node.hpp revision 2614:95134e034042
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_NODE_HPP
26#define SHARE_VM_OPTO_NODE_HPP
27
28#include "libadt/port.hpp"
29#include "libadt/vectset.hpp"
30#include "opto/compile.hpp"
31#include "opto/type.hpp"
32
33// Portions of code courtesy of Clifford Click
34
35// Optimization - Graph Style
36
37
38class AbstractLockNode;
39class AddNode;
40class AddPNode;
41class AliasInfo;
42class AllocateArrayNode;
43class AllocateNode;
44class Block;
45class Block_Array;
46class BoolNode;
47class BoxLockNode;
48class CMoveNode;
49class CallDynamicJavaNode;
50class CallJavaNode;
51class CallLeafNode;
52class CallNode;
53class CallRuntimeNode;
54class CallStaticJavaNode;
55class CatchNode;
56class CatchProjNode;
57class CheckCastPPNode;
58class ClearArrayNode;
59class CmpNode;
60class CodeBuffer;
61class ConstraintCastNode;
62class ConNode;
63class CountedLoopNode;
64class CountedLoopEndNode;
65class DecodeNNode;
66class EncodePNode;
67class FastLockNode;
68class FastUnlockNode;
69class IfNode;
70class IfFalseNode;
71class IfTrueNode;
72class InitializeNode;
73class JVMState;
74class JumpNode;
75class JumpProjNode;
76class LoadNode;
77class LoadStoreNode;
78class LockNode;
79class LoopNode;
80class MachCallDynamicJavaNode;
81class MachCallJavaNode;
82class MachCallLeafNode;
83class MachCallNode;
84class MachCallRuntimeNode;
85class MachCallStaticJavaNode;
86class MachConstantBaseNode;
87class MachConstantNode;
88class MachGotoNode;
89class MachIfNode;
90class MachNode;
91class MachNullCheckNode;
92class MachProjNode;
93class MachReturnNode;
94class MachSafePointNode;
95class MachSpillCopyNode;
96class MachTempNode;
97class Matcher;
98class MemBarNode;
99class MemNode;
100class MergeMemNode;
101class MultiNode;
102class MultiBranchNode;
103class NeverBranchNode;
104class Node;
105class Node_Array;
106class Node_List;
107class Node_Stack;
108class NullCheckNode;
109class OopMap;
110class ParmNode;
111class PCTableNode;
112class PhaseCCP;
113class PhaseGVN;
114class PhaseIterGVN;
115class PhaseRegAlloc;
116class PhaseTransform;
117class PhaseValues;
118class PhiNode;
119class Pipeline;
120class ProjNode;
121class RegMask;
122class RegionNode;
123class RootNode;
124class SafePointNode;
125class SafePointScalarObjectNode;
126class StartNode;
127class State;
128class StoreNode;
129class SubNode;
130class Type;
131class TypeNode;
132class UnlockNode;
133class VectorNode;
134class VectorLoadNode;
135class VectorStoreNode;
136class VectorSet;
137typedef void (*NFunc)(Node&,void*);
138extern "C" {
139  typedef int (*C_sort_func_t)(const void *, const void *);
140}
141
142// The type of all node counts and indexes.
143// It must hold at least 16 bits, but must also be fast to load and store.
144// This type, if less than 32 bits, could limit the number of possible nodes.
145// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
146typedef unsigned int node_idx_t;
147
148
149#ifndef OPTO_DU_ITERATOR_ASSERT
150#ifdef ASSERT
151#define OPTO_DU_ITERATOR_ASSERT 1
152#else
153#define OPTO_DU_ITERATOR_ASSERT 0
154#endif
155#endif //OPTO_DU_ITERATOR_ASSERT
156
157#if OPTO_DU_ITERATOR_ASSERT
158class DUIterator;
159class DUIterator_Fast;
160class DUIterator_Last;
161#else
162typedef uint   DUIterator;
163typedef Node** DUIterator_Fast;
164typedef Node** DUIterator_Last;
165#endif
166
167// Node Sentinel
168#define NodeSentinel (Node*)-1
169
170// Unknown count frequency
171#define COUNT_UNKNOWN (-1.0f)
172
173//------------------------------Node-------------------------------------------
174// Nodes define actions in the program.  They create values, which have types.
175// They are both vertices in a directed graph and program primitives.  Nodes
176// are labeled; the label is the "opcode", the primitive function in the lambda
177// calculus sense that gives meaning to the Node.  Node inputs are ordered (so
178// that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
179// the Node's function.  These inputs also define a Type equation for the Node.
180// Solving these Type equations amounts to doing dataflow analysis.
181// Control and data are uniformly represented in the graph.  Finally, Nodes
182// have a unique dense integer index which is used to index into side arrays
183// whenever I have phase-specific information.
184
185class Node {
186  // Lots of restrictions on cloning Nodes
187  Node(const Node&);            // not defined; linker error to use these
188  Node &operator=(const Node &rhs);
189
190public:
191  friend class Compile;
192  #if OPTO_DU_ITERATOR_ASSERT
193  friend class DUIterator_Common;
194  friend class DUIterator;
195  friend class DUIterator_Fast;
196  friend class DUIterator_Last;
197  #endif
198
199  // Because Nodes come and go, I define an Arena of Node structures to pull
200  // from.  This should allow fast access to node creation & deletion.  This
201  // field is a local cache of a value defined in some "program fragment" for
202  // which these Nodes are just a part of.
203
204  // New Operator that takes a Compile pointer, this will eventually
205  // be the "new" New operator.
206  inline void* operator new( size_t x, Compile* C) {
207    Node* n = (Node*)C->node_arena()->Amalloc_D(x);
208#ifdef ASSERT
209    n->_in = (Node**)n; // magic cookie for assertion check
210#endif
211    n->_out = (Node**)C;
212    return (void*)n;
213  }
214
215  // New Operator that takes a Compile pointer, this will eventually
216  // be the "new" New operator.
217  inline void* operator new( size_t x, Compile* C, int y) {
218    Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
219    n->_in = (Node**)(((char*)n) + x);
220#ifdef ASSERT
221    n->_in[y-1] = n; // magic cookie for assertion check
222#endif
223    n->_out = (Node**)C;
224    return (void*)n;
225  }
226
227  // Delete is a NOP
228  void operator delete( void *ptr ) {}
229  // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
230  void destruct();
231
232  // Create a new Node.  Required is the number is of inputs required for
233  // semantic correctness.
234  Node( uint required );
235
236  // Create a new Node with given input edges.
237  // This version requires use of the "edge-count" new.
238  // E.g.  new (C,3) FooNode( C, NULL, left, right );
239  Node( Node *n0 );
240  Node( Node *n0, Node *n1 );
241  Node( Node *n0, Node *n1, Node *n2 );
242  Node( Node *n0, Node *n1, Node *n2, Node *n3 );
243  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
244  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
245  Node( Node *n0, Node *n1, Node *n2, Node *n3,
246            Node *n4, Node *n5, Node *n6 );
247
248  // Clone an inherited Node given only the base Node type.
249  Node* clone() const;
250
251  // Clone a Node, immediately supplying one or two new edges.
252  // The first and second arguments, if non-null, replace in(1) and in(2),
253  // respectively.
254  Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
255    Node* nn = clone();
256    if (in1 != NULL)  nn->set_req(1, in1);
257    if (in2 != NULL)  nn->set_req(2, in2);
258    return nn;
259  }
260
261private:
262  // Shared setup for the above constructors.
263  // Handles all interactions with Compile::current.
264  // Puts initial values in all Node fields except _idx.
265  // Returns the initial value for _idx, which cannot
266  // be initialized by assignment.
267  inline int Init(int req, Compile* C);
268
269//----------------- input edge handling
270protected:
271  friend class PhaseCFG;        // Access to address of _in array elements
272  Node **_in;                   // Array of use-def references to Nodes
273  Node **_out;                  // Array of def-use references to Nodes
274
275  // Input edges are split into two categories.  Required edges are required
276  // for semantic correctness; order is important and NULLs are allowed.
277  // Precedence edges are used to help determine execution order and are
278  // added, e.g., for scheduling purposes.  They are unordered and not
279  // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
280  // are required, from _cnt to _max-1 are precedence edges.
281  node_idx_t _cnt;              // Total number of required Node inputs.
282
283  node_idx_t _max;              // Actual length of input array.
284
285  // Output edges are an unordered list of def-use edges which exactly
286  // correspond to required input edges which point from other nodes
287  // to this one.  Thus the count of the output edges is the number of
288  // users of this node.
289  node_idx_t _outcnt;           // Total number of Node outputs.
290
291  node_idx_t _outmax;           // Actual length of output array.
292
293  // Grow the actual input array to the next larger power-of-2 bigger than len.
294  void grow( uint len );
295  // Grow the output array to the next larger power-of-2 bigger than len.
296  void out_grow( uint len );
297
298 public:
299  // Each Node is assigned a unique small/dense number.  This number is used
300  // to index into auxiliary arrays of data and bitvectors.
301  // It is declared const to defend against inadvertant assignment,
302  // since it is used by clients as a naked field.
303  const node_idx_t _idx;
304
305  // Get the (read-only) number of input edges
306  uint req() const { return _cnt; }
307  uint len() const { return _max; }
308  // Get the (read-only) number of output edges
309  uint outcnt() const { return _outcnt; }
310
311#if OPTO_DU_ITERATOR_ASSERT
312  // Iterate over the out-edges of this node.  Deletions are illegal.
313  inline DUIterator outs() const;
314  // Use this when the out array might have changed to suppress asserts.
315  inline DUIterator& refresh_out_pos(DUIterator& i) const;
316  // Does the node have an out at this position?  (Used for iteration.)
317  inline bool has_out(DUIterator& i) const;
318  inline Node*    out(DUIterator& i) const;
319  // Iterate over the out-edges of this node.  All changes are illegal.
320  inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
321  inline Node*    fast_out(DUIterator_Fast& i) const;
322  // Iterate over the out-edges of this node, deleting one at a time.
323  inline DUIterator_Last last_outs(DUIterator_Last& min) const;
324  inline Node*    last_out(DUIterator_Last& i) const;
325  // The inline bodies of all these methods are after the iterator definitions.
326#else
327  // Iterate over the out-edges of this node.  Deletions are illegal.
328  // This iteration uses integral indexes, to decouple from array reallocations.
329  DUIterator outs() const  { return 0; }
330  // Use this when the out array might have changed to suppress asserts.
331  DUIterator refresh_out_pos(DUIterator i) const { return i; }
332
333  // Reference to the i'th output Node.  Error if out of bounds.
334  Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
335  // Does the node have an out at this position?  (Used for iteration.)
336  bool has_out(DUIterator i) const { return i < _outcnt; }
337
338  // Iterate over the out-edges of this node.  All changes are illegal.
339  // This iteration uses a pointer internal to the out array.
340  DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
341    Node** out = _out;
342    // Assign a limit pointer to the reference argument:
343    max = out + (ptrdiff_t)_outcnt;
344    // Return the base pointer:
345    return out;
346  }
347  Node*    fast_out(DUIterator_Fast i) const  { return *i; }
348  // Iterate over the out-edges of this node, deleting one at a time.
349  // This iteration uses a pointer internal to the out array.
350  DUIterator_Last last_outs(DUIterator_Last& min) const {
351    Node** out = _out;
352    // Assign a limit pointer to the reference argument:
353    min = out;
354    // Return the pointer to the start of the iteration:
355    return out + (ptrdiff_t)_outcnt - 1;
356  }
357  Node*    last_out(DUIterator_Last i) const  { return *i; }
358#endif
359
360  // Reference to the i'th input Node.  Error if out of bounds.
361  Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
362  // Reference to the i'th output Node.  Error if out of bounds.
363  // Use this accessor sparingly.  We are going trying to use iterators instead.
364  Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
365  // Return the unique out edge.
366  Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
367  // Delete out edge at position 'i' by moving last out edge to position 'i'
368  void  raw_del_out(uint i) {
369    assert(i < _outcnt,"oob");
370    assert(_outcnt > 0,"oob");
371    #if OPTO_DU_ITERATOR_ASSERT
372    // Record that a change happened here.
373    debug_only(_last_del = _out[i]; ++_del_tick);
374    #endif
375    _out[i] = _out[--_outcnt];
376    // Smash the old edge so it can't be used accidentally.
377    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
378  }
379
380#ifdef ASSERT
381  bool is_dead() const;
382#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
383#endif
384
385  // Set a required input edge, also updates corresponding output edge
386  void add_req( Node *n ); // Append a NEW required input
387  void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
388  void del_req( uint idx ); // Delete required edge & compact
389  void ins_req( uint i, Node *n ); // Insert a NEW required input
390  void set_req( uint i, Node *n ) {
391    assert( is_not_dead(n), "can not use dead node");
392    assert( i < _cnt, "oob");
393    assert( !VerifyHashTableKeys || _hash_lock == 0,
394            "remove node from hash table before modifying it");
395    Node** p = &_in[i];    // cache this._in, across the del_out call
396    if (*p != NULL)  (*p)->del_out((Node *)this);
397    (*p) = n;
398    if (n != NULL)      n->add_out((Node *)this);
399  }
400  // Light version of set_req() to init inputs after node creation.
401  void init_req( uint i, Node *n ) {
402    assert( i == 0 && this == n ||
403            is_not_dead(n), "can not use dead node");
404    assert( i < _cnt, "oob");
405    assert( !VerifyHashTableKeys || _hash_lock == 0,
406            "remove node from hash table before modifying it");
407    assert( _in[i] == NULL, "sanity");
408    _in[i] = n;
409    if (n != NULL)      n->add_out((Node *)this);
410  }
411  // Find first occurrence of n among my edges:
412  int find_edge(Node* n);
413  int replace_edge(Node* old, Node* neww);
414  // NULL out all inputs to eliminate incoming Def-Use edges.
415  // Return the number of edges between 'n' and 'this'
416  int  disconnect_inputs(Node *n);
417
418  // Quickly, return true if and only if I am Compile::current()->top().
419  bool is_top() const {
420    assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
421    return (_out == NULL);
422  }
423  // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
424  void setup_is_top();
425
426  // Strip away casting.  (It is depth-limited.)
427  Node* uncast() const;
428
429private:
430  static Node* uncast_helper(const Node* n);
431
432  // Add an output edge to the end of the list
433  void add_out( Node *n ) {
434    if (is_top())  return;
435    if( _outcnt == _outmax ) out_grow(_outcnt);
436    _out[_outcnt++] = n;
437  }
438  // Delete an output edge
439  void del_out( Node *n ) {
440    if (is_top())  return;
441    Node** outp = &_out[_outcnt];
442    // Find and remove n
443    do {
444      assert(outp > _out, "Missing Def-Use edge");
445    } while (*--outp != n);
446    *outp = _out[--_outcnt];
447    // Smash the old edge so it can't be used accidentally.
448    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
449    // Record that a change happened here.
450    #if OPTO_DU_ITERATOR_ASSERT
451    debug_only(_last_del = n; ++_del_tick);
452    #endif
453  }
454
455public:
456  // Globally replace this node by a given new node, updating all uses.
457  void replace_by(Node* new_node);
458  // Globally replace this node by a given new node, updating all uses
459  // and cutting input edges of old node.
460  void subsume_by(Node* new_node) {
461    replace_by(new_node);
462    disconnect_inputs(NULL);
463  }
464  void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
465  // Find the one non-null required input.  RegionNode only
466  Node *nonnull_req() const;
467  // Add or remove precedence edges
468  void add_prec( Node *n );
469  void rm_prec( uint i );
470  void set_prec( uint i, Node *n ) {
471    assert( is_not_dead(n), "can not use dead node");
472    assert( i >= _cnt, "not a precedence edge");
473    if (_in[i] != NULL) _in[i]->del_out((Node *)this);
474    _in[i] = n;
475    if (n != NULL) n->add_out((Node *)this);
476  }
477  // Set this node's index, used by cisc_version to replace current node
478  void set_idx(uint new_idx) {
479    const node_idx_t* ref = &_idx;
480    *(node_idx_t*)ref = new_idx;
481  }
482  // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
483  void swap_edges(uint i1, uint i2) {
484    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
485    // Def-Use info is unchanged
486    Node* n1 = in(i1);
487    Node* n2 = in(i2);
488    _in[i1] = n2;
489    _in[i2] = n1;
490    // If this node is in the hash table, make sure it doesn't need a rehash.
491    assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
492  }
493
494  // Iterators over input Nodes for a Node X are written as:
495  // for( i = 0; i < X.req(); i++ ) ... X[i] ...
496  // NOTE: Required edges can contain embedded NULL pointers.
497
498//----------------- Other Node Properties
499
500  // Generate class id for some ideal nodes to avoid virtual query
501  // methods is_<Node>().
502  // Class id is the set of bits corresponded to the node class and all its
503  // super classes so that queries for super classes are also valid.
504  // Subclasses of the same super class have different assigned bit
505  // (the third parameter in the macro DEFINE_CLASS_ID).
506  // Classes with deeper hierarchy are declared first.
507  // Classes with the same hierarchy depth are sorted by usage frequency.
508  //
509  // The query method masks the bits to cut off bits of subclasses
510  // and then compare the result with the class id
511  // (see the macro DEFINE_CLASS_QUERY below).
512  //
513  //  Class_MachCall=30, ClassMask_MachCall=31
514  // 12               8               4               0
515  //  0   0   0   0   0   0   0   0   1   1   1   1   0
516  //                                  |   |   |   |
517  //                                  |   |   |   Bit_Mach=2
518  //                                  |   |   Bit_MachReturn=4
519  //                                  |   Bit_MachSafePoint=8
520  //                                  Bit_MachCall=16
521  //
522  //  Class_CountedLoop=56, ClassMask_CountedLoop=63
523  // 12               8               4               0
524  //  0   0   0   0   0   0   0   1   1   1   0   0   0
525  //                              |   |   |
526  //                              |   |   Bit_Region=8
527  //                              |   Bit_Loop=16
528  //                              Bit_CountedLoop=32
529
530  #define DEFINE_CLASS_ID(cl, supcl, subn) \
531  Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
532  Class_##cl = Class_##supcl + Bit_##cl , \
533  ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
534
535  // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
536  // so that it's values fits into 16 bits.
537  enum NodeClasses {
538    Bit_Node   = 0x0000,
539    Class_Node = 0x0000,
540    ClassMask_Node = 0xFFFF,
541
542    DEFINE_CLASS_ID(Multi, Node, 0)
543      DEFINE_CLASS_ID(SafePoint, Multi, 0)
544        DEFINE_CLASS_ID(Call,      SafePoint, 0)
545          DEFINE_CLASS_ID(CallJava,         Call, 0)
546            DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
547            DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
548          DEFINE_CLASS_ID(CallRuntime,      Call, 1)
549            DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
550          DEFINE_CLASS_ID(Allocate,         Call, 2)
551            DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
552          DEFINE_CLASS_ID(AbstractLock,     Call, 3)
553            DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
554            DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
555      DEFINE_CLASS_ID(MultiBranch, Multi, 1)
556        DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
557          DEFINE_CLASS_ID(Catch,       PCTable, 0)
558          DEFINE_CLASS_ID(Jump,        PCTable, 1)
559        DEFINE_CLASS_ID(If,          MultiBranch, 1)
560          DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
561        DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
562      DEFINE_CLASS_ID(Start,       Multi, 2)
563      DEFINE_CLASS_ID(MemBar,      Multi, 3)
564        DEFINE_CLASS_ID(Initialize,    MemBar, 0)
565
566    DEFINE_CLASS_ID(Mach,  Node, 1)
567      DEFINE_CLASS_ID(MachReturn, Mach, 0)
568        DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
569          DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
570            DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
571              DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
572              DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
573            DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
574              DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
575      DEFINE_CLASS_ID(MachSpillCopy,    Mach, 1)
576      DEFINE_CLASS_ID(MachNullCheck,    Mach, 2)
577      DEFINE_CLASS_ID(MachIf,           Mach, 3)
578      DEFINE_CLASS_ID(MachTemp,         Mach, 4)
579      DEFINE_CLASS_ID(MachConstantBase, Mach, 5)
580      DEFINE_CLASS_ID(MachConstant,     Mach, 6)
581      DEFINE_CLASS_ID(MachGoto,         Mach, 7)
582
583    DEFINE_CLASS_ID(Type,  Node, 2)
584      DEFINE_CLASS_ID(Phi,   Type, 0)
585      DEFINE_CLASS_ID(ConstraintCast, Type, 1)
586      DEFINE_CLASS_ID(CheckCastPP, Type, 2)
587      DEFINE_CLASS_ID(CMove, Type, 3)
588      DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
589      DEFINE_CLASS_ID(DecodeN, Type, 5)
590      DEFINE_CLASS_ID(EncodeP, Type, 6)
591
592    DEFINE_CLASS_ID(Proj,  Node, 3)
593      DEFINE_CLASS_ID(CatchProj, Proj, 0)
594      DEFINE_CLASS_ID(JumpProj,  Proj, 1)
595      DEFINE_CLASS_ID(IfTrue,    Proj, 2)
596      DEFINE_CLASS_ID(IfFalse,   Proj, 3)
597      DEFINE_CLASS_ID(Parm,      Proj, 4)
598      DEFINE_CLASS_ID(MachProj,  Proj, 5)
599
600    DEFINE_CLASS_ID(Mem,   Node, 4)
601      DEFINE_CLASS_ID(Load,  Mem, 0)
602        DEFINE_CLASS_ID(VectorLoad,  Load, 0)
603      DEFINE_CLASS_ID(Store, Mem, 1)
604        DEFINE_CLASS_ID(VectorStore, Store, 0)
605      DEFINE_CLASS_ID(LoadStore, Mem, 2)
606
607    DEFINE_CLASS_ID(Region, Node, 5)
608      DEFINE_CLASS_ID(Loop, Region, 0)
609        DEFINE_CLASS_ID(Root,        Loop, 0)
610        DEFINE_CLASS_ID(CountedLoop, Loop, 1)
611
612    DEFINE_CLASS_ID(Sub,   Node, 6)
613      DEFINE_CLASS_ID(Cmp,   Sub, 0)
614        DEFINE_CLASS_ID(FastLock,   Cmp, 0)
615        DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
616
617    DEFINE_CLASS_ID(MergeMem, Node, 7)
618    DEFINE_CLASS_ID(Bool,     Node, 8)
619    DEFINE_CLASS_ID(AddP,     Node, 9)
620    DEFINE_CLASS_ID(BoxLock,  Node, 10)
621    DEFINE_CLASS_ID(Add,      Node, 11)
622    DEFINE_CLASS_ID(Vector,   Node, 12)
623    DEFINE_CLASS_ID(ClearArray, Node, 13)
624
625    _max_classes  = ClassMask_ClearArray
626  };
627  #undef DEFINE_CLASS_ID
628
629  // Flags are sorted by usage frequency.
630  enum NodeFlags {
631    Flag_is_Copy             = 0x01, // should be first bit to avoid shift
632    Flag_rematerialize       = Flag_is_Copy << 1,
633    Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
634    Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
635    Flag_is_Con              = Flag_is_macro << 1,
636    Flag_is_cisc_alternate   = Flag_is_Con << 1,
637    Flag_is_Branch           = Flag_is_cisc_alternate << 1,
638    Flag_is_dead_loop_safe   = Flag_is_Branch << 1,
639    Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
640    Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
641    _max_flags = (Flag_avoid_back_to_back << 1) - 1 // allow flags combination
642  };
643
644private:
645  jushort _class_id;
646  jushort _flags;
647
648protected:
649  // These methods should be called from constructors only.
650  void init_class_id(jushort c) {
651    assert(c <= _max_classes, "invalid node class");
652    _class_id = c; // cast out const
653  }
654  void init_flags(jushort fl) {
655    assert(fl <= _max_flags, "invalid node flag");
656    _flags |= fl;
657  }
658  void clear_flag(jushort fl) {
659    assert(fl <= _max_flags, "invalid node flag");
660    _flags &= ~fl;
661  }
662
663public:
664  const jushort class_id() const { return _class_id; }
665
666  const jushort flags() const { return _flags; }
667
668  // Return a dense integer opcode number
669  virtual int Opcode() const;
670
671  // Virtual inherited Node size
672  virtual uint size_of() const;
673
674  // Other interesting Node properties
675  #define DEFINE_CLASS_QUERY(type)                           \
676  bool is_##type() const {                                   \
677    return ((_class_id & ClassMask_##type) == Class_##type); \
678  }                                                          \
679  type##Node *as_##type() const {                            \
680    assert(is_##type(), "invalid node class");               \
681    return (type##Node*)this;                                \
682  }                                                          \
683  type##Node* isa_##type() const {                           \
684    return (is_##type()) ? as_##type() : NULL;               \
685  }
686
687  DEFINE_CLASS_QUERY(AbstractLock)
688  DEFINE_CLASS_QUERY(Add)
689  DEFINE_CLASS_QUERY(AddP)
690  DEFINE_CLASS_QUERY(Allocate)
691  DEFINE_CLASS_QUERY(AllocateArray)
692  DEFINE_CLASS_QUERY(Bool)
693  DEFINE_CLASS_QUERY(BoxLock)
694  DEFINE_CLASS_QUERY(Call)
695  DEFINE_CLASS_QUERY(CallDynamicJava)
696  DEFINE_CLASS_QUERY(CallJava)
697  DEFINE_CLASS_QUERY(CallLeaf)
698  DEFINE_CLASS_QUERY(CallRuntime)
699  DEFINE_CLASS_QUERY(CallStaticJava)
700  DEFINE_CLASS_QUERY(Catch)
701  DEFINE_CLASS_QUERY(CatchProj)
702  DEFINE_CLASS_QUERY(CheckCastPP)
703  DEFINE_CLASS_QUERY(ConstraintCast)
704  DEFINE_CLASS_QUERY(ClearArray)
705  DEFINE_CLASS_QUERY(CMove)
706  DEFINE_CLASS_QUERY(Cmp)
707  DEFINE_CLASS_QUERY(CountedLoop)
708  DEFINE_CLASS_QUERY(CountedLoopEnd)
709  DEFINE_CLASS_QUERY(DecodeN)
710  DEFINE_CLASS_QUERY(EncodeP)
711  DEFINE_CLASS_QUERY(FastLock)
712  DEFINE_CLASS_QUERY(FastUnlock)
713  DEFINE_CLASS_QUERY(If)
714  DEFINE_CLASS_QUERY(IfFalse)
715  DEFINE_CLASS_QUERY(IfTrue)
716  DEFINE_CLASS_QUERY(Initialize)
717  DEFINE_CLASS_QUERY(Jump)
718  DEFINE_CLASS_QUERY(JumpProj)
719  DEFINE_CLASS_QUERY(Load)
720  DEFINE_CLASS_QUERY(LoadStore)
721  DEFINE_CLASS_QUERY(Lock)
722  DEFINE_CLASS_QUERY(Loop)
723  DEFINE_CLASS_QUERY(Mach)
724  DEFINE_CLASS_QUERY(MachCall)
725  DEFINE_CLASS_QUERY(MachCallDynamicJava)
726  DEFINE_CLASS_QUERY(MachCallJava)
727  DEFINE_CLASS_QUERY(MachCallLeaf)
728  DEFINE_CLASS_QUERY(MachCallRuntime)
729  DEFINE_CLASS_QUERY(MachCallStaticJava)
730  DEFINE_CLASS_QUERY(MachConstantBase)
731  DEFINE_CLASS_QUERY(MachConstant)
732  DEFINE_CLASS_QUERY(MachGoto)
733  DEFINE_CLASS_QUERY(MachIf)
734  DEFINE_CLASS_QUERY(MachNullCheck)
735  DEFINE_CLASS_QUERY(MachProj)
736  DEFINE_CLASS_QUERY(MachReturn)
737  DEFINE_CLASS_QUERY(MachSafePoint)
738  DEFINE_CLASS_QUERY(MachSpillCopy)
739  DEFINE_CLASS_QUERY(MachTemp)
740  DEFINE_CLASS_QUERY(Mem)
741  DEFINE_CLASS_QUERY(MemBar)
742  DEFINE_CLASS_QUERY(MergeMem)
743  DEFINE_CLASS_QUERY(Multi)
744  DEFINE_CLASS_QUERY(MultiBranch)
745  DEFINE_CLASS_QUERY(Parm)
746  DEFINE_CLASS_QUERY(PCTable)
747  DEFINE_CLASS_QUERY(Phi)
748  DEFINE_CLASS_QUERY(Proj)
749  DEFINE_CLASS_QUERY(Region)
750  DEFINE_CLASS_QUERY(Root)
751  DEFINE_CLASS_QUERY(SafePoint)
752  DEFINE_CLASS_QUERY(SafePointScalarObject)
753  DEFINE_CLASS_QUERY(Start)
754  DEFINE_CLASS_QUERY(Store)
755  DEFINE_CLASS_QUERY(Sub)
756  DEFINE_CLASS_QUERY(Type)
757  DEFINE_CLASS_QUERY(Vector)
758  DEFINE_CLASS_QUERY(VectorLoad)
759  DEFINE_CLASS_QUERY(VectorStore)
760  DEFINE_CLASS_QUERY(Unlock)
761
762  #undef DEFINE_CLASS_QUERY
763
764  // duplicate of is_MachSpillCopy()
765  bool is_SpillCopy () const {
766    return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
767  }
768
769  bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
770  // The data node which is safe to leave in dead loop during IGVN optimization.
771  bool is_dead_loop_safe() const {
772    return is_Phi() || (is_Proj() && in(0) == NULL) ||
773           ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
774            (!is_Proj() || !in(0)->is_Allocate()));
775  }
776
777  // is_Copy() returns copied edge index (0 or 1)
778  uint is_Copy() const { return (_flags & Flag_is_Copy); }
779
780  virtual bool is_CFG() const { return false; }
781
782  // If this node is control-dependent on a test, can it be
783  // rerouted to a dominating equivalent test?  This is usually
784  // true of non-CFG nodes, but can be false for operations which
785  // depend for their correct sequencing on more than one test.
786  // (In that case, hoisting to a dominating test may silently
787  // skip some other important test.)
788  virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
789
790  // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd' | 'Jump'
791  bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
792
793  // When building basic blocks, I need to have a notion of block beginning
794  // Nodes, next block selector Nodes (block enders), and next block
795  // projections.  These calls need to work on their machine equivalents.  The
796  // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
797  bool is_block_start() const {
798    if ( is_Region() )
799      return this == (const Node*)in(0);
800    else
801      return is_Start();
802  }
803
804  // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
805  // Goto and Return.  This call also returns the block ending Node.
806  virtual const Node *is_block_proj() const;
807
808  // The node is a "macro" node which needs to be expanded before matching
809  bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
810
811//----------------- Optimization
812
813  // Get the worst-case Type output for this Node.
814  virtual const class Type *bottom_type() const;
815
816  // If we find a better type for a node, try to record it permanently.
817  // Return true if this node actually changed.
818  // Be sure to do the hash_delete game in the "rehash" variant.
819  void raise_bottom_type(const Type* new_type);
820
821  // Get the address type with which this node uses and/or defs memory,
822  // or NULL if none.  The address type is conservatively wide.
823  // Returns non-null for calls, membars, loads, stores, etc.
824  // Returns TypePtr::BOTTOM if the node touches memory "broadly".
825  virtual const class TypePtr *adr_type() const { return NULL; }
826
827  // Return an existing node which computes the same function as this node.
828  // The optimistic combined algorithm requires this to return a Node which
829  // is a small number of steps away (e.g., one of my inputs).
830  virtual Node *Identity( PhaseTransform *phase );
831
832  // Return the set of values this Node can take on at runtime.
833  virtual const Type *Value( PhaseTransform *phase ) const;
834
835  // Return a node which is more "ideal" than the current node.
836  // The invariants on this call are subtle.  If in doubt, read the
837  // treatise in node.cpp above the default implemention AND TEST WITH
838  // +VerifyIterativeGVN!
839  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
840
841  // Some nodes have specific Ideal subgraph transformations only if they are
842  // unique users of specific nodes. Such nodes should be put on IGVN worklist
843  // for the transformations to happen.
844  bool has_special_unique_user() const;
845
846  // Skip Proj and CatchProj nodes chains. Check for Null and Top.
847  Node* find_exact_control(Node* ctrl);
848
849  // Check if 'this' node dominates or equal to 'sub'.
850  bool dominates(Node* sub, Node_List &nlist);
851
852protected:
853  bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
854public:
855
856  // Idealize graph, using DU info.  Done after constant propagation
857  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
858
859  // See if there is valid pipeline info
860  static  const Pipeline *pipeline_class();
861  virtual const Pipeline *pipeline() const;
862
863  // Compute the latency from the def to this instruction of the ith input node
864  uint latency(uint i);
865
866  // Hash & compare functions, for pessimistic value numbering
867
868  // If the hash function returns the special sentinel value NO_HASH,
869  // the node is guaranteed never to compare equal to any other node.
870  // If we accidentally generate a hash with value NO_HASH the node
871  // won't go into the table and we'll lose a little optimization.
872  enum { NO_HASH = 0 };
873  virtual uint hash() const;
874  virtual uint cmp( const Node &n ) const;
875
876  // Operation appears to be iteratively computed (such as an induction variable)
877  // It is possible for this operation to return false for a loop-varying
878  // value, if it appears (by local graph inspection) to be computed by a simple conditional.
879  bool is_iteratively_computed();
880
881  // Determine if a node is Counted loop induction variable.
882  // The method is defined in loopnode.cpp.
883  const Node* is_loop_iv() const;
884
885  // Return a node with opcode "opc" and same inputs as "this" if one can
886  // be found; Otherwise return NULL;
887  Node* find_similar(int opc);
888
889  // Return the unique control out if only one. Null if none or more than one.
890  Node* unique_ctrl_out();
891
892//----------------- Code Generation
893
894  // Ideal register class for Matching.  Zero means unmatched instruction
895  // (these are cloned instead of converted to machine nodes).
896  virtual uint ideal_reg() const;
897
898  static const uint NotAMachineReg;   // must be > max. machine register
899
900  // Do we Match on this edge index or not?  Generally false for Control
901  // and true for everything else.  Weird for calls & returns.
902  virtual uint match_edge(uint idx) const;
903
904  // Register class output is returned in
905  virtual const RegMask &out_RegMask() const;
906  // Register class input is expected in
907  virtual const RegMask &in_RegMask(uint) const;
908  // Should we clone rather than spill this instruction?
909  bool rematerialize() const;
910
911  // Return JVM State Object if this Node carries debug info, or NULL otherwise
912  virtual JVMState* jvms() const;
913
914  // Print as assembly
915  virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
916  // Emit bytes starting at parameter 'ptr'
917  // Bump 'ptr' by the number of output bytes
918  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
919  // Size of instruction in bytes
920  virtual uint size(PhaseRegAlloc *ra_) const;
921
922  // Convenience function to extract an integer constant from a node.
923  // If it is not an integer constant (either Con, CastII, or Mach),
924  // return value_if_unknown.
925  jint find_int_con(jint value_if_unknown) const {
926    const TypeInt* t = find_int_type();
927    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
928  }
929  // Return the constant, knowing it is an integer constant already
930  jint get_int() const {
931    const TypeInt* t = find_int_type();
932    guarantee(t != NULL, "must be con");
933    return t->get_con();
934  }
935  // Here's where the work is done.  Can produce non-constant int types too.
936  const TypeInt* find_int_type() const;
937
938  // Same thing for long (and intptr_t, via type.hpp):
939  jlong get_long() const {
940    const TypeLong* t = find_long_type();
941    guarantee(t != NULL, "must be con");
942    return t->get_con();
943  }
944  jlong find_long_con(jint value_if_unknown) const {
945    const TypeLong* t = find_long_type();
946    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
947  }
948  const TypeLong* find_long_type() const;
949
950  // These guys are called by code generated by ADLC:
951  intptr_t get_ptr() const;
952  intptr_t get_narrowcon() const;
953  jdouble getd() const;
954  jfloat getf() const;
955
956  // Nodes which are pinned into basic blocks
957  virtual bool pinned() const { return false; }
958
959  // Nodes which use memory without consuming it, hence need antidependences
960  // More specifically, needs_anti_dependence_check returns true iff the node
961  // (a) does a load, and (b) does not perform a store (except perhaps to a
962  // stack slot or some other unaliased location).
963  bool needs_anti_dependence_check() const;
964
965  // Return which operand this instruction may cisc-spill. In other words,
966  // return operand position that can convert from reg to memory access
967  virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
968  bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
969
970//----------------- Graph walking
971public:
972  // Walk and apply member functions recursively.
973  // Supplied (this) pointer is root.
974  void walk(NFunc pre, NFunc post, void *env);
975  static void nop(Node &, void*); // Dummy empty function
976  static void packregion( Node &n, void* );
977private:
978  void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
979
980//----------------- Printing, etc
981public:
982#ifndef PRODUCT
983  Node* find(int idx) const;         // Search the graph for the given idx.
984  Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
985  void dump() const;                 // Print this node,
986  void dump(int depth) const;        // Print this node, recursively to depth d
987  void dump_ctrl(int depth) const;   // Print control nodes, to depth d
988  virtual void dump_req() const;     // Print required-edge info
989  virtual void dump_prec() const;    // Print precedence-edge info
990  virtual void dump_out() const;     // Print the output edge info
991  virtual void dump_spec(outputStream *st) const {}; // Print per-node info
992  void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
993  void verify() const;               // Check Def-Use info for my subgraph
994  static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
995
996  // This call defines a class-unique string used to identify class instances
997  virtual const char *Name() const;
998
999  void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1000  // RegMask Print Functions
1001  void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
1002  void dump_out_regmask() { out_RegMask().dump(); }
1003  static int _in_dump_cnt;
1004  static bool in_dump() { return _in_dump_cnt > 0; }
1005  void fast_dump() const {
1006    tty->print("%4d: %-17s", _idx, Name());
1007    for (uint i = 0; i < len(); i++)
1008      if (in(i))
1009        tty->print(" %4d", in(i)->_idx);
1010      else
1011        tty->print(" NULL");
1012    tty->print("\n");
1013  }
1014#endif
1015#ifdef ASSERT
1016  void verify_construction();
1017  bool verify_jvms(const JVMState* jvms) const;
1018  int  _debug_idx;                     // Unique value assigned to every node.
1019  int   debug_idx() const              { return _debug_idx; }
1020  void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1021
1022  Node* _debug_orig;                   // Original version of this, if any.
1023  Node*  debug_orig() const            { return _debug_orig; }
1024  void   set_debug_orig(Node* orig);   // _debug_orig = orig
1025
1026  int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1027  void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1028  void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1029
1030  static void init_NodeProperty();
1031
1032  #if OPTO_DU_ITERATOR_ASSERT
1033  const Node* _last_del;               // The last deleted node.
1034  uint        _del_tick;               // Bumped when a deletion happens..
1035  #endif
1036#endif
1037};
1038
1039//-----------------------------------------------------------------------------
1040// Iterators over DU info, and associated Node functions.
1041
1042#if OPTO_DU_ITERATOR_ASSERT
1043
1044// Common code for assertion checking on DU iterators.
1045class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1046#ifdef ASSERT
1047 protected:
1048  bool         _vdui;               // cached value of VerifyDUIterators
1049  const Node*  _node;               // the node containing the _out array
1050  uint         _outcnt;             // cached node->_outcnt
1051  uint         _del_tick;           // cached node->_del_tick
1052  Node*        _last;               // last value produced by the iterator
1053
1054  void sample(const Node* node);    // used by c'tor to set up for verifies
1055  void verify(const Node* node, bool at_end_ok = false);
1056  void verify_resync();
1057  void reset(const DUIterator_Common& that);
1058
1059// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1060  #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1061#else
1062  #define I_VDUI_ONLY(i,x) { }
1063#endif //ASSERT
1064};
1065
1066#define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1067
1068// Default DU iterator.  Allows appends onto the out array.
1069// Allows deletion from the out array only at the current point.
1070// Usage:
1071//  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1072//    Node* y = x->out(i);
1073//    ...
1074//  }
1075// Compiles in product mode to a unsigned integer index, which indexes
1076// onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1077// also reloads x->_outcnt.  If you delete, you must perform "--i" just
1078// before continuing the loop.  You must delete only the last-produced
1079// edge.  You must delete only a single copy of the last-produced edge,
1080// or else you must delete all copies at once (the first time the edge
1081// is produced by the iterator).
1082class DUIterator : public DUIterator_Common {
1083  friend class Node;
1084
1085  // This is the index which provides the product-mode behavior.
1086  // Whatever the product-mode version of the system does to the
1087  // DUI index is done to this index.  All other fields in
1088  // this class are used only for assertion checking.
1089  uint         _idx;
1090
1091  #ifdef ASSERT
1092  uint         _refresh_tick;    // Records the refresh activity.
1093
1094  void sample(const Node* node); // Initialize _refresh_tick etc.
1095  void verify(const Node* node, bool at_end_ok = false);
1096  void verify_increment();       // Verify an increment operation.
1097  void verify_resync();          // Verify that we can back up over a deletion.
1098  void verify_finish();          // Verify that the loop terminated properly.
1099  void refresh();                // Resample verification info.
1100  void reset(const DUIterator& that);  // Resample after assignment.
1101  #endif
1102
1103  DUIterator(const Node* node, int dummy_to_avoid_conversion)
1104    { _idx = 0;                         debug_only(sample(node)); }
1105
1106 public:
1107  // initialize to garbage; clear _vdui to disable asserts
1108  DUIterator()
1109    { /*initialize to garbage*/         debug_only(_vdui = false); }
1110
1111  void operator++(int dummy_to_specify_postfix_op)
1112    { _idx++;                           VDUI_ONLY(verify_increment()); }
1113
1114  void operator--()
1115    { VDUI_ONLY(verify_resync());       --_idx; }
1116
1117  ~DUIterator()
1118    { VDUI_ONLY(verify_finish()); }
1119
1120  void operator=(const DUIterator& that)
1121    { _idx = that._idx;                 debug_only(reset(that)); }
1122};
1123
1124DUIterator Node::outs() const
1125  { return DUIterator(this, 0); }
1126DUIterator& Node::refresh_out_pos(DUIterator& i) const
1127  { I_VDUI_ONLY(i, i.refresh());        return i; }
1128bool Node::has_out(DUIterator& i) const
1129  { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1130Node*    Node::out(DUIterator& i) const
1131  { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1132
1133
1134// Faster DU iterator.  Disallows insertions into the out array.
1135// Allows deletion from the out array only at the current point.
1136// Usage:
1137//  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1138//    Node* y = x->fast_out(i);
1139//    ...
1140//  }
1141// Compiles in product mode to raw Node** pointer arithmetic, with
1142// no reloading of pointers from the original node x.  If you delete,
1143// you must perform "--i; --imax" just before continuing the loop.
1144// If you delete multiple copies of the same edge, you must decrement
1145// imax, but not i, multiple times:  "--i, imax -= num_edges".
1146class DUIterator_Fast : public DUIterator_Common {
1147  friend class Node;
1148  friend class DUIterator_Last;
1149
1150  // This is the pointer which provides the product-mode behavior.
1151  // Whatever the product-mode version of the system does to the
1152  // DUI pointer is done to this pointer.  All other fields in
1153  // this class are used only for assertion checking.
1154  Node**       _outp;
1155
1156  #ifdef ASSERT
1157  void verify(const Node* node, bool at_end_ok = false);
1158  void verify_limit();
1159  void verify_resync();
1160  void verify_relimit(uint n);
1161  void reset(const DUIterator_Fast& that);
1162  #endif
1163
1164  // Note:  offset must be signed, since -1 is sometimes passed
1165  DUIterator_Fast(const Node* node, ptrdiff_t offset)
1166    { _outp = node->_out + offset;      debug_only(sample(node)); }
1167
1168 public:
1169  // initialize to garbage; clear _vdui to disable asserts
1170  DUIterator_Fast()
1171    { /*initialize to garbage*/         debug_only(_vdui = false); }
1172
1173  void operator++(int dummy_to_specify_postfix_op)
1174    { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1175
1176  void operator--()
1177    { VDUI_ONLY(verify_resync());       --_outp; }
1178
1179  void operator-=(uint n)   // applied to the limit only
1180    { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1181
1182  bool operator<(DUIterator_Fast& limit) {
1183    I_VDUI_ONLY(*this, this->verify(_node, true));
1184    I_VDUI_ONLY(limit, limit.verify_limit());
1185    return _outp < limit._outp;
1186  }
1187
1188  void operator=(const DUIterator_Fast& that)
1189    { _outp = that._outp;               debug_only(reset(that)); }
1190};
1191
1192DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1193  // Assign a limit pointer to the reference argument:
1194  imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1195  // Return the base pointer:
1196  return DUIterator_Fast(this, 0);
1197}
1198Node* Node::fast_out(DUIterator_Fast& i) const {
1199  I_VDUI_ONLY(i, i.verify(this));
1200  return debug_only(i._last=) *i._outp;
1201}
1202
1203
1204// Faster DU iterator.  Requires each successive edge to be removed.
1205// Does not allow insertion of any edges.
1206// Usage:
1207//  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1208//    Node* y = x->last_out(i);
1209//    ...
1210//  }
1211// Compiles in product mode to raw Node** pointer arithmetic, with
1212// no reloading of pointers from the original node x.
1213class DUIterator_Last : private DUIterator_Fast {
1214  friend class Node;
1215
1216  #ifdef ASSERT
1217  void verify(const Node* node, bool at_end_ok = false);
1218  void verify_limit();
1219  void verify_step(uint num_edges);
1220  #endif
1221
1222  // Note:  offset must be signed, since -1 is sometimes passed
1223  DUIterator_Last(const Node* node, ptrdiff_t offset)
1224    : DUIterator_Fast(node, offset) { }
1225
1226  void operator++(int dummy_to_specify_postfix_op) {} // do not use
1227  void operator<(int)                              {} // do not use
1228
1229 public:
1230  DUIterator_Last() { }
1231  // initialize to garbage
1232
1233  void operator--()
1234    { _outp--;              VDUI_ONLY(verify_step(1));  }
1235
1236  void operator-=(uint n)
1237    { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1238
1239  bool operator>=(DUIterator_Last& limit) {
1240    I_VDUI_ONLY(*this, this->verify(_node, true));
1241    I_VDUI_ONLY(limit, limit.verify_limit());
1242    return _outp >= limit._outp;
1243  }
1244
1245  void operator=(const DUIterator_Last& that)
1246    { DUIterator_Fast::operator=(that); }
1247};
1248
1249DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1250  // Assign a limit pointer to the reference argument:
1251  imin = DUIterator_Last(this, 0);
1252  // Return the initial pointer:
1253  return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1254}
1255Node* Node::last_out(DUIterator_Last& i) const {
1256  I_VDUI_ONLY(i, i.verify(this));
1257  return debug_only(i._last=) *i._outp;
1258}
1259
1260#endif //OPTO_DU_ITERATOR_ASSERT
1261
1262#undef I_VDUI_ONLY
1263#undef VDUI_ONLY
1264
1265// An Iterator that truly follows the iterator pattern.  Doesn't
1266// support deletion but could be made to.
1267//
1268//   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1269//     Node* m = i.get();
1270//
1271class SimpleDUIterator : public StackObj {
1272 private:
1273  Node* node;
1274  DUIterator_Fast i;
1275  DUIterator_Fast imax;
1276 public:
1277  SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1278  bool has_next() { return i < imax; }
1279  void next() { i++; }
1280  Node* get() { return node->fast_out(i); }
1281};
1282
1283
1284//-----------------------------------------------------------------------------
1285// Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1286// Abstractly provides an infinite array of Node*'s, initialized to NULL.
1287// Note that the constructor just zeros things, and since I use Arena
1288// allocation I do not need a destructor to reclaim storage.
1289class Node_Array : public ResourceObj {
1290protected:
1291  Arena *_a;                    // Arena to allocate in
1292  uint   _max;
1293  Node **_nodes;
1294  void   grow( uint i );        // Grow array node to fit
1295public:
1296  Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1297    _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1298    for( int i = 0; i < OptoNodeListSize; i++ ) {
1299      _nodes[i] = NULL;
1300    }
1301  }
1302
1303  Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1304  Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1305  { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1306  Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1307  Node **adr() { return _nodes; }
1308  // Extend the mapping: index i maps to Node *n.
1309  void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1310  void insert( uint i, Node *n );
1311  void remove( uint i );        // Remove, preserving order
1312  void sort( C_sort_func_t func);
1313  void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1314  void clear();                 // Set all entries to NULL, keep storage
1315  uint Size() const { return _max; }
1316  void dump() const;
1317};
1318
1319class Node_List : public Node_Array {
1320  uint _cnt;
1321public:
1322  Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1323  Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1324  bool contains(Node* n) {
1325    for (uint e = 0; e < size(); e++) {
1326      if (at(e) == n) return true;
1327    }
1328    return false;
1329  }
1330  void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1331  void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1332  void push( Node *b ) { map(_cnt++,b); }
1333  void yank( Node *n );         // Find and remove
1334  Node *pop() { return _nodes[--_cnt]; }
1335  Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1336  void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1337  uint size() const { return _cnt; }
1338  void dump() const;
1339};
1340
1341//------------------------------Unique_Node_List-------------------------------
1342class Unique_Node_List : public Node_List {
1343  VectorSet _in_worklist;
1344  uint _clock_index;            // Index in list where to pop from next
1345public:
1346  Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1347  Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1348
1349  void remove( Node *n );
1350  bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1351  VectorSet &member_set(){ return _in_worklist; }
1352
1353  void push( Node *b ) {
1354    if( !_in_worklist.test_set(b->_idx) )
1355      Node_List::push(b);
1356  }
1357  Node *pop() {
1358    if( _clock_index >= size() ) _clock_index = 0;
1359    Node *b = at(_clock_index);
1360    map( _clock_index, Node_List::pop());
1361    if (size() != 0) _clock_index++; // Always start from 0
1362    _in_worklist >>= b->_idx;
1363    return b;
1364  }
1365  Node *remove( uint i ) {
1366    Node *b = Node_List::at(i);
1367    _in_worklist >>= b->_idx;
1368    map(i,Node_List::pop());
1369    return b;
1370  }
1371  void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1372  void  clear() {
1373    _in_worklist.Clear();        // Discards storage but grows automatically
1374    Node_List::clear();
1375    _clock_index = 0;
1376  }
1377
1378  // Used after parsing to remove useless nodes before Iterative GVN
1379  void remove_useless_nodes(VectorSet &useful);
1380
1381#ifndef PRODUCT
1382  void print_set() const { _in_worklist.print(); }
1383#endif
1384};
1385
1386// Inline definition of Compile::record_for_igvn must be deferred to this point.
1387inline void Compile::record_for_igvn(Node* n) {
1388  _for_igvn->push(n);
1389}
1390
1391//------------------------------Node_Stack-------------------------------------
1392class Node_Stack {
1393protected:
1394  struct INode {
1395    Node *node; // Processed node
1396    uint  indx; // Index of next node's child
1397  };
1398  INode *_inode_top; // tos, stack grows up
1399  INode *_inode_max; // End of _inodes == _inodes + _max
1400  INode *_inodes;    // Array storage for the stack
1401  Arena *_a;         // Arena to allocate in
1402  void grow();
1403public:
1404  Node_Stack(int size) {
1405    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1406    _a = Thread::current()->resource_area();
1407    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1408    _inode_max = _inodes + max;
1409    _inode_top = _inodes - 1; // stack is empty
1410  }
1411
1412  Node_Stack(Arena *a, int size) : _a(a) {
1413    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1414    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1415    _inode_max = _inodes + max;
1416    _inode_top = _inodes - 1; // stack is empty
1417  }
1418
1419  void pop() {
1420    assert(_inode_top >= _inodes, "node stack underflow");
1421    --_inode_top;
1422  }
1423  void push(Node *n, uint i) {
1424    ++_inode_top;
1425    if (_inode_top >= _inode_max) grow();
1426    INode *top = _inode_top; // optimization
1427    top->node = n;
1428    top->indx = i;
1429  }
1430  Node *node() const {
1431    return _inode_top->node;
1432  }
1433  Node* node_at(uint i) const {
1434    assert(_inodes + i <= _inode_top, "in range");
1435    return _inodes[i].node;
1436  }
1437  uint index() const {
1438    return _inode_top->indx;
1439  }
1440  uint index_at(uint i) const {
1441    assert(_inodes + i <= _inode_top, "in range");
1442    return _inodes[i].indx;
1443  }
1444  void set_node(Node *n) {
1445    _inode_top->node = n;
1446  }
1447  void set_index(uint i) {
1448    _inode_top->indx = i;
1449  }
1450  uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1451  uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1452  bool is_nonempty() const { return (_inode_top >= _inodes); }
1453  bool is_empty() const { return (_inode_top < _inodes); }
1454  void clear() { _inode_top = _inodes - 1; } // retain storage
1455
1456  // Node_Stack is used to map nodes.
1457  Node* find(uint idx) const;
1458};
1459
1460
1461//-----------------------------Node_Notes--------------------------------------
1462// Debugging or profiling annotations loosely and sparsely associated
1463// with some nodes.  See Compile::node_notes_at for the accessor.
1464class Node_Notes VALUE_OBJ_CLASS_SPEC {
1465  JVMState* _jvms;
1466
1467public:
1468  Node_Notes(JVMState* jvms = NULL) {
1469    _jvms = jvms;
1470  }
1471
1472  JVMState* jvms()            { return _jvms; }
1473  void  set_jvms(JVMState* x) {        _jvms = x; }
1474
1475  // True if there is nothing here.
1476  bool is_clear() {
1477    return (_jvms == NULL);
1478  }
1479
1480  // Make there be nothing here.
1481  void clear() {
1482    _jvms = NULL;
1483  }
1484
1485  // Make a new, clean node notes.
1486  static Node_Notes* make(Compile* C) {
1487    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1488    nn->clear();
1489    return nn;
1490  }
1491
1492  Node_Notes* clone(Compile* C) {
1493    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1494    (*nn) = (*this);
1495    return nn;
1496  }
1497
1498  // Absorb any information from source.
1499  bool update_from(Node_Notes* source) {
1500    bool changed = false;
1501    if (source != NULL) {
1502      if (source->jvms() != NULL) {
1503        set_jvms(source->jvms());
1504        changed = true;
1505      }
1506    }
1507    return changed;
1508  }
1509};
1510
1511// Inlined accessors for Compile::node_nodes that require the preceding class:
1512inline Node_Notes*
1513Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1514                           int idx, bool can_grow) {
1515  assert(idx >= 0, "oob");
1516  int block_idx = (idx >> _log2_node_notes_block_size);
1517  int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1518  if (grow_by >= 0) {
1519    if (!can_grow)  return NULL;
1520    grow_node_notes(arr, grow_by + 1);
1521  }
1522  // (Every element of arr is a sub-array of length _node_notes_block_size.)
1523  return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1524}
1525
1526inline bool
1527Compile::set_node_notes_at(int idx, Node_Notes* value) {
1528  if (value == NULL || value->is_clear())
1529    return false;  // nothing to write => write nothing
1530  Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1531  assert(loc != NULL, "");
1532  return loc->update_from(value);
1533}
1534
1535
1536//------------------------------TypeNode---------------------------------------
1537// Node with a Type constant.
1538class TypeNode : public Node {
1539protected:
1540  virtual uint hash() const;    // Check the type
1541  virtual uint cmp( const Node &n ) const;
1542  virtual uint size_of() const; // Size is bigger
1543  const Type* const _type;
1544public:
1545  void set_type(const Type* t) {
1546    assert(t != NULL, "sanity");
1547    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1548    *(const Type**)&_type = t;   // cast away const-ness
1549    // If this node is in the hash table, make sure it doesn't need a rehash.
1550    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1551  }
1552  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1553  TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1554    init_class_id(Class_Type);
1555  }
1556  virtual const Type *Value( PhaseTransform *phase ) const;
1557  virtual const Type *bottom_type() const;
1558  virtual       uint  ideal_reg() const;
1559#ifndef PRODUCT
1560  virtual void dump_spec(outputStream *st) const;
1561#endif
1562};
1563
1564#endif // SHARE_VM_OPTO_NODE_HPP
1565