node.hpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29
30class AbstractLockNode;
31class AddNode;
32class AddPNode;
33class AliasInfo;
34class AllocateArrayNode;
35class AllocateNode;
36class Block;
37class Block_Array;
38class BoolNode;
39class BoxLockNode;
40class CMoveNode;
41class CallDynamicJavaNode;
42class CallJavaNode;
43class CallLeafNode;
44class CallNode;
45class CallRuntimeNode;
46class CallStaticJavaNode;
47class CatchNode;
48class CatchProjNode;
49class CheckCastPPNode;
50class CmpNode;
51class CodeBuffer;
52class ConstraintCastNode;
53class ConNode;
54class CountedLoopNode;
55class CountedLoopEndNode;
56class DecodeNNode;
57class EncodePNode;
58class FastLockNode;
59class FastUnlockNode;
60class IfNode;
61class InitializeNode;
62class JVMState;
63class JumpNode;
64class JumpProjNode;
65class LoadNode;
66class LoadStoreNode;
67class LockNode;
68class LoopNode;
69class MachCallDynamicJavaNode;
70class MachCallJavaNode;
71class MachCallLeafNode;
72class MachCallNode;
73class MachCallRuntimeNode;
74class MachCallStaticJavaNode;
75class MachIfNode;
76class MachNode;
77class MachNullCheckNode;
78class MachReturnNode;
79class MachSafePointNode;
80class MachSpillCopyNode;
81class MachTempNode;
82class Matcher;
83class MemBarNode;
84class MemNode;
85class MergeMemNode;
86class MulNode;
87class MultiNode;
88class MultiBranchNode;
89class NeverBranchNode;
90class Node;
91class Node_Array;
92class Node_List;
93class Node_Stack;
94class NullCheckNode;
95class OopMap;
96class ParmNode;
97class PCTableNode;
98class PhaseCCP;
99class PhaseGVN;
100class PhaseIterGVN;
101class PhaseRegAlloc;
102class PhaseTransform;
103class PhaseValues;
104class PhiNode;
105class Pipeline;
106class ProjNode;
107class RegMask;
108class RegionNode;
109class RootNode;
110class SafePointNode;
111class SafePointScalarObjectNode;
112class StartNode;
113class State;
114class StoreNode;
115class SubNode;
116class Type;
117class TypeNode;
118class UnlockNode;
119class VectorSet;
120class IfTrueNode;
121class IfFalseNode;
122typedef void (*NFunc)(Node&,void*);
123extern "C" {
124  typedef int (*C_sort_func_t)(const void *, const void *);
125}
126
127// The type of all node counts and indexes.
128// It must hold at least 16 bits, but must also be fast to load and store.
129// This type, if less than 32 bits, could limit the number of possible nodes.
130// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
131typedef unsigned int node_idx_t;
132
133
134#ifndef OPTO_DU_ITERATOR_ASSERT
135#ifdef ASSERT
136#define OPTO_DU_ITERATOR_ASSERT 1
137#else
138#define OPTO_DU_ITERATOR_ASSERT 0
139#endif
140#endif //OPTO_DU_ITERATOR_ASSERT
141
142#if OPTO_DU_ITERATOR_ASSERT
143class DUIterator;
144class DUIterator_Fast;
145class DUIterator_Last;
146#else
147typedef uint   DUIterator;
148typedef Node** DUIterator_Fast;
149typedef Node** DUIterator_Last;
150#endif
151
152// Node Sentinel
153#define NodeSentinel (Node*)-1
154
155// Unknown count frequency
156#define COUNT_UNKNOWN (-1.0f)
157
158//------------------------------Node-------------------------------------------
159// Nodes define actions in the program.  They create values, which have types.
160// They are both vertices in a directed graph and program primitives.  Nodes
161// are labeled; the label is the "opcode", the primitive function in the lambda
162// calculus sense that gives meaning to the Node.  Node inputs are ordered (so
163// that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
164// the Node's function.  These inputs also define a Type equation for the Node.
165// Solving these Type equations amounts to doing dataflow analysis.
166// Control and data are uniformly represented in the graph.  Finally, Nodes
167// have a unique dense integer index which is used to index into side arrays
168// whenever I have phase-specific information.
169
170class Node {
171  // Lots of restrictions on cloning Nodes
172  Node(const Node&);            // not defined; linker error to use these
173  Node &operator=(const Node &rhs);
174
175public:
176  friend class Compile;
177  #if OPTO_DU_ITERATOR_ASSERT
178  friend class DUIterator_Common;
179  friend class DUIterator;
180  friend class DUIterator_Fast;
181  friend class DUIterator_Last;
182  #endif
183
184  // Because Nodes come and go, I define an Arena of Node structures to pull
185  // from.  This should allow fast access to node creation & deletion.  This
186  // field is a local cache of a value defined in some "program fragment" for
187  // which these Nodes are just a part of.
188
189  // New Operator that takes a Compile pointer, this will eventually
190  // be the "new" New operator.
191  inline void* operator new( size_t x, Compile* C) {
192    Node* n = (Node*)C->node_arena()->Amalloc_D(x);
193#ifdef ASSERT
194    n->_in = (Node**)n; // magic cookie for assertion check
195#endif
196    n->_out = (Node**)C;
197    return (void*)n;
198  }
199
200  // New Operator that takes a Compile pointer, this will eventually
201  // be the "new" New operator.
202  inline void* operator new( size_t x, Compile* C, int y) {
203    Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
204    n->_in = (Node**)(((char*)n) + x);
205#ifdef ASSERT
206    n->_in[y-1] = n; // magic cookie for assertion check
207#endif
208    n->_out = (Node**)C;
209    return (void*)n;
210  }
211
212  // Delete is a NOP
213  void operator delete( void *ptr ) {}
214  // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
215  void destruct();
216
217  // Create a new Node.  Required is the number is of inputs required for
218  // semantic correctness.
219  Node( uint required );
220
221  // Create a new Node with given input edges.
222  // This version requires use of the "edge-count" new.
223  // E.g.  new (C,3) FooNode( C, NULL, left, right );
224  Node( Node *n0 );
225  Node( Node *n0, Node *n1 );
226  Node( Node *n0, Node *n1, Node *n2 );
227  Node( Node *n0, Node *n1, Node *n2, Node *n3 );
228  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
229  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
230  Node( Node *n0, Node *n1, Node *n2, Node *n3,
231            Node *n4, Node *n5, Node *n6 );
232
233  // Clone an inherited Node given only the base Node type.
234  Node* clone() const;
235
236  // Clone a Node, immediately supplying one or two new edges.
237  // The first and second arguments, if non-null, replace in(1) and in(2),
238  // respectively.
239  Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
240    Node* nn = clone();
241    if (in1 != NULL)  nn->set_req(1, in1);
242    if (in2 != NULL)  nn->set_req(2, in2);
243    return nn;
244  }
245
246private:
247  // Shared setup for the above constructors.
248  // Handles all interactions with Compile::current.
249  // Puts initial values in all Node fields except _idx.
250  // Returns the initial value for _idx, which cannot
251  // be initialized by assignment.
252  inline int Init(int req, Compile* C);
253
254//----------------- input edge handling
255protected:
256  friend class PhaseCFG;        // Access to address of _in array elements
257  Node **_in;                   // Array of use-def references to Nodes
258  Node **_out;                  // Array of def-use references to Nodes
259
260  // Input edges are split into two catagories.  Required edges are required
261  // for semantic correctness; order is important and NULLs are allowed.
262  // Precedence edges are used to help determine execution order and are
263  // added, e.g., for scheduling purposes.  They are unordered and not
264  // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
265  // are required, from _cnt to _max-1 are precedence edges.
266  node_idx_t _cnt;              // Total number of required Node inputs.
267
268  node_idx_t _max;              // Actual length of input array.
269
270  // Output edges are an unordered list of def-use edges which exactly
271  // correspond to required input edges which point from other nodes
272  // to this one.  Thus the count of the output edges is the number of
273  // users of this node.
274  node_idx_t _outcnt;           // Total number of Node outputs.
275
276  node_idx_t _outmax;           // Actual length of output array.
277
278  // Grow the actual input array to the next larger power-of-2 bigger than len.
279  void grow( uint len );
280  // Grow the output array to the next larger power-of-2 bigger than len.
281  void out_grow( uint len );
282
283 public:
284  // Each Node is assigned a unique small/dense number.  This number is used
285  // to index into auxiliary arrays of data and bitvectors.
286  // It is declared const to defend against inadvertant assignment,
287  // since it is used by clients as a naked field.
288  const node_idx_t _idx;
289
290  // Get the (read-only) number of input edges
291  uint req() const { return _cnt; }
292  uint len() const { return _max; }
293  // Get the (read-only) number of output edges
294  uint outcnt() const { return _outcnt; }
295
296#if OPTO_DU_ITERATOR_ASSERT
297  // Iterate over the out-edges of this node.  Deletions are illegal.
298  inline DUIterator outs() const;
299  // Use this when the out array might have changed to suppress asserts.
300  inline DUIterator& refresh_out_pos(DUIterator& i) const;
301  // Does the node have an out at this position?  (Used for iteration.)
302  inline bool has_out(DUIterator& i) const;
303  inline Node*    out(DUIterator& i) const;
304  // Iterate over the out-edges of this node.  All changes are illegal.
305  inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
306  inline Node*    fast_out(DUIterator_Fast& i) const;
307  // Iterate over the out-edges of this node, deleting one at a time.
308  inline DUIterator_Last last_outs(DUIterator_Last& min) const;
309  inline Node*    last_out(DUIterator_Last& i) const;
310  // The inline bodies of all these methods are after the iterator definitions.
311#else
312  // Iterate over the out-edges of this node.  Deletions are illegal.
313  // This iteration uses integral indexes, to decouple from array reallocations.
314  DUIterator outs() const  { return 0; }
315  // Use this when the out array might have changed to suppress asserts.
316  DUIterator refresh_out_pos(DUIterator i) const { return i; }
317
318  // Reference to the i'th output Node.  Error if out of bounds.
319  Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
320  // Does the node have an out at this position?  (Used for iteration.)
321  bool has_out(DUIterator i) const { return i < _outcnt; }
322
323  // Iterate over the out-edges of this node.  All changes are illegal.
324  // This iteration uses a pointer internal to the out array.
325  DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
326    Node** out = _out;
327    // Assign a limit pointer to the reference argument:
328    max = out + (ptrdiff_t)_outcnt;
329    // Return the base pointer:
330    return out;
331  }
332  Node*    fast_out(DUIterator_Fast i) const  { return *i; }
333  // Iterate over the out-edges of this node, deleting one at a time.
334  // This iteration uses a pointer internal to the out array.
335  DUIterator_Last last_outs(DUIterator_Last& min) const {
336    Node** out = _out;
337    // Assign a limit pointer to the reference argument:
338    min = out;
339    // Return the pointer to the start of the iteration:
340    return out + (ptrdiff_t)_outcnt - 1;
341  }
342  Node*    last_out(DUIterator_Last i) const  { return *i; }
343#endif
344
345  // Reference to the i'th input Node.  Error if out of bounds.
346  Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
347  // Reference to the i'th output Node.  Error if out of bounds.
348  // Use this accessor sparingly.  We are going trying to use iterators instead.
349  Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
350  // Return the unique out edge.
351  Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
352  // Delete out edge at position 'i' by moving last out edge to position 'i'
353  void  raw_del_out(uint i) {
354    assert(i < _outcnt,"oob");
355    assert(_outcnt > 0,"oob");
356    #if OPTO_DU_ITERATOR_ASSERT
357    // Record that a change happened here.
358    debug_only(_last_del = _out[i]; ++_del_tick);
359    #endif
360    _out[i] = _out[--_outcnt];
361    // Smash the old edge so it can't be used accidentally.
362    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
363  }
364
365#ifdef ASSERT
366  bool is_dead() const;
367#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
368#endif
369
370  // Set a required input edge, also updates corresponding output edge
371  void add_req( Node *n ); // Append a NEW required input
372  void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
373  void del_req( uint idx ); // Delete required edge & compact
374  void ins_req( uint i, Node *n ); // Insert a NEW required input
375  void set_req( uint i, Node *n ) {
376    assert( is_not_dead(n), "can not use dead node");
377    assert( i < _cnt, "oob");
378    assert( !VerifyHashTableKeys || _hash_lock == 0,
379            "remove node from hash table before modifying it");
380    Node** p = &_in[i];    // cache this._in, across the del_out call
381    if (*p != NULL)  (*p)->del_out((Node *)this);
382    (*p) = n;
383    if (n != NULL)      n->add_out((Node *)this);
384  }
385  // Light version of set_req() to init inputs after node creation.
386  void init_req( uint i, Node *n ) {
387    assert( i == 0 && this == n ||
388            is_not_dead(n), "can not use dead node");
389    assert( i < _cnt, "oob");
390    assert( !VerifyHashTableKeys || _hash_lock == 0,
391            "remove node from hash table before modifying it");
392    assert( _in[i] == NULL, "sanity");
393    _in[i] = n;
394    if (n != NULL)      n->add_out((Node *)this);
395  }
396  // Find first occurrence of n among my edges:
397  int find_edge(Node* n);
398  int replace_edge(Node* old, Node* neww);
399  // NULL out all inputs to eliminate incoming Def-Use edges.
400  // Return the number of edges between 'n' and 'this'
401  int  disconnect_inputs(Node *n);
402
403  // Quickly, return true if and only if I am Compile::current()->top().
404  bool is_top() const {
405    assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
406    return (_out == NULL);
407  }
408  // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
409  void setup_is_top();
410
411  // Strip away casting.  (It is depth-limited.)
412  Node* uncast() const;
413
414private:
415  static Node* uncast_helper(const Node* n);
416
417  // Add an output edge to the end of the list
418  void add_out( Node *n ) {
419    if (is_top())  return;
420    if( _outcnt == _outmax ) out_grow(_outcnt);
421    _out[_outcnt++] = n;
422  }
423  // Delete an output edge
424  void del_out( Node *n ) {
425    if (is_top())  return;
426    Node** outp = &_out[_outcnt];
427    // Find and remove n
428    do {
429      assert(outp > _out, "Missing Def-Use edge");
430    } while (*--outp != n);
431    *outp = _out[--_outcnt];
432    // Smash the old edge so it can't be used accidentally.
433    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
434    // Record that a change happened here.
435    #if OPTO_DU_ITERATOR_ASSERT
436    debug_only(_last_del = n; ++_del_tick);
437    #endif
438  }
439
440public:
441  // Globally replace this node by a given new node, updating all uses.
442  void replace_by(Node* new_node);
443  // Globally replace this node by a given new node, updating all uses
444  // and cutting input edges of old node.
445  void subsume_by(Node* new_node) {
446    replace_by(new_node);
447    disconnect_inputs(NULL);
448  }
449  void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
450  // Find the one non-null required input.  RegionNode only
451  Node *nonnull_req() const;
452  // Add or remove precedence edges
453  void add_prec( Node *n );
454  void rm_prec( uint i );
455  void set_prec( uint i, Node *n ) {
456    assert( is_not_dead(n), "can not use dead node");
457    assert( i >= _cnt, "not a precedence edge");
458    if (_in[i] != NULL) _in[i]->del_out((Node *)this);
459    _in[i] = n;
460    if (n != NULL) n->add_out((Node *)this);
461  }
462  // Set this node's index, used by cisc_version to replace current node
463  void set_idx(uint new_idx) {
464    const node_idx_t* ref = &_idx;
465    *(node_idx_t*)ref = new_idx;
466  }
467  // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
468  void swap_edges(uint i1, uint i2) {
469    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
470    // Def-Use info is unchanged
471    Node* n1 = in(i1);
472    Node* n2 = in(i2);
473    _in[i1] = n2;
474    _in[i2] = n1;
475    // If this node is in the hash table, make sure it doesn't need a rehash.
476    assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
477  }
478
479  // Iterators over input Nodes for a Node X are written as:
480  // for( i = 0; i < X.req(); i++ ) ... X[i] ...
481  // NOTE: Required edges can contain embedded NULL pointers.
482
483//----------------- Other Node Properties
484
485  // Generate class id for some ideal nodes to avoid virtual query
486  // methods is_<Node>().
487  // Class id is the set of bits corresponded to the node class and all its
488  // super classes so that queries for super classes are also valid.
489  // Subclasses of the same super class have different assigned bit
490  // (the third parameter in the macro DEFINE_CLASS_ID).
491  // Classes with deeper hierarchy are declared first.
492  // Classes with the same hierarchy depth are sorted by usage frequency.
493  //
494  // The query method masks the bits to cut off bits of subclasses
495  // and then compare the result with the class id
496  // (see the macro DEFINE_CLASS_QUERY below).
497  //
498  //  Class_MachCall=30, ClassMask_MachCall=31
499  // 12               8               4               0
500  //  0   0   0   0   0   0   0   0   1   1   1   1   0
501  //                                  |   |   |   |
502  //                                  |   |   |   Bit_Mach=2
503  //                                  |   |   Bit_MachReturn=4
504  //                                  |   Bit_MachSafePoint=8
505  //                                  Bit_MachCall=16
506  //
507  //  Class_CountedLoop=56, ClassMask_CountedLoop=63
508  // 12               8               4               0
509  //  0   0   0   0   0   0   0   1   1   1   0   0   0
510  //                              |   |   |
511  //                              |   |   Bit_Region=8
512  //                              |   Bit_Loop=16
513  //                              Bit_CountedLoop=32
514
515  #define DEFINE_CLASS_ID(cl, supcl, subn) \
516  Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
517  Class_##cl = Class_##supcl + Bit_##cl , \
518  ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
519
520  // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
521  // so that it's values fits into 16 bits.
522  enum NodeClasses {
523    Bit_Node   = 0x0000,
524    Class_Node = 0x0000,
525    ClassMask_Node = 0xFFFF,
526
527    DEFINE_CLASS_ID(Multi, Node, 0)
528      DEFINE_CLASS_ID(SafePoint, Multi, 0)
529        DEFINE_CLASS_ID(Call,      SafePoint, 0)
530          DEFINE_CLASS_ID(CallJava,         Call, 0)
531            DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
532            DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
533          DEFINE_CLASS_ID(CallRuntime,      Call, 1)
534            DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
535          DEFINE_CLASS_ID(Allocate,         Call, 2)
536            DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
537          DEFINE_CLASS_ID(AbstractLock,     Call, 3)
538            DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
539            DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
540      DEFINE_CLASS_ID(MultiBranch, Multi, 1)
541        DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
542          DEFINE_CLASS_ID(Catch,       PCTable, 0)
543          DEFINE_CLASS_ID(Jump,        PCTable, 1)
544        DEFINE_CLASS_ID(If,          MultiBranch, 1)
545          DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
546        DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
547      DEFINE_CLASS_ID(Start,       Multi, 2)
548      DEFINE_CLASS_ID(MemBar,      Multi, 3)
549        DEFINE_CLASS_ID(Initialize,    MemBar, 0)
550
551    DEFINE_CLASS_ID(Mach,  Node, 1)
552      DEFINE_CLASS_ID(MachReturn, Mach, 0)
553        DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
554          DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
555            DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
556              DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
557              DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
558            DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
559              DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
560      DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
561      DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
562      DEFINE_CLASS_ID(MachIf,        Mach, 3)
563      DEFINE_CLASS_ID(MachTemp,      Mach, 4)
564
565    DEFINE_CLASS_ID(Proj,  Node, 2)
566      DEFINE_CLASS_ID(CatchProj, Proj, 0)
567      DEFINE_CLASS_ID(JumpProj,  Proj, 1)
568      DEFINE_CLASS_ID(IfTrue,    Proj, 2)
569      DEFINE_CLASS_ID(IfFalse,   Proj, 3)
570      DEFINE_CLASS_ID(Parm,      Proj, 4)
571
572    DEFINE_CLASS_ID(Region, Node, 3)
573      DEFINE_CLASS_ID(Loop, Region, 0)
574        DEFINE_CLASS_ID(Root,        Loop, 0)
575        DEFINE_CLASS_ID(CountedLoop, Loop, 1)
576
577    DEFINE_CLASS_ID(Sub,   Node, 4)
578      DEFINE_CLASS_ID(Cmp,   Sub, 0)
579        DEFINE_CLASS_ID(FastLock,   Cmp, 0)
580        DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
581
582    DEFINE_CLASS_ID(Type,  Node, 5)
583      DEFINE_CLASS_ID(Phi,   Type, 0)
584      DEFINE_CLASS_ID(ConstraintCast, Type, 1)
585      DEFINE_CLASS_ID(CheckCastPP, Type, 2)
586      DEFINE_CLASS_ID(CMove, Type, 3)
587      DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
588      DEFINE_CLASS_ID(DecodeN, Type, 5)
589      DEFINE_CLASS_ID(EncodeP, Type, 6)
590
591    DEFINE_CLASS_ID(Mem,   Node, 6)
592      DEFINE_CLASS_ID(Load,  Mem, 0)
593      DEFINE_CLASS_ID(Store, Mem, 1)
594      DEFINE_CLASS_ID(LoadStore, Mem, 2)
595
596    DEFINE_CLASS_ID(MergeMem, Node, 7)
597    DEFINE_CLASS_ID(Bool,     Node, 8)
598    DEFINE_CLASS_ID(AddP,     Node, 9)
599    DEFINE_CLASS_ID(BoxLock,  Node, 10)
600    DEFINE_CLASS_ID(Add,      Node, 11)
601    DEFINE_CLASS_ID(Mul,      Node, 12)
602
603    _max_classes  = ClassMask_Mul
604  };
605  #undef DEFINE_CLASS_ID
606
607  // Flags are sorted by usage frequency.
608  enum NodeFlags {
609    Flag_is_Copy             = 0x01, // should be first bit to avoid shift
610    Flag_is_Call             = Flag_is_Copy << 1,
611    Flag_rematerialize       = Flag_is_Call << 1,
612    Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
613    Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
614    Flag_is_Con              = Flag_is_macro << 1,
615    Flag_is_cisc_alternate   = Flag_is_Con << 1,
616    Flag_is_Branch           = Flag_is_cisc_alternate << 1,
617    Flag_is_block_start      = Flag_is_Branch << 1,
618    Flag_is_Goto             = Flag_is_block_start << 1,
619    Flag_is_dead_loop_safe   = Flag_is_Goto << 1,
620    Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
621    Flag_is_safepoint_node   = Flag_may_be_short_branch << 1,
622    Flag_is_pc_relative      = Flag_is_safepoint_node << 1,
623    Flag_is_Vector           = Flag_is_pc_relative << 1,
624    _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
625  };
626
627private:
628  jushort _class_id;
629  jushort _flags;
630
631protected:
632  // These methods should be called from constructors only.
633  void init_class_id(jushort c) {
634    assert(c <= _max_classes, "invalid node class");
635    _class_id = c; // cast out const
636  }
637  void init_flags(jushort fl) {
638    assert(fl <= _max_flags, "invalid node flag");
639    _flags |= fl;
640  }
641  void clear_flag(jushort fl) {
642    assert(fl <= _max_flags, "invalid node flag");
643    _flags &= ~fl;
644  }
645
646public:
647  const jushort class_id() const { return _class_id; }
648
649  const jushort flags() const { return _flags; }
650
651  // Return a dense integer opcode number
652  virtual int Opcode() const;
653
654  // Virtual inherited Node size
655  virtual uint size_of() const;
656
657  // Other interesting Node properties
658
659  // Special case: is_Call() returns true for both CallNode and MachCallNode.
660  bool is_Call() const {
661    return (_flags & Flag_is_Call) != 0;
662  }
663
664  CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
665    assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
666    return (CallNode*)this;
667  }
668
669  #define DEFINE_CLASS_QUERY(type) \
670  bool is_##type() const { \
671    return ((_class_id & ClassMask_##type) == Class_##type); \
672  } \
673  type##Node *as_##type() const { \
674    assert(is_##type(), "invalid node class"); \
675    return (type##Node*)this; \
676  }
677
678  DEFINE_CLASS_QUERY(AbstractLock)
679  DEFINE_CLASS_QUERY(Add)
680  DEFINE_CLASS_QUERY(AddP)
681  DEFINE_CLASS_QUERY(Allocate)
682  DEFINE_CLASS_QUERY(AllocateArray)
683  DEFINE_CLASS_QUERY(Bool)
684  DEFINE_CLASS_QUERY(BoxLock)
685  DEFINE_CLASS_QUERY(CallDynamicJava)
686  DEFINE_CLASS_QUERY(CallJava)
687  DEFINE_CLASS_QUERY(CallLeaf)
688  DEFINE_CLASS_QUERY(CallRuntime)
689  DEFINE_CLASS_QUERY(CallStaticJava)
690  DEFINE_CLASS_QUERY(Catch)
691  DEFINE_CLASS_QUERY(CatchProj)
692  DEFINE_CLASS_QUERY(CheckCastPP)
693  DEFINE_CLASS_QUERY(ConstraintCast)
694  DEFINE_CLASS_QUERY(CMove)
695  DEFINE_CLASS_QUERY(Cmp)
696  DEFINE_CLASS_QUERY(CountedLoop)
697  DEFINE_CLASS_QUERY(CountedLoopEnd)
698  DEFINE_CLASS_QUERY(DecodeN)
699  DEFINE_CLASS_QUERY(EncodeP)
700  DEFINE_CLASS_QUERY(FastLock)
701  DEFINE_CLASS_QUERY(FastUnlock)
702  DEFINE_CLASS_QUERY(If)
703  DEFINE_CLASS_QUERY(IfFalse)
704  DEFINE_CLASS_QUERY(IfTrue)
705  DEFINE_CLASS_QUERY(Initialize)
706  DEFINE_CLASS_QUERY(Jump)
707  DEFINE_CLASS_QUERY(JumpProj)
708  DEFINE_CLASS_QUERY(Load)
709  DEFINE_CLASS_QUERY(LoadStore)
710  DEFINE_CLASS_QUERY(Lock)
711  DEFINE_CLASS_QUERY(Loop)
712  DEFINE_CLASS_QUERY(Mach)
713  DEFINE_CLASS_QUERY(MachCall)
714  DEFINE_CLASS_QUERY(MachCallDynamicJava)
715  DEFINE_CLASS_QUERY(MachCallJava)
716  DEFINE_CLASS_QUERY(MachCallLeaf)
717  DEFINE_CLASS_QUERY(MachCallRuntime)
718  DEFINE_CLASS_QUERY(MachCallStaticJava)
719  DEFINE_CLASS_QUERY(MachIf)
720  DEFINE_CLASS_QUERY(MachNullCheck)
721  DEFINE_CLASS_QUERY(MachReturn)
722  DEFINE_CLASS_QUERY(MachSafePoint)
723  DEFINE_CLASS_QUERY(MachSpillCopy)
724  DEFINE_CLASS_QUERY(MachTemp)
725  DEFINE_CLASS_QUERY(Mem)
726  DEFINE_CLASS_QUERY(MemBar)
727  DEFINE_CLASS_QUERY(MergeMem)
728  DEFINE_CLASS_QUERY(Mul)
729  DEFINE_CLASS_QUERY(Multi)
730  DEFINE_CLASS_QUERY(MultiBranch)
731  DEFINE_CLASS_QUERY(Parm)
732  DEFINE_CLASS_QUERY(PCTable)
733  DEFINE_CLASS_QUERY(Phi)
734  DEFINE_CLASS_QUERY(Proj)
735  DEFINE_CLASS_QUERY(Region)
736  DEFINE_CLASS_QUERY(Root)
737  DEFINE_CLASS_QUERY(SafePoint)
738  DEFINE_CLASS_QUERY(SafePointScalarObject)
739  DEFINE_CLASS_QUERY(Start)
740  DEFINE_CLASS_QUERY(Store)
741  DEFINE_CLASS_QUERY(Sub)
742  DEFINE_CLASS_QUERY(Type)
743  DEFINE_CLASS_QUERY(Unlock)
744
745  #undef DEFINE_CLASS_QUERY
746
747  // duplicate of is_MachSpillCopy()
748  bool is_SpillCopy () const {
749    return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
750  }
751
752  bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
753  bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
754  // The data node which is safe to leave in dead loop during IGVN optimization.
755  bool is_dead_loop_safe() const {
756    return is_Phi() || (is_Proj() && in(0) == NULL) ||
757           ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
758            (!is_Proj() || !in(0)->is_Allocate()));
759  }
760
761  // is_Copy() returns copied edge index (0 or 1)
762  uint is_Copy() const { return (_flags & Flag_is_Copy); }
763
764  virtual bool is_CFG() const { return false; }
765
766  // If this node is control-dependent on a test, can it be
767  // rerouted to a dominating equivalent test?  This is usually
768  // true of non-CFG nodes, but can be false for operations which
769  // depend for their correct sequencing on more than one test.
770  // (In that case, hoisting to a dominating test may silently
771  // skip some other important test.)
772  virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
773
774  // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
775  bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
776
777  // When building basic blocks, I need to have a notion of block beginning
778  // Nodes, next block selector Nodes (block enders), and next block
779  // projections.  These calls need to work on their machine equivalents.  The
780  // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
781  bool is_block_start() const {
782    if ( is_Region() )
783      return this == (const Node*)in(0);
784    else
785      return (_flags & Flag_is_block_start) != 0;
786  }
787
788  // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
789  // Goto and Return.  This call also returns the block ending Node.
790  virtual const Node *is_block_proj() const;
791
792  // The node is a "macro" node which needs to be expanded before matching
793  bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
794
795  // Value is a vector of primitive values
796  bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
797
798//----------------- Optimization
799
800  // Get the worst-case Type output for this Node.
801  virtual const class Type *bottom_type() const;
802
803  // If we find a better type for a node, try to record it permanently.
804  // Return true if this node actually changed.
805  // Be sure to do the hash_delete game in the "rehash" variant.
806  void raise_bottom_type(const Type* new_type);
807
808  // Get the address type with which this node uses and/or defs memory,
809  // or NULL if none.  The address type is conservatively wide.
810  // Returns non-null for calls, membars, loads, stores, etc.
811  // Returns TypePtr::BOTTOM if the node touches memory "broadly".
812  virtual const class TypePtr *adr_type() const { return NULL; }
813
814  // Return an existing node which computes the same function as this node.
815  // The optimistic combined algorithm requires this to return a Node which
816  // is a small number of steps away (e.g., one of my inputs).
817  virtual Node *Identity( PhaseTransform *phase );
818
819  // Return the set of values this Node can take on at runtime.
820  virtual const Type *Value( PhaseTransform *phase ) const;
821
822  // Return a node which is more "ideal" than the current node.
823  // The invariants on this call are subtle.  If in doubt, read the
824  // treatise in node.cpp above the default implemention AND TEST WITH
825  // +VerifyIterativeGVN!
826  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
827
828  // Some nodes have specific Ideal subgraph transformations only if they are
829  // unique users of specific nodes. Such nodes should be put on IGVN worklist
830  // for the transformations to happen.
831  bool has_special_unique_user() const;
832
833  // Skip Proj and CatchProj nodes chains. Check for Null and Top.
834  Node* find_exact_control(Node* ctrl);
835
836  // Check if 'this' node dominates or equal to 'sub'.
837  bool dominates(Node* sub, Node_List &nlist);
838
839protected:
840  bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
841public:
842
843  // Idealize graph, using DU info.  Done after constant propagation
844  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
845
846  // See if there is valid pipeline info
847  static  const Pipeline *pipeline_class();
848  virtual const Pipeline *pipeline() const;
849
850  // Compute the latency from the def to this instruction of the ith input node
851  uint latency(uint i);
852
853  // Hash & compare functions, for pessimistic value numbering
854
855  // If the hash function returns the special sentinel value NO_HASH,
856  // the node is guaranteed never to compare equal to any other node.
857  // If we accidently generate a hash with value NO_HASH the node
858  // won't go into the table and we'll lose a little optimization.
859  enum { NO_HASH = 0 };
860  virtual uint hash() const;
861  virtual uint cmp( const Node &n ) const;
862
863  // Operation appears to be iteratively computed (such as an induction variable)
864  // It is possible for this operation to return false for a loop-varying
865  // value, if it appears (by local graph inspection) to be computed by a simple conditional.
866  bool is_iteratively_computed();
867
868  // Determine if a node is Counted loop induction variable.
869  // The method is defined in loopnode.cpp.
870  const Node* is_loop_iv() const;
871
872  // Return a node with opcode "opc" and same inputs as "this" if one can
873  // be found; Otherwise return NULL;
874  Node* find_similar(int opc);
875
876  // Return the unique control out if only one. Null if none or more than one.
877  Node* unique_ctrl_out();
878
879//----------------- Code Generation
880
881  // Ideal register class for Matching.  Zero means unmatched instruction
882  // (these are cloned instead of converted to machine nodes).
883  virtual uint ideal_reg() const;
884
885  static const uint NotAMachineReg;   // must be > max. machine register
886
887  // Do we Match on this edge index or not?  Generally false for Control
888  // and true for everything else.  Weird for calls & returns.
889  virtual uint match_edge(uint idx) const;
890
891  // Register class output is returned in
892  virtual const RegMask &out_RegMask() const;
893  // Register class input is expected in
894  virtual const RegMask &in_RegMask(uint) const;
895  // Should we clone rather than spill this instruction?
896  bool rematerialize() const;
897
898  // Return JVM State Object if this Node carries debug info, or NULL otherwise
899  virtual JVMState* jvms() const;
900
901  // Print as assembly
902  virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
903  // Emit bytes starting at parameter 'ptr'
904  // Bump 'ptr' by the number of output bytes
905  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
906  // Size of instruction in bytes
907  virtual uint size(PhaseRegAlloc *ra_) const;
908
909  // Convenience function to extract an integer constant from a node.
910  // If it is not an integer constant (either Con, CastII, or Mach),
911  // return value_if_unknown.
912  jint find_int_con(jint value_if_unknown) const {
913    const TypeInt* t = find_int_type();
914    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
915  }
916  // Return the constant, knowing it is an integer constant already
917  jint get_int() const {
918    const TypeInt* t = find_int_type();
919    guarantee(t != NULL, "must be con");
920    return t->get_con();
921  }
922  // Here's where the work is done.  Can produce non-constant int types too.
923  const TypeInt* find_int_type() const;
924
925  // Same thing for long (and intptr_t, via type.hpp):
926  jlong get_long() const {
927    const TypeLong* t = find_long_type();
928    guarantee(t != NULL, "must be con");
929    return t->get_con();
930  }
931  jlong find_long_con(jint value_if_unknown) const {
932    const TypeLong* t = find_long_type();
933    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
934  }
935  const TypeLong* find_long_type() const;
936
937  // These guys are called by code generated by ADLC:
938  intptr_t get_ptr() const;
939  intptr_t get_narrowcon() const;
940  jdouble getd() const;
941  jfloat getf() const;
942
943  // Nodes which are pinned into basic blocks
944  virtual bool pinned() const { return false; }
945
946  // Nodes which use memory without consuming it, hence need antidependences
947  // More specifically, needs_anti_dependence_check returns true iff the node
948  // (a) does a load, and (b) does not perform a store (except perhaps to a
949  // stack slot or some other unaliased location).
950  bool needs_anti_dependence_check() const;
951
952  // Return which operand this instruction may cisc-spill. In other words,
953  // return operand position that can convert from reg to memory access
954  virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
955  bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
956
957//----------------- Graph walking
958public:
959  // Walk and apply member functions recursively.
960  // Supplied (this) pointer is root.
961  void walk(NFunc pre, NFunc post, void *env);
962  static void nop(Node &, void*); // Dummy empty function
963  static void packregion( Node &n, void* );
964private:
965  void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
966
967//----------------- Printing, etc
968public:
969#ifndef PRODUCT
970  Node* find(int idx) const;         // Search the graph for the given idx.
971  Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
972  void dump() const;                 // Print this node,
973  void dump(int depth) const;        // Print this node, recursively to depth d
974  void dump_ctrl(int depth) const;   // Print control nodes, to depth d
975  virtual void dump_req() const;     // Print required-edge info
976  virtual void dump_prec() const;    // Print precedence-edge info
977  virtual void dump_out() const;     // Print the output edge info
978  virtual void dump_spec(outputStream *st) const {}; // Print per-node info
979  void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
980  void verify() const;               // Check Def-Use info for my subgraph
981  static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
982
983  // This call defines a class-unique string used to identify class instances
984  virtual const char *Name() const;
985
986  void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
987  // RegMask Print Functions
988  void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
989  void dump_out_regmask() { out_RegMask().dump(); }
990  static int _in_dump_cnt;
991  static bool in_dump() { return _in_dump_cnt > 0; }
992  void fast_dump() const {
993    tty->print("%4d: %-17s", _idx, Name());
994    for (uint i = 0; i < len(); i++)
995      if (in(i))
996        tty->print(" %4d", in(i)->_idx);
997      else
998        tty->print(" NULL");
999    tty->print("\n");
1000  }
1001#endif
1002#ifdef ASSERT
1003  void verify_construction();
1004  bool verify_jvms(const JVMState* jvms) const;
1005  int  _debug_idx;                     // Unique value assigned to every node.
1006  int   debug_idx() const              { return _debug_idx; }
1007  void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
1008
1009  Node* _debug_orig;                   // Original version of this, if any.
1010  Node*  debug_orig() const            { return _debug_orig; }
1011  void   set_debug_orig(Node* orig);   // _debug_orig = orig
1012
1013  int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1014  void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1015  void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1016
1017  static void init_NodeProperty();
1018
1019  #if OPTO_DU_ITERATOR_ASSERT
1020  const Node* _last_del;               // The last deleted node.
1021  uint        _del_tick;               // Bumped when a deletion happens..
1022  #endif
1023#endif
1024};
1025
1026//-----------------------------------------------------------------------------
1027// Iterators over DU info, and associated Node functions.
1028
1029#if OPTO_DU_ITERATOR_ASSERT
1030
1031// Common code for assertion checking on DU iterators.
1032class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1033#ifdef ASSERT
1034 protected:
1035  bool         _vdui;               // cached value of VerifyDUIterators
1036  const Node*  _node;               // the node containing the _out array
1037  uint         _outcnt;             // cached node->_outcnt
1038  uint         _del_tick;           // cached node->_del_tick
1039  Node*        _last;               // last value produced by the iterator
1040
1041  void sample(const Node* node);    // used by c'tor to set up for verifies
1042  void verify(const Node* node, bool at_end_ok = false);
1043  void verify_resync();
1044  void reset(const DUIterator_Common& that);
1045
1046// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1047  #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1048#else
1049  #define I_VDUI_ONLY(i,x) { }
1050#endif //ASSERT
1051};
1052
1053#define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1054
1055// Default DU iterator.  Allows appends onto the out array.
1056// Allows deletion from the out array only at the current point.
1057// Usage:
1058//  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1059//    Node* y = x->out(i);
1060//    ...
1061//  }
1062// Compiles in product mode to a unsigned integer index, which indexes
1063// onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1064// also reloads x->_outcnt.  If you delete, you must perform "--i" just
1065// before continuing the loop.  You must delete only the last-produced
1066// edge.  You must delete only a single copy of the last-produced edge,
1067// or else you must delete all copies at once (the first time the edge
1068// is produced by the iterator).
1069class DUIterator : public DUIterator_Common {
1070  friend class Node;
1071
1072  // This is the index which provides the product-mode behavior.
1073  // Whatever the product-mode version of the system does to the
1074  // DUI index is done to this index.  All other fields in
1075  // this class are used only for assertion checking.
1076  uint         _idx;
1077
1078  #ifdef ASSERT
1079  uint         _refresh_tick;    // Records the refresh activity.
1080
1081  void sample(const Node* node); // Initialize _refresh_tick etc.
1082  void verify(const Node* node, bool at_end_ok = false);
1083  void verify_increment();       // Verify an increment operation.
1084  void verify_resync();          // Verify that we can back up over a deletion.
1085  void verify_finish();          // Verify that the loop terminated properly.
1086  void refresh();                // Resample verification info.
1087  void reset(const DUIterator& that);  // Resample after assignment.
1088  #endif
1089
1090  DUIterator(const Node* node, int dummy_to_avoid_conversion)
1091    { _idx = 0;                         debug_only(sample(node)); }
1092
1093 public:
1094  // initialize to garbage; clear _vdui to disable asserts
1095  DUIterator()
1096    { /*initialize to garbage*/         debug_only(_vdui = false); }
1097
1098  void operator++(int dummy_to_specify_postfix_op)
1099    { _idx++;                           VDUI_ONLY(verify_increment()); }
1100
1101  void operator--()
1102    { VDUI_ONLY(verify_resync());       --_idx; }
1103
1104  ~DUIterator()
1105    { VDUI_ONLY(verify_finish()); }
1106
1107  void operator=(const DUIterator& that)
1108    { _idx = that._idx;                 debug_only(reset(that)); }
1109};
1110
1111DUIterator Node::outs() const
1112  { return DUIterator(this, 0); }
1113DUIterator& Node::refresh_out_pos(DUIterator& i) const
1114  { I_VDUI_ONLY(i, i.refresh());        return i; }
1115bool Node::has_out(DUIterator& i) const
1116  { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1117Node*    Node::out(DUIterator& i) const
1118  { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1119
1120
1121// Faster DU iterator.  Disallows insertions into the out array.
1122// Allows deletion from the out array only at the current point.
1123// Usage:
1124//  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1125//    Node* y = x->fast_out(i);
1126//    ...
1127//  }
1128// Compiles in product mode to raw Node** pointer arithmetic, with
1129// no reloading of pointers from the original node x.  If you delete,
1130// you must perform "--i; --imax" just before continuing the loop.
1131// If you delete multiple copies of the same edge, you must decrement
1132// imax, but not i, multiple times:  "--i, imax -= num_edges".
1133class DUIterator_Fast : public DUIterator_Common {
1134  friend class Node;
1135  friend class DUIterator_Last;
1136
1137  // This is the pointer which provides the product-mode behavior.
1138  // Whatever the product-mode version of the system does to the
1139  // DUI pointer is done to this pointer.  All other fields in
1140  // this class are used only for assertion checking.
1141  Node**       _outp;
1142
1143  #ifdef ASSERT
1144  void verify(const Node* node, bool at_end_ok = false);
1145  void verify_limit();
1146  void verify_resync();
1147  void verify_relimit(uint n);
1148  void reset(const DUIterator_Fast& that);
1149  #endif
1150
1151  // Note:  offset must be signed, since -1 is sometimes passed
1152  DUIterator_Fast(const Node* node, ptrdiff_t offset)
1153    { _outp = node->_out + offset;      debug_only(sample(node)); }
1154
1155 public:
1156  // initialize to garbage; clear _vdui to disable asserts
1157  DUIterator_Fast()
1158    { /*initialize to garbage*/         debug_only(_vdui = false); }
1159
1160  void operator++(int dummy_to_specify_postfix_op)
1161    { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1162
1163  void operator--()
1164    { VDUI_ONLY(verify_resync());       --_outp; }
1165
1166  void operator-=(uint n)   // applied to the limit only
1167    { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1168
1169  bool operator<(DUIterator_Fast& limit) {
1170    I_VDUI_ONLY(*this, this->verify(_node, true));
1171    I_VDUI_ONLY(limit, limit.verify_limit());
1172    return _outp < limit._outp;
1173  }
1174
1175  void operator=(const DUIterator_Fast& that)
1176    { _outp = that._outp;               debug_only(reset(that)); }
1177};
1178
1179DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1180  // Assign a limit pointer to the reference argument:
1181  imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1182  // Return the base pointer:
1183  return DUIterator_Fast(this, 0);
1184}
1185Node* Node::fast_out(DUIterator_Fast& i) const {
1186  I_VDUI_ONLY(i, i.verify(this));
1187  return debug_only(i._last=) *i._outp;
1188}
1189
1190
1191// Faster DU iterator.  Requires each successive edge to be removed.
1192// Does not allow insertion of any edges.
1193// Usage:
1194//  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1195//    Node* y = x->last_out(i);
1196//    ...
1197//  }
1198// Compiles in product mode to raw Node** pointer arithmetic, with
1199// no reloading of pointers from the original node x.
1200class DUIterator_Last : private DUIterator_Fast {
1201  friend class Node;
1202
1203  #ifdef ASSERT
1204  void verify(const Node* node, bool at_end_ok = false);
1205  void verify_limit();
1206  void verify_step(uint num_edges);
1207  #endif
1208
1209  // Note:  offset must be signed, since -1 is sometimes passed
1210  DUIterator_Last(const Node* node, ptrdiff_t offset)
1211    : DUIterator_Fast(node, offset) { }
1212
1213  void operator++(int dummy_to_specify_postfix_op) {} // do not use
1214  void operator<(int)                              {} // do not use
1215
1216 public:
1217  DUIterator_Last() { }
1218  // initialize to garbage
1219
1220  void operator--()
1221    { _outp--;              VDUI_ONLY(verify_step(1));  }
1222
1223  void operator-=(uint n)
1224    { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1225
1226  bool operator>=(DUIterator_Last& limit) {
1227    I_VDUI_ONLY(*this, this->verify(_node, true));
1228    I_VDUI_ONLY(limit, limit.verify_limit());
1229    return _outp >= limit._outp;
1230  }
1231
1232  void operator=(const DUIterator_Last& that)
1233    { DUIterator_Fast::operator=(that); }
1234};
1235
1236DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1237  // Assign a limit pointer to the reference argument:
1238  imin = DUIterator_Last(this, 0);
1239  // Return the initial pointer:
1240  return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1241}
1242Node* Node::last_out(DUIterator_Last& i) const {
1243  I_VDUI_ONLY(i, i.verify(this));
1244  return debug_only(i._last=) *i._outp;
1245}
1246
1247#endif //OPTO_DU_ITERATOR_ASSERT
1248
1249#undef I_VDUI_ONLY
1250#undef VDUI_ONLY
1251
1252
1253//-----------------------------------------------------------------------------
1254// Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1255// Abstractly provides an infinite array of Node*'s, initialized to NULL.
1256// Note that the constructor just zeros things, and since I use Arena
1257// allocation I do not need a destructor to reclaim storage.
1258class Node_Array : public ResourceObj {
1259protected:
1260  Arena *_a;                    // Arena to allocate in
1261  uint   _max;
1262  Node **_nodes;
1263  void   grow( uint i );        // Grow array node to fit
1264public:
1265  Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1266    _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1267    for( int i = 0; i < OptoNodeListSize; i++ ) {
1268      _nodes[i] = NULL;
1269    }
1270  }
1271
1272  Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1273  Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1274  { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1275  Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1276  Node **adr() { return _nodes; }
1277  // Extend the mapping: index i maps to Node *n.
1278  void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1279  void insert( uint i, Node *n );
1280  void remove( uint i );        // Remove, preserving order
1281  void sort( C_sort_func_t func);
1282  void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1283  void clear();                 // Set all entries to NULL, keep storage
1284  uint Size() const { return _max; }
1285  void dump() const;
1286};
1287
1288class Node_List : public Node_Array {
1289  uint _cnt;
1290public:
1291  Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1292  Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1293  void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1294  void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1295  void push( Node *b ) { map(_cnt++,b); }
1296  void yank( Node *n );         // Find and remove
1297  Node *pop() { return _nodes[--_cnt]; }
1298  Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1299  void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1300  uint size() const { return _cnt; }
1301  void dump() const;
1302};
1303
1304//------------------------------Unique_Node_List-------------------------------
1305class Unique_Node_List : public Node_List {
1306  VectorSet _in_worklist;
1307  uint _clock_index;            // Index in list where to pop from next
1308public:
1309  Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1310  Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1311
1312  void remove( Node *n );
1313  bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1314  VectorSet &member_set(){ return _in_worklist; }
1315
1316  void push( Node *b ) {
1317    if( !_in_worklist.test_set(b->_idx) )
1318      Node_List::push(b);
1319  }
1320  Node *pop() {
1321    if( _clock_index >= size() ) _clock_index = 0;
1322    Node *b = at(_clock_index);
1323    map( _clock_index++, Node_List::pop());
1324    _in_worklist >>= b->_idx;
1325    return b;
1326  }
1327  Node *remove( uint i ) {
1328    Node *b = Node_List::at(i);
1329    _in_worklist >>= b->_idx;
1330    map(i,Node_List::pop());
1331    return b;
1332  }
1333  void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1334  void  clear() {
1335    _in_worklist.Clear();        // Discards storage but grows automatically
1336    Node_List::clear();
1337    _clock_index = 0;
1338  }
1339
1340  // Used after parsing to remove useless nodes before Iterative GVN
1341  void remove_useless_nodes(VectorSet &useful);
1342
1343#ifndef PRODUCT
1344  void print_set() const { _in_worklist.print(); }
1345#endif
1346};
1347
1348// Inline definition of Compile::record_for_igvn must be deferred to this point.
1349inline void Compile::record_for_igvn(Node* n) {
1350  _for_igvn->push(n);
1351}
1352
1353//------------------------------Node_Stack-------------------------------------
1354class Node_Stack {
1355protected:
1356  struct INode {
1357    Node *node; // Processed node
1358    uint  indx; // Index of next node's child
1359  };
1360  INode *_inode_top; // tos, stack grows up
1361  INode *_inode_max; // End of _inodes == _inodes + _max
1362  INode *_inodes;    // Array storage for the stack
1363  Arena *_a;         // Arena to allocate in
1364  void grow();
1365public:
1366  Node_Stack(int size) {
1367    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1368    _a = Thread::current()->resource_area();
1369    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1370    _inode_max = _inodes + max;
1371    _inode_top = _inodes - 1; // stack is empty
1372  }
1373
1374  Node_Stack(Arena *a, int size) : _a(a) {
1375    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1376    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1377    _inode_max = _inodes + max;
1378    _inode_top = _inodes - 1; // stack is empty
1379  }
1380
1381  void pop() {
1382    assert(_inode_top >= _inodes, "node stack underflow");
1383    --_inode_top;
1384  }
1385  void push(Node *n, uint i) {
1386    ++_inode_top;
1387    if (_inode_top >= _inode_max) grow();
1388    INode *top = _inode_top; // optimization
1389    top->node = n;
1390    top->indx = i;
1391  }
1392  Node *node() const {
1393    return _inode_top->node;
1394  }
1395  Node* node_at(uint i) const {
1396    assert(_inodes + i <= _inode_top, "in range");
1397    return _inodes[i].node;
1398  }
1399  uint index() const {
1400    return _inode_top->indx;
1401  }
1402  void set_node(Node *n) {
1403    _inode_top->node = n;
1404  }
1405  void set_index(uint i) {
1406    _inode_top->indx = i;
1407  }
1408  uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1409  uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1410  bool is_nonempty() const { return (_inode_top >= _inodes); }
1411  bool is_empty() const { return (_inode_top < _inodes); }
1412  void clear() { _inode_top = _inodes - 1; } // retain storage
1413};
1414
1415
1416//-----------------------------Node_Notes--------------------------------------
1417// Debugging or profiling annotations loosely and sparsely associated
1418// with some nodes.  See Compile::node_notes_at for the accessor.
1419class Node_Notes VALUE_OBJ_CLASS_SPEC {
1420  JVMState* _jvms;
1421
1422public:
1423  Node_Notes(JVMState* jvms = NULL) {
1424    _jvms = jvms;
1425  }
1426
1427  JVMState* jvms()            { return _jvms; }
1428  void  set_jvms(JVMState* x) {        _jvms = x; }
1429
1430  // True if there is nothing here.
1431  bool is_clear() {
1432    return (_jvms == NULL);
1433  }
1434
1435  // Make there be nothing here.
1436  void clear() {
1437    _jvms = NULL;
1438  }
1439
1440  // Make a new, clean node notes.
1441  static Node_Notes* make(Compile* C) {
1442    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1443    nn->clear();
1444    return nn;
1445  }
1446
1447  Node_Notes* clone(Compile* C) {
1448    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1449    (*nn) = (*this);
1450    return nn;
1451  }
1452
1453  // Absorb any information from source.
1454  bool update_from(Node_Notes* source) {
1455    bool changed = false;
1456    if (source != NULL) {
1457      if (source->jvms() != NULL) {
1458        set_jvms(source->jvms());
1459        changed = true;
1460      }
1461    }
1462    return changed;
1463  }
1464};
1465
1466// Inlined accessors for Compile::node_nodes that require the preceding class:
1467inline Node_Notes*
1468Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1469                           int idx, bool can_grow) {
1470  assert(idx >= 0, "oob");
1471  int block_idx = (idx >> _log2_node_notes_block_size);
1472  int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1473  if (grow_by >= 0) {
1474    if (!can_grow)  return NULL;
1475    grow_node_notes(arr, grow_by + 1);
1476  }
1477  // (Every element of arr is a sub-array of length _node_notes_block_size.)
1478  return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1479}
1480
1481inline bool
1482Compile::set_node_notes_at(int idx, Node_Notes* value) {
1483  if (value == NULL || value->is_clear())
1484    return false;  // nothing to write => write nothing
1485  Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1486  assert(loc != NULL, "");
1487  return loc->update_from(value);
1488}
1489
1490
1491//------------------------------TypeNode---------------------------------------
1492// Node with a Type constant.
1493class TypeNode : public Node {
1494protected:
1495  virtual uint hash() const;    // Check the type
1496  virtual uint cmp( const Node &n ) const;
1497  virtual uint size_of() const; // Size is bigger
1498  const Type* const _type;
1499public:
1500  void set_type(const Type* t) {
1501    assert(t != NULL, "sanity");
1502    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1503    *(const Type**)&_type = t;   // cast away const-ness
1504    // If this node is in the hash table, make sure it doesn't need a rehash.
1505    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1506  }
1507  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1508  TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1509    init_class_id(Class_Type);
1510  }
1511  virtual const Type *Value( PhaseTransform *phase ) const;
1512  virtual const Type *bottom_type() const;
1513  virtual       uint  ideal_reg() const;
1514#ifndef PRODUCT
1515  virtual void dump_spec(outputStream *st) const;
1516#endif
1517};
1518