node.hpp revision 0:a61af66fc99e
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29
30class AbstractLockNode;
31class AddNode;
32class AddPNode;
33class AliasInfo;
34class AllocateArrayNode;
35class AllocateNode;
36class Block;
37class Block_Array;
38class BoolNode;
39class BoxLockNode;
40class CMoveNode;
41class CallDynamicJavaNode;
42class CallJavaNode;
43class CallLeafNode;
44class CallNode;
45class CallRuntimeNode;
46class CallStaticJavaNode;
47class CatchNode;
48class CatchProjNode;
49class CheckCastPPNode;
50class CmpNode;
51class CodeBuffer;
52class ConstraintCastNode;
53class ConNode;
54class CountedLoopNode;
55class CountedLoopEndNode;
56class FastLockNode;
57class FastUnlockNode;
58class IfNode;
59class InitializeNode;
60class JVMState;
61class JumpNode;
62class JumpProjNode;
63class LoadNode;
64class LoadStoreNode;
65class LockNode;
66class LoopNode;
67class MachCallDynamicJavaNode;
68class MachCallJavaNode;
69class MachCallLeafNode;
70class MachCallNode;
71class MachCallRuntimeNode;
72class MachCallStaticJavaNode;
73class MachIfNode;
74class MachNode;
75class MachNullCheckNode;
76class MachReturnNode;
77class MachSafePointNode;
78class MachSpillCopyNode;
79class MachTempNode;
80class Matcher;
81class MemBarNode;
82class MemNode;
83class MergeMemNode;
84class MulNode;
85class MultiNode;
86class MultiBranchNode;
87class NeverBranchNode;
88class Node;
89class Node_Array;
90class Node_List;
91class Node_Stack;
92class NullCheckNode;
93class OopMap;
94class PCTableNode;
95class PhaseCCP;
96class PhaseGVN;
97class PhaseIterGVN;
98class PhaseRegAlloc;
99class PhaseTransform;
100class PhaseValues;
101class PhiNode;
102class Pipeline;
103class ProjNode;
104class RegMask;
105class RegionNode;
106class RootNode;
107class SafePointNode;
108class StartNode;
109class State;
110class StoreNode;
111class SubNode;
112class Type;
113class TypeNode;
114class UnlockNode;
115class VectorSet;
116class IfTrueNode;
117class IfFalseNode;
118typedef void (*NFunc)(Node&,void*);
119extern "C" {
120  typedef int (*C_sort_func_t)(const void *, const void *);
121}
122
123// The type of all node counts and indexes.
124// It must hold at least 16 bits, but must also be fast to load and store.
125// This type, if less than 32 bits, could limit the number of possible nodes.
126// (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
127typedef unsigned int node_idx_t;
128
129
130#ifndef OPTO_DU_ITERATOR_ASSERT
131#ifdef ASSERT
132#define OPTO_DU_ITERATOR_ASSERT 1
133#else
134#define OPTO_DU_ITERATOR_ASSERT 0
135#endif
136#endif //OPTO_DU_ITERATOR_ASSERT
137
138#if OPTO_DU_ITERATOR_ASSERT
139class DUIterator;
140class DUIterator_Fast;
141class DUIterator_Last;
142#else
143typedef uint   DUIterator;
144typedef Node** DUIterator_Fast;
145typedef Node** DUIterator_Last;
146#endif
147
148// Node Sentinel
149#define NodeSentinel (Node*)-1
150
151// Unknown count frequency
152#define COUNT_UNKNOWN (-1.0f)
153
154//------------------------------Node-------------------------------------------
155// Nodes define actions in the program.  They create values, which have types.
156// They are both vertices in a directed graph and program primitives.  Nodes
157// are labeled; the label is the "opcode", the primitive function in the lambda
158// calculus sense that gives meaning to the Node.  Node inputs are ordered (so
159// that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
160// the Node's function.  These inputs also define a Type equation for the Node.
161// Solving these Type equations amounts to doing dataflow analysis.
162// Control and data are uniformly represented in the graph.  Finally, Nodes
163// have a unique dense integer index which is used to index into side arrays
164// whenever I have phase-specific information.
165
166class Node {
167  // Lots of restrictions on cloning Nodes
168  Node(const Node&);            // not defined; linker error to use these
169  Node &operator=(const Node &rhs);
170
171public:
172  friend class Compile;
173  #if OPTO_DU_ITERATOR_ASSERT
174  friend class DUIterator_Common;
175  friend class DUIterator;
176  friend class DUIterator_Fast;
177  friend class DUIterator_Last;
178  #endif
179
180  // Because Nodes come and go, I define an Arena of Node structures to pull
181  // from.  This should allow fast access to node creation & deletion.  This
182  // field is a local cache of a value defined in some "program fragment" for
183  // which these Nodes are just a part of.
184
185  // New Operator that takes a Compile pointer, this will eventually
186  // be the "new" New operator.
187  inline void* operator new( size_t x, Compile* C) {
188    Node* n = (Node*)C->node_arena()->Amalloc_D(x);
189#ifdef ASSERT
190    n->_in = (Node**)n; // magic cookie for assertion check
191#endif
192    n->_out = (Node**)C;
193    return (void*)n;
194  }
195
196  // New Operator that takes a Compile pointer, this will eventually
197  // be the "new" New operator.
198  inline void* operator new( size_t x, Compile* C, int y) {
199    Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*));
200    n->_in = (Node**)(((char*)n) + x);
201#ifdef ASSERT
202    n->_in[y-1] = n; // magic cookie for assertion check
203#endif
204    n->_out = (Node**)C;
205    return (void*)n;
206  }
207
208  // Delete is a NOP
209  void operator delete( void *ptr ) {}
210  // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
211  void destruct();
212
213  // Create a new Node.  Required is the number is of inputs required for
214  // semantic correctness.
215  Node( uint required );
216
217  // Create a new Node with given input edges.
218  // This version requires use of the "edge-count" new.
219  // E.g.  new (C,3) FooNode( C, NULL, left, right );
220  Node( Node *n0 );
221  Node( Node *n0, Node *n1 );
222  Node( Node *n0, Node *n1, Node *n2 );
223  Node( Node *n0, Node *n1, Node *n2, Node *n3 );
224  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
225  Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
226  Node( Node *n0, Node *n1, Node *n2, Node *n3,
227            Node *n4, Node *n5, Node *n6 );
228
229  // Clone an inherited Node given only the base Node type.
230  Node* clone() const;
231
232  // Clone a Node, immediately supplying one or two new edges.
233  // The first and second arguments, if non-null, replace in(1) and in(2),
234  // respectively.
235  Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
236    Node* nn = clone();
237    if (in1 != NULL)  nn->set_req(1, in1);
238    if (in2 != NULL)  nn->set_req(2, in2);
239    return nn;
240  }
241
242private:
243  // Shared setup for the above constructors.
244  // Handles all interactions with Compile::current.
245  // Puts initial values in all Node fields except _idx.
246  // Returns the initial value for _idx, which cannot
247  // be initialized by assignment.
248  inline int Init(int req, Compile* C);
249
250//----------------- input edge handling
251protected:
252  friend class PhaseCFG;        // Access to address of _in array elements
253  Node **_in;                   // Array of use-def references to Nodes
254  Node **_out;                  // Array of def-use references to Nodes
255
256  // Input edges are split into two catagories.  Required edges are required
257  // for semantic correctness; order is important and NULLs are allowed.
258  // Precedence edges are used to help determine execution order and are
259  // added, e.g., for scheduling purposes.  They are unordered and not
260  // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
261  // are required, from _cnt to _max-1 are precedence edges.
262  node_idx_t _cnt;              // Total number of required Node inputs.
263
264  node_idx_t _max;              // Actual length of input array.
265
266  // Output edges are an unordered list of def-use edges which exactly
267  // correspond to required input edges which point from other nodes
268  // to this one.  Thus the count of the output edges is the number of
269  // users of this node.
270  node_idx_t _outcnt;           // Total number of Node outputs.
271
272  node_idx_t _outmax;           // Actual length of output array.
273
274  // Grow the actual input array to the next larger power-of-2 bigger than len.
275  void grow( uint len );
276  // Grow the output array to the next larger power-of-2 bigger than len.
277  void out_grow( uint len );
278
279 public:
280  // Each Node is assigned a unique small/dense number.  This number is used
281  // to index into auxiliary arrays of data and bitvectors.
282  // It is declared const to defend against inadvertant assignment,
283  // since it is used by clients as a naked field.
284  const node_idx_t _idx;
285
286  // Get the (read-only) number of input edges
287  uint req() const { return _cnt; }
288  uint len() const { return _max; }
289  // Get the (read-only) number of output edges
290  uint outcnt() const { return _outcnt; }
291
292#if OPTO_DU_ITERATOR_ASSERT
293  // Iterate over the out-edges of this node.  Deletions are illegal.
294  inline DUIterator outs() const;
295  // Use this when the out array might have changed to suppress asserts.
296  inline DUIterator& refresh_out_pos(DUIterator& i) const;
297  // Does the node have an out at this position?  (Used for iteration.)
298  inline bool has_out(DUIterator& i) const;
299  inline Node*    out(DUIterator& i) const;
300  // Iterate over the out-edges of this node.  All changes are illegal.
301  inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
302  inline Node*    fast_out(DUIterator_Fast& i) const;
303  // Iterate over the out-edges of this node, deleting one at a time.
304  inline DUIterator_Last last_outs(DUIterator_Last& min) const;
305  inline Node*    last_out(DUIterator_Last& i) const;
306  // The inline bodies of all these methods are after the iterator definitions.
307#else
308  // Iterate over the out-edges of this node.  Deletions are illegal.
309  // This iteration uses integral indexes, to decouple from array reallocations.
310  DUIterator outs() const  { return 0; }
311  // Use this when the out array might have changed to suppress asserts.
312  DUIterator refresh_out_pos(DUIterator i) const { return i; }
313
314  // Reference to the i'th output Node.  Error if out of bounds.
315  Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
316  // Does the node have an out at this position?  (Used for iteration.)
317  bool has_out(DUIterator i) const { return i < _outcnt; }
318
319  // Iterate over the out-edges of this node.  All changes are illegal.
320  // This iteration uses a pointer internal to the out array.
321  DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
322    Node** out = _out;
323    // Assign a limit pointer to the reference argument:
324    max = out + (ptrdiff_t)_outcnt;
325    // Return the base pointer:
326    return out;
327  }
328  Node*    fast_out(DUIterator_Fast i) const  { return *i; }
329  // Iterate over the out-edges of this node, deleting one at a time.
330  // This iteration uses a pointer internal to the out array.
331  DUIterator_Last last_outs(DUIterator_Last& min) const {
332    Node** out = _out;
333    // Assign a limit pointer to the reference argument:
334    min = out;
335    // Return the pointer to the start of the iteration:
336    return out + (ptrdiff_t)_outcnt - 1;
337  }
338  Node*    last_out(DUIterator_Last i) const  { return *i; }
339#endif
340
341  // Reference to the i'th input Node.  Error if out of bounds.
342  Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; }
343  // Reference to the i'th output Node.  Error if out of bounds.
344  // Use this accessor sparingly.  We are going trying to use iterators instead.
345  Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
346  // Return the unique out edge.
347  Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
348  // Delete out edge at position 'i' by moving last out edge to position 'i'
349  void  raw_del_out(uint i) {
350    assert(i < _outcnt,"oob");
351    assert(_outcnt > 0,"oob");
352    #if OPTO_DU_ITERATOR_ASSERT
353    // Record that a change happened here.
354    debug_only(_last_del = _out[i]; ++_del_tick);
355    #endif
356    _out[i] = _out[--_outcnt];
357    // Smash the old edge so it can't be used accidentally.
358    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
359  }
360
361#ifdef ASSERT
362  bool is_dead() const;
363#define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
364#endif
365
366  // Set a required input edge, also updates corresponding output edge
367  void add_req( Node *n ); // Append a NEW required input
368  void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
369  void del_req( uint idx ); // Delete required edge & compact
370  void ins_req( uint i, Node *n ); // Insert a NEW required input
371  void set_req( uint i, Node *n ) {
372    assert( is_not_dead(n), "can not use dead node");
373    assert( i < _cnt, "oob");
374    assert( !VerifyHashTableKeys || _hash_lock == 0,
375            "remove node from hash table before modifying it");
376    Node** p = &_in[i];    // cache this._in, across the del_out call
377    if (*p != NULL)  (*p)->del_out((Node *)this);
378    (*p) = n;
379    if (n != NULL)      n->add_out((Node *)this);
380  }
381  // Light version of set_req() to init inputs after node creation.
382  void init_req( uint i, Node *n ) {
383    assert( i == 0 && this == n ||
384            is_not_dead(n), "can not use dead node");
385    assert( i < _cnt, "oob");
386    assert( !VerifyHashTableKeys || _hash_lock == 0,
387            "remove node from hash table before modifying it");
388    assert( _in[i] == NULL, "sanity");
389    _in[i] = n;
390    if (n != NULL)      n->add_out((Node *)this);
391  }
392  // Find first occurrence of n among my edges:
393  int find_edge(Node* n);
394  int replace_edge(Node* old, Node* neww);
395  // NULL out all inputs to eliminate incoming Def-Use edges.
396  // Return the number of edges between 'n' and 'this'
397  int  disconnect_inputs(Node *n);
398
399  // Quickly, return true if and only if I am Compile::current()->top().
400  bool is_top() const {
401    assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
402    return (_out == NULL);
403  }
404  // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
405  void setup_is_top();
406
407  // Strip away casting.  (It is depth-limited.)
408  Node* uncast() const;
409
410private:
411  static Node* uncast_helper(const Node* n);
412
413  // Add an output edge to the end of the list
414  void add_out( Node *n ) {
415    if (is_top())  return;
416    if( _outcnt == _outmax ) out_grow(_outcnt);
417    _out[_outcnt++] = n;
418  }
419  // Delete an output edge
420  void del_out( Node *n ) {
421    if (is_top())  return;
422    Node** outp = &_out[_outcnt];
423    // Find and remove n
424    do {
425      assert(outp > _out, "Missing Def-Use edge");
426    } while (*--outp != n);
427    *outp = _out[--_outcnt];
428    // Smash the old edge so it can't be used accidentally.
429    debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
430    // Record that a change happened here.
431    #if OPTO_DU_ITERATOR_ASSERT
432    debug_only(_last_del = n; ++_del_tick);
433    #endif
434  }
435
436public:
437  // Globally replace this node by a given new node, updating all uses.
438  void replace_by(Node* new_node);
439  void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
440  // Find the one non-null required input.  RegionNode only
441  Node *nonnull_req() const;
442  // Add or remove precedence edges
443  void add_prec( Node *n );
444  void rm_prec( uint i );
445  void set_prec( uint i, Node *n ) {
446    assert( is_not_dead(n), "can not use dead node");
447    assert( i >= _cnt, "not a precedence edge");
448    if (_in[i] != NULL) _in[i]->del_out((Node *)this);
449    _in[i] = n;
450    if (n != NULL) n->add_out((Node *)this);
451  }
452  // Set this node's index, used by cisc_version to replace current node
453  void set_idx(uint new_idx) {
454    const node_idx_t* ref = &_idx;
455    *(node_idx_t*)ref = new_idx;
456  }
457  // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
458  void swap_edges(uint i1, uint i2) {
459    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
460    // Def-Use info is unchanged
461    Node* n1 = in(i1);
462    Node* n2 = in(i2);
463    _in[i1] = n2;
464    _in[i2] = n1;
465    // If this node is in the hash table, make sure it doesn't need a rehash.
466    assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
467  }
468
469  // Iterators over input Nodes for a Node X are written as:
470  // for( i = 0; i < X.req(); i++ ) ... X[i] ...
471  // NOTE: Required edges can contain embedded NULL pointers.
472
473//----------------- Other Node Properties
474
475  // Generate class id for some ideal nodes to avoid virtual query
476  // methods is_<Node>().
477  // Class id is the set of bits corresponded to the node class and all its
478  // super classes so that queries for super classes are also valid.
479  // Subclasses of the same super class have different assigned bit
480  // (the third parameter in the macro DEFINE_CLASS_ID).
481  // Classes with deeper hierarchy are declared first.
482  // Classes with the same hierarchy depth are sorted by usage frequency.
483  //
484  // The query method masks the bits to cut off bits of subclasses
485  // and then compare the result with the class id
486  // (see the macro DEFINE_CLASS_QUERY below).
487  //
488  //  Class_MachCall=30, ClassMask_MachCall=31
489  // 12               8               4               0
490  //  0   0   0   0   0   0   0   0   1   1   1   1   0
491  //                                  |   |   |   |
492  //                                  |   |   |   Bit_Mach=2
493  //                                  |   |   Bit_MachReturn=4
494  //                                  |   Bit_MachSafePoint=8
495  //                                  Bit_MachCall=16
496  //
497  //  Class_CountedLoop=56, ClassMask_CountedLoop=63
498  // 12               8               4               0
499  //  0   0   0   0   0   0   0   1   1   1   0   0   0
500  //                              |   |   |
501  //                              |   |   Bit_Region=8
502  //                              |   Bit_Loop=16
503  //                              Bit_CountedLoop=32
504
505  #define DEFINE_CLASS_ID(cl, supcl, subn) \
506  Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
507  Class_##cl = Class_##supcl + Bit_##cl , \
508  ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
509
510  // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
511  // so that it's values fits into 16 bits.
512  enum NodeClasses {
513    Bit_Node   = 0x0000,
514    Class_Node = 0x0000,
515    ClassMask_Node = 0xFFFF,
516
517    DEFINE_CLASS_ID(Multi, Node, 0)
518      DEFINE_CLASS_ID(SafePoint, Multi, 0)
519        DEFINE_CLASS_ID(Call,      SafePoint, 0)
520          DEFINE_CLASS_ID(CallJava,         Call, 0)
521            DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
522            DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
523          DEFINE_CLASS_ID(CallRuntime,      Call, 1)
524            DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
525          DEFINE_CLASS_ID(Allocate,         Call, 2)
526            DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
527          DEFINE_CLASS_ID(AbstractLock,     Call, 3)
528            DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
529            DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
530      DEFINE_CLASS_ID(MultiBranch, Multi, 1)
531        DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
532          DEFINE_CLASS_ID(Catch,       PCTable, 0)
533          DEFINE_CLASS_ID(Jump,        PCTable, 1)
534        DEFINE_CLASS_ID(If,          MultiBranch, 1)
535          DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
536        DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
537      DEFINE_CLASS_ID(Start,       Multi, 2)
538      DEFINE_CLASS_ID(MemBar,      Multi, 3)
539        DEFINE_CLASS_ID(Initialize,    MemBar, 0)
540
541    DEFINE_CLASS_ID(Mach,  Node, 1)
542      DEFINE_CLASS_ID(MachReturn, Mach, 0)
543        DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
544          DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
545            DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
546              DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
547              DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
548            DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
549              DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
550      DEFINE_CLASS_ID(MachSpillCopy, Mach, 1)
551      DEFINE_CLASS_ID(MachNullCheck, Mach, 2)
552      DEFINE_CLASS_ID(MachIf,        Mach, 3)
553      DEFINE_CLASS_ID(MachTemp,      Mach, 4)
554
555    DEFINE_CLASS_ID(Proj,  Node, 2)
556      DEFINE_CLASS_ID(CatchProj, Proj, 0)
557      DEFINE_CLASS_ID(JumpProj,  Proj, 1)
558      DEFINE_CLASS_ID(IfTrue,    Proj, 2)
559      DEFINE_CLASS_ID(IfFalse,   Proj, 3)
560
561    DEFINE_CLASS_ID(Region, Node, 3)
562      DEFINE_CLASS_ID(Loop, Region, 0)
563        DEFINE_CLASS_ID(Root,        Loop, 0)
564        DEFINE_CLASS_ID(CountedLoop, Loop, 1)
565
566    DEFINE_CLASS_ID(Sub,   Node, 4)
567      DEFINE_CLASS_ID(Cmp,   Sub, 0)
568        DEFINE_CLASS_ID(FastLock,   Cmp, 0)
569        DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
570
571    DEFINE_CLASS_ID(Type,  Node, 5)
572      DEFINE_CLASS_ID(Phi,   Type, 0)
573      DEFINE_CLASS_ID(ConstraintCast, Type, 1)
574      DEFINE_CLASS_ID(CheckCastPP, Type, 2)
575      DEFINE_CLASS_ID(CMove, Type, 3)
576
577    DEFINE_CLASS_ID(Mem,   Node, 6)
578      DEFINE_CLASS_ID(Load,  Mem, 0)
579      DEFINE_CLASS_ID(Store, Mem, 1)
580      DEFINE_CLASS_ID(LoadStore, Mem, 2)
581
582    DEFINE_CLASS_ID(MergeMem, Node, 7)
583    DEFINE_CLASS_ID(Bool,     Node, 8)
584    DEFINE_CLASS_ID(AddP,     Node, 9)
585    DEFINE_CLASS_ID(BoxLock,  Node, 10)
586    DEFINE_CLASS_ID(Add,      Node, 11)
587    DEFINE_CLASS_ID(Mul,      Node, 12)
588
589    _max_classes  = ClassMask_Mul
590  };
591  #undef DEFINE_CLASS_ID
592
593  // Flags are sorted by usage frequency.
594  enum NodeFlags {
595    Flag_is_Copy             = 0x01, // should be first bit to avoid shift
596    Flag_is_Call             = Flag_is_Copy << 1,
597    Flag_rematerialize       = Flag_is_Call << 1,
598    Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
599    Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
600    Flag_is_Con              = Flag_is_macro << 1,
601    Flag_is_cisc_alternate   = Flag_is_Con << 1,
602    Flag_is_Branch           = Flag_is_cisc_alternate << 1,
603    Flag_is_block_start      = Flag_is_Branch << 1,
604    Flag_is_Goto             = Flag_is_block_start << 1,
605    Flag_is_dead_loop_safe   = Flag_is_Goto << 1,
606    Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
607    Flag_is_safepoint_node   = Flag_may_be_short_branch << 1,
608    Flag_is_pc_relative      = Flag_is_safepoint_node << 1,
609    Flag_is_Vector           = Flag_is_pc_relative << 1,
610    _max_flags = (Flag_is_Vector << 1) - 1 // allow flags combination
611  };
612
613private:
614  jushort _class_id;
615  jushort _flags;
616
617protected:
618  // These methods should be called from constructors only.
619  void init_class_id(jushort c) {
620    assert(c <= _max_classes, "invalid node class");
621    _class_id = c; // cast out const
622  }
623  void init_flags(jushort fl) {
624    assert(fl <= _max_flags, "invalid node flag");
625    _flags |= fl;
626  }
627  void clear_flag(jushort fl) {
628    assert(fl <= _max_flags, "invalid node flag");
629    _flags &= ~fl;
630  }
631
632public:
633  const jushort class_id() const { return _class_id; }
634
635  const jushort flags() const { return _flags; }
636
637  // Return a dense integer opcode number
638  virtual int Opcode() const;
639
640  // Virtual inherited Node size
641  virtual uint size_of() const;
642
643  // Other interesting Node properties
644
645  // Special case: is_Call() returns true for both CallNode and MachCallNode.
646  bool is_Call() const {
647    return (_flags & Flag_is_Call) != 0;
648  }
649
650  CallNode *as_Call() const { // Only for CallNode (not for MachCallNode)
651    assert((_class_id & ClassMask_Call) == Class_Call, "invalid node class");
652    return (CallNode*)this;
653  }
654
655  #define DEFINE_CLASS_QUERY(type) \
656  bool is_##type() const { \
657    return ((_class_id & ClassMask_##type) == Class_##type); \
658  } \
659  type##Node *as_##type() const { \
660    assert(is_##type(), "invalid node class"); \
661    return (type##Node*)this; \
662  }
663
664  DEFINE_CLASS_QUERY(AbstractLock)
665  DEFINE_CLASS_QUERY(Add)
666  DEFINE_CLASS_QUERY(AddP)
667  DEFINE_CLASS_QUERY(Allocate)
668  DEFINE_CLASS_QUERY(AllocateArray)
669  DEFINE_CLASS_QUERY(Bool)
670  DEFINE_CLASS_QUERY(BoxLock)
671  DEFINE_CLASS_QUERY(CallDynamicJava)
672  DEFINE_CLASS_QUERY(CallJava)
673  DEFINE_CLASS_QUERY(CallLeaf)
674  DEFINE_CLASS_QUERY(CallRuntime)
675  DEFINE_CLASS_QUERY(CallStaticJava)
676  DEFINE_CLASS_QUERY(Catch)
677  DEFINE_CLASS_QUERY(CatchProj)
678  DEFINE_CLASS_QUERY(CheckCastPP)
679  DEFINE_CLASS_QUERY(ConstraintCast)
680  DEFINE_CLASS_QUERY(CMove)
681  DEFINE_CLASS_QUERY(Cmp)
682  DEFINE_CLASS_QUERY(CountedLoop)
683  DEFINE_CLASS_QUERY(CountedLoopEnd)
684  DEFINE_CLASS_QUERY(FastLock)
685  DEFINE_CLASS_QUERY(FastUnlock)
686  DEFINE_CLASS_QUERY(If)
687  DEFINE_CLASS_QUERY(IfFalse)
688  DEFINE_CLASS_QUERY(IfTrue)
689  DEFINE_CLASS_QUERY(Initialize)
690  DEFINE_CLASS_QUERY(Jump)
691  DEFINE_CLASS_QUERY(JumpProj)
692  DEFINE_CLASS_QUERY(Load)
693  DEFINE_CLASS_QUERY(LoadStore)
694  DEFINE_CLASS_QUERY(Lock)
695  DEFINE_CLASS_QUERY(Loop)
696  DEFINE_CLASS_QUERY(Mach)
697  DEFINE_CLASS_QUERY(MachCall)
698  DEFINE_CLASS_QUERY(MachCallDynamicJava)
699  DEFINE_CLASS_QUERY(MachCallJava)
700  DEFINE_CLASS_QUERY(MachCallLeaf)
701  DEFINE_CLASS_QUERY(MachCallRuntime)
702  DEFINE_CLASS_QUERY(MachCallStaticJava)
703  DEFINE_CLASS_QUERY(MachIf)
704  DEFINE_CLASS_QUERY(MachNullCheck)
705  DEFINE_CLASS_QUERY(MachReturn)
706  DEFINE_CLASS_QUERY(MachSafePoint)
707  DEFINE_CLASS_QUERY(MachSpillCopy)
708  DEFINE_CLASS_QUERY(MachTemp)
709  DEFINE_CLASS_QUERY(Mem)
710  DEFINE_CLASS_QUERY(MemBar)
711  DEFINE_CLASS_QUERY(MergeMem)
712  DEFINE_CLASS_QUERY(Mul)
713  DEFINE_CLASS_QUERY(Multi)
714  DEFINE_CLASS_QUERY(MultiBranch)
715  DEFINE_CLASS_QUERY(PCTable)
716  DEFINE_CLASS_QUERY(Phi)
717  DEFINE_CLASS_QUERY(Proj)
718  DEFINE_CLASS_QUERY(Region)
719  DEFINE_CLASS_QUERY(Root)
720  DEFINE_CLASS_QUERY(SafePoint)
721  DEFINE_CLASS_QUERY(Start)
722  DEFINE_CLASS_QUERY(Store)
723  DEFINE_CLASS_QUERY(Sub)
724  DEFINE_CLASS_QUERY(Type)
725  DEFINE_CLASS_QUERY(Unlock)
726
727  #undef DEFINE_CLASS_QUERY
728
729  // duplicate of is_MachSpillCopy()
730  bool is_SpillCopy () const {
731    return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
732  }
733
734  bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
735  bool is_Goto() const { return (_flags & Flag_is_Goto) != 0; }
736  // The data node which is safe to leave in dead loop during IGVN optimization.
737  bool is_dead_loop_safe() const {
738    return is_Phi() || is_Proj() ||
739           (_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0;
740  }
741
742  // is_Copy() returns copied edge index (0 or 1)
743  uint is_Copy() const { return (_flags & Flag_is_Copy); }
744
745  virtual bool is_CFG() const { return false; }
746
747  // If this node is control-dependent on a test, can it be
748  // rerouted to a dominating equivalent test?  This is usually
749  // true of non-CFG nodes, but can be false for operations which
750  // depend for their correct sequencing on more than one test.
751  // (In that case, hoisting to a dominating test may silently
752  // skip some other important test.)
753  virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
754
755  // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd'
756  bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; }
757
758  // When building basic blocks, I need to have a notion of block beginning
759  // Nodes, next block selector Nodes (block enders), and next block
760  // projections.  These calls need to work on their machine equivalents.  The
761  // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
762  bool is_block_start() const {
763    if ( is_Region() )
764      return this == (const Node*)in(0);
765    else
766      return (_flags & Flag_is_block_start) != 0;
767  }
768
769  // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
770  // Goto and Return.  This call also returns the block ending Node.
771  virtual const Node *is_block_proj() const;
772
773  // The node is a "macro" node which needs to be expanded before matching
774  bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
775
776  // Value is a vector of primitive values
777  bool is_Vector() const { return (_flags & Flag_is_Vector) != 0; }
778
779//----------------- Optimization
780
781  // Get the worst-case Type output for this Node.
782  virtual const class Type *bottom_type() const;
783
784  // If we find a better type for a node, try to record it permanently.
785  // Return true if this node actually changed.
786  // Be sure to do the hash_delete game in the "rehash" variant.
787  void raise_bottom_type(const Type* new_type);
788
789  // Get the address type with which this node uses and/or defs memory,
790  // or NULL if none.  The address type is conservatively wide.
791  // Returns non-null for calls, membars, loads, stores, etc.
792  // Returns TypePtr::BOTTOM if the node touches memory "broadly".
793  virtual const class TypePtr *adr_type() const { return NULL; }
794
795  // Return an existing node which computes the same function as this node.
796  // The optimistic combined algorithm requires this to return a Node which
797  // is a small number of steps away (e.g., one of my inputs).
798  virtual Node *Identity( PhaseTransform *phase );
799
800  // Return the set of values this Node can take on at runtime.
801  virtual const Type *Value( PhaseTransform *phase ) const;
802
803  // Return a node which is more "ideal" than the current node.
804  // The invariants on this call are subtle.  If in doubt, read the
805  // treatise in node.cpp above the default implemention AND TEST WITH
806  // +VerifyIterativeGVN!
807  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
808
809  // Some nodes have specific Ideal subgraph transformations only if they are
810  // unique users of specific nodes. Such nodes should be put on IGVN worklist
811  // for the transformations to happen.
812  bool has_special_unique_user() const;
813
814protected:
815  bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
816public:
817
818  // Idealize graph, using DU info.  Done after constant propagation
819  virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
820
821  // See if there is valid pipeline info
822  static  const Pipeline *pipeline_class();
823  virtual const Pipeline *pipeline() const;
824
825  // Compute the latency from the def to this instruction of the ith input node
826  uint latency(uint i);
827
828  // Hash & compare functions, for pessimistic value numbering
829
830  // If the hash function returns the special sentinel value NO_HASH,
831  // the node is guaranteed never to compare equal to any other node.
832  // If we accidently generate a hash with value NO_HASH the node
833  // won't go into the table and we'll lose a little optimization.
834  enum { NO_HASH = 0 };
835  virtual uint hash() const;
836  virtual uint cmp( const Node &n ) const;
837
838  // Operation appears to be iteratively computed (such as an induction variable)
839  // It is possible for this operation to return false for a loop-varying
840  // value, if it appears (by local graph inspection) to be computed by a simple conditional.
841  bool is_iteratively_computed();
842
843  // Determine if a node is Counted loop induction variable.
844  // The method is defined in loopnode.cpp.
845  const Node* is_loop_iv() const;
846
847  // Return a node with opcode "opc" and same inputs as "this" if one can
848  // be found; Otherwise return NULL;
849  Node* find_similar(int opc);
850
851  // Return the unique control out if only one. Null if none or more than one.
852  Node* unique_ctrl_out();
853
854//----------------- Code Generation
855
856  // Ideal register class for Matching.  Zero means unmatched instruction
857  // (these are cloned instead of converted to machine nodes).
858  virtual uint ideal_reg() const;
859
860  static const uint NotAMachineReg;   // must be > max. machine register
861
862  // Do we Match on this edge index or not?  Generally false for Control
863  // and true for everything else.  Weird for calls & returns.
864  virtual uint match_edge(uint idx) const;
865
866  // Register class output is returned in
867  virtual const RegMask &out_RegMask() const;
868  // Register class input is expected in
869  virtual const RegMask &in_RegMask(uint) const;
870  // Should we clone rather than spill this instruction?
871  bool rematerialize() const;
872
873  // Return JVM State Object if this Node carries debug info, or NULL otherwise
874  virtual JVMState* jvms() const;
875
876  // Print as assembly
877  virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
878  // Emit bytes starting at parameter 'ptr'
879  // Bump 'ptr' by the number of output bytes
880  virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
881  // Size of instruction in bytes
882  virtual uint size(PhaseRegAlloc *ra_) const;
883
884  // Convenience function to extract an integer constant from a node.
885  // If it is not an integer constant (either Con, CastII, or Mach),
886  // return value_if_unknown.
887  jint find_int_con(jint value_if_unknown) const {
888    const TypeInt* t = find_int_type();
889    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
890  }
891  // Return the constant, knowing it is an integer constant already
892  jint get_int() const {
893    const TypeInt* t = find_int_type();
894    guarantee(t != NULL, "must be con");
895    return t->get_con();
896  }
897  // Here's where the work is done.  Can produce non-constant int types too.
898  const TypeInt* find_int_type() const;
899
900  // Same thing for long (and intptr_t, via type.hpp):
901  jlong get_long() const {
902    const TypeLong* t = find_long_type();
903    guarantee(t != NULL, "must be con");
904    return t->get_con();
905  }
906  jlong find_long_con(jint value_if_unknown) const {
907    const TypeLong* t = find_long_type();
908    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
909  }
910  const TypeLong* find_long_type() const;
911
912  // These guys are called by code generated by ADLC:
913  intptr_t get_ptr() const;
914  jdouble getd() const;
915  jfloat getf() const;
916
917  // Nodes which are pinned into basic blocks
918  virtual bool pinned() const { return false; }
919
920  // Nodes which use memory without consuming it, hence need antidependences
921  // More specifically, needs_anti_dependence_check returns true iff the node
922  // (a) does a load, and (b) does not perform a store (except perhaps to a
923  // stack slot or some other unaliased location).
924  bool needs_anti_dependence_check() const;
925
926  // Return which operand this instruction may cisc-spill. In other words,
927  // return operand position that can convert from reg to memory access
928  virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
929  bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
930
931//----------------- Graph walking
932public:
933  // Walk and apply member functions recursively.
934  // Supplied (this) pointer is root.
935  void walk(NFunc pre, NFunc post, void *env);
936  static void nop(Node &, void*); // Dummy empty function
937  static void packregion( Node &n, void* );
938private:
939  void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
940
941//----------------- Printing, etc
942public:
943#ifndef PRODUCT
944  Node* find(int idx) const;         // Search the graph for the given idx.
945  Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
946  void dump() const;                 // Print this node,
947  void dump(int depth) const;        // Print this node, recursively to depth d
948  void dump_ctrl(int depth) const;   // Print control nodes, to depth d
949  virtual void dump_req() const;     // Print required-edge info
950  virtual void dump_prec() const;    // Print precedence-edge info
951  virtual void dump_out() const;     // Print the output edge info
952  virtual void dump_spec(outputStream *st) const {}; // Print per-node info
953  void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
954  void verify() const;               // Check Def-Use info for my subgraph
955  static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
956
957  // This call defines a class-unique string used to identify class instances
958  virtual const char *Name() const;
959
960  void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
961  // RegMask Print Functions
962  void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
963  void dump_out_regmask() { out_RegMask().dump(); }
964  static int _in_dump_cnt;
965  static bool in_dump() { return _in_dump_cnt > 0; }
966  void fast_dump() const {
967    tty->print("%4d: %-17s", _idx, Name());
968    for (uint i = 0; i < len(); i++)
969      if (in(i))
970        tty->print(" %4d", in(i)->_idx);
971      else
972        tty->print(" NULL");
973    tty->print("\n");
974  }
975#endif
976#ifdef ASSERT
977  void verify_construction();
978  bool verify_jvms(const JVMState* jvms) const;
979  int  _debug_idx;                     // Unique value assigned to every node.
980  int   debug_idx() const              { return _debug_idx; }
981  void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
982
983  Node* _debug_orig;                   // Original version of this, if any.
984  Node*  debug_orig() const            { return _debug_orig; }
985  void   set_debug_orig(Node* orig);   // _debug_orig = orig
986
987  int        _hash_lock;               // Barrier to modifications of nodes in the hash table
988  void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
989  void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
990
991  static void init_NodeProperty();
992
993  #if OPTO_DU_ITERATOR_ASSERT
994  const Node* _last_del;               // The last deleted node.
995  uint        _del_tick;               // Bumped when a deletion happens..
996  #endif
997#endif
998};
999
1000//-----------------------------------------------------------------------------
1001// Iterators over DU info, and associated Node functions.
1002
1003#if OPTO_DU_ITERATOR_ASSERT
1004
1005// Common code for assertion checking on DU iterators.
1006class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
1007#ifdef ASSERT
1008 protected:
1009  bool         _vdui;               // cached value of VerifyDUIterators
1010  const Node*  _node;               // the node containing the _out array
1011  uint         _outcnt;             // cached node->_outcnt
1012  uint         _del_tick;           // cached node->_del_tick
1013  Node*        _last;               // last value produced by the iterator
1014
1015  void sample(const Node* node);    // used by c'tor to set up for verifies
1016  void verify(const Node* node, bool at_end_ok = false);
1017  void verify_resync();
1018  void reset(const DUIterator_Common& that);
1019
1020// The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1021  #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1022#else
1023  #define I_VDUI_ONLY(i,x) { }
1024#endif //ASSERT
1025};
1026
1027#define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1028
1029// Default DU iterator.  Allows appends onto the out array.
1030// Allows deletion from the out array only at the current point.
1031// Usage:
1032//  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1033//    Node* y = x->out(i);
1034//    ...
1035//  }
1036// Compiles in product mode to a unsigned integer index, which indexes
1037// onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1038// also reloads x->_outcnt.  If you delete, you must perform "--i" just
1039// before continuing the loop.  You must delete only the last-produced
1040// edge.  You must delete only a single copy of the last-produced edge,
1041// or else you must delete all copies at once (the first time the edge
1042// is produced by the iterator).
1043class DUIterator : public DUIterator_Common {
1044  friend class Node;
1045
1046  // This is the index which provides the product-mode behavior.
1047  // Whatever the product-mode version of the system does to the
1048  // DUI index is done to this index.  All other fields in
1049  // this class are used only for assertion checking.
1050  uint         _idx;
1051
1052  #ifdef ASSERT
1053  uint         _refresh_tick;    // Records the refresh activity.
1054
1055  void sample(const Node* node); // Initialize _refresh_tick etc.
1056  void verify(const Node* node, bool at_end_ok = false);
1057  void verify_increment();       // Verify an increment operation.
1058  void verify_resync();          // Verify that we can back up over a deletion.
1059  void verify_finish();          // Verify that the loop terminated properly.
1060  void refresh();                // Resample verification info.
1061  void reset(const DUIterator& that);  // Resample after assignment.
1062  #endif
1063
1064  DUIterator(const Node* node, int dummy_to_avoid_conversion)
1065    { _idx = 0;                         debug_only(sample(node)); }
1066
1067 public:
1068  // initialize to garbage; clear _vdui to disable asserts
1069  DUIterator()
1070    { /*initialize to garbage*/         debug_only(_vdui = false); }
1071
1072  void operator++(int dummy_to_specify_postfix_op)
1073    { _idx++;                           VDUI_ONLY(verify_increment()); }
1074
1075  void operator--()
1076    { VDUI_ONLY(verify_resync());       --_idx; }
1077
1078  ~DUIterator()
1079    { VDUI_ONLY(verify_finish()); }
1080
1081  void operator=(const DUIterator& that)
1082    { _idx = that._idx;                 debug_only(reset(that)); }
1083};
1084
1085DUIterator Node::outs() const
1086  { return DUIterator(this, 0); }
1087DUIterator& Node::refresh_out_pos(DUIterator& i) const
1088  { I_VDUI_ONLY(i, i.refresh());        return i; }
1089bool Node::has_out(DUIterator& i) const
1090  { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1091Node*    Node::out(DUIterator& i) const
1092  { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1093
1094
1095// Faster DU iterator.  Disallows insertions into the out array.
1096// Allows deletion from the out array only at the current point.
1097// Usage:
1098//  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1099//    Node* y = x->fast_out(i);
1100//    ...
1101//  }
1102// Compiles in product mode to raw Node** pointer arithmetic, with
1103// no reloading of pointers from the original node x.  If you delete,
1104// you must perform "--i; --imax" just before continuing the loop.
1105// If you delete multiple copies of the same edge, you must decrement
1106// imax, but not i, multiple times:  "--i, imax -= num_edges".
1107class DUIterator_Fast : public DUIterator_Common {
1108  friend class Node;
1109  friend class DUIterator_Last;
1110
1111  // This is the pointer which provides the product-mode behavior.
1112  // Whatever the product-mode version of the system does to the
1113  // DUI pointer is done to this pointer.  All other fields in
1114  // this class are used only for assertion checking.
1115  Node**       _outp;
1116
1117  #ifdef ASSERT
1118  void verify(const Node* node, bool at_end_ok = false);
1119  void verify_limit();
1120  void verify_resync();
1121  void verify_relimit(uint n);
1122  void reset(const DUIterator_Fast& that);
1123  #endif
1124
1125  // Note:  offset must be signed, since -1 is sometimes passed
1126  DUIterator_Fast(const Node* node, ptrdiff_t offset)
1127    { _outp = node->_out + offset;      debug_only(sample(node)); }
1128
1129 public:
1130  // initialize to garbage; clear _vdui to disable asserts
1131  DUIterator_Fast()
1132    { /*initialize to garbage*/         debug_only(_vdui = false); }
1133
1134  void operator++(int dummy_to_specify_postfix_op)
1135    { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1136
1137  void operator--()
1138    { VDUI_ONLY(verify_resync());       --_outp; }
1139
1140  void operator-=(uint n)   // applied to the limit only
1141    { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1142
1143  bool operator<(DUIterator_Fast& limit) {
1144    I_VDUI_ONLY(*this, this->verify(_node, true));
1145    I_VDUI_ONLY(limit, limit.verify_limit());
1146    return _outp < limit._outp;
1147  }
1148
1149  void operator=(const DUIterator_Fast& that)
1150    { _outp = that._outp;               debug_only(reset(that)); }
1151};
1152
1153DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1154  // Assign a limit pointer to the reference argument:
1155  imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1156  // Return the base pointer:
1157  return DUIterator_Fast(this, 0);
1158}
1159Node* Node::fast_out(DUIterator_Fast& i) const {
1160  I_VDUI_ONLY(i, i.verify(this));
1161  return debug_only(i._last=) *i._outp;
1162}
1163
1164
1165// Faster DU iterator.  Requires each successive edge to be removed.
1166// Does not allow insertion of any edges.
1167// Usage:
1168//  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1169//    Node* y = x->last_out(i);
1170//    ...
1171//  }
1172// Compiles in product mode to raw Node** pointer arithmetic, with
1173// no reloading of pointers from the original node x.
1174class DUIterator_Last : private DUIterator_Fast {
1175  friend class Node;
1176
1177  #ifdef ASSERT
1178  void verify(const Node* node, bool at_end_ok = false);
1179  void verify_limit();
1180  void verify_step(uint num_edges);
1181  #endif
1182
1183  // Note:  offset must be signed, since -1 is sometimes passed
1184  DUIterator_Last(const Node* node, ptrdiff_t offset)
1185    : DUIterator_Fast(node, offset) { }
1186
1187  void operator++(int dummy_to_specify_postfix_op) {} // do not use
1188  void operator<(int)                              {} // do not use
1189
1190 public:
1191  DUIterator_Last() { }
1192  // initialize to garbage
1193
1194  void operator--()
1195    { _outp--;              VDUI_ONLY(verify_step(1));  }
1196
1197  void operator-=(uint n)
1198    { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1199
1200  bool operator>=(DUIterator_Last& limit) {
1201    I_VDUI_ONLY(*this, this->verify(_node, true));
1202    I_VDUI_ONLY(limit, limit.verify_limit());
1203    return _outp >= limit._outp;
1204  }
1205
1206  void operator=(const DUIterator_Last& that)
1207    { DUIterator_Fast::operator=(that); }
1208};
1209
1210DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1211  // Assign a limit pointer to the reference argument:
1212  imin = DUIterator_Last(this, 0);
1213  // Return the initial pointer:
1214  return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1215}
1216Node* Node::last_out(DUIterator_Last& i) const {
1217  I_VDUI_ONLY(i, i.verify(this));
1218  return debug_only(i._last=) *i._outp;
1219}
1220
1221#endif //OPTO_DU_ITERATOR_ASSERT
1222
1223#undef I_VDUI_ONLY
1224#undef VDUI_ONLY
1225
1226
1227//-----------------------------------------------------------------------------
1228// Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1229// Abstractly provides an infinite array of Node*'s, initialized to NULL.
1230// Note that the constructor just zeros things, and since I use Arena
1231// allocation I do not need a destructor to reclaim storage.
1232class Node_Array : public ResourceObj {
1233protected:
1234  Arena *_a;                    // Arena to allocate in
1235  uint   _max;
1236  Node **_nodes;
1237  void   grow( uint i );        // Grow array node to fit
1238public:
1239  Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
1240    _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
1241    for( int i = 0; i < OptoNodeListSize; i++ ) {
1242      _nodes[i] = NULL;
1243    }
1244  }
1245
1246  Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
1247  Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
1248  { return (i<_max) ? _nodes[i] : (Node*)NULL; }
1249  Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
1250  Node **adr() { return _nodes; }
1251  // Extend the mapping: index i maps to Node *n.
1252  void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1253  void insert( uint i, Node *n );
1254  void remove( uint i );        // Remove, preserving order
1255  void sort( C_sort_func_t func);
1256  void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
1257  void clear();                 // Set all entries to NULL, keep storage
1258  uint Size() const { return _max; }
1259  void dump() const;
1260};
1261
1262class Node_List : public Node_Array {
1263  uint _cnt;
1264public:
1265  Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
1266  Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
1267  void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1268  void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1269  void push( Node *b ) { map(_cnt++,b); }
1270  void yank( Node *n );         // Find and remove
1271  Node *pop() { return _nodes[--_cnt]; }
1272  Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
1273  void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1274  uint size() const { return _cnt; }
1275  void dump() const;
1276};
1277
1278//------------------------------Unique_Node_List-------------------------------
1279class Unique_Node_List : public Node_List {
1280  VectorSet _in_worklist;
1281  uint _clock_index;            // Index in list where to pop from next
1282public:
1283  Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
1284  Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1285
1286  void remove( Node *n );
1287  bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1288  VectorSet &member_set(){ return _in_worklist; }
1289
1290  void push( Node *b ) {
1291    if( !_in_worklist.test_set(b->_idx) )
1292      Node_List::push(b);
1293  }
1294  Node *pop() {
1295    if( _clock_index >= size() ) _clock_index = 0;
1296    Node *b = at(_clock_index);
1297    map( _clock_index++, Node_List::pop());
1298    _in_worklist >>= b->_idx;
1299    return b;
1300  }
1301  Node *remove( uint i ) {
1302    Node *b = Node_List::at(i);
1303    _in_worklist >>= b->_idx;
1304    map(i,Node_List::pop());
1305    return b;
1306  }
1307  void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
1308  void  clear() {
1309    _in_worklist.Clear();        // Discards storage but grows automatically
1310    Node_List::clear();
1311    _clock_index = 0;
1312  }
1313
1314  // Used after parsing to remove useless nodes before Iterative GVN
1315  void remove_useless_nodes(VectorSet &useful);
1316
1317#ifndef PRODUCT
1318  void print_set() const { _in_worklist.print(); }
1319#endif
1320};
1321
1322// Inline definition of Compile::record_for_igvn must be deferred to this point.
1323inline void Compile::record_for_igvn(Node* n) {
1324  _for_igvn->push(n);
1325  record_for_escape_analysis(n);
1326}
1327
1328//------------------------------Node_Stack-------------------------------------
1329class Node_Stack {
1330protected:
1331  struct INode {
1332    Node *node; // Processed node
1333    uint  indx; // Index of next node's child
1334  };
1335  INode *_inode_top; // tos, stack grows up
1336  INode *_inode_max; // End of _inodes == _inodes + _max
1337  INode *_inodes;    // Array storage for the stack
1338  Arena *_a;         // Arena to allocate in
1339  void grow();
1340public:
1341  Node_Stack(int size) {
1342    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1343    _a = Thread::current()->resource_area();
1344    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1345    _inode_max = _inodes + max;
1346    _inode_top = _inodes - 1; // stack is empty
1347  }
1348
1349  Node_Stack(Arena *a, int size) : _a(a) {
1350    size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1351    _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1352    _inode_max = _inodes + max;
1353    _inode_top = _inodes - 1; // stack is empty
1354  }
1355
1356  void pop() {
1357    assert(_inode_top >= _inodes, "node stack underflow");
1358    --_inode_top;
1359  }
1360  void push(Node *n, uint i) {
1361    ++_inode_top;
1362    if (_inode_top >= _inode_max) grow();
1363    INode *top = _inode_top; // optimization
1364    top->node = n;
1365    top->indx = i;
1366  }
1367  Node *node() const {
1368    return _inode_top->node;
1369  }
1370  Node* node_at(uint i) const {
1371    assert(_inodes + i <= _inode_top, "in range");
1372    return _inodes[i].node;
1373  }
1374  uint index() const {
1375    return _inode_top->indx;
1376  }
1377  void set_node(Node *n) {
1378    _inode_top->node = n;
1379  }
1380  void set_index(uint i) {
1381    _inode_top->indx = i;
1382  }
1383  uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1384  uint size() const { return (uint)pointer_delta(_inode_top, _inodes,  sizeof(INode)) + 1; } // Current size
1385  bool is_nonempty() const { return (_inode_top >= _inodes); }
1386  bool is_empty() const { return (_inode_top < _inodes); }
1387  void clear() { _inode_top = _inodes - 1; } // retain storage
1388};
1389
1390
1391//-----------------------------Node_Notes--------------------------------------
1392// Debugging or profiling annotations loosely and sparsely associated
1393// with some nodes.  See Compile::node_notes_at for the accessor.
1394class Node_Notes VALUE_OBJ_CLASS_SPEC {
1395  JVMState* _jvms;
1396
1397public:
1398  Node_Notes(JVMState* jvms = NULL) {
1399    _jvms = jvms;
1400  }
1401
1402  JVMState* jvms()            { return _jvms; }
1403  void  set_jvms(JVMState* x) {        _jvms = x; }
1404
1405  // True if there is nothing here.
1406  bool is_clear() {
1407    return (_jvms == NULL);
1408  }
1409
1410  // Make there be nothing here.
1411  void clear() {
1412    _jvms = NULL;
1413  }
1414
1415  // Make a new, clean node notes.
1416  static Node_Notes* make(Compile* C) {
1417    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1418    nn->clear();
1419    return nn;
1420  }
1421
1422  Node_Notes* clone(Compile* C) {
1423    Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1424    (*nn) = (*this);
1425    return nn;
1426  }
1427
1428  // Absorb any information from source.
1429  bool update_from(Node_Notes* source) {
1430    bool changed = false;
1431    if (source != NULL) {
1432      if (source->jvms() != NULL) {
1433        set_jvms(source->jvms());
1434        changed = true;
1435      }
1436    }
1437    return changed;
1438  }
1439};
1440
1441// Inlined accessors for Compile::node_nodes that require the preceding class:
1442inline Node_Notes*
1443Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1444                           int idx, bool can_grow) {
1445  assert(idx >= 0, "oob");
1446  int block_idx = (idx >> _log2_node_notes_block_size);
1447  int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
1448  if (grow_by >= 0) {
1449    if (!can_grow)  return NULL;
1450    grow_node_notes(arr, grow_by + 1);
1451  }
1452  // (Every element of arr is a sub-array of length _node_notes_block_size.)
1453  return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1454}
1455
1456inline bool
1457Compile::set_node_notes_at(int idx, Node_Notes* value) {
1458  if (value == NULL || value->is_clear())
1459    return false;  // nothing to write => write nothing
1460  Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1461  assert(loc != NULL, "");
1462  return loc->update_from(value);
1463}
1464
1465
1466//------------------------------TypeNode---------------------------------------
1467// Node with a Type constant.
1468class TypeNode : public Node {
1469protected:
1470  virtual uint hash() const;    // Check the type
1471  virtual uint cmp( const Node &n ) const;
1472  virtual uint size_of() const; // Size is bigger
1473  const Type* const _type;
1474public:
1475  void set_type(const Type* t) {
1476    assert(t != NULL, "sanity");
1477    debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1478    *(const Type**)&_type = t;   // cast away const-ness
1479    // If this node is in the hash table, make sure it doesn't need a rehash.
1480    assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1481  }
1482  const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
1483  TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1484    init_class_id(Class_Type);
1485  }
1486  virtual const Type *Value( PhaseTransform *phase ) const;
1487  virtual const Type *bottom_type() const;
1488  virtual       uint  ideal_reg() const;
1489#ifndef PRODUCT
1490  virtual void dump_spec(outputStream *st) const;
1491#endif
1492};
1493