mulnode.cpp revision 9821:867bdec7c8c5
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/addnode.hpp"
28#include "opto/connode.hpp"
29#include "opto/convertnode.hpp"
30#include "opto/memnode.hpp"
31#include "opto/mulnode.hpp"
32#include "opto/phaseX.hpp"
33#include "opto/subnode.hpp"
34
35// Portions of code courtesy of Clifford Click
36
37
38//=============================================================================
39//------------------------------hash-------------------------------------------
40// Hash function over MulNodes.  Needs to be commutative; i.e., I swap
41// (commute) inputs to MulNodes willy-nilly so the hash function must return
42// the same value in the presence of edge swapping.
43uint MulNode::hash() const {
44  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
45}
46
47//------------------------------Identity---------------------------------------
48// Multiplying a one preserves the other argument
49Node *MulNode::Identity( PhaseTransform *phase ) {
50  register const Type *one = mul_id();  // The multiplicative identity
51  if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
52  if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
53
54  return this;
55}
56
57//------------------------------Ideal------------------------------------------
58// We also canonicalize the Node, moving constants to the right input,
59// and flatten expressions (so that 1+x+2 becomes x+3).
60Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
61  const Type *t1 = phase->type( in(1) );
62  const Type *t2 = phase->type( in(2) );
63  Node *progress = NULL;        // Progress flag
64  // We are OK if right is a constant, or right is a load and
65  // left is a non-constant.
66  if( !(t2->singleton() ||
67        (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
68    if( t1->singleton() ||       // Left input is a constant?
69        // Otherwise, sort inputs (commutativity) to help value numbering.
70        (in(1)->_idx > in(2)->_idx) ) {
71      swap_edges(1, 2);
72      const Type *t = t1;
73      t1 = t2;
74      t2 = t;
75      progress = this;            // Made progress
76    }
77  }
78
79  // If the right input is a constant, and the left input is a product of a
80  // constant, flatten the expression tree.
81  uint op = Opcode();
82  if( t2->singleton() &&        // Right input is a constant?
83      op != Op_MulF &&          // Float & double cannot reassociate
84      op != Op_MulD ) {
85    if( t2 == Type::TOP ) return NULL;
86    Node *mul1 = in(1);
87#ifdef ASSERT
88    // Check for dead loop
89    int   op1 = mul1->Opcode();
90    if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
91        ( op1 == mul_opcode() || op1 == add_opcode() ) &&
92        ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
93          phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
94      assert(false, "dead loop in MulNode::Ideal");
95#endif
96
97    if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
98      // Mul of a constant?
99      const Type *t12 = phase->type( mul1->in(2) );
100      if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
101        // Compute new constant; check for overflow
102        const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
103        if( tcon01->singleton() ) {
104          // The Mul of the flattened expression
105          set_req(1, mul1->in(1));
106          set_req(2, phase->makecon( tcon01 ));
107          t2 = tcon01;
108          progress = this;      // Made progress
109        }
110      }
111    }
112    // If the right input is a constant, and the left input is an add of a
113    // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
114    const Node *add1 = in(1);
115    if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
116      // Add of a constant?
117      const Type *t12 = phase->type( add1->in(2) );
118      if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
119        assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
120        // Compute new constant; check for overflow
121        const Type *tcon01 = mul_ring(t2,t12);
122        if( tcon01->singleton() ) {
123
124        // Convert (X+con1)*con0 into X*con0
125          Node *mul = clone();    // mul = ()*con0
126          mul->set_req(1,add1->in(1));  // mul = X*con0
127          mul = phase->transform(mul);
128
129          Node *add2 = add1->clone();
130          add2->set_req(1, mul);        // X*con0 + con0*con1
131          add2->set_req(2, phase->makecon(tcon01) );
132          progress = add2;
133        }
134      }
135    } // End of is left input an add
136  } // End of is right input a Mul
137
138  return progress;
139}
140
141//------------------------------Value-----------------------------------------
142const Type *MulNode::Value( PhaseTransform *phase ) const {
143  const Type *t1 = phase->type( in(1) );
144  const Type *t2 = phase->type( in(2) );
145  // Either input is TOP ==> the result is TOP
146  if( t1 == Type::TOP ) return Type::TOP;
147  if( t2 == Type::TOP ) return Type::TOP;
148
149  // Either input is ZERO ==> the result is ZERO.
150  // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
151  int op = Opcode();
152  if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
153    const Type *zero = add_id();        // The multiplicative zero
154    if( t1->higher_equal( zero ) ) return zero;
155    if( t2->higher_equal( zero ) ) return zero;
156  }
157
158  // Either input is BOTTOM ==> the result is the local BOTTOM
159  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
160    return bottom_type();
161
162#if defined(IA32)
163  // Can't trust native compilers to properly fold strict double
164  // multiplication with round-to-zero on this platform.
165  if (op == Op_MulD && phase->C->method()->is_strict()) {
166    return TypeD::DOUBLE;
167  }
168#endif
169
170  return mul_ring(t1,t2);            // Local flavor of type multiplication
171}
172
173
174//=============================================================================
175//------------------------------Ideal------------------------------------------
176// Check for power-of-2 multiply, then try the regular MulNode::Ideal
177Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
178  // Swap constant to right
179  jint con;
180  if ((con = in(1)->find_int_con(0)) != 0) {
181    swap_edges(1, 2);
182    // Finish rest of method to use info in 'con'
183  } else if ((con = in(2)->find_int_con(0)) == 0) {
184    return MulNode::Ideal(phase, can_reshape);
185  }
186
187  // Now we have a constant Node on the right and the constant in con
188  if( con == 0 ) return NULL;   // By zero is handled by Value call
189  if( con == 1 ) return NULL;   // By one  is handled by Identity call
190
191  // Check for negative constant; if so negate the final result
192  bool sign_flip = false;
193  if( con < 0 ) {
194    con = -con;
195    sign_flip = true;
196  }
197
198  // Get low bit; check for being the only bit
199  Node *res = NULL;
200  jint bit1 = con & -con;       // Extract low bit
201  if( bit1 == con ) {           // Found a power of 2?
202    res = new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
203  } else {
204
205    // Check for constant with 2 bits set
206    jint bit2 = con-bit1;
207    bit2 = bit2 & -bit2;          // Extract 2nd bit
208    if( bit2 + bit1 == con ) {    // Found all bits in con?
209      Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
210      Node *n2 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
211      res = new AddINode( n2, n1 );
212
213    } else if (is_power_of_2(con+1)) {
214      // Sleezy: power-of-2 -1.  Next time be generic.
215      jint temp = (jint) (con + 1);
216      Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
217      res = new SubINode( n1, in(1) );
218    } else {
219      return MulNode::Ideal(phase, can_reshape);
220    }
221  }
222
223  if( sign_flip ) {             // Need to negate result?
224    res = phase->transform(res);// Transform, before making the zero con
225    res = new SubINode(phase->intcon(0),res);
226  }
227
228  return res;                   // Return final result
229}
230
231//------------------------------mul_ring---------------------------------------
232// Compute the product type of two integer ranges into this node.
233const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
234  const TypeInt *r0 = t0->is_int(); // Handy access
235  const TypeInt *r1 = t1->is_int();
236
237  // Fetch endpoints of all ranges
238  int32_t lo0 = r0->_lo;
239  double a = (double)lo0;
240  int32_t hi0 = r0->_hi;
241  double b = (double)hi0;
242  int32_t lo1 = r1->_lo;
243  double c = (double)lo1;
244  int32_t hi1 = r1->_hi;
245  double d = (double)hi1;
246
247  // Compute all endpoints & check for overflow
248  int32_t A = java_multiply(lo0, lo1);
249  if( (double)A != a*c ) return TypeInt::INT; // Overflow?
250  int32_t B = java_multiply(lo0, hi1);
251  if( (double)B != a*d ) return TypeInt::INT; // Overflow?
252  int32_t C = java_multiply(hi0, lo1);
253  if( (double)C != b*c ) return TypeInt::INT; // Overflow?
254  int32_t D = java_multiply(hi0, hi1);
255  if( (double)D != b*d ) return TypeInt::INT; // Overflow?
256
257  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
258  else { lo0 = B; hi0 = A; }
259  if( C < D ) {
260    if( C < lo0 ) lo0 = C;
261    if( D > hi0 ) hi0 = D;
262  } else {
263    if( D < lo0 ) lo0 = D;
264    if( C > hi0 ) hi0 = C;
265  }
266  return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
267}
268
269
270//=============================================================================
271//------------------------------Ideal------------------------------------------
272// Check for power-of-2 multiply, then try the regular MulNode::Ideal
273Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
274  // Swap constant to right
275  jlong con;
276  if ((con = in(1)->find_long_con(0)) != 0) {
277    swap_edges(1, 2);
278    // Finish rest of method to use info in 'con'
279  } else if ((con = in(2)->find_long_con(0)) == 0) {
280    return MulNode::Ideal(phase, can_reshape);
281  }
282
283  // Now we have a constant Node on the right and the constant in con
284  if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
285  if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
286
287  // Check for negative constant; if so negate the final result
288  bool sign_flip = false;
289  if( con < 0 ) {
290    con = -con;
291    sign_flip = true;
292  }
293
294  // Get low bit; check for being the only bit
295  Node *res = NULL;
296  jlong bit1 = con & -con;      // Extract low bit
297  if( bit1 == con ) {           // Found a power of 2?
298    res = new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
299  } else {
300
301    // Check for constant with 2 bits set
302    jlong bit2 = con-bit1;
303    bit2 = bit2 & -bit2;          // Extract 2nd bit
304    if( bit2 + bit1 == con ) {    // Found all bits in con?
305      Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
306      Node *n2 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
307      res = new AddLNode( n2, n1 );
308
309    } else if (is_power_of_2_long(con+1)) {
310      // Sleezy: power-of-2 -1.  Next time be generic.
311      jlong temp = (jlong) (con + 1);
312      Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
313      res = new SubLNode( n1, in(1) );
314    } else {
315      return MulNode::Ideal(phase, can_reshape);
316    }
317  }
318
319  if( sign_flip ) {             // Need to negate result?
320    res = phase->transform(res);// Transform, before making the zero con
321    res = new SubLNode(phase->longcon(0),res);
322  }
323
324  return res;                   // Return final result
325}
326
327//------------------------------mul_ring---------------------------------------
328// Compute the product type of two integer ranges into this node.
329const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
330  const TypeLong *r0 = t0->is_long(); // Handy access
331  const TypeLong *r1 = t1->is_long();
332
333  // Fetch endpoints of all ranges
334  jlong lo0 = r0->_lo;
335  double a = (double)lo0;
336  jlong hi0 = r0->_hi;
337  double b = (double)hi0;
338  jlong lo1 = r1->_lo;
339  double c = (double)lo1;
340  jlong hi1 = r1->_hi;
341  double d = (double)hi1;
342
343  // Compute all endpoints & check for overflow
344  jlong A = java_multiply(lo0, lo1);
345  if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
346  jlong B = java_multiply(lo0, hi1);
347  if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
348  jlong C = java_multiply(hi0, lo1);
349  if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
350  jlong D = java_multiply(hi0, hi1);
351  if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
352
353  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
354  else { lo0 = B; hi0 = A; }
355  if( C < D ) {
356    if( C < lo0 ) lo0 = C;
357    if( D > hi0 ) hi0 = D;
358  } else {
359    if( D < lo0 ) lo0 = D;
360    if( C > hi0 ) hi0 = C;
361  }
362  return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
363}
364
365//=============================================================================
366//------------------------------mul_ring---------------------------------------
367// Compute the product type of two double ranges into this node.
368const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
369  if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
370  return TypeF::make( t0->getf() * t1->getf() );
371}
372
373//=============================================================================
374//------------------------------mul_ring---------------------------------------
375// Compute the product type of two double ranges into this node.
376const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
377  if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
378  // We must be multiplying 2 double constants.
379  return TypeD::make( t0->getd() * t1->getd() );
380}
381
382//=============================================================================
383//------------------------------Value------------------------------------------
384const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
385  // Either input is TOP ==> the result is TOP
386  const Type *t1 = phase->type( in(1) );
387  const Type *t2 = phase->type( in(2) );
388  if( t1 == Type::TOP ) return Type::TOP;
389  if( t2 == Type::TOP ) return Type::TOP;
390
391  // Either input is BOTTOM ==> the result is the local BOTTOM
392  const Type *bot = bottom_type();
393  if( (t1 == bot) || (t2 == bot) ||
394      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
395    return bot;
396
397  // It is not worth trying to constant fold this stuff!
398  return TypeLong::LONG;
399}
400
401//=============================================================================
402//------------------------------mul_ring---------------------------------------
403// Supplied function returns the product of the inputs IN THE CURRENT RING.
404// For the logical operations the ring's MUL is really a logical AND function.
405// This also type-checks the inputs for sanity.  Guaranteed never to
406// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
407const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
408  const TypeInt *r0 = t0->is_int(); // Handy access
409  const TypeInt *r1 = t1->is_int();
410  int widen = MAX2(r0->_widen,r1->_widen);
411
412  // If either input is a constant, might be able to trim cases
413  if( !r0->is_con() && !r1->is_con() )
414    return TypeInt::INT;        // No constants to be had
415
416  // Both constants?  Return bits
417  if( r0->is_con() && r1->is_con() )
418    return TypeInt::make( r0->get_con() & r1->get_con() );
419
420  if( r0->is_con() && r0->get_con() > 0 )
421    return TypeInt::make(0, r0->get_con(), widen);
422
423  if( r1->is_con() && r1->get_con() > 0 )
424    return TypeInt::make(0, r1->get_con(), widen);
425
426  if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
427    return TypeInt::BOOL;
428  }
429
430  return TypeInt::INT;          // No constants to be had
431}
432
433//------------------------------Identity---------------------------------------
434// Masking off the high bits of an unsigned load is not required
435Node *AndINode::Identity( PhaseTransform *phase ) {
436
437  // x & x => x
438  if (phase->eqv(in(1), in(2))) return in(1);
439
440  Node* in1 = in(1);
441  uint op = in1->Opcode();
442  const TypeInt* t2 = phase->type(in(2))->isa_int();
443  if (t2 && t2->is_con()) {
444    int con = t2->get_con();
445    // Masking off high bits which are always zero is useless.
446    const TypeInt* t1 = phase->type( in(1) )->isa_int();
447    if (t1 != NULL && t1->_lo >= 0) {
448      jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
449      if ((t1_support & con) == t1_support)
450        return in1;
451    }
452    // Masking off the high bits of a unsigned-shift-right is not
453    // needed either.
454    if (op == Op_URShiftI) {
455      const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
456      if (t12 && t12->is_con()) {  // Shift is by a constant
457        int shift = t12->get_con();
458        shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
459        int mask = max_juint >> shift;
460        if ((mask & con) == mask)  // If AND is useless, skip it
461          return in1;
462      }
463    }
464  }
465  return MulNode::Identity(phase);
466}
467
468//------------------------------Ideal------------------------------------------
469Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
470  // Special case constant AND mask
471  const TypeInt *t2 = phase->type( in(2) )->isa_int();
472  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
473  const int mask = t2->get_con();
474  Node *load = in(1);
475  uint lop = load->Opcode();
476
477  // Masking bits off of a Character?  Hi bits are already zero.
478  if( lop == Op_LoadUS &&
479      (mask & 0xFFFF0000) )     // Can we make a smaller mask?
480    return new AndINode(load,phase->intcon(mask&0xFFFF));
481
482  // Masking bits off of a Short?  Loading a Character does some masking
483  if (can_reshape &&
484      load->outcnt() == 1 && load->unique_out() == this) {
485    if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
486      Node *ldus = new LoadUSNode(load->in(MemNode::Control),
487                                  load->in(MemNode::Memory),
488                                  load->in(MemNode::Address),
489                                  load->adr_type(),
490                                  TypeInt::CHAR, MemNode::unordered);
491      ldus = phase->transform(ldus);
492      return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
493    }
494
495    // Masking sign bits off of a Byte?  Do an unsigned byte load plus
496    // an and.
497    if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
498      Node* ldub = new LoadUBNode(load->in(MemNode::Control),
499                                  load->in(MemNode::Memory),
500                                  load->in(MemNode::Address),
501                                  load->adr_type(),
502                                  TypeInt::UBYTE, MemNode::unordered);
503      ldub = phase->transform(ldub);
504      return new AndINode(ldub, phase->intcon(mask));
505    }
506  }
507
508  // Masking off sign bits?  Dont make them!
509  if( lop == Op_RShiftI ) {
510    const TypeInt *t12 = phase->type(load->in(2))->isa_int();
511    if( t12 && t12->is_con() ) { // Shift is by a constant
512      int shift = t12->get_con();
513      shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
514      const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
515      // If the AND'ing of the 2 masks has no bits, then only original shifted
516      // bits survive.  NO sign-extension bits survive the maskings.
517      if( (sign_bits_mask & mask) == 0 ) {
518        // Use zero-fill shift instead
519        Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
520        return new AndINode( zshift, in(2) );
521      }
522    }
523  }
524
525  // Check for 'negate/and-1', a pattern emitted when someone asks for
526  // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
527  // plus 1) and the mask is of the low order bit.  Skip the negate.
528  if( lop == Op_SubI && mask == 1 && load->in(1) &&
529      phase->type(load->in(1)) == TypeInt::ZERO )
530    return new AndINode( load->in(2), in(2) );
531
532  return MulNode::Ideal(phase, can_reshape);
533}
534
535//=============================================================================
536//------------------------------mul_ring---------------------------------------
537// Supplied function returns the product of the inputs IN THE CURRENT RING.
538// For the logical operations the ring's MUL is really a logical AND function.
539// This also type-checks the inputs for sanity.  Guaranteed never to
540// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
541const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
542  const TypeLong *r0 = t0->is_long(); // Handy access
543  const TypeLong *r1 = t1->is_long();
544  int widen = MAX2(r0->_widen,r1->_widen);
545
546  // If either input is a constant, might be able to trim cases
547  if( !r0->is_con() && !r1->is_con() )
548    return TypeLong::LONG;      // No constants to be had
549
550  // Both constants?  Return bits
551  if( r0->is_con() && r1->is_con() )
552    return TypeLong::make( r0->get_con() & r1->get_con() );
553
554  if( r0->is_con() && r0->get_con() > 0 )
555    return TypeLong::make(CONST64(0), r0->get_con(), widen);
556
557  if( r1->is_con() && r1->get_con() > 0 )
558    return TypeLong::make(CONST64(0), r1->get_con(), widen);
559
560  return TypeLong::LONG;        // No constants to be had
561}
562
563//------------------------------Identity---------------------------------------
564// Masking off the high bits of an unsigned load is not required
565Node *AndLNode::Identity( PhaseTransform *phase ) {
566
567  // x & x => x
568  if (phase->eqv(in(1), in(2))) return in(1);
569
570  Node *usr = in(1);
571  const TypeLong *t2 = phase->type( in(2) )->isa_long();
572  if( t2 && t2->is_con() ) {
573    jlong con = t2->get_con();
574    // Masking off high bits which are always zero is useless.
575    const TypeLong* t1 = phase->type( in(1) )->isa_long();
576    if (t1 != NULL && t1->_lo >= 0) {
577      int bit_count = log2_long(t1->_hi) + 1;
578      jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
579      if ((t1_support & con) == t1_support)
580        return usr;
581    }
582    uint lop = usr->Opcode();
583    // Masking off the high bits of a unsigned-shift-right is not
584    // needed either.
585    if( lop == Op_URShiftL ) {
586      const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
587      if( t12 && t12->is_con() ) {  // Shift is by a constant
588        int shift = t12->get_con();
589        shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
590        jlong mask = max_julong >> shift;
591        if( (mask&con) == mask )  // If AND is useless, skip it
592          return usr;
593      }
594    }
595  }
596  return MulNode::Identity(phase);
597}
598
599//------------------------------Ideal------------------------------------------
600Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
601  // Special case constant AND mask
602  const TypeLong *t2 = phase->type( in(2) )->isa_long();
603  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
604  const jlong mask = t2->get_con();
605
606  Node* in1 = in(1);
607  uint op = in1->Opcode();
608
609  // Are we masking a long that was converted from an int with a mask
610  // that fits in 32-bits?  Commute them and use an AndINode.  Don't
611  // convert masks which would cause a sign extension of the integer
612  // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
613  // would be optimized away later in Identity.
614  if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
615    Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
616    andi = phase->transform(andi);
617    return new ConvI2LNode(andi);
618  }
619
620  // Masking off sign bits?  Dont make them!
621  if (op == Op_RShiftL) {
622    const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
623    if( t12 && t12->is_con() ) { // Shift is by a constant
624      int shift = t12->get_con();
625      shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
626      const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
627      // If the AND'ing of the 2 masks has no bits, then only original shifted
628      // bits survive.  NO sign-extension bits survive the maskings.
629      if( (sign_bits_mask & mask) == 0 ) {
630        // Use zero-fill shift instead
631        Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
632        return new AndLNode(zshift, in(2));
633      }
634    }
635  }
636
637  return MulNode::Ideal(phase, can_reshape);
638}
639
640//=============================================================================
641//------------------------------Identity---------------------------------------
642Node *LShiftINode::Identity( PhaseTransform *phase ) {
643  const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
644  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
645}
646
647//------------------------------Ideal------------------------------------------
648// If the right input is a constant, and the left input is an add of a
649// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
650Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
651  const Type *t  = phase->type( in(2) );
652  if( t == Type::TOP ) return NULL;       // Right input is dead
653  const TypeInt *t2 = t->isa_int();
654  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
655  const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
656
657  if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
658
659  // Left input is an add of a constant?
660  Node *add1 = in(1);
661  int add1_op = add1->Opcode();
662  if( add1_op == Op_AddI ) {    // Left input is an add?
663    assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
664    const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
665    if( t12 && t12->is_con() ){ // Left input is an add of a con?
666      // Transform is legal, but check for profit.  Avoid breaking 'i2s'
667      // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
668      if( con < 16 ) {
669        // Compute X << con0
670        Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
671        // Compute X<<con0 + (con1<<con0)
672        return new AddINode( lsh, phase->intcon(t12->get_con() << con));
673      }
674    }
675  }
676
677  // Check for "(x>>c0)<<c0" which just masks off low bits
678  if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
679      add1->in(2) == in(2) )
680    // Convert to "(x & -(1<<c0))"
681    return new AndINode(add1->in(1),phase->intcon( -(1<<con)));
682
683  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
684  if( add1_op == Op_AndI ) {
685    Node *add2 = add1->in(1);
686    int add2_op = add2->Opcode();
687    if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
688        add2->in(2) == in(2) ) {
689      // Convert to "(x & (Y<<c0))"
690      Node *y_sh = phase->transform( new LShiftINode( add1->in(2), in(2) ) );
691      return new AndINode( add2->in(1), y_sh );
692    }
693  }
694
695  // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
696  // before shifting them away.
697  const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
698  if( add1_op == Op_AndI &&
699      phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
700    return new LShiftINode( add1->in(1), in(2) );
701
702  return NULL;
703}
704
705//------------------------------Value------------------------------------------
706// A LShiftINode shifts its input2 left by input1 amount.
707const Type *LShiftINode::Value( PhaseTransform *phase ) const {
708  const Type *t1 = phase->type( in(1) );
709  const Type *t2 = phase->type( in(2) );
710  // Either input is TOP ==> the result is TOP
711  if( t1 == Type::TOP ) return Type::TOP;
712  if( t2 == Type::TOP ) return Type::TOP;
713
714  // Left input is ZERO ==> the result is ZERO.
715  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
716  // Shift by zero does nothing
717  if( t2 == TypeInt::ZERO ) return t1;
718
719  // Either input is BOTTOM ==> the result is BOTTOM
720  if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
721      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
722    return TypeInt::INT;
723
724  const TypeInt *r1 = t1->is_int(); // Handy access
725  const TypeInt *r2 = t2->is_int(); // Handy access
726
727  if (!r2->is_con())
728    return TypeInt::INT;
729
730  uint shift = r2->get_con();
731  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
732  // Shift by a multiple of 32 does nothing:
733  if (shift == 0)  return t1;
734
735  // If the shift is a constant, shift the bounds of the type,
736  // unless this could lead to an overflow.
737  if (!r1->is_con()) {
738    jint lo = r1->_lo, hi = r1->_hi;
739    if (((lo << shift) >> shift) == lo &&
740        ((hi << shift) >> shift) == hi) {
741      // No overflow.  The range shifts up cleanly.
742      return TypeInt::make((jint)lo << (jint)shift,
743                           (jint)hi << (jint)shift,
744                           MAX2(r1->_widen,r2->_widen));
745    }
746    return TypeInt::INT;
747  }
748
749  return TypeInt::make( (jint)r1->get_con() << (jint)shift );
750}
751
752//=============================================================================
753//------------------------------Identity---------------------------------------
754Node *LShiftLNode::Identity( PhaseTransform *phase ) {
755  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
756  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
757}
758
759//------------------------------Ideal------------------------------------------
760// If the right input is a constant, and the left input is an add of a
761// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
762Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
763  const Type *t  = phase->type( in(2) );
764  if( t == Type::TOP ) return NULL;       // Right input is dead
765  const TypeInt *t2 = t->isa_int();
766  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
767  const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
768
769  if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
770
771  // Left input is an add of a constant?
772  Node *add1 = in(1);
773  int add1_op = add1->Opcode();
774  if( add1_op == Op_AddL ) {    // Left input is an add?
775    // Avoid dead data cycles from dead loops
776    assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
777    const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
778    if( t12 && t12->is_con() ){ // Left input is an add of a con?
779      // Compute X << con0
780      Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
781      // Compute X<<con0 + (con1<<con0)
782      return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
783    }
784  }
785
786  // Check for "(x>>c0)<<c0" which just masks off low bits
787  if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
788      add1->in(2) == in(2) )
789    // Convert to "(x & -(1<<c0))"
790    return new AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
791
792  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
793  if( add1_op == Op_AndL ) {
794    Node *add2 = add1->in(1);
795    int add2_op = add2->Opcode();
796    if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
797        add2->in(2) == in(2) ) {
798      // Convert to "(x & (Y<<c0))"
799      Node *y_sh = phase->transform( new LShiftLNode( add1->in(2), in(2) ) );
800      return new AndLNode( add2->in(1), y_sh );
801    }
802  }
803
804  // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
805  // before shifting them away.
806  const jlong bits_mask = jlong(max_julong >> con);
807  if( add1_op == Op_AndL &&
808      phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
809    return new LShiftLNode( add1->in(1), in(2) );
810
811  return NULL;
812}
813
814//------------------------------Value------------------------------------------
815// A LShiftLNode shifts its input2 left by input1 amount.
816const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
817  const Type *t1 = phase->type( in(1) );
818  const Type *t2 = phase->type( in(2) );
819  // Either input is TOP ==> the result is TOP
820  if( t1 == Type::TOP ) return Type::TOP;
821  if( t2 == Type::TOP ) return Type::TOP;
822
823  // Left input is ZERO ==> the result is ZERO.
824  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
825  // Shift by zero does nothing
826  if( t2 == TypeInt::ZERO ) return t1;
827
828  // Either input is BOTTOM ==> the result is BOTTOM
829  if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
830      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
831    return TypeLong::LONG;
832
833  const TypeLong *r1 = t1->is_long(); // Handy access
834  const TypeInt  *r2 = t2->is_int();  // Handy access
835
836  if (!r2->is_con())
837    return TypeLong::LONG;
838
839  uint shift = r2->get_con();
840  shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
841  // Shift by a multiple of 64 does nothing:
842  if (shift == 0)  return t1;
843
844  // If the shift is a constant, shift the bounds of the type,
845  // unless this could lead to an overflow.
846  if (!r1->is_con()) {
847    jlong lo = r1->_lo, hi = r1->_hi;
848    if (((lo << shift) >> shift) == lo &&
849        ((hi << shift) >> shift) == hi) {
850      // No overflow.  The range shifts up cleanly.
851      return TypeLong::make((jlong)lo << (jint)shift,
852                            (jlong)hi << (jint)shift,
853                            MAX2(r1->_widen,r2->_widen));
854    }
855    return TypeLong::LONG;
856  }
857
858  return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
859}
860
861//=============================================================================
862//------------------------------Identity---------------------------------------
863Node *RShiftINode::Identity( PhaseTransform *phase ) {
864  const TypeInt *t2 = phase->type(in(2))->isa_int();
865  if( !t2 ) return this;
866  if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
867    return in(1);
868
869  // Check for useless sign-masking
870  if( in(1)->Opcode() == Op_LShiftI &&
871      in(1)->req() == 3 &&
872      in(1)->in(2) == in(2) &&
873      t2->is_con() ) {
874    uint shift = t2->get_con();
875    shift &= BitsPerJavaInteger-1; // semantics of Java shifts
876    // Compute masks for which this shifting doesn't change
877    int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
878    int hi = ~lo;               // 00007FFF
879    const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
880    if( !t11 ) return this;
881    // Does actual value fit inside of mask?
882    if( lo <= t11->_lo && t11->_hi <= hi )
883      return in(1)->in(1);      // Then shifting is a nop
884  }
885
886  return this;
887}
888
889//------------------------------Ideal------------------------------------------
890Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
891  // Inputs may be TOP if they are dead.
892  const TypeInt *t1 = phase->type( in(1) )->isa_int();
893  if( !t1 ) return NULL;        // Left input is an integer
894  const TypeInt *t2 = phase->type( in(2) )->isa_int();
895  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
896  const TypeInt *t3;  // type of in(1).in(2)
897  int shift = t2->get_con();
898  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
899
900  if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
901
902  // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
903  // Such expressions arise normally from shift chains like (byte)(x >> 24).
904  const Node *mask = in(1);
905  if( mask->Opcode() == Op_AndI &&
906      (t3 = phase->type(mask->in(2))->isa_int()) &&
907      t3->is_con() ) {
908    Node *x = mask->in(1);
909    jint maskbits = t3->get_con();
910    // Convert to "(x >> shift) & (mask >> shift)"
911    Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
912    return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
913  }
914
915  // Check for "(short[i] <<16)>>16" which simply sign-extends
916  const Node *shl = in(1);
917  if( shl->Opcode() != Op_LShiftI ) return NULL;
918
919  if( shift == 16 &&
920      (t3 = phase->type(shl->in(2))->isa_int()) &&
921      t3->is_con(16) ) {
922    Node *ld = shl->in(1);
923    if( ld->Opcode() == Op_LoadS ) {
924      // Sign extension is just useless here.  Return a RShiftI of zero instead
925      // returning 'ld' directly.  We cannot return an old Node directly as
926      // that is the job of 'Identity' calls and Identity calls only work on
927      // direct inputs ('ld' is an extra Node removed from 'this').  The
928      // combined optimization requires Identity only return direct inputs.
929      set_req(1, ld);
930      set_req(2, phase->intcon(0));
931      return this;
932    }
933    else if( can_reshape &&
934             ld->Opcode() == Op_LoadUS &&
935             ld->outcnt() == 1 && ld->unique_out() == shl)
936      // Replace zero-extension-load with sign-extension-load
937      return new LoadSNode( ld->in(MemNode::Control),
938                            ld->in(MemNode::Memory),
939                            ld->in(MemNode::Address),
940                            ld->adr_type(), TypeInt::SHORT,
941                            MemNode::unordered);
942  }
943
944  // Check for "(byte[i] <<24)>>24" which simply sign-extends
945  if( shift == 24 &&
946      (t3 = phase->type(shl->in(2))->isa_int()) &&
947      t3->is_con(24) ) {
948    Node *ld = shl->in(1);
949    if( ld->Opcode() == Op_LoadB ) {
950      // Sign extension is just useless here
951      set_req(1, ld);
952      set_req(2, phase->intcon(0));
953      return this;
954    }
955  }
956
957  return NULL;
958}
959
960//------------------------------Value------------------------------------------
961// A RShiftINode shifts its input2 right by input1 amount.
962const Type *RShiftINode::Value( PhaseTransform *phase ) const {
963  const Type *t1 = phase->type( in(1) );
964  const Type *t2 = phase->type( in(2) );
965  // Either input is TOP ==> the result is TOP
966  if( t1 == Type::TOP ) return Type::TOP;
967  if( t2 == Type::TOP ) return Type::TOP;
968
969  // Left input is ZERO ==> the result is ZERO.
970  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
971  // Shift by zero does nothing
972  if( t2 == TypeInt::ZERO ) return t1;
973
974  // Either input is BOTTOM ==> the result is BOTTOM
975  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
976    return TypeInt::INT;
977
978  if (t2 == TypeInt::INT)
979    return TypeInt::INT;
980
981  const TypeInt *r1 = t1->is_int(); // Handy access
982  const TypeInt *r2 = t2->is_int(); // Handy access
983
984  // If the shift is a constant, just shift the bounds of the type.
985  // For example, if the shift is 31, we just propagate sign bits.
986  if (r2->is_con()) {
987    uint shift = r2->get_con();
988    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
989    // Shift by a multiple of 32 does nothing:
990    if (shift == 0)  return t1;
991    // Calculate reasonably aggressive bounds for the result.
992    // This is necessary if we are to correctly type things
993    // like (x<<24>>24) == ((byte)x).
994    jint lo = (jint)r1->_lo >> (jint)shift;
995    jint hi = (jint)r1->_hi >> (jint)shift;
996    assert(lo <= hi, "must have valid bounds");
997    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
998#ifdef ASSERT
999    // Make sure we get the sign-capture idiom correct.
1000    if (shift == BitsPerJavaInteger-1) {
1001      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1002      if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1003    }
1004#endif
1005    return ti;
1006  }
1007
1008  if( !r1->is_con() || !r2->is_con() )
1009    return TypeInt::INT;
1010
1011  // Signed shift right
1012  return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
1013}
1014
1015//=============================================================================
1016//------------------------------Identity---------------------------------------
1017Node *RShiftLNode::Identity( PhaseTransform *phase ) {
1018  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1019  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1020}
1021
1022//------------------------------Value------------------------------------------
1023// A RShiftLNode shifts its input2 right by input1 amount.
1024const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
1025  const Type *t1 = phase->type( in(1) );
1026  const Type *t2 = phase->type( in(2) );
1027  // Either input is TOP ==> the result is TOP
1028  if( t1 == Type::TOP ) return Type::TOP;
1029  if( t2 == Type::TOP ) return Type::TOP;
1030
1031  // Left input is ZERO ==> the result is ZERO.
1032  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1033  // Shift by zero does nothing
1034  if( t2 == TypeInt::ZERO ) return t1;
1035
1036  // Either input is BOTTOM ==> the result is BOTTOM
1037  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1038    return TypeLong::LONG;
1039
1040  if (t2 == TypeInt::INT)
1041    return TypeLong::LONG;
1042
1043  const TypeLong *r1 = t1->is_long(); // Handy access
1044  const TypeInt  *r2 = t2->is_int (); // Handy access
1045
1046  // If the shift is a constant, just shift the bounds of the type.
1047  // For example, if the shift is 63, we just propagate sign bits.
1048  if (r2->is_con()) {
1049    uint shift = r2->get_con();
1050    shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1051    // Shift by a multiple of 64 does nothing:
1052    if (shift == 0)  return t1;
1053    // Calculate reasonably aggressive bounds for the result.
1054    // This is necessary if we are to correctly type things
1055    // like (x<<24>>24) == ((byte)x).
1056    jlong lo = (jlong)r1->_lo >> (jlong)shift;
1057    jlong hi = (jlong)r1->_hi >> (jlong)shift;
1058    assert(lo <= hi, "must have valid bounds");
1059    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1060    #ifdef ASSERT
1061    // Make sure we get the sign-capture idiom correct.
1062    if (shift == (2*BitsPerJavaInteger)-1) {
1063      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1064      if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1065    }
1066    #endif
1067    return tl;
1068  }
1069
1070  return TypeLong::LONG;                // Give up
1071}
1072
1073//=============================================================================
1074//------------------------------Identity---------------------------------------
1075Node *URShiftINode::Identity( PhaseTransform *phase ) {
1076  const TypeInt *ti = phase->type( in(2) )->isa_int();
1077  if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
1078
1079  // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1080  // Happens during new-array length computation.
1081  // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1082  Node *add = in(1);
1083  if( add->Opcode() == Op_AddI ) {
1084    const TypeInt *t2  = phase->type(add->in(2))->isa_int();
1085    if( t2 && t2->is_con(wordSize - 1) &&
1086        add->in(1)->Opcode() == Op_LShiftI ) {
1087      // Check that shift_counts are LogBytesPerWord
1088      Node          *lshift_count   = add->in(1)->in(2);
1089      const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1090      if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1091          t_lshift_count == phase->type(in(2)) ) {
1092        Node          *x   = add->in(1)->in(1);
1093        const TypeInt *t_x = phase->type(x)->isa_int();
1094        if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
1095          return x;
1096        }
1097      }
1098    }
1099  }
1100
1101  return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1102}
1103
1104//------------------------------Ideal------------------------------------------
1105Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1106  const TypeInt *t2 = phase->type( in(2) )->isa_int();
1107  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1108  const int con = t2->get_con() & 31; // Shift count is always masked
1109  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1110  // We'll be wanting the right-shift amount as a mask of that many bits
1111  const int mask = right_n_bits(BitsPerJavaInteger - con);
1112
1113  int in1_op = in(1)->Opcode();
1114
1115  // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1116  if( in1_op == Op_URShiftI ) {
1117    const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1118    if( t12 && t12->is_con() ) { // Right input is a constant
1119      assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1120      const int con2 = t12->get_con() & 31; // Shift count is always masked
1121      const int con3 = con+con2;
1122      if( con3 < 32 )           // Only merge shifts if total is < 32
1123        return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1124    }
1125  }
1126
1127  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1128  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1129  // If Q is "X << z" the rounding is useless.  Look for patterns like
1130  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1131  Node *add = in(1);
1132  if( in1_op == Op_AddI ) {
1133    Node *lshl = add->in(1);
1134    if( lshl->Opcode() == Op_LShiftI &&
1135        phase->type(lshl->in(2)) == t2 ) {
1136      Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1137      Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1138      return new AndINode( sum, phase->intcon(mask) );
1139    }
1140  }
1141
1142  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1143  // This shortens the mask.  Also, if we are extracting a high byte and
1144  // storing it to a buffer, the mask will be removed completely.
1145  Node *andi = in(1);
1146  if( in1_op == Op_AndI ) {
1147    const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1148    if( t3 && t3->is_con() ) { // Right input is a constant
1149      jint mask2 = t3->get_con();
1150      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1151      Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1152      return new AndINode(newshr, phase->intcon(mask2));
1153      // The negative values are easier to materialize than positive ones.
1154      // A typical case from address arithmetic is ((x & ~15) >> 4).
1155      // It's better to change that to ((x >> 4) & ~0) versus
1156      // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1157    }
1158  }
1159
1160  // Check for "(X << z ) >>> z" which simply zero-extends
1161  Node *shl = in(1);
1162  if( in1_op == Op_LShiftI &&
1163      phase->type(shl->in(2)) == t2 )
1164    return new AndINode( shl->in(1), phase->intcon(mask) );
1165
1166  return NULL;
1167}
1168
1169//------------------------------Value------------------------------------------
1170// A URShiftINode shifts its input2 right by input1 amount.
1171const Type *URShiftINode::Value( PhaseTransform *phase ) const {
1172  // (This is a near clone of RShiftINode::Value.)
1173  const Type *t1 = phase->type( in(1) );
1174  const Type *t2 = phase->type( in(2) );
1175  // Either input is TOP ==> the result is TOP
1176  if( t1 == Type::TOP ) return Type::TOP;
1177  if( t2 == Type::TOP ) return Type::TOP;
1178
1179  // Left input is ZERO ==> the result is ZERO.
1180  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1181  // Shift by zero does nothing
1182  if( t2 == TypeInt::ZERO ) return t1;
1183
1184  // Either input is BOTTOM ==> the result is BOTTOM
1185  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1186    return TypeInt::INT;
1187
1188  if (t2 == TypeInt::INT)
1189    return TypeInt::INT;
1190
1191  const TypeInt *r1 = t1->is_int();     // Handy access
1192  const TypeInt *r2 = t2->is_int();     // Handy access
1193
1194  if (r2->is_con()) {
1195    uint shift = r2->get_con();
1196    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1197    // Shift by a multiple of 32 does nothing:
1198    if (shift == 0)  return t1;
1199    // Calculate reasonably aggressive bounds for the result.
1200    jint lo = (juint)r1->_lo >> (juint)shift;
1201    jint hi = (juint)r1->_hi >> (juint)shift;
1202    if (r1->_hi >= 0 && r1->_lo < 0) {
1203      // If the type has both negative and positive values,
1204      // there are two separate sub-domains to worry about:
1205      // The positive half and the negative half.
1206      jint neg_lo = lo;
1207      jint neg_hi = (juint)-1 >> (juint)shift;
1208      jint pos_lo = (juint) 0 >> (juint)shift;
1209      jint pos_hi = hi;
1210      lo = MIN2(neg_lo, pos_lo);  // == 0
1211      hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1212    }
1213    assert(lo <= hi, "must have valid bounds");
1214    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1215    #ifdef ASSERT
1216    // Make sure we get the sign-capture idiom correct.
1217    if (shift == BitsPerJavaInteger-1) {
1218      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1219      if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1220    }
1221    #endif
1222    return ti;
1223  }
1224
1225  //
1226  // Do not support shifted oops in info for GC
1227  //
1228  // else if( t1->base() == Type::InstPtr ) {
1229  //
1230  //   const TypeInstPtr *o = t1->is_instptr();
1231  //   if( t1->singleton() )
1232  //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1233  // }
1234  // else if( t1->base() == Type::KlassPtr ) {
1235  //   const TypeKlassPtr *o = t1->is_klassptr();
1236  //   if( t1->singleton() )
1237  //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1238  // }
1239
1240  return TypeInt::INT;
1241}
1242
1243//=============================================================================
1244//------------------------------Identity---------------------------------------
1245Node *URShiftLNode::Identity( PhaseTransform *phase ) {
1246  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1247  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1248}
1249
1250//------------------------------Ideal------------------------------------------
1251Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1252  const TypeInt *t2 = phase->type( in(2) )->isa_int();
1253  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1254  const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
1255  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1256                              // note: mask computation below does not work for 0 shift count
1257  // We'll be wanting the right-shift amount as a mask of that many bits
1258  const jlong mask = jlong(max_julong >> con);
1259
1260  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1261  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1262  // If Q is "X << z" the rounding is useless.  Look for patterns like
1263  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1264  Node *add = in(1);
1265  if( add->Opcode() == Op_AddL ) {
1266    Node *lshl = add->in(1);
1267    if( lshl->Opcode() == Op_LShiftL &&
1268        phase->type(lshl->in(2)) == t2 ) {
1269      Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1270      Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1271      return new AndLNode( sum, phase->longcon(mask) );
1272    }
1273  }
1274
1275  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1276  // This shortens the mask.  Also, if we are extracting a high byte and
1277  // storing it to a buffer, the mask will be removed completely.
1278  Node *andi = in(1);
1279  if( andi->Opcode() == Op_AndL ) {
1280    const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1281    if( t3 && t3->is_con() ) { // Right input is a constant
1282      jlong mask2 = t3->get_con();
1283      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1284      Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1285      return new AndLNode(newshr, phase->longcon(mask2));
1286    }
1287  }
1288
1289  // Check for "(X << z ) >>> z" which simply zero-extends
1290  Node *shl = in(1);
1291  if( shl->Opcode() == Op_LShiftL &&
1292      phase->type(shl->in(2)) == t2 )
1293    return new AndLNode( shl->in(1), phase->longcon(mask) );
1294
1295  return NULL;
1296}
1297
1298//------------------------------Value------------------------------------------
1299// A URShiftINode shifts its input2 right by input1 amount.
1300const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
1301  // (This is a near clone of RShiftLNode::Value.)
1302  const Type *t1 = phase->type( in(1) );
1303  const Type *t2 = phase->type( in(2) );
1304  // Either input is TOP ==> the result is TOP
1305  if( t1 == Type::TOP ) return Type::TOP;
1306  if( t2 == Type::TOP ) return Type::TOP;
1307
1308  // Left input is ZERO ==> the result is ZERO.
1309  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1310  // Shift by zero does nothing
1311  if( t2 == TypeInt::ZERO ) return t1;
1312
1313  // Either input is BOTTOM ==> the result is BOTTOM
1314  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1315    return TypeLong::LONG;
1316
1317  if (t2 == TypeInt::INT)
1318    return TypeLong::LONG;
1319
1320  const TypeLong *r1 = t1->is_long(); // Handy access
1321  const TypeInt  *r2 = t2->is_int (); // Handy access
1322
1323  if (r2->is_con()) {
1324    uint shift = r2->get_con();
1325    shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1326    // Shift by a multiple of 64 does nothing:
1327    if (shift == 0)  return t1;
1328    // Calculate reasonably aggressive bounds for the result.
1329    jlong lo = (julong)r1->_lo >> (juint)shift;
1330    jlong hi = (julong)r1->_hi >> (juint)shift;
1331    if (r1->_hi >= 0 && r1->_lo < 0) {
1332      // If the type has both negative and positive values,
1333      // there are two separate sub-domains to worry about:
1334      // The positive half and the negative half.
1335      jlong neg_lo = lo;
1336      jlong neg_hi = (julong)-1 >> (juint)shift;
1337      jlong pos_lo = (julong) 0 >> (juint)shift;
1338      jlong pos_hi = hi;
1339      //lo = MIN2(neg_lo, pos_lo);  // == 0
1340      lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1341      //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1342      hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1343    }
1344    assert(lo <= hi, "must have valid bounds");
1345    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1346    #ifdef ASSERT
1347    // Make sure we get the sign-capture idiom correct.
1348    if (shift == BitsPerJavaLong - 1) {
1349      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1350      if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1351    }
1352    #endif
1353    return tl;
1354  }
1355
1356  return TypeLong::LONG;                // Give up
1357}
1358