node* orig);   // _debug_orig = orig
1037
1038  int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1039  void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1040  void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1041
1042  static void init_NodeProperty();
1043
1044  #if OPTO_DU_ITERATOR_ASSERT
1045  const Node* _last_del;               // The last deleted node.
1046  uint        _del_tick;               // Bumped when a deletion happens..
1047  #endif
1048#endif
1049};
1050
1051//-----------------------------------------------------------------------------
1052// Iterators over DU info, and associated Node functions.
1053
1054#if OPTO_DU_ITERATOR_ASSERT
1055
1056// Common code for assertion checking on DU iterators.
1057class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1058#ifdef ASSERT
1059 protected:
1060  bool         _vdui;               // cached value of VerifyDUIterators
1061  const Node*  _node;               // the node containing the _out array
1062  uint         _outcnt;             // cached node->_outcnt
1063  uint         _del_tick;           // cached node->_del_tick
1064  Node*        _last;               // last value produced by the iterator
1065
1066  void sample(const Node* node);    // used by c'tor to set up for verifies
1067  void verify(const Node* node, bool at_end_ok = false);
1068  void verify_resync();
1069  void reset(const DUIterator_Common& that);
1070
1071// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1072  #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1073#else
1074  #define I_VDUI_ONLY(i,x) { }
1075#endif //ASSERT
1076};
1077
1078#define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1079
1080// Default DU iterator.  Allows appends onto the out array.
1081// Allows deletion from the out array only at the current point.
1082// Usage:
1083//  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1084//    Node* y = x->out(i);
1085//    ...
1086//  }
1087// Compiles in product mode to a unsigned integer index, which indexes
1088// onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1089// also reloads x->_outcnt.  If you delete, you must perform "--i" just
1090// before continuing the loop.  You must delete only the last-produced
1091// edge.  You must delete only a single copy of the last-produced edge,
1092// or else you must delete all copies at once (the first time the edge
1093// is produced by the iterator).
1094class DUIterator : public DUIterator_Common {
1095  friend class Node;
1096
1097  // This is the index which provides the product-mode behavior.
1098  // Whatever the product-mode version of the system does to the
1099  // DUI index is done to this index.  All other fields in
1100  // this class are used only for assertion checking.
1101  uint         _idx;
1102
1103  #ifdef ASSERT
1104  uint         _refresh_tick;    // Records the refresh activity.
1105
1106  void sample(const Node* node); // Initialize _refresh_tick etc.
1107  void verify(const Node* node, bool at_end_ok = false);
1108  void verify_increment();       // Verify an increment operation.
1109  void verify_resync();          // Verify that we can back up over a deletion.
1110  void verify_finish();          // Verify that the loop terminated properly.
1111  void refresh();                // Resample verification info.
1112  void reset(const DUIterator& that);  // Resample after assignment.
1113  #endif
1114
1115  DUIterator(const Node* node, int dummy_to_avoid_conversion)
1116    { _idx = 0;                         debug_only(sample(node)); }
1117
1118 public:
1119  // initialize to garbage; clear _vdui to disable asserts
1120  DUIterator()
1121    { /*initialize to garbage*/         debug_only(_vdui = false); }
1122
1123  void operator++(int dummy_to_specify_postfix_op)
1124    { _idx++;                           VDUI_ONLY(verify_increment()); }
1125
1126  void operator--()
1127    { VDUI_ONLY(verify_resync());       --_idx; }
1128
1129  ~DUIterator()
1130    { VDUI_ONLY(verify_finish()); }
1131
1132  void operator=(const DUIterator& that)
1133    { _idx = that._idx;                 debug_only(reset(that)); }
1134};
1135
1136DUIterator Node::outs() const
1137  { return DUIterator(this, 0); }
1138DUIterator& Node::refresh_out_pos(DUIterator& i) const
1139  { I_VDUI_ONLY(i, i.refresh());        return i; }
1140bool Node::has_out(DUIterator& i) const
1141  { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1142Node*    Node::out(DUIterator& i) const
1143  { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1144
1145
1146// Faster DU iterator.  Disallows insertions into the out array.
1147// Allows deletion from the out array only at the current point.
1148// Usage:
1149//  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1150//    Node* y = x->fast_out(i);
1151//    ...
1152//  }
1153// Compiles in product mode to raw Node** pointer arithmetic, with
1154// no reloading of pointers from the original node x.  If you delete,
1155// you must perform "--i; --imax" just before continuing the loop.
1156// If you delete multiple copies of the same edge, you must decrement
1157// imax, but not i, multiple times:  "--i, imax -= num_edges".
1158class DUIterator_Fast : public DUIterator_Common {
1159  friend class Node;
1160  friend class DUIterator_Last;
1161
1162  // This is the pointer which provides the product-mode behavior.
1163  // Whatever the product-mode version of the system does to the
1164  // DUI pointer is done to this pointer.  All other fields in
1165  // this class are used only for assertion checking.
1166  Node**       _outp;
1167
1168  #ifdef ASSERT
1169  void verify(const Node* node, bool at_end_ok = false);
1170  void verify_limit();
1171  void verify_resync();
1172  void verify_relimit(uint n);
1173  void reset(const DUIterator_Fast& that);
1174  #endif
1175
1176  // Note:  offset must be signed, since -1 is sometimes passed
1177  DUIterator_Fast(const Node* node, ptrdiff_t offset)
1178    { _outp = node->_out + offset;      debug_only(sample(node)); }
1179
1180 public:
1181  // initialize to garbage; clear _vdui to disable asserts
1182  DUIterator_Fast()
1183    { /*initialize to garbage*/         debug_only(_vdui = false); }
1184
1185  void operator++(int dummy_to_specify_postfix_op)
1186    { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1187
1188  void operator--()
1189    { VDUI_ONLY(verify_resync());       --_outp; }
1190
1191  void operator-=(uint n)   // applied to the limit only
1192    { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1193
1194  bool operator<(DUIterator_Fast& limit) {
1195    I_VDUI_ONLY(*this, this->verify(_node, true));
1196    I_VDUI_ONLY(limit, limit.verify_limit());
1197    return _outp < limit._outp;
1198  }
1199
1200  void operator=(const DUIterator_Fast& that)
1201    { _outp = that._outp;               debug_only(reset(that)); }
1202};
1203
1204DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1205  // Assign a limit pointer to the reference argument:
1206  imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1207  // Return the base pointer:
1208  return DUIterator_Fast(this, 0);
1209}
1210Node* Node::fast_out(DUIterator_Fast& i) const {
1211  I_VDUI_ONLY(i, i.verify(this));
1212  return debug_only(i._last=) *i._outp;
1213}
1214
1215
1216// Faster DU iterator.  Requires each successive edge to be removed.
1217// Does not allow insertion of any edges.
1218// Usage:
1219//  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1220//    Node* y = x->last_out(i);
1221//    ...
1222//  }
1223// Compiles in product mode to raw Node** pointer arithmetic, with
1224// no reloading of pointers from the original node x.
1225class DUIterator_Last : private DUIterator_Fast {
1226  friend class Node;
1227
1228  #ifdef ASSERT
1229  void verify(const Node* node, bool at_end_ok = false);
1230  void verify_limit();
1231  void verify_step(uint num_edges);
1232  #endif
1233
1234  // Note:  offset must be signed, since -1 is sometimes passed
1235  DUIterator_Last(const Node* node, ptrdiff_t offset)
1236    : DUIterator_Fast(node, offset) { }
1237
1238  void operator++(int dummy_to_specify_postfix_op) {} // do not use
1239  void operator<(int)                              {} // do not use
1240
1241 public:
1242  DUIterator_Last() { }
1243  // initialize to garbage
1244
1245  void operator--()
1246    { _outp--;              VDUI_ONLY(verify_step(1));  }
1247
1248  void operator-=(uint n)
1249    { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1250
1251  bool operator>=(DUIterator_Last& limit) {
1252    I_VDUI_ONLY(*this, this->verify(_node, true));
1253    I_VDUI_ONLY(limit, limit.verify_limit());
1254    return _outp >= limit._outp;
1255  }
1256
1257  void operator=(const DUIterator_Last& that)
1258    { DUIterator_Fast::operator=(that); }
1259};
1260
1261DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1262  // Assign a limit pointer to the reference argument:
1263  imin = DUIterator_Last(this, 0);
1264  // Return the initial pointer:
1265  return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1266}
1267Node* Node::last_out(DUIterator_Last& i) const {
1268  I_VDUI_ONLY(i, i.verify(this));
1269  return debug_only(i._last=) *i._outp;
1270}
1271
1272#endif //OPTO_DU_ITERATOR_ASSERT
1273
1274#undef I_VDUI_ONLY
1275#undef VDUI_ONLY
1276
1277// An Iterator that truly follows the iterator pattern.  Doesn't
1278// support deletion but could be made to.
1279//
1280//   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1281//     Node* m = i.get();
1282//
1283class SimpleDUIterator : public StackObj {
1284 private:
1285  Node* node;
1286  DUIterator_Fast i;
1287  DUIterator_Fast imax;
1288 public:
1289  SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1290  bool has_next() { return i < imax; }
1291  void next() { i++; }
1292  Node* get() { return node->fast_out(i); }
1293};
1294
1295
1296//-----------------------------------------------------------------------------
1297// Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1298// Abstractly provides an infinite array of Node*'s, initialized to NULL.
1299// Note that the constructor just zeros things, and since I use Arena
1300// allocation I do not need a destructor to reclaim storage.
1301class Node_Array : public ResourceObj {
1302  friend class VMStructs;
1303protected:
1304  Arena *_a;                    // Arena to allocate in
1305  uint   _max;
1306  Node **_nodes;
1307  void   grow( uint i );        // Grow array node to fit
1308public:
1309  Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1310    _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1311    for( int i = 0; i < OptoNodeListSize; i++ ) {
1312      _nodes[i] = NULL;
1313    }
1314  }
1315
1316  Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1317  Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1318  { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1319  Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1320  Node **adr() { return _nodes; }
1321  // Extend the mapping: index i maps to Node *n.
1322  void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1323  void insert( uint i, Node *n );
1324  void remove( uint i );        // Remove, preserving order
1325  void sort( C_sort_func_t func);
1326  void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1327  void clear();                 // Set all entries to NULL, keep storage
1328  uint Size() const { return _max; }
1329  void dump() const;
1330};
1331
1332class Node_List : public Node_Array {
1333  friend class VMStructs;
1334  uint _cnt;
1335public:
1336  Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1337  Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1338  bool contains(Node* n) {
1339    for (uint e = 0; e < size(); e++) {
1340      if (at(e) == n) return true;
1341    }
1342    return false;
1343  }
1344  void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1345  void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1346  void push( Node *b ) { map(_cnt++,b); }
1347  void yank( Node *n );         // Find and remove
1348  Node *pop() { return _nodes[--_cnt]; }
1349  Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1350  void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1351  uint size() const { return _cnt; }
1352  void dump() const;
1353};
1354
1355//------------------------------Unique_Node_List-------------------------------
1356class Unique_Node_List : public Node_List {
1357  friend class VMStructs;
1358  VectorSet _in_worklist;
1359  uint _clock_index;            // Index in list where to pop from next
1360public:
1361  Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1362  Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1363
1364  void remove( Node *n );
1365  bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1366  VectorSet &member_set(){ return _in_worklist; }
1367
1368  void push( Node *b ) {
1369    if( !_in_worklist.test_set(b->_idx) )
1370      Node_List::push(b);
1371  }
1372  Node *pop() {
1373    if( _clock_index >= size() ) _clock_index = 0;
1374    Node *b = at(_clock_index);
1375    map( _clock_index, Node_List::pop());
1376    if (size() != 0) _clock_index++; // Always start from 0
1377    _in_worklist >>= b->_idx;
1378    return b;
1379  }
1380  Node *remove( uint i ) {
1381    Node *b = Node_List::at(i);
1382    _in_worklist >>= b->_idx;
1383    map(i,Node_List::pop());
1384    return b;
1385  }
1386  void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1387  void  clear() {
1388    _in_worklist.Clear();        // Discards storage but grows automatically
1389    Node_List::clear();
1390    _clock_index = 0;
1391  }
1392
1393  // Used after parsing to remove useless nodes before Iterative GVN
1394  void remove_useless_nodes(VectorSet &useful);
1395
1396#ifndef PRODUCT
1397  void print_set() const { _in_worklist.print(); }
1398#endif
1399};
1400
1401// Inline definition of Compile::record_for_igvn must be deferred to this point.
1402inline void Compile::record_for_igvn(Node* n) {
1403  _for_igvn->push(n);
1404}
1405
1406//------------------------------Node_Stack-------------------------------------
1407class Node_Stack {
1408  friend class VMStructs;
1409protected:
1410  struct INode {
1411    Node *node; // Processed node
1412    uint  indx; // Index of next node's child
1413  };
1414  INode *_inode_top; // tos, stack grows up
1415  INode *_inode_max; // End of _inodes == _inodes + _max
1416  INode *_inodes;    // Array storage for the stack
1417  Arena *_a;         // Arena to allocate in
1418  void grow();
1419public:
1420  Node_Stack(int size) {
1421    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1422    _a = Thread::current()->resource_area();
1423    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1424    _inode_max = _inodes + max;
1425    _inode_top = _inodes - 1; // stack is empty
1426  }
1427
1428  Node_Stack(Arena *a, int size) : _a(a) {
1429    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1430    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1431    _inode_max = _inodes + max;
1432    _inode_top = _inodes - 1; // stack is empty
1433  }
1434
1435  void pop() {
1436    assert(_inode_top >= _inodes, "node stack underflow");
1437    --_inode_top;
1438  }
1439  void push(Node *n, uint i) {
1440    ++_inode_top;
1441    if (_inode_top >= _inode_max) grow();
1442    INode *top = _inode_top; // optimization
1443    top->node = n;
1444    top->indx = i;
1445  }
1446  Node *node() const {
1447    return _inode_top->node;
1448  }
1449  Node* node_at(uint i) const {
1450    assert(_inodes + i <= _inode_top, "in range");
1451    return _inodes[i].node;
1452  }
1453  uint index() const {
1454    return _inode_top->indx;
1455  }
1456  uint index_at(uint i) const {
1457    assert(_inodes + i <= _inode_top, "in range");
1458    return _inodes[i].indx;
1459  }
1460  void set_node(Node *n) {
1461    _inode_top->node = n;
1462  }
1463  void set_index(uint i) {
1464    _inode_top->indx = i;
1465  }
1466  uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1467  uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1468  bool is_nonempty() const { return (_inode_top >= _inodes); }
1469  bool is_empty() const { return (_inode_top < _inodes); }
1470  void clear() { _inode_top = _inodes - 1; } // retain storage
1471
1472  // Node_Stack is used to map nodes.
1473  Node* find(uint idx) const;
1474};
1475
1476
1477//-----------------------------Node_Notes--------------------------------------
1478// Debugging or profiling annotations loosely and sparsely associated
1479// with some nodes.  See Compile::node_notes_at for the accessor.
1480class Node_Notes VALUE_OBJ_CLASS_SPEC {
1481  friend class VMStructs;
1482  JVMState* _jvms;
1483
1484public:
1485  Node_Notes(JVMState* jvms = NULL) {
1486    _jvms = jvms;
1487  }
1488
1489  JVMState* jvms()            { return _jvms; }
1490  void  set_jvms(JVMState* x) {        _jvms = x; }
1491
1492  // True if there is nothing here.
1493  bool is_clear() {
1494    return (_jvms == NULL);
1495  }
1496
1497  // Make there be nothing here.
1498  void clear() {
1499    _jvms = NULL;
1500  }
1501
1502  // Make a new, clean node notes.
1503  static Node_Notes* make(Compile* C) {
1504    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1505    nn->clear();
1506    return nn;
1507  }
1508
1509  Node_Notes* clone(Compile* C) {
1510    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1511    (*nn) = (*this);
1512    return nn;
1513  }
1514
1515  // Absorb any information from source.
1516  bool update_from(Node_Notes* source) {
1517    bool changed = false;
1518    if (source != NULL) {
1519      if (source->jvms() != NULL) {
1520        set_jvms(source->jvms());
1521        changed = true;
1522      }
1523    }
1524    return changed;
1525  }
1526};
1527
1528// Inlined accessors for Compile::node_nodes that require the preceding class:
1529inline Node_Notes*
1530Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1531                           int idx, bool can_grow) {
1532  assert(idx >= 0, "oob");
1533  int block_idx = (idx >> _log2_node_notes_block_size);
1534  int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1535  if (grow_by >= 0) {
1536    if (!can_grow)  return NULL;
1537    grow_node_notes(arr, grow_by + 1);
1538  }
1539  // (Every element of arr is a sub-array of length _node_notes_block_size.)
1540  return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1541}
1542
1543inline bool
1544Compile::set_node_notes_at(int idx, Node_Notes* value) {
1545  if (value == NULL || value->is_clear())
1546    return false;  // nothing to write => write nothing
1547  Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1548  assert(loc != NULL, "");
1549  return loc->update_from(value);
1550}
1551
1552
1553//------------------------------TypeNode---------------------------------------
1554// Node with a Type constant.
1555class TypeNode : public Node {
1556protected:
1557  virtual uint hash() const;    // Check the type
1558  virtual uint cmp( const Node &n ) const;
1559  virtual uint size_of() const; // Size is bigger
1560  const Type* const _type;
1561public:
1562  void set_type(const Type* t) {
1563    assert(t != NULL, "sanity");
1564    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1565    *(const Type**)&_type = t;   // cast away const-ness
1566    // If this node is in the hash table, make sure it doesn't need a rehash.
1567    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1568  }
1569  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1570  TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1571    init_class_id(Class_Type);
1572  }
1573  virtual const Type *Value( PhaseTransform *phase ) const;
1574  virtual const Type *bottom_type() const;
1575  virtual       uint  ideal_reg() const;
1576#ifndef PRODUCT
1577  virtual void dump_spec(outputStream *st) const;
1578#endif
1579};
1580
1581#endif // SHARE_VM_OPTO_NODE_HPP
1582