1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/addnode.hpp"
28#include "opto/connode.hpp"
29#include "opto/convertnode.hpp"
30#include "opto/memnode.hpp"
31#include "opto/mulnode.hpp"
32#include "opto/phaseX.hpp"
33#include "opto/subnode.hpp"
34
35// Portions of code courtesy of Clifford Click
36
37
38//=============================================================================
39//------------------------------hash-------------------------------------------
40// Hash function over MulNodes.  Needs to be commutative; i.e., I swap
41// (commute) inputs to MulNodes willy-nilly so the hash function must return
42// the same value in the presence of edge swapping.
43uint MulNode::hash() const {
44  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
45}
46
47//------------------------------Identity---------------------------------------
48// Multiplying a one preserves the other argument
49Node* MulNode::Identity(PhaseGVN* phase) {
50  register const Type *one = mul_id();  // The multiplicative identity
51  if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
52  if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
53
54  return this;
55}
56
57//------------------------------Ideal------------------------------------------
58// We also canonicalize the Node, moving constants to the right input,
59// and flatten expressions (so that 1+x+2 becomes x+3).
60Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
61  const Type *t1 = phase->type( in(1) );
62  const Type *t2 = phase->type( in(2) );
63  Node *progress = NULL;        // Progress flag
64  // We are OK if right is a constant, or right is a load and
65  // left is a non-constant.
66  if( !(t2->singleton() ||
67        (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
68    if( t1->singleton() ||       // Left input is a constant?
69        // Otherwise, sort inputs (commutativity) to help value numbering.
70        (in(1)->_idx > in(2)->_idx) ) {
71      swap_edges(1, 2);
72      const Type *t = t1;
73      t1 = t2;
74      t2 = t;
75      progress = this;            // Made progress
76    }
77  }
78
79  // If the right input is a constant, and the left input is a product of a
80  // constant, flatten the expression tree.
81  uint op = Opcode();
82  if( t2->singleton() &&        // Right input is a constant?
83      op != Op_MulF &&          // Float & double cannot reassociate
84      op != Op_MulD ) {
85    if( t2 == Type::TOP ) return NULL;
86    Node *mul1 = in(1);
87#ifdef ASSERT
88    // Check for dead loop
89    int   op1 = mul1->Opcode();
90    if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
91        ( ( op1 == mul_opcode() || op1 == add_opcode() ) &&
92          ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
93            phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) ) )
94      assert(false, "dead loop in MulNode::Ideal");
95#endif
96
97    if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
98      // Mul of a constant?
99      const Type *t12 = phase->type( mul1->in(2) );
100      if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
101        // Compute new constant; check for overflow
102        const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
103        if( tcon01->singleton() ) {
104          // The Mul of the flattened expression
105          set_req(1, mul1->in(1));
106          set_req(2, phase->makecon( tcon01 ));
107          t2 = tcon01;
108          progress = this;      // Made progress
109        }
110      }
111    }
112    // If the right input is a constant, and the left input is an add of a
113    // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
114    const Node *add1 = in(1);
115    if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
116      // Add of a constant?
117      const Type *t12 = phase->type( add1->in(2) );
118      if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
119        assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
120        // Compute new constant; check for overflow
121        const Type *tcon01 = mul_ring(t2,t12);
122        if( tcon01->singleton() ) {
123
124        // Convert (X+con1)*con0 into X*con0
125          Node *mul = clone();    // mul = ()*con0
126          mul->set_req(1,add1->in(1));  // mul = X*con0
127          mul = phase->transform(mul);
128
129          Node *add2 = add1->clone();
130          add2->set_req(1, mul);        // X*con0 + con0*con1
131          add2->set_req(2, phase->makecon(tcon01) );
132          progress = add2;
133        }
134      }
135    } // End of is left input an add
136  } // End of is right input a Mul
137
138  return progress;
139}
140
141//------------------------------Value-----------------------------------------
142const Type* MulNode::Value(PhaseGVN* phase) const {
143  const Type *t1 = phase->type( in(1) );
144  const Type *t2 = phase->type( in(2) );
145  // Either input is TOP ==> the result is TOP
146  if( t1 == Type::TOP ) return Type::TOP;
147  if( t2 == Type::TOP ) return Type::TOP;
148
149  // Either input is ZERO ==> the result is ZERO.
150  // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
151  int op = Opcode();
152  if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
153    const Type *zero = add_id();        // The multiplicative zero
154    if( t1->higher_equal( zero ) ) return zero;
155    if( t2->higher_equal( zero ) ) return zero;
156  }
157
158  // Either input is BOTTOM ==> the result is the local BOTTOM
159  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
160    return bottom_type();
161
162#if defined(IA32)
163  // Can't trust native compilers to properly fold strict double
164  // multiplication with round-to-zero on this platform.
165  if (op == Op_MulD && phase->C->method()->is_strict()) {
166    return TypeD::DOUBLE;
167  }
168#endif
169
170  return mul_ring(t1,t2);            // Local flavor of type multiplication
171}
172
173
174//=============================================================================
175//------------------------------Ideal------------------------------------------
176// Check for power-of-2 multiply, then try the regular MulNode::Ideal
177Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
178  // Swap constant to right
179  jint con;
180  if ((con = in(1)->find_int_con(0)) != 0) {
181    swap_edges(1, 2);
182    // Finish rest of method to use info in 'con'
183  } else if ((con = in(2)->find_int_con(0)) == 0) {
184    return MulNode::Ideal(phase, can_reshape);
185  }
186
187  // Now we have a constant Node on the right and the constant in con
188  if( con == 0 ) return NULL;   // By zero is handled by Value call
189  if( con == 1 ) return NULL;   // By one  is handled by Identity call
190
191  // Check for negative constant; if so negate the final result
192  bool sign_flip = false;
193  if( con < 0 ) {
194    con = -con;
195    sign_flip = true;
196  }
197
198  // Get low bit; check for being the only bit
199  Node *res = NULL;
200  jint bit1 = con & -con;       // Extract low bit
201  if( bit1 == con ) {           // Found a power of 2?
202    res = new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
203  } else {
204
205    // Check for constant with 2 bits set
206    jint bit2 = con-bit1;
207    bit2 = bit2 & -bit2;          // Extract 2nd bit
208    if( bit2 + bit1 == con ) {    // Found all bits in con?
209      Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
210      Node *n2 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
211      res = new AddINode( n2, n1 );
212
213    } else if (is_power_of_2(con+1)) {
214      // Sleezy: power-of-2 -1.  Next time be generic.
215      jint temp = (jint) (con + 1);
216      Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
217      res = new SubINode( n1, in(1) );
218    } else {
219      return MulNode::Ideal(phase, can_reshape);
220    }
221  }
222
223  if( sign_flip ) {             // Need to negate result?
224    res = phase->transform(res);// Transform, before making the zero con
225    res = new SubINode(phase->intcon(0),res);
226  }
227
228  return res;                   // Return final result
229}
230
231//------------------------------mul_ring---------------------------------------
232// Compute the product type of two integer ranges into this node.
233const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
234  const TypeInt *r0 = t0->is_int(); // Handy access
235  const TypeInt *r1 = t1->is_int();
236
237  // Fetch endpoints of all ranges
238  int32_t lo0 = r0->_lo;
239  double a = (double)lo0;
240  int32_t hi0 = r0->_hi;
241  double b = (double)hi0;
242  int32_t lo1 = r1->_lo;
243  double c = (double)lo1;
244  int32_t hi1 = r1->_hi;
245  double d = (double)hi1;
246
247  // Compute all endpoints & check for overflow
248  int32_t A = java_multiply(lo0, lo1);
249  if( (double)A != a*c ) return TypeInt::INT; // Overflow?
250  int32_t B = java_multiply(lo0, hi1);
251  if( (double)B != a*d ) return TypeInt::INT; // Overflow?
252  int32_t C = java_multiply(hi0, lo1);
253  if( (double)C != b*c ) return TypeInt::INT; // Overflow?
254  int32_t D = java_multiply(hi0, hi1);
255  if( (double)D != b*d ) return TypeInt::INT; // Overflow?
256
257  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
258  else { lo0 = B; hi0 = A; }
259  if( C < D ) {
260    if( C < lo0 ) lo0 = C;
261    if( D > hi0 ) hi0 = D;
262  } else {
263    if( D < lo0 ) lo0 = D;
264    if( C > hi0 ) hi0 = C;
265  }
266  return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
267}
268
269
270//=============================================================================
271//------------------------------Ideal------------------------------------------
272// Check for power-of-2 multiply, then try the regular MulNode::Ideal
273Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
274  // Swap constant to right
275  jlong con;
276  if ((con = in(1)->find_long_con(0)) != 0) {
277    swap_edges(1, 2);
278    // Finish rest of method to use info in 'con'
279  } else if ((con = in(2)->find_long_con(0)) == 0) {
280    return MulNode::Ideal(phase, can_reshape);
281  }
282
283  // Now we have a constant Node on the right and the constant in con
284  if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
285  if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
286
287  // Check for negative constant; if so negate the final result
288  bool sign_flip = false;
289  if( con < 0 ) {
290    con = -con;
291    sign_flip = true;
292  }
293
294  // Get low bit; check for being the only bit
295  Node *res = NULL;
296  jlong bit1 = con & -con;      // Extract low bit
297  if( bit1 == con ) {           // Found a power of 2?
298    res = new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
299  } else {
300
301    // Check for constant with 2 bits set
302    jlong bit2 = con-bit1;
303    bit2 = bit2 & -bit2;          // Extract 2nd bit
304    if( bit2 + bit1 == con ) {    // Found all bits in con?
305      Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
306      Node *n2 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
307      res = new AddLNode( n2, n1 );
308
309    } else if (is_power_of_2_long(con+1)) {
310      // Sleezy: power-of-2 -1.  Next time be generic.
311      jlong temp = (jlong) (con + 1);
312      Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
313      res = new SubLNode( n1, in(1) );
314    } else {
315      return MulNode::Ideal(phase, can_reshape);
316    }
317  }
318
319  if( sign_flip ) {             // Need to negate result?
320    res = phase->transform(res);// Transform, before making the zero con
321    res = new SubLNode(phase->longcon(0),res);
322  }
323
324  return res;                   // Return final result
325}
326
327//------------------------------mul_ring---------------------------------------
328// Compute the product type of two integer ranges into this node.
329const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
330  const TypeLong *r0 = t0->is_long(); // Handy access
331  const TypeLong *r1 = t1->is_long();
332
333  // Fetch endpoints of all ranges
334  jlong lo0 = r0->_lo;
335  double a = (double)lo0;
336  jlong hi0 = r0->_hi;
337  double b = (double)hi0;
338  jlong lo1 = r1->_lo;
339  double c = (double)lo1;
340  jlong hi1 = r1->_hi;
341  double d = (double)hi1;
342
343  // Compute all endpoints & check for overflow
344  jlong A = java_multiply(lo0, lo1);
345  if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
346  jlong B = java_multiply(lo0, hi1);
347  if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
348  jlong C = java_multiply(hi0, lo1);
349  if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
350  jlong D = java_multiply(hi0, hi1);
351  if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
352
353  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
354  else { lo0 = B; hi0 = A; }
355  if( C < D ) {
356    if( C < lo0 ) lo0 = C;
357    if( D > hi0 ) hi0 = D;
358  } else {
359    if( D < lo0 ) lo0 = D;
360    if( C > hi0 ) hi0 = C;
361  }
362  return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
363}
364
365//=============================================================================
366//------------------------------mul_ring---------------------------------------
367// Compute the product type of two double ranges into this node.
368const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
369  if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
370  return TypeF::make( t0->getf() * t1->getf() );
371}
372
373//=============================================================================
374//------------------------------mul_ring---------------------------------------
375// Compute the product type of two double ranges into this node.
376const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
377  if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
378  // We must be multiplying 2 double constants.
379  return TypeD::make( t0->getd() * t1->getd() );
380}
381
382//=============================================================================
383//------------------------------Value------------------------------------------
384const Type* MulHiLNode::Value(PhaseGVN* phase) const {
385  // Either input is TOP ==> the result is TOP
386  const Type *t1 = phase->type( in(1) );
387  const Type *t2 = phase->type( in(2) );
388  if( t1 == Type::TOP ) return Type::TOP;
389  if( t2 == Type::TOP ) return Type::TOP;
390
391  // Either input is BOTTOM ==> the result is the local BOTTOM
392  const Type *bot = bottom_type();
393  if( (t1 == bot) || (t2 == bot) ||
394      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
395    return bot;
396
397  // It is not worth trying to constant fold this stuff!
398  return TypeLong::LONG;
399}
400
401//=============================================================================
402//------------------------------mul_ring---------------------------------------
403// Supplied function returns the product of the inputs IN THE CURRENT RING.
404// For the logical operations the ring's MUL is really a logical AND function.
405// This also type-checks the inputs for sanity.  Guaranteed never to
406// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
407const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
408  const TypeInt *r0 = t0->is_int(); // Handy access
409  const TypeInt *r1 = t1->is_int();
410  int widen = MAX2(r0->_widen,r1->_widen);
411
412  // If either input is a constant, might be able to trim cases
413  if( !r0->is_con() && !r1->is_con() )
414    return TypeInt::INT;        // No constants to be had
415
416  // Both constants?  Return bits
417  if( r0->is_con() && r1->is_con() )
418    return TypeInt::make( r0->get_con() & r1->get_con() );
419
420  if( r0->is_con() && r0->get_con() > 0 )
421    return TypeInt::make(0, r0->get_con(), widen);
422
423  if( r1->is_con() && r1->get_con() > 0 )
424    return TypeInt::make(0, r1->get_con(), widen);
425
426  if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
427    return TypeInt::BOOL;
428  }
429
430  return TypeInt::INT;          // No constants to be had
431}
432
433//------------------------------Identity---------------------------------------
434// Masking off the high bits of an unsigned load is not required
435Node* AndINode::Identity(PhaseGVN* phase) {
436
437  // x & x => x
438  if (phase->eqv(in(1), in(2))) return in(1);
439
440  Node* in1 = in(1);
441  uint op = in1->Opcode();
442  const TypeInt* t2 = phase->type(in(2))->isa_int();
443  if (t2 && t2->is_con()) {
444    int con = t2->get_con();
445    // Masking off high bits which are always zero is useless.
446    const TypeInt* t1 = phase->type( in(1) )->isa_int();
447    if (t1 != NULL && t1->_lo >= 0) {
448      jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
449      if ((t1_support & con) == t1_support)
450        return in1;
451    }
452    // Masking off the high bits of a unsigned-shift-right is not
453    // needed either.
454    if (op == Op_URShiftI) {
455      const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
456      if (t12 && t12->is_con()) {  // Shift is by a constant
457        int shift = t12->get_con();
458        shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
459        int mask = max_juint >> shift;
460        if ((mask & con) == mask)  // If AND is useless, skip it
461          return in1;
462      }
463    }
464  }
465  return MulNode::Identity(phase);
466}
467
468//------------------------------Ideal------------------------------------------
469Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
470  // Special case constant AND mask
471  const TypeInt *t2 = phase->type( in(2) )->isa_int();
472  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
473  const int mask = t2->get_con();
474  Node *load = in(1);
475  uint lop = load->Opcode();
476
477  // Masking bits off of a Character?  Hi bits are already zero.
478  if( lop == Op_LoadUS &&
479      (mask & 0xFFFF0000) )     // Can we make a smaller mask?
480    return new AndINode(load,phase->intcon(mask&0xFFFF));
481
482  // Masking bits off of a Short?  Loading a Character does some masking
483  if (can_reshape &&
484      load->outcnt() == 1 && load->unique_out() == this) {
485    if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
486      Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
487      ldus = phase->transform(ldus);
488      return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
489    }
490
491    // Masking sign bits off of a Byte?  Do an unsigned byte load plus
492    // an and.
493    if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
494      Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
495      ldub = phase->transform(ldub);
496      return new AndINode(ldub, phase->intcon(mask));
497    }
498  }
499
500  // Masking off sign bits?  Dont make them!
501  if( lop == Op_RShiftI ) {
502    const TypeInt *t12 = phase->type(load->in(2))->isa_int();
503    if( t12 && t12->is_con() ) { // Shift is by a constant
504      int shift = t12->get_con();
505      shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
506      const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
507      // If the AND'ing of the 2 masks has no bits, then only original shifted
508      // bits survive.  NO sign-extension bits survive the maskings.
509      if( (sign_bits_mask & mask) == 0 ) {
510        // Use zero-fill shift instead
511        Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
512        return new AndINode( zshift, in(2) );
513      }
514    }
515  }
516
517  // Check for 'negate/and-1', a pattern emitted when someone asks for
518  // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
519  // plus 1) and the mask is of the low order bit.  Skip the negate.
520  if( lop == Op_SubI && mask == 1 && load->in(1) &&
521      phase->type(load->in(1)) == TypeInt::ZERO )
522    return new AndINode( load->in(2), in(2) );
523
524  return MulNode::Ideal(phase, can_reshape);
525}
526
527//=============================================================================
528//------------------------------mul_ring---------------------------------------
529// Supplied function returns the product of the inputs IN THE CURRENT RING.
530// For the logical operations the ring's MUL is really a logical AND function.
531// This also type-checks the inputs for sanity.  Guaranteed never to
532// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
533const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
534  const TypeLong *r0 = t0->is_long(); // Handy access
535  const TypeLong *r1 = t1->is_long();
536  int widen = MAX2(r0->_widen,r1->_widen);
537
538  // If either input is a constant, might be able to trim cases
539  if( !r0->is_con() && !r1->is_con() )
540    return TypeLong::LONG;      // No constants to be had
541
542  // Both constants?  Return bits
543  if( r0->is_con() && r1->is_con() )
544    return TypeLong::make( r0->get_con() & r1->get_con() );
545
546  if( r0->is_con() && r0->get_con() > 0 )
547    return TypeLong::make(CONST64(0), r0->get_con(), widen);
548
549  if( r1->is_con() && r1->get_con() > 0 )
550    return TypeLong::make(CONST64(0), r1->get_con(), widen);
551
552  return TypeLong::LONG;        // No constants to be had
553}
554
555//------------------------------Identity---------------------------------------
556// Masking off the high bits of an unsigned load is not required
557Node* AndLNode::Identity(PhaseGVN* phase) {
558
559  // x & x => x
560  if (phase->eqv(in(1), in(2))) return in(1);
561
562  Node *usr = in(1);
563  const TypeLong *t2 = phase->type( in(2) )->isa_long();
564  if( t2 && t2->is_con() ) {
565    jlong con = t2->get_con();
566    // Masking off high bits which are always zero is useless.
567    const TypeLong* t1 = phase->type( in(1) )->isa_long();
568    if (t1 != NULL && t1->_lo >= 0) {
569      int bit_count = log2_long(t1->_hi) + 1;
570      jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
571      if ((t1_support & con) == t1_support)
572        return usr;
573    }
574    uint lop = usr->Opcode();
575    // Masking off the high bits of a unsigned-shift-right is not
576    // needed either.
577    if( lop == Op_URShiftL ) {
578      const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
579      if( t12 && t12->is_con() ) {  // Shift is by a constant
580        int shift = t12->get_con();
581        shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
582        jlong mask = max_julong >> shift;
583        if( (mask&con) == mask )  // If AND is useless, skip it
584          return usr;
585      }
586    }
587  }
588  return MulNode::Identity(phase);
589}
590
591//------------------------------Ideal------------------------------------------
592Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
593  // Special case constant AND mask
594  const TypeLong *t2 = phase->type( in(2) )->isa_long();
595  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
596  const jlong mask = t2->get_con();
597
598  Node* in1 = in(1);
599  uint op = in1->Opcode();
600
601  // Are we masking a long that was converted from an int with a mask
602  // that fits in 32-bits?  Commute them and use an AndINode.  Don't
603  // convert masks which would cause a sign extension of the integer
604  // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
605  // would be optimized away later in Identity.
606  if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
607    Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
608    andi = phase->transform(andi);
609    return new ConvI2LNode(andi);
610  }
611
612  // Masking off sign bits?  Dont make them!
613  if (op == Op_RShiftL) {
614    const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
615    if( t12 && t12->is_con() ) { // Shift is by a constant
616      int shift = t12->get_con();
617      shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
618      const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
619      // If the AND'ing of the 2 masks has no bits, then only original shifted
620      // bits survive.  NO sign-extension bits survive the maskings.
621      if( (sign_bits_mask & mask) == 0 ) {
622        // Use zero-fill shift instead
623        Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
624        return new AndLNode(zshift, in(2));
625      }
626    }
627  }
628
629  return MulNode::Ideal(phase, can_reshape);
630}
631
632//=============================================================================
633
634static int getShiftCon(PhaseGVN *phase, Node *shiftNode, int retVal) {
635  const Type *t = phase->type(shiftNode->in(2));
636  if (t == Type::TOP) return retVal;       // Right input is dead.
637  const TypeInt *t2 = t->isa_int();
638  if (!t2 || !t2->is_con()) return retVal; // Right input is a constant.
639
640  return t2->get_con();
641}
642
643static int maskShiftAmount(PhaseGVN *phase, Node *shiftNode, int nBits) {
644  int       shift = getShiftCon(phase, shiftNode, 0);
645  int maskedShift = shift & (nBits - 1);
646
647  if (maskedShift == 0) return 0;         // Let Identity() handle 0 shift count.
648
649  if (shift != maskedShift) {
650    shiftNode->set_req(2, phase->intcon(maskedShift)); // Replace shift count with masked value.
651    phase->igvn_rehash_node_delayed(shiftNode);
652  }
653
654  return maskedShift;
655}
656
657//------------------------------Identity---------------------------------------
658Node* LShiftINode::Identity(PhaseGVN* phase) {
659  return ((getShiftCon(phase, this, -1) & (BitsPerJavaInteger - 1)) == 0) ? in(1) : this;
660}
661
662//------------------------------Ideal------------------------------------------
663// If the right input is a constant, and the left input is an add of a
664// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
665Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
666  int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
667  if (con == 0) {
668    return NULL;
669  }
670
671  // Left input is an add of a constant?
672  Node *add1 = in(1);
673  int add1_op = add1->Opcode();
674  if( add1_op == Op_AddI ) {    // Left input is an add?
675    assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
676    const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
677    if( t12 && t12->is_con() ){ // Left input is an add of a con?
678      // Transform is legal, but check for profit.  Avoid breaking 'i2s'
679      // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
680      if( con < 16 ) {
681        // Compute X << con0
682        Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
683        // Compute X<<con0 + (con1<<con0)
684        return new AddINode( lsh, phase->intcon(t12->get_con() << con));
685      }
686    }
687  }
688
689  // Check for "(x>>c0)<<c0" which just masks off low bits
690  if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
691      add1->in(2) == in(2) )
692    // Convert to "(x & -(1<<c0))"
693    return new AndINode(add1->in(1),phase->intcon( -(1<<con)));
694
695  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
696  if( add1_op == Op_AndI ) {
697    Node *add2 = add1->in(1);
698    int add2_op = add2->Opcode();
699    if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
700        add2->in(2) == in(2) ) {
701      // Convert to "(x & (Y<<c0))"
702      Node *y_sh = phase->transform( new LShiftINode( add1->in(2), in(2) ) );
703      return new AndINode( add2->in(1), y_sh );
704    }
705  }
706
707  // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
708  // before shifting them away.
709  const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
710  if( add1_op == Op_AndI &&
711      phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
712    return new LShiftINode( add1->in(1), in(2) );
713
714  return NULL;
715}
716
717//------------------------------Value------------------------------------------
718// A LShiftINode shifts its input2 left by input1 amount.
719const Type* LShiftINode::Value(PhaseGVN* phase) const {
720  const Type *t1 = phase->type( in(1) );
721  const Type *t2 = phase->type( in(2) );
722  // Either input is TOP ==> the result is TOP
723  if( t1 == Type::TOP ) return Type::TOP;
724  if( t2 == Type::TOP ) return Type::TOP;
725
726  // Left input is ZERO ==> the result is ZERO.
727  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
728  // Shift by zero does nothing
729  if( t2 == TypeInt::ZERO ) return t1;
730
731  // Either input is BOTTOM ==> the result is BOTTOM
732  if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
733      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
734    return TypeInt::INT;
735
736  const TypeInt *r1 = t1->is_int(); // Handy access
737  const TypeInt *r2 = t2->is_int(); // Handy access
738
739  if (!r2->is_con())
740    return TypeInt::INT;
741
742  uint shift = r2->get_con();
743  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
744  // Shift by a multiple of 32 does nothing:
745  if (shift == 0)  return t1;
746
747  // If the shift is a constant, shift the bounds of the type,
748  // unless this could lead to an overflow.
749  if (!r1->is_con()) {
750    jint lo = r1->_lo, hi = r1->_hi;
751    if (((lo << shift) >> shift) == lo &&
752        ((hi << shift) >> shift) == hi) {
753      // No overflow.  The range shifts up cleanly.
754      return TypeInt::make((jint)lo << (jint)shift,
755                           (jint)hi << (jint)shift,
756                           MAX2(r1->_widen,r2->_widen));
757    }
758    return TypeInt::INT;
759  }
760
761  return TypeInt::make( (jint)r1->get_con() << (jint)shift );
762}
763
764//=============================================================================
765//------------------------------Identity---------------------------------------
766Node* LShiftLNode::Identity(PhaseGVN* phase) {
767  return ((getShiftCon(phase, this, -1) & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
768}
769
770//------------------------------Ideal------------------------------------------
771// If the right input is a constant, and the left input is an add of a
772// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
773Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
774  int con = maskShiftAmount(phase, this, BitsPerJavaLong);
775  if (con == 0) {
776    return NULL;
777  }
778
779  // Left input is an add of a constant?
780  Node *add1 = in(1);
781  int add1_op = add1->Opcode();
782  if( add1_op == Op_AddL ) {    // Left input is an add?
783    // Avoid dead data cycles from dead loops
784    assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
785    const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
786    if( t12 && t12->is_con() ){ // Left input is an add of a con?
787      // Compute X << con0
788      Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
789      // Compute X<<con0 + (con1<<con0)
790      return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
791    }
792  }
793
794  // Check for "(x>>c0)<<c0" which just masks off low bits
795  if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
796      add1->in(2) == in(2) )
797    // Convert to "(x & -(1<<c0))"
798    return new AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
799
800  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
801  if( add1_op == Op_AndL ) {
802    Node *add2 = add1->in(1);
803    int add2_op = add2->Opcode();
804    if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
805        add2->in(2) == in(2) ) {
806      // Convert to "(x & (Y<<c0))"
807      Node *y_sh = phase->transform( new LShiftLNode( add1->in(2), in(2) ) );
808      return new AndLNode( add2->in(1), y_sh );
809    }
810  }
811
812  // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
813  // before shifting them away.
814  const jlong bits_mask = jlong(max_julong >> con);
815  if( add1_op == Op_AndL &&
816      phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
817    return new LShiftLNode( add1->in(1), in(2) );
818
819  return NULL;
820}
821
822//------------------------------Value------------------------------------------
823// A LShiftLNode shifts its input2 left by input1 amount.
824const Type* LShiftLNode::Value(PhaseGVN* phase) const {
825  const Type *t1 = phase->type( in(1) );
826  const Type *t2 = phase->type( in(2) );
827  // Either input is TOP ==> the result is TOP
828  if( t1 == Type::TOP ) return Type::TOP;
829  if( t2 == Type::TOP ) return Type::TOP;
830
831  // Left input is ZERO ==> the result is ZERO.
832  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
833  // Shift by zero does nothing
834  if( t2 == TypeInt::ZERO ) return t1;
835
836  // Either input is BOTTOM ==> the result is BOTTOM
837  if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
838      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
839    return TypeLong::LONG;
840
841  const TypeLong *r1 = t1->is_long(); // Handy access
842  const TypeInt  *r2 = t2->is_int();  // Handy access
843
844  if (!r2->is_con())
845    return TypeLong::LONG;
846
847  uint shift = r2->get_con();
848  shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
849  // Shift by a multiple of 64 does nothing:
850  if (shift == 0)  return t1;
851
852  // If the shift is a constant, shift the bounds of the type,
853  // unless this could lead to an overflow.
854  if (!r1->is_con()) {
855    jlong lo = r1->_lo, hi = r1->_hi;
856    if (((lo << shift) >> shift) == lo &&
857        ((hi << shift) >> shift) == hi) {
858      // No overflow.  The range shifts up cleanly.
859      return TypeLong::make((jlong)lo << (jint)shift,
860                            (jlong)hi << (jint)shift,
861                            MAX2(r1->_widen,r2->_widen));
862    }
863    return TypeLong::LONG;
864  }
865
866  return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
867}
868
869//=============================================================================
870//------------------------------Identity---------------------------------------
871Node* RShiftINode::Identity(PhaseGVN* phase) {
872  int shift = getShiftCon(phase, this, -1);
873  if (shift == -1) return this;
874  if ((shift & (BitsPerJavaInteger - 1)) == 0) return in(1);
875
876  // Check for useless sign-masking
877  if (in(1)->Opcode() == Op_LShiftI &&
878      in(1)->req() == 3 &&
879      in(1)->in(2) == in(2)) {
880    shift &= BitsPerJavaInteger-1; // semantics of Java shifts
881    // Compute masks for which this shifting doesn't change
882    int lo = (-1 << (BitsPerJavaInteger - ((uint)shift)-1)); // FFFF8000
883    int hi = ~lo;               // 00007FFF
884    const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
885    if (!t11) return this;
886    // Does actual value fit inside of mask?
887    if (lo <= t11->_lo && t11->_hi <= hi) {
888      return in(1)->in(1);      // Then shifting is a nop
889    }
890  }
891
892  return this;
893}
894
895//------------------------------Ideal------------------------------------------
896Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
897  // Inputs may be TOP if they are dead.
898  const TypeInt *t1 = phase->type(in(1))->isa_int();
899  if (!t1) return NULL;        // Left input is an integer
900  const TypeInt *t3;  // type of in(1).in(2)
901  int shift = maskShiftAmount(phase, this, BitsPerJavaInteger);
902  if (shift == 0) {
903    return NULL;
904  }
905
906  // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
907  // Such expressions arise normally from shift chains like (byte)(x >> 24).
908  const Node *mask = in(1);
909  if( mask->Opcode() == Op_AndI &&
910      (t3 = phase->type(mask->in(2))->isa_int()) &&
911      t3->is_con() ) {
912    Node *x = mask->in(1);
913    jint maskbits = t3->get_con();
914    // Convert to "(x >> shift) & (mask >> shift)"
915    Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
916    return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
917  }
918
919  // Check for "(short[i] <<16)>>16" which simply sign-extends
920  const Node *shl = in(1);
921  if( shl->Opcode() != Op_LShiftI ) return NULL;
922
923  if( shift == 16 &&
924      (t3 = phase->type(shl->in(2))->isa_int()) &&
925      t3->is_con(16) ) {
926    Node *ld = shl->in(1);
927    if( ld->Opcode() == Op_LoadS ) {
928      // Sign extension is just useless here.  Return a RShiftI of zero instead
929      // returning 'ld' directly.  We cannot return an old Node directly as
930      // that is the job of 'Identity' calls and Identity calls only work on
931      // direct inputs ('ld' is an extra Node removed from 'this').  The
932      // combined optimization requires Identity only return direct inputs.
933      set_req(1, ld);
934      set_req(2, phase->intcon(0));
935      return this;
936    }
937    else if( can_reshape &&
938             ld->Opcode() == Op_LoadUS &&
939             ld->outcnt() == 1 && ld->unique_out() == shl)
940      // Replace zero-extension-load with sign-extension-load
941      return ld->as_Load()->convert_to_signed_load(*phase);
942  }
943
944  // Check for "(byte[i] <<24)>>24" which simply sign-extends
945  if( shift == 24 &&
946      (t3 = phase->type(shl->in(2))->isa_int()) &&
947      t3->is_con(24) ) {
948    Node *ld = shl->in(1);
949    if( ld->Opcode() == Op_LoadB ) {
950      // Sign extension is just useless here
951      set_req(1, ld);
952      set_req(2, phase->intcon(0));
953      return this;
954    }
955  }
956
957  return NULL;
958}
959
960//------------------------------Value------------------------------------------
961// A RShiftINode shifts its input2 right by input1 amount.
962const Type* RShiftINode::Value(PhaseGVN* phase) const {
963  const Type *t1 = phase->type( in(1) );
964  const Type *t2 = phase->type( in(2) );
965  // Either input is TOP ==> the result is TOP
966  if( t1 == Type::TOP ) return Type::TOP;
967  if( t2 == Type::TOP ) return Type::TOP;
968
969  // Left input is ZERO ==> the result is ZERO.
970  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
971  // Shift by zero does nothing
972  if( t2 == TypeInt::ZERO ) return t1;
973
974  // Either input is BOTTOM ==> the result is BOTTOM
975  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
976    return TypeInt::INT;
977
978  if (t2 == TypeInt::INT)
979    return TypeInt::INT;
980
981  const TypeInt *r1 = t1->is_int(); // Handy access
982  const TypeInt *r2 = t2->is_int(); // Handy access
983
984  // If the shift is a constant, just shift the bounds of the type.
985  // For example, if the shift is 31, we just propagate sign bits.
986  if (r2->is_con()) {
987    uint shift = r2->get_con();
988    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
989    // Shift by a multiple of 32 does nothing:
990    if (shift == 0)  return t1;
991    // Calculate reasonably aggressive bounds for the result.
992    // This is necessary if we are to correctly type things
993    // like (x<<24>>24) == ((byte)x).
994    jint lo = (jint)r1->_lo >> (jint)shift;
995    jint hi = (jint)r1->_hi >> (jint)shift;
996    assert(lo <= hi, "must have valid bounds");
997    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
998#ifdef ASSERT
999    // Make sure we get the sign-capture idiom correct.
1000    if (shift == BitsPerJavaInteger-1) {
1001      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1002      if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1003    }
1004#endif
1005    return ti;
1006  }
1007
1008  if( !r1->is_con() || !r2->is_con() )
1009    return TypeInt::INT;
1010
1011  // Signed shift right
1012  return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
1013}
1014
1015//=============================================================================
1016//------------------------------Identity---------------------------------------
1017Node* RShiftLNode::Identity(PhaseGVN* phase) {
1018  const TypeInt *ti = phase->type(in(2))->isa_int(); // Shift count is an int.
1019  return (ti && ti->is_con() && (ti->get_con() & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1020}
1021
1022//------------------------------Value------------------------------------------
1023// A RShiftLNode shifts its input2 right by input1 amount.
1024const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1025  const Type *t1 = phase->type( in(1) );
1026  const Type *t2 = phase->type( in(2) );
1027  // Either input is TOP ==> the result is TOP
1028  if( t1 == Type::TOP ) return Type::TOP;
1029  if( t2 == Type::TOP ) return Type::TOP;
1030
1031  // Left input is ZERO ==> the result is ZERO.
1032  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1033  // Shift by zero does nothing
1034  if( t2 == TypeInt::ZERO ) return t1;
1035
1036  // Either input is BOTTOM ==> the result is BOTTOM
1037  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1038    return TypeLong::LONG;
1039
1040  if (t2 == TypeInt::INT)
1041    return TypeLong::LONG;
1042
1043  const TypeLong *r1 = t1->is_long(); // Handy access
1044  const TypeInt  *r2 = t2->is_int (); // Handy access
1045
1046  // If the shift is a constant, just shift the bounds of the type.
1047  // For example, if the shift is 63, we just propagate sign bits.
1048  if (r2->is_con()) {
1049    uint shift = r2->get_con();
1050    shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1051    // Shift by a multiple of 64 does nothing:
1052    if (shift == 0)  return t1;
1053    // Calculate reasonably aggressive bounds for the result.
1054    // This is necessary if we are to correctly type things
1055    // like (x<<24>>24) == ((byte)x).
1056    jlong lo = (jlong)r1->_lo >> (jlong)shift;
1057    jlong hi = (jlong)r1->_hi >> (jlong)shift;
1058    assert(lo <= hi, "must have valid bounds");
1059    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1060    #ifdef ASSERT
1061    // Make sure we get the sign-capture idiom correct.
1062    if (shift == (2*BitsPerJavaInteger)-1) {
1063      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1064      if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1065    }
1066    #endif
1067    return tl;
1068  }
1069
1070  return TypeLong::LONG;                // Give up
1071}
1072
1073//=============================================================================
1074//------------------------------Identity---------------------------------------
1075Node* URShiftINode::Identity(PhaseGVN* phase) {
1076  int shift = getShiftCon(phase, this, -1);
1077  if ((shift & (BitsPerJavaInteger - 1)) == 0) return in(1);
1078
1079  // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1080  // Happens during new-array length computation.
1081  // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1082  Node *add = in(1);
1083  if (add->Opcode() == Op_AddI) {
1084    const TypeInt *t2 = phase->type(add->in(2))->isa_int();
1085    if (t2 && t2->is_con(wordSize - 1) &&
1086        add->in(1)->Opcode() == Op_LShiftI) {
1087      // Check that shift_counts are LogBytesPerWord.
1088      Node          *lshift_count   = add->in(1)->in(2);
1089      const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1090      if (t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1091          t_lshift_count == phase->type(in(2))) {
1092        Node          *x   = add->in(1)->in(1);
1093        const TypeInt *t_x = phase->type(x)->isa_int();
1094        if (t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord)) {
1095          return x;
1096        }
1097      }
1098    }
1099  }
1100
1101  return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1102}
1103
1104//------------------------------Ideal------------------------------------------
1105Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1106  int con = maskShiftAmount(phase, this, BitsPerJavaInteger);
1107  if (con == 0) {
1108    return NULL;
1109  }
1110
1111  // We'll be wanting the right-shift amount as a mask of that many bits
1112  const int mask = right_n_bits(BitsPerJavaInteger - con);
1113
1114  int in1_op = in(1)->Opcode();
1115
1116  // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1117  if( in1_op == Op_URShiftI ) {
1118    const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1119    if( t12 && t12->is_con() ) { // Right input is a constant
1120      assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1121      const int con2 = t12->get_con() & 31; // Shift count is always masked
1122      const int con3 = con+con2;
1123      if( con3 < 32 )           // Only merge shifts if total is < 32
1124        return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1125    }
1126  }
1127
1128  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1129  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1130  // If Q is "X << z" the rounding is useless.  Look for patterns like
1131  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1132  Node *add = in(1);
1133  const TypeInt *t2 = phase->type(in(2))->isa_int();
1134  if (in1_op == Op_AddI) {
1135    Node *lshl = add->in(1);
1136    if( lshl->Opcode() == Op_LShiftI &&
1137        phase->type(lshl->in(2)) == t2 ) {
1138      Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1139      Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1140      return new AndINode( sum, phase->intcon(mask) );
1141    }
1142  }
1143
1144  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1145  // This shortens the mask.  Also, if we are extracting a high byte and
1146  // storing it to a buffer, the mask will be removed completely.
1147  Node *andi = in(1);
1148  if( in1_op == Op_AndI ) {
1149    const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1150    if( t3 && t3->is_con() ) { // Right input is a constant
1151      jint mask2 = t3->get_con();
1152      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1153      Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1154      return new AndINode(newshr, phase->intcon(mask2));
1155      // The negative values are easier to materialize than positive ones.
1156      // A typical case from address arithmetic is ((x & ~15) >> 4).
1157      // It's better to change that to ((x >> 4) & ~0) versus
1158      // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1159    }
1160  }
1161
1162  // Check for "(X << z ) >>> z" which simply zero-extends
1163  Node *shl = in(1);
1164  if( in1_op == Op_LShiftI &&
1165      phase->type(shl->in(2)) == t2 )
1166    return new AndINode( shl->in(1), phase->intcon(mask) );
1167
1168  return NULL;
1169}
1170
1171//------------------------------Value------------------------------------------
1172// A URShiftINode shifts its input2 right by input1 amount.
1173const Type* URShiftINode::Value(PhaseGVN* phase) const {
1174  // (This is a near clone of RShiftINode::Value.)
1175  const Type *t1 = phase->type( in(1) );
1176  const Type *t2 = phase->type( in(2) );
1177  // Either input is TOP ==> the result is TOP
1178  if( t1 == Type::TOP ) return Type::TOP;
1179  if( t2 == Type::TOP ) return Type::TOP;
1180
1181  // Left input is ZERO ==> the result is ZERO.
1182  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1183  // Shift by zero does nothing
1184  if( t2 == TypeInt::ZERO ) return t1;
1185
1186  // Either input is BOTTOM ==> the result is BOTTOM
1187  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1188    return TypeInt::INT;
1189
1190  if (t2 == TypeInt::INT)
1191    return TypeInt::INT;
1192
1193  const TypeInt *r1 = t1->is_int();     // Handy access
1194  const TypeInt *r2 = t2->is_int();     // Handy access
1195
1196  if (r2->is_con()) {
1197    uint shift = r2->get_con();
1198    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1199    // Shift by a multiple of 32 does nothing:
1200    if (shift == 0)  return t1;
1201    // Calculate reasonably aggressive bounds for the result.
1202    jint lo = (juint)r1->_lo >> (juint)shift;
1203    jint hi = (juint)r1->_hi >> (juint)shift;
1204    if (r1->_hi >= 0 && r1->_lo < 0) {
1205      // If the type has both negative and positive values,
1206      // there are two separate sub-domains to worry about:
1207      // The positive half and the negative half.
1208      jint neg_lo = lo;
1209      jint neg_hi = (juint)-1 >> (juint)shift;
1210      jint pos_lo = (juint) 0 >> (juint)shift;
1211      jint pos_hi = hi;
1212      lo = MIN2(neg_lo, pos_lo);  // == 0
1213      hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1214    }
1215    assert(lo <= hi, "must have valid bounds");
1216    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1217    #ifdef ASSERT
1218    // Make sure we get the sign-capture idiom correct.
1219    if (shift == BitsPerJavaInteger-1) {
1220      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1221      if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1222    }
1223    #endif
1224    return ti;
1225  }
1226
1227  //
1228  // Do not support shifted oops in info for GC
1229  //
1230  // else if( t1->base() == Type::InstPtr ) {
1231  //
1232  //   const TypeInstPtr *o = t1->is_instptr();
1233  //   if( t1->singleton() )
1234  //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1235  // }
1236  // else if( t1->base() == Type::KlassPtr ) {
1237  //   const TypeKlassPtr *o = t1->is_klassptr();
1238  //   if( t1->singleton() )
1239  //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1240  // }
1241
1242  return TypeInt::INT;
1243}
1244
1245//=============================================================================
1246//------------------------------Identity---------------------------------------
1247Node* URShiftLNode::Identity(PhaseGVN* phase) {
1248  return ((getShiftCon(phase, this, -1) & (BitsPerJavaLong - 1)) == 0) ? in(1) : this;
1249}
1250
1251//------------------------------Ideal------------------------------------------
1252Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1253  int con = maskShiftAmount(phase, this, BitsPerJavaLong);
1254  if (con == 0) {
1255    return NULL;
1256  }
1257
1258  // We'll be wanting the right-shift amount as a mask of that many bits
1259  const jlong mask = jlong(max_julong >> con);
1260
1261  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1262  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1263  // If Q is "X << z" the rounding is useless.  Look for patterns like
1264  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1265  Node *add = in(1);
1266  const TypeInt *t2 = phase->type(in(2))->isa_int();
1267  if (add->Opcode() == Op_AddL) {
1268    Node *lshl = add->in(1);
1269    if( lshl->Opcode() == Op_LShiftL &&
1270        phase->type(lshl->in(2)) == t2 ) {
1271      Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1272      Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1273      return new AndLNode( sum, phase->longcon(mask) );
1274    }
1275  }
1276
1277  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1278  // This shortens the mask.  Also, if we are extracting a high byte and
1279  // storing it to a buffer, the mask will be removed completely.
1280  Node *andi = in(1);
1281  if( andi->Opcode() == Op_AndL ) {
1282    const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1283    if( t3 && t3->is_con() ) { // Right input is a constant
1284      jlong mask2 = t3->get_con();
1285      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1286      Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1287      return new AndLNode(newshr, phase->longcon(mask2));
1288    }
1289  }
1290
1291  // Check for "(X << z ) >>> z" which simply zero-extends
1292  Node *shl = in(1);
1293  if( shl->Opcode() == Op_LShiftL &&
1294      phase->type(shl->in(2)) == t2 )
1295    return new AndLNode( shl->in(1), phase->longcon(mask) );
1296
1297  return NULL;
1298}
1299
1300//------------------------------Value------------------------------------------
1301// A URShiftINode shifts its input2 right by input1 amount.
1302const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1303  // (This is a near clone of RShiftLNode::Value.)
1304  const Type *t1 = phase->type( in(1) );
1305  const Type *t2 = phase->type( in(2) );
1306  // Either input is TOP ==> the result is TOP
1307  if( t1 == Type::TOP ) return Type::TOP;
1308  if( t2 == Type::TOP ) return Type::TOP;
1309
1310  // Left input is ZERO ==> the result is ZERO.
1311  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1312  // Shift by zero does nothing
1313  if( t2 == TypeInt::ZERO ) return t1;
1314
1315  // Either input is BOTTOM ==> the result is BOTTOM
1316  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1317    return TypeLong::LONG;
1318
1319  if (t2 == TypeInt::INT)
1320    return TypeLong::LONG;
1321
1322  const TypeLong *r1 = t1->is_long(); // Handy access
1323  const TypeInt  *r2 = t2->is_int (); // Handy access
1324
1325  if (r2->is_con()) {
1326    uint shift = r2->get_con();
1327    shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1328    // Shift by a multiple of 64 does nothing:
1329    if (shift == 0)  return t1;
1330    // Calculate reasonably aggressive bounds for the result.
1331    jlong lo = (julong)r1->_lo >> (juint)shift;
1332    jlong hi = (julong)r1->_hi >> (juint)shift;
1333    if (r1->_hi >= 0 && r1->_lo < 0) {
1334      // If the type has both negative and positive values,
1335      // there are two separate sub-domains to worry about:
1336      // The positive half and the negative half.
1337      jlong neg_lo = lo;
1338      jlong neg_hi = (julong)-1 >> (juint)shift;
1339      jlong pos_lo = (julong) 0 >> (juint)shift;
1340      jlong pos_hi = hi;
1341      //lo = MIN2(neg_lo, pos_lo);  // == 0
1342      lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1343      //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1344      hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1345    }
1346    assert(lo <= hi, "must have valid bounds");
1347    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1348    #ifdef ASSERT
1349    // Make sure we get the sign-capture idiom correct.
1350    if (shift == BitsPerJavaLong - 1) {
1351      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1352      if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1353    }
1354    #endif
1355    return tl;
1356  }
1357
1358  return TypeLong::LONG;                // Give up
1359}
1360
1361//=============================================================================
1362//------------------------------Value------------------------------------------
1363const Type* FmaDNode::Value(PhaseGVN* phase) const {
1364  const Type *t1 = phase->type(in(1));
1365  if (t1 == Type::TOP) return Type::TOP;
1366  if (t1->base() != Type::DoubleCon) return Type::DOUBLE;
1367  const Type *t2 = phase->type(in(2));
1368  if (t2 == Type::TOP) return Type::TOP;
1369  if (t2->base() != Type::DoubleCon) return Type::DOUBLE;
1370  const Type *t3 = phase->type(in(3));
1371  if (t3 == Type::TOP) return Type::TOP;
1372  if (t3->base() != Type::DoubleCon) return Type::DOUBLE;
1373#ifndef __STDC_IEC_559__
1374  return Type::DOUBLE;
1375#else
1376  double d1 = t1->getd();
1377  double d2 = t2->getd();
1378  double d3 = t3->getd();
1379  return TypeD::make(fma(d1, d2, d3));
1380#endif
1381}
1382
1383//=============================================================================
1384//------------------------------Value------------------------------------------
1385const Type* FmaFNode::Value(PhaseGVN* phase) const {
1386  const Type *t1 = phase->type(in(1));
1387  if (t1 == Type::TOP) return Type::TOP;
1388  if (t1->base() != Type::FloatCon) return Type::FLOAT;
1389  const Type *t2 = phase->type(in(2));
1390  if (t2 == Type::TOP) return Type::TOP;
1391  if (t2->base() != Type::FloatCon) return Type::FLOAT;
1392  const Type *t3 = phase->type(in(3));
1393  if (t3 == Type::TOP) return Type::TOP;
1394  if (t3->base() != Type::FloatCon) return Type::FLOAT;
1395#ifndef __STDC_IEC_559__
1396  return Type::FLOAT;
1397#else
1398  float f1 = t1->getf();
1399  float f2 = t2->getf();
1400  float f3 = t3->getf();
1401  return TypeF::make(fma(f1, f2, f3));
1402#endif
1403}
1404