mulnode.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/addnode.hpp"
28#include "opto/connode.hpp"
29#include "opto/memnode.hpp"
30#include "opto/mulnode.hpp"
31#include "opto/phaseX.hpp"
32#include "opto/subnode.hpp"
33
34// Portions of code courtesy of Clifford Click
35
36
37//=============================================================================
38//------------------------------hash-------------------------------------------
39// Hash function over MulNodes.  Needs to be commutative; i.e., I swap
40// (commute) inputs to MulNodes willy-nilly so the hash function must return
41// the same value in the presence of edge swapping.
42uint MulNode::hash() const {
43  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
44}
45
46//------------------------------Identity---------------------------------------
47// Multiplying a one preserves the other argument
48Node *MulNode::Identity( PhaseTransform *phase ) {
49  register const Type *one = mul_id();  // The multiplicative identity
50  if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
51  if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
52
53  return this;
54}
55
56//------------------------------Ideal------------------------------------------
57// We also canonicalize the Node, moving constants to the right input,
58// and flatten expressions (so that 1+x+2 becomes x+3).
59Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
60  const Type *t1 = phase->type( in(1) );
61  const Type *t2 = phase->type( in(2) );
62  Node *progress = NULL;        // Progress flag
63  // We are OK if right is a constant, or right is a load and
64  // left is a non-constant.
65  if( !(t2->singleton() ||
66        (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
67    if( t1->singleton() ||       // Left input is a constant?
68        // Otherwise, sort inputs (commutativity) to help value numbering.
69        (in(1)->_idx > in(2)->_idx) ) {
70      swap_edges(1, 2);
71      const Type *t = t1;
72      t1 = t2;
73      t2 = t;
74      progress = this;            // Made progress
75    }
76  }
77
78  // If the right input is a constant, and the left input is a product of a
79  // constant, flatten the expression tree.
80  uint op = Opcode();
81  if( t2->singleton() &&        // Right input is a constant?
82      op != Op_MulF &&          // Float & double cannot reassociate
83      op != Op_MulD ) {
84    if( t2 == Type::TOP ) return NULL;
85    Node *mul1 = in(1);
86#ifdef ASSERT
87    // Check for dead loop
88    int   op1 = mul1->Opcode();
89    if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
90        ( op1 == mul_opcode() || op1 == add_opcode() ) &&
91        ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
92          phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
93      assert(false, "dead loop in MulNode::Ideal");
94#endif
95
96    if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
97      // Mul of a constant?
98      const Type *t12 = phase->type( mul1->in(2) );
99      if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
100        // Compute new constant; check for overflow
101        const Type *tcon01 = mul1->as_Mul()->mul_ring(t2,t12);
102        if( tcon01->singleton() ) {
103          // The Mul of the flattened expression
104          set_req(1, mul1->in(1));
105          set_req(2, phase->makecon( tcon01 ));
106          t2 = tcon01;
107          progress = this;      // Made progress
108        }
109      }
110    }
111    // If the right input is a constant, and the left input is an add of a
112    // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
113    const Node *add1 = in(1);
114    if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
115      // Add of a constant?
116      const Type *t12 = phase->type( add1->in(2) );
117      if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
118        assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
119        // Compute new constant; check for overflow
120        const Type *tcon01 = mul_ring(t2,t12);
121        if( tcon01->singleton() ) {
122
123        // Convert (X+con1)*con0 into X*con0
124          Node *mul = clone();    // mul = ()*con0
125          mul->set_req(1,add1->in(1));  // mul = X*con0
126          mul = phase->transform(mul);
127
128          Node *add2 = add1->clone();
129          add2->set_req(1, mul);        // X*con0 + con0*con1
130          add2->set_req(2, phase->makecon(tcon01) );
131          progress = add2;
132        }
133      }
134    } // End of is left input an add
135  } // End of is right input a Mul
136
137  return progress;
138}
139
140//------------------------------Value-----------------------------------------
141const Type *MulNode::Value( PhaseTransform *phase ) const {
142  const Type *t1 = phase->type( in(1) );
143  const Type *t2 = phase->type( in(2) );
144  // Either input is TOP ==> the result is TOP
145  if( t1 == Type::TOP ) return Type::TOP;
146  if( t2 == Type::TOP ) return Type::TOP;
147
148  // Either input is ZERO ==> the result is ZERO.
149  // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
150  int op = Opcode();
151  if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
152    const Type *zero = add_id();        // The multiplicative zero
153    if( t1->higher_equal( zero ) ) return zero;
154    if( t2->higher_equal( zero ) ) return zero;
155  }
156
157  // Either input is BOTTOM ==> the result is the local BOTTOM
158  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
159    return bottom_type();
160
161#if defined(IA32)
162  // Can't trust native compilers to properly fold strict double
163  // multiplication with round-to-zero on this platform.
164  if (op == Op_MulD && phase->C->method()->is_strict()) {
165    return TypeD::DOUBLE;
166  }
167#endif
168
169  return mul_ring(t1,t2);            // Local flavor of type multiplication
170}
171
172
173//=============================================================================
174//------------------------------Ideal------------------------------------------
175// Check for power-of-2 multiply, then try the regular MulNode::Ideal
176Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
177  // Swap constant to right
178  jint con;
179  if ((con = in(1)->find_int_con(0)) != 0) {
180    swap_edges(1, 2);
181    // Finish rest of method to use info in 'con'
182  } else if ((con = in(2)->find_int_con(0)) == 0) {
183    return MulNode::Ideal(phase, can_reshape);
184  }
185
186  // Now we have a constant Node on the right and the constant in con
187  if( con == 0 ) return NULL;   // By zero is handled by Value call
188  if( con == 1 ) return NULL;   // By one  is handled by Identity call
189
190  // Check for negative constant; if so negate the final result
191  bool sign_flip = false;
192  if( con < 0 ) {
193    con = -con;
194    sign_flip = true;
195  }
196
197  // Get low bit; check for being the only bit
198  Node *res = NULL;
199  jint bit1 = con & -con;       // Extract low bit
200  if( bit1 == con ) {           // Found a power of 2?
201    res = new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
202  } else {
203
204    // Check for constant with 2 bits set
205    jint bit2 = con-bit1;
206    bit2 = bit2 & -bit2;          // Extract 2nd bit
207    if( bit2 + bit1 == con ) {    // Found all bits in con?
208      Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
209      Node *n2 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
210      res = new (phase->C, 3) AddINode( n2, n1 );
211
212    } else if (is_power_of_2(con+1)) {
213      // Sleezy: power-of-2 -1.  Next time be generic.
214      jint temp = (jint) (con + 1);
215      Node *n1 = phase->transform( new (phase->C, 3) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
216      res = new (phase->C, 3) SubINode( n1, in(1) );
217    } else {
218      return MulNode::Ideal(phase, can_reshape);
219    }
220  }
221
222  if( sign_flip ) {             // Need to negate result?
223    res = phase->transform(res);// Transform, before making the zero con
224    res = new (phase->C, 3) SubINode(phase->intcon(0),res);
225  }
226
227  return res;                   // Return final result
228}
229
230//------------------------------mul_ring---------------------------------------
231// Compute the product type of two integer ranges into this node.
232const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
233  const TypeInt *r0 = t0->is_int(); // Handy access
234  const TypeInt *r1 = t1->is_int();
235
236  // Fetch endpoints of all ranges
237  int32 lo0 = r0->_lo;
238  double a = (double)lo0;
239  int32 hi0 = r0->_hi;
240  double b = (double)hi0;
241  int32 lo1 = r1->_lo;
242  double c = (double)lo1;
243  int32 hi1 = r1->_hi;
244  double d = (double)hi1;
245
246  // Compute all endpoints & check for overflow
247  int32 A = lo0*lo1;
248  if( (double)A != a*c ) return TypeInt::INT; // Overflow?
249  int32 B = lo0*hi1;
250  if( (double)B != a*d ) return TypeInt::INT; // Overflow?
251  int32 C = hi0*lo1;
252  if( (double)C != b*c ) return TypeInt::INT; // Overflow?
253  int32 D = hi0*hi1;
254  if( (double)D != b*d ) return TypeInt::INT; // Overflow?
255
256  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
257  else { lo0 = B; hi0 = A; }
258  if( C < D ) {
259    if( C < lo0 ) lo0 = C;
260    if( D > hi0 ) hi0 = D;
261  } else {
262    if( D < lo0 ) lo0 = D;
263    if( C > hi0 ) hi0 = C;
264  }
265  return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
266}
267
268
269//=============================================================================
270//------------------------------Ideal------------------------------------------
271// Check for power-of-2 multiply, then try the regular MulNode::Ideal
272Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
273  // Swap constant to right
274  jlong con;
275  if ((con = in(1)->find_long_con(0)) != 0) {
276    swap_edges(1, 2);
277    // Finish rest of method to use info in 'con'
278  } else if ((con = in(2)->find_long_con(0)) == 0) {
279    return MulNode::Ideal(phase, can_reshape);
280  }
281
282  // Now we have a constant Node on the right and the constant in con
283  if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
284  if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
285
286  // Check for negative constant; if so negate the final result
287  bool sign_flip = false;
288  if( con < 0 ) {
289    con = -con;
290    sign_flip = true;
291  }
292
293  // Get low bit; check for being the only bit
294  Node *res = NULL;
295  jlong bit1 = con & -con;      // Extract low bit
296  if( bit1 == con ) {           // Found a power of 2?
297    res = new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
298  } else {
299
300    // Check for constant with 2 bits set
301    jlong bit2 = con-bit1;
302    bit2 = bit2 & -bit2;          // Extract 2nd bit
303    if( bit2 + bit1 == con ) {    // Found all bits in con?
304      Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
305      Node *n2 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
306      res = new (phase->C, 3) AddLNode( n2, n1 );
307
308    } else if (is_power_of_2_long(con+1)) {
309      // Sleezy: power-of-2 -1.  Next time be generic.
310      jlong temp = (jlong) (con + 1);
311      Node *n1 = phase->transform( new (phase->C, 3) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
312      res = new (phase->C, 3) SubLNode( n1, in(1) );
313    } else {
314      return MulNode::Ideal(phase, can_reshape);
315    }
316  }
317
318  if( sign_flip ) {             // Need to negate result?
319    res = phase->transform(res);// Transform, before making the zero con
320    res = new (phase->C, 3) SubLNode(phase->longcon(0),res);
321  }
322
323  return res;                   // Return final result
324}
325
326//------------------------------mul_ring---------------------------------------
327// Compute the product type of two integer ranges into this node.
328const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
329  const TypeLong *r0 = t0->is_long(); // Handy access
330  const TypeLong *r1 = t1->is_long();
331
332  // Fetch endpoints of all ranges
333  jlong lo0 = r0->_lo;
334  double a = (double)lo0;
335  jlong hi0 = r0->_hi;
336  double b = (double)hi0;
337  jlong lo1 = r1->_lo;
338  double c = (double)lo1;
339  jlong hi1 = r1->_hi;
340  double d = (double)hi1;
341
342  // Compute all endpoints & check for overflow
343  jlong A = lo0*lo1;
344  if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
345  jlong B = lo0*hi1;
346  if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
347  jlong C = hi0*lo1;
348  if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
349  jlong D = hi0*hi1;
350  if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
351
352  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
353  else { lo0 = B; hi0 = A; }
354  if( C < D ) {
355    if( C < lo0 ) lo0 = C;
356    if( D > hi0 ) hi0 = D;
357  } else {
358    if( D < lo0 ) lo0 = D;
359    if( C > hi0 ) hi0 = C;
360  }
361  return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
362}
363
364//=============================================================================
365//------------------------------mul_ring---------------------------------------
366// Compute the product type of two double ranges into this node.
367const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
368  if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
369  return TypeF::make( t0->getf() * t1->getf() );
370}
371
372//=============================================================================
373//------------------------------mul_ring---------------------------------------
374// Compute the product type of two double ranges into this node.
375const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
376  if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
377  // We must be multiplying 2 double constants.
378  return TypeD::make( t0->getd() * t1->getd() );
379}
380
381//=============================================================================
382//------------------------------Value------------------------------------------
383const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
384  // Either input is TOP ==> the result is TOP
385  const Type *t1 = phase->type( in(1) );
386  const Type *t2 = phase->type( in(2) );
387  if( t1 == Type::TOP ) return Type::TOP;
388  if( t2 == Type::TOP ) return Type::TOP;
389
390  // Either input is BOTTOM ==> the result is the local BOTTOM
391  const Type *bot = bottom_type();
392  if( (t1 == bot) || (t2 == bot) ||
393      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
394    return bot;
395
396  // It is not worth trying to constant fold this stuff!
397  return TypeLong::LONG;
398}
399
400//=============================================================================
401//------------------------------mul_ring---------------------------------------
402// Supplied function returns the product of the inputs IN THE CURRENT RING.
403// For the logical operations the ring's MUL is really a logical AND function.
404// This also type-checks the inputs for sanity.  Guaranteed never to
405// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
406const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
407  const TypeInt *r0 = t0->is_int(); // Handy access
408  const TypeInt *r1 = t1->is_int();
409  int widen = MAX2(r0->_widen,r1->_widen);
410
411  // If either input is a constant, might be able to trim cases
412  if( !r0->is_con() && !r1->is_con() )
413    return TypeInt::INT;        // No constants to be had
414
415  // Both constants?  Return bits
416  if( r0->is_con() && r1->is_con() )
417    return TypeInt::make( r0->get_con() & r1->get_con() );
418
419  if( r0->is_con() && r0->get_con() > 0 )
420    return TypeInt::make(0, r0->get_con(), widen);
421
422  if( r1->is_con() && r1->get_con() > 0 )
423    return TypeInt::make(0, r1->get_con(), widen);
424
425  if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
426    return TypeInt::BOOL;
427  }
428
429  return TypeInt::INT;          // No constants to be had
430}
431
432//------------------------------Identity---------------------------------------
433// Masking off the high bits of an unsigned load is not required
434Node *AndINode::Identity( PhaseTransform *phase ) {
435
436  // x & x => x
437  if (phase->eqv(in(1), in(2))) return in(1);
438
439  Node* in1 = in(1);
440  uint op = in1->Opcode();
441  const TypeInt* t2 = phase->type(in(2))->isa_int();
442  if (t2 && t2->is_con()) {
443    int con = t2->get_con();
444    // Masking off high bits which are always zero is useless.
445    const TypeInt* t1 = phase->type( in(1) )->isa_int();
446    if (t1 != NULL && t1->_lo >= 0) {
447      jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
448      if ((t1_support & con) == t1_support)
449        return in1;
450    }
451    // Masking off the high bits of a unsigned-shift-right is not
452    // needed either.
453    if (op == Op_URShiftI) {
454      const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
455      if (t12 && t12->is_con()) {  // Shift is by a constant
456        int shift = t12->get_con();
457        shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
458        int mask = max_juint >> shift;
459        if ((mask & con) == mask)  // If AND is useless, skip it
460          return in1;
461      }
462    }
463  }
464  return MulNode::Identity(phase);
465}
466
467//------------------------------Ideal------------------------------------------
468Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
469  // Special case constant AND mask
470  const TypeInt *t2 = phase->type( in(2) )->isa_int();
471  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
472  const int mask = t2->get_con();
473  Node *load = in(1);
474  uint lop = load->Opcode();
475
476  // Masking bits off of a Character?  Hi bits are already zero.
477  if( lop == Op_LoadUS &&
478      (mask & 0xFFFF0000) )     // Can we make a smaller mask?
479    return new (phase->C, 3) AndINode(load,phase->intcon(mask&0xFFFF));
480
481  // Masking bits off of a Short?  Loading a Character does some masking
482  if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
483    Node *ldus = new (phase->C, 3) LoadUSNode(load->in(MemNode::Control),
484                                              load->in(MemNode::Memory),
485                                              load->in(MemNode::Address),
486                                              load->adr_type());
487    ldus = phase->transform(ldus);
488    return new (phase->C, 3) AndINode(ldus, phase->intcon(mask & 0xFFFF));
489  }
490
491  // Masking sign bits off of a Byte?  Do an unsigned byte load plus
492  // an and.
493  if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
494    Node* ldub = new (phase->C, 3) LoadUBNode(load->in(MemNode::Control),
495                                              load->in(MemNode::Memory),
496                                              load->in(MemNode::Address),
497                                              load->adr_type());
498    ldub = phase->transform(ldub);
499    return new (phase->C, 3) AndINode(ldub, phase->intcon(mask));
500  }
501
502  // Masking off sign bits?  Dont make them!
503  if( lop == Op_RShiftI ) {
504    const TypeInt *t12 = phase->type(load->in(2))->isa_int();
505    if( t12 && t12->is_con() ) { // Shift is by a constant
506      int shift = t12->get_con();
507      shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
508      const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
509      // If the AND'ing of the 2 masks has no bits, then only original shifted
510      // bits survive.  NO sign-extension bits survive the maskings.
511      if( (sign_bits_mask & mask) == 0 ) {
512        // Use zero-fill shift instead
513        Node *zshift = phase->transform(new (phase->C, 3) URShiftINode(load->in(1),load->in(2)));
514        return new (phase->C, 3) AndINode( zshift, in(2) );
515      }
516    }
517  }
518
519  // Check for 'negate/and-1', a pattern emitted when someone asks for
520  // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
521  // plus 1) and the mask is of the low order bit.  Skip the negate.
522  if( lop == Op_SubI && mask == 1 && load->in(1) &&
523      phase->type(load->in(1)) == TypeInt::ZERO )
524    return new (phase->C, 3) AndINode( load->in(2), in(2) );
525
526  return MulNode::Ideal(phase, can_reshape);
527}
528
529//=============================================================================
530//------------------------------mul_ring---------------------------------------
531// Supplied function returns the product of the inputs IN THE CURRENT RING.
532// For the logical operations the ring's MUL is really a logical AND function.
533// This also type-checks the inputs for sanity.  Guaranteed never to
534// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
535const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
536  const TypeLong *r0 = t0->is_long(); // Handy access
537  const TypeLong *r1 = t1->is_long();
538  int widen = MAX2(r0->_widen,r1->_widen);
539
540  // If either input is a constant, might be able to trim cases
541  if( !r0->is_con() && !r1->is_con() )
542    return TypeLong::LONG;      // No constants to be had
543
544  // Both constants?  Return bits
545  if( r0->is_con() && r1->is_con() )
546    return TypeLong::make( r0->get_con() & r1->get_con() );
547
548  if( r0->is_con() && r0->get_con() > 0 )
549    return TypeLong::make(CONST64(0), r0->get_con(), widen);
550
551  if( r1->is_con() && r1->get_con() > 0 )
552    return TypeLong::make(CONST64(0), r1->get_con(), widen);
553
554  return TypeLong::LONG;        // No constants to be had
555}
556
557//------------------------------Identity---------------------------------------
558// Masking off the high bits of an unsigned load is not required
559Node *AndLNode::Identity( PhaseTransform *phase ) {
560
561  // x & x => x
562  if (phase->eqv(in(1), in(2))) return in(1);
563
564  Node *usr = in(1);
565  const TypeLong *t2 = phase->type( in(2) )->isa_long();
566  if( t2 && t2->is_con() ) {
567    jlong con = t2->get_con();
568    // Masking off high bits which are always zero is useless.
569    const TypeLong* t1 = phase->type( in(1) )->isa_long();
570    if (t1 != NULL && t1->_lo >= 0) {
571      jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1;
572      if ((t1_support & con) == t1_support)
573        return usr;
574    }
575    uint lop = usr->Opcode();
576    // Masking off the high bits of a unsigned-shift-right is not
577    // needed either.
578    if( lop == Op_URShiftL ) {
579      const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
580      if( t12 && t12->is_con() ) {  // Shift is by a constant
581        int shift = t12->get_con();
582        shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
583        jlong mask = max_julong >> shift;
584        if( (mask&con) == mask )  // If AND is useless, skip it
585          return usr;
586      }
587    }
588  }
589  return MulNode::Identity(phase);
590}
591
592//------------------------------Ideal------------------------------------------
593Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
594  // Special case constant AND mask
595  const TypeLong *t2 = phase->type( in(2) )->isa_long();
596  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
597  const jlong mask = t2->get_con();
598
599  Node* in1 = in(1);
600  uint op = in1->Opcode();
601
602  // Masking sign bits off of an integer?  Do an unsigned integer to
603  // long load.
604  // NOTE: This check must be *before* we try to convert the AndLNode
605  // to an AndINode and commute it with ConvI2LNode because
606  // 0xFFFFFFFFL masks the whole integer and we get a sign extension,
607  // which is wrong.
608  if (op == Op_ConvI2L && in1->in(1)->Opcode() == Op_LoadI && mask == CONST64(0x00000000FFFFFFFF)) {
609    Node* load = in1->in(1);
610    return new (phase->C, 3) LoadUI2LNode(load->in(MemNode::Control),
611                                          load->in(MemNode::Memory),
612                                          load->in(MemNode::Address),
613                                          load->adr_type());
614  }
615
616  // Are we masking a long that was converted from an int with a mask
617  // that fits in 32-bits?  Commute them and use an AndINode.  Don't
618  // convert masks which would cause a sign extension of the integer
619  // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
620  // would be optimized away later in Identity.
621  if (op == Op_ConvI2L && (mask & CONST64(0xFFFFFFFF80000000)) == 0) {
622    Node* andi = new (phase->C, 3) AndINode(in1->in(1), phase->intcon(mask));
623    andi = phase->transform(andi);
624    return new (phase->C, 2) ConvI2LNode(andi);
625  }
626
627  // Masking off sign bits?  Dont make them!
628  if (op == Op_RShiftL) {
629    const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
630    if( t12 && t12->is_con() ) { // Shift is by a constant
631      int shift = t12->get_con();
632      shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
633      const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
634      // If the AND'ing of the 2 masks has no bits, then only original shifted
635      // bits survive.  NO sign-extension bits survive the maskings.
636      if( (sign_bits_mask & mask) == 0 ) {
637        // Use zero-fill shift instead
638        Node *zshift = phase->transform(new (phase->C, 3) URShiftLNode(in1->in(1), in1->in(2)));
639        return new (phase->C, 3) AndLNode(zshift, in(2));
640      }
641    }
642  }
643
644  return MulNode::Ideal(phase, can_reshape);
645}
646
647//=============================================================================
648//------------------------------Identity---------------------------------------
649Node *LShiftINode::Identity( PhaseTransform *phase ) {
650  const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
651  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
652}
653
654//------------------------------Ideal------------------------------------------
655// If the right input is a constant, and the left input is an add of a
656// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
657Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
658  const Type *t  = phase->type( in(2) );
659  if( t == Type::TOP ) return NULL;       // Right input is dead
660  const TypeInt *t2 = t->isa_int();
661  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
662  const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
663
664  if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
665
666  // Left input is an add of a constant?
667  Node *add1 = in(1);
668  int add1_op = add1->Opcode();
669  if( add1_op == Op_AddI ) {    // Left input is an add?
670    assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
671    const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
672    if( t12 && t12->is_con() ){ // Left input is an add of a con?
673      // Transform is legal, but check for profit.  Avoid breaking 'i2s'
674      // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
675      if( con < 16 ) {
676        // Compute X << con0
677        Node *lsh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(1), in(2) ) );
678        // Compute X<<con0 + (con1<<con0)
679        return new (phase->C, 3) AddINode( lsh, phase->intcon(t12->get_con() << con));
680      }
681    }
682  }
683
684  // Check for "(x>>c0)<<c0" which just masks off low bits
685  if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
686      add1->in(2) == in(2) )
687    // Convert to "(x & -(1<<c0))"
688    return new (phase->C, 3) AndINode(add1->in(1),phase->intcon( -(1<<con)));
689
690  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
691  if( add1_op == Op_AndI ) {
692    Node *add2 = add1->in(1);
693    int add2_op = add2->Opcode();
694    if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
695        add2->in(2) == in(2) ) {
696      // Convert to "(x & (Y<<c0))"
697      Node *y_sh = phase->transform( new (phase->C, 3) LShiftINode( add1->in(2), in(2) ) );
698      return new (phase->C, 3) AndINode( add2->in(1), y_sh );
699    }
700  }
701
702  // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
703  // before shifting them away.
704  const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
705  if( add1_op == Op_AndI &&
706      phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
707    return new (phase->C, 3) LShiftINode( add1->in(1), in(2) );
708
709  return NULL;
710}
711
712//------------------------------Value------------------------------------------
713// A LShiftINode shifts its input2 left by input1 amount.
714const Type *LShiftINode::Value( PhaseTransform *phase ) const {
715  const Type *t1 = phase->type( in(1) );
716  const Type *t2 = phase->type( in(2) );
717  // Either input is TOP ==> the result is TOP
718  if( t1 == Type::TOP ) return Type::TOP;
719  if( t2 == Type::TOP ) return Type::TOP;
720
721  // Left input is ZERO ==> the result is ZERO.
722  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
723  // Shift by zero does nothing
724  if( t2 == TypeInt::ZERO ) return t1;
725
726  // Either input is BOTTOM ==> the result is BOTTOM
727  if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
728      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
729    return TypeInt::INT;
730
731  const TypeInt *r1 = t1->is_int(); // Handy access
732  const TypeInt *r2 = t2->is_int(); // Handy access
733
734  if (!r2->is_con())
735    return TypeInt::INT;
736
737  uint shift = r2->get_con();
738  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
739  // Shift by a multiple of 32 does nothing:
740  if (shift == 0)  return t1;
741
742  // If the shift is a constant, shift the bounds of the type,
743  // unless this could lead to an overflow.
744  if (!r1->is_con()) {
745    jint lo = r1->_lo, hi = r1->_hi;
746    if (((lo << shift) >> shift) == lo &&
747        ((hi << shift) >> shift) == hi) {
748      // No overflow.  The range shifts up cleanly.
749      return TypeInt::make((jint)lo << (jint)shift,
750                           (jint)hi << (jint)shift,
751                           MAX2(r1->_widen,r2->_widen));
752    }
753    return TypeInt::INT;
754  }
755
756  return TypeInt::make( (jint)r1->get_con() << (jint)shift );
757}
758
759//=============================================================================
760//------------------------------Identity---------------------------------------
761Node *LShiftLNode::Identity( PhaseTransform *phase ) {
762  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
763  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
764}
765
766//------------------------------Ideal------------------------------------------
767// If the right input is a constant, and the left input is an add of a
768// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
769Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
770  const Type *t  = phase->type( in(2) );
771  if( t == Type::TOP ) return NULL;       // Right input is dead
772  const TypeInt *t2 = t->isa_int();
773  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
774  const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
775
776  if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
777
778  // Left input is an add of a constant?
779  Node *add1 = in(1);
780  int add1_op = add1->Opcode();
781  if( add1_op == Op_AddL ) {    // Left input is an add?
782    // Avoid dead data cycles from dead loops
783    assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
784    const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
785    if( t12 && t12->is_con() ){ // Left input is an add of a con?
786      // Compute X << con0
787      Node *lsh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(1), in(2) ) );
788      // Compute X<<con0 + (con1<<con0)
789      return new (phase->C, 3) AddLNode( lsh, phase->longcon(t12->get_con() << con));
790    }
791  }
792
793  // Check for "(x>>c0)<<c0" which just masks off low bits
794  if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
795      add1->in(2) == in(2) )
796    // Convert to "(x & -(1<<c0))"
797    return new (phase->C, 3) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
798
799  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
800  if( add1_op == Op_AndL ) {
801    Node *add2 = add1->in(1);
802    int add2_op = add2->Opcode();
803    if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
804        add2->in(2) == in(2) ) {
805      // Convert to "(x & (Y<<c0))"
806      Node *y_sh = phase->transform( new (phase->C, 3) LShiftLNode( add1->in(2), in(2) ) );
807      return new (phase->C, 3) AndLNode( add2->in(1), y_sh );
808    }
809  }
810
811  // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
812  // before shifting them away.
813  const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) - CONST64(1);
814  if( add1_op == Op_AndL &&
815      phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
816    return new (phase->C, 3) LShiftLNode( add1->in(1), in(2) );
817
818  return NULL;
819}
820
821//------------------------------Value------------------------------------------
822// A LShiftLNode shifts its input2 left by input1 amount.
823const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
824  const Type *t1 = phase->type( in(1) );
825  const Type *t2 = phase->type( in(2) );
826  // Either input is TOP ==> the result is TOP
827  if( t1 == Type::TOP ) return Type::TOP;
828  if( t2 == Type::TOP ) return Type::TOP;
829
830  // Left input is ZERO ==> the result is ZERO.
831  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
832  // Shift by zero does nothing
833  if( t2 == TypeInt::ZERO ) return t1;
834
835  // Either input is BOTTOM ==> the result is BOTTOM
836  if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
837      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
838    return TypeLong::LONG;
839
840  const TypeLong *r1 = t1->is_long(); // Handy access
841  const TypeInt  *r2 = t2->is_int();  // Handy access
842
843  if (!r2->is_con())
844    return TypeLong::LONG;
845
846  uint shift = r2->get_con();
847  shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
848  // Shift by a multiple of 64 does nothing:
849  if (shift == 0)  return t1;
850
851  // If the shift is a constant, shift the bounds of the type,
852  // unless this could lead to an overflow.
853  if (!r1->is_con()) {
854    jlong lo = r1->_lo, hi = r1->_hi;
855    if (((lo << shift) >> shift) == lo &&
856        ((hi << shift) >> shift) == hi) {
857      // No overflow.  The range shifts up cleanly.
858      return TypeLong::make((jlong)lo << (jint)shift,
859                            (jlong)hi << (jint)shift,
860                            MAX2(r1->_widen,r2->_widen));
861    }
862    return TypeLong::LONG;
863  }
864
865  return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
866}
867
868//=============================================================================
869//------------------------------Identity---------------------------------------
870Node *RShiftINode::Identity( PhaseTransform *phase ) {
871  const TypeInt *t2 = phase->type(in(2))->isa_int();
872  if( !t2 ) return this;
873  if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
874    return in(1);
875
876  // Check for useless sign-masking
877  if( in(1)->Opcode() == Op_LShiftI &&
878      in(1)->req() == 3 &&
879      in(1)->in(2) == in(2) &&
880      t2->is_con() ) {
881    uint shift = t2->get_con();
882    shift &= BitsPerJavaInteger-1; // semantics of Java shifts
883    // Compute masks for which this shifting doesn't change
884    int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
885    int hi = ~lo;               // 00007FFF
886    const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
887    if( !t11 ) return this;
888    // Does actual value fit inside of mask?
889    if( lo <= t11->_lo && t11->_hi <= hi )
890      return in(1)->in(1);      // Then shifting is a nop
891  }
892
893  return this;
894}
895
896//------------------------------Ideal------------------------------------------
897Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
898  // Inputs may be TOP if they are dead.
899  const TypeInt *t1 = phase->type( in(1) )->isa_int();
900  if( !t1 ) return NULL;        // Left input is an integer
901  const TypeInt *t2 = phase->type( in(2) )->isa_int();
902  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
903  const TypeInt *t3;  // type of in(1).in(2)
904  int shift = t2->get_con();
905  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
906
907  if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
908
909  // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
910  // Such expressions arise normally from shift chains like (byte)(x >> 24).
911  const Node *mask = in(1);
912  if( mask->Opcode() == Op_AndI &&
913      (t3 = phase->type(mask->in(2))->isa_int()) &&
914      t3->is_con() ) {
915    Node *x = mask->in(1);
916    jint maskbits = t3->get_con();
917    // Convert to "(x >> shift) & (mask >> shift)"
918    Node *shr_nomask = phase->transform( new (phase->C, 3) RShiftINode(mask->in(1), in(2)) );
919    return new (phase->C, 3) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
920  }
921
922  // Check for "(short[i] <<16)>>16" which simply sign-extends
923  const Node *shl = in(1);
924  if( shl->Opcode() != Op_LShiftI ) return NULL;
925
926  if( shift == 16 &&
927      (t3 = phase->type(shl->in(2))->isa_int()) &&
928      t3->is_con(16) ) {
929    Node *ld = shl->in(1);
930    if( ld->Opcode() == Op_LoadS ) {
931      // Sign extension is just useless here.  Return a RShiftI of zero instead
932      // returning 'ld' directly.  We cannot return an old Node directly as
933      // that is the job of 'Identity' calls and Identity calls only work on
934      // direct inputs ('ld' is an extra Node removed from 'this').  The
935      // combined optimization requires Identity only return direct inputs.
936      set_req(1, ld);
937      set_req(2, phase->intcon(0));
938      return this;
939    }
940    else if( ld->Opcode() == Op_LoadUS )
941      // Replace zero-extension-load with sign-extension-load
942      return new (phase->C, 3) LoadSNode( ld->in(MemNode::Control),
943                                ld->in(MemNode::Memory),
944                                ld->in(MemNode::Address),
945                                ld->adr_type());
946  }
947
948  // Check for "(byte[i] <<24)>>24" which simply sign-extends
949  if( shift == 24 &&
950      (t3 = phase->type(shl->in(2))->isa_int()) &&
951      t3->is_con(24) ) {
952    Node *ld = shl->in(1);
953    if( ld->Opcode() == Op_LoadB ) {
954      // Sign extension is just useless here
955      set_req(1, ld);
956      set_req(2, phase->intcon(0));
957      return this;
958    }
959  }
960
961  return NULL;
962}
963
964//------------------------------Value------------------------------------------
965// A RShiftINode shifts its input2 right by input1 amount.
966const Type *RShiftINode::Value( PhaseTransform *phase ) const {
967  const Type *t1 = phase->type( in(1) );
968  const Type *t2 = phase->type( in(2) );
969  // Either input is TOP ==> the result is TOP
970  if( t1 == Type::TOP ) return Type::TOP;
971  if( t2 == Type::TOP ) return Type::TOP;
972
973  // Left input is ZERO ==> the result is ZERO.
974  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
975  // Shift by zero does nothing
976  if( t2 == TypeInt::ZERO ) return t1;
977
978  // Either input is BOTTOM ==> the result is BOTTOM
979  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
980    return TypeInt::INT;
981
982  if (t2 == TypeInt::INT)
983    return TypeInt::INT;
984
985  const TypeInt *r1 = t1->is_int(); // Handy access
986  const TypeInt *r2 = t2->is_int(); // Handy access
987
988  // If the shift is a constant, just shift the bounds of the type.
989  // For example, if the shift is 31, we just propagate sign bits.
990  if (r2->is_con()) {
991    uint shift = r2->get_con();
992    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
993    // Shift by a multiple of 32 does nothing:
994    if (shift == 0)  return t1;
995    // Calculate reasonably aggressive bounds for the result.
996    // This is necessary if we are to correctly type things
997    // like (x<<24>>24) == ((byte)x).
998    jint lo = (jint)r1->_lo >> (jint)shift;
999    jint hi = (jint)r1->_hi >> (jint)shift;
1000    assert(lo <= hi, "must have valid bounds");
1001    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1002#ifdef ASSERT
1003    // Make sure we get the sign-capture idiom correct.
1004    if (shift == BitsPerJavaInteger-1) {
1005      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
1006      if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
1007    }
1008#endif
1009    return ti;
1010  }
1011
1012  if( !r1->is_con() || !r2->is_con() )
1013    return TypeInt::INT;
1014
1015  // Signed shift right
1016  return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
1017}
1018
1019//=============================================================================
1020//------------------------------Identity---------------------------------------
1021Node *RShiftLNode::Identity( PhaseTransform *phase ) {
1022  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1023  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1024}
1025
1026//------------------------------Value------------------------------------------
1027// A RShiftLNode shifts its input2 right by input1 amount.
1028const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
1029  const Type *t1 = phase->type( in(1) );
1030  const Type *t2 = phase->type( in(2) );
1031  // Either input is TOP ==> the result is TOP
1032  if( t1 == Type::TOP ) return Type::TOP;
1033  if( t2 == Type::TOP ) return Type::TOP;
1034
1035  // Left input is ZERO ==> the result is ZERO.
1036  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1037  // Shift by zero does nothing
1038  if( t2 == TypeInt::ZERO ) return t1;
1039
1040  // Either input is BOTTOM ==> the result is BOTTOM
1041  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1042    return TypeLong::LONG;
1043
1044  if (t2 == TypeInt::INT)
1045    return TypeLong::LONG;
1046
1047  const TypeLong *r1 = t1->is_long(); // Handy access
1048  const TypeInt  *r2 = t2->is_int (); // Handy access
1049
1050  // If the shift is a constant, just shift the bounds of the type.
1051  // For example, if the shift is 63, we just propagate sign bits.
1052  if (r2->is_con()) {
1053    uint shift = r2->get_con();
1054    shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1055    // Shift by a multiple of 64 does nothing:
1056    if (shift == 0)  return t1;
1057    // Calculate reasonably aggressive bounds for the result.
1058    // This is necessary if we are to correctly type things
1059    // like (x<<24>>24) == ((byte)x).
1060    jlong lo = (jlong)r1->_lo >> (jlong)shift;
1061    jlong hi = (jlong)r1->_hi >> (jlong)shift;
1062    assert(lo <= hi, "must have valid bounds");
1063    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1064    #ifdef ASSERT
1065    // Make sure we get the sign-capture idiom correct.
1066    if (shift == (2*BitsPerJavaInteger)-1) {
1067      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1068      if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1069    }
1070    #endif
1071    return tl;
1072  }
1073
1074  return TypeLong::LONG;                // Give up
1075}
1076
1077//=============================================================================
1078//------------------------------Identity---------------------------------------
1079Node *URShiftINode::Identity( PhaseTransform *phase ) {
1080  const TypeInt *ti = phase->type( in(2) )->isa_int();
1081  if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
1082
1083  // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1084  // Happens during new-array length computation.
1085  // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1086  Node *add = in(1);
1087  if( add->Opcode() == Op_AddI ) {
1088    const TypeInt *t2  = phase->type(add->in(2))->isa_int();
1089    if( t2 && t2->is_con(wordSize - 1) &&
1090        add->in(1)->Opcode() == Op_LShiftI ) {
1091      // Check that shift_counts are LogBytesPerWord
1092      Node          *lshift_count   = add->in(1)->in(2);
1093      const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1094      if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1095          t_lshift_count == phase->type(in(2)) ) {
1096        Node          *x   = add->in(1)->in(1);
1097        const TypeInt *t_x = phase->type(x)->isa_int();
1098        if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
1099          return x;
1100        }
1101      }
1102    }
1103  }
1104
1105  return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1106}
1107
1108//------------------------------Ideal------------------------------------------
1109Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1110  const TypeInt *t2 = phase->type( in(2) )->isa_int();
1111  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1112  const int con = t2->get_con() & 31; // Shift count is always masked
1113  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1114  // We'll be wanting the right-shift amount as a mask of that many bits
1115  const int mask = right_n_bits(BitsPerJavaInteger - con);
1116
1117  int in1_op = in(1)->Opcode();
1118
1119  // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1120  if( in1_op == Op_URShiftI ) {
1121    const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1122    if( t12 && t12->is_con() ) { // Right input is a constant
1123      assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1124      const int con2 = t12->get_con() & 31; // Shift count is always masked
1125      const int con3 = con+con2;
1126      if( con3 < 32 )           // Only merge shifts if total is < 32
1127        return new (phase->C, 3) URShiftINode( in(1)->in(1), phase->intcon(con3) );
1128    }
1129  }
1130
1131  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1132  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1133  // If Q is "X << z" the rounding is useless.  Look for patterns like
1134  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1135  Node *add = in(1);
1136  if( in1_op == Op_AddI ) {
1137    Node *lshl = add->in(1);
1138    if( lshl->Opcode() == Op_LShiftI &&
1139        phase->type(lshl->in(2)) == t2 ) {
1140      Node *y_z = phase->transform( new (phase->C, 3) URShiftINode(add->in(2),in(2)) );
1141      Node *sum = phase->transform( new (phase->C, 3) AddINode( lshl->in(1), y_z ) );
1142      return new (phase->C, 3) AndINode( sum, phase->intcon(mask) );
1143    }
1144  }
1145
1146  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1147  // This shortens the mask.  Also, if we are extracting a high byte and
1148  // storing it to a buffer, the mask will be removed completely.
1149  Node *andi = in(1);
1150  if( in1_op == Op_AndI ) {
1151    const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1152    if( t3 && t3->is_con() ) { // Right input is a constant
1153      jint mask2 = t3->get_con();
1154      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1155      Node *newshr = phase->transform( new (phase->C, 3) URShiftINode(andi->in(1), in(2)) );
1156      return new (phase->C, 3) AndINode(newshr, phase->intcon(mask2));
1157      // The negative values are easier to materialize than positive ones.
1158      // A typical case from address arithmetic is ((x & ~15) >> 4).
1159      // It's better to change that to ((x >> 4) & ~0) versus
1160      // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1161    }
1162  }
1163
1164  // Check for "(X << z ) >>> z" which simply zero-extends
1165  Node *shl = in(1);
1166  if( in1_op == Op_LShiftI &&
1167      phase->type(shl->in(2)) == t2 )
1168    return new (phase->C, 3) AndINode( shl->in(1), phase->intcon(mask) );
1169
1170  return NULL;
1171}
1172
1173//------------------------------Value------------------------------------------
1174// A URShiftINode shifts its input2 right by input1 amount.
1175const Type *URShiftINode::Value( PhaseTransform *phase ) const {
1176  // (This is a near clone of RShiftINode::Value.)
1177  const Type *t1 = phase->type( in(1) );
1178  const Type *t2 = phase->type( in(2) );
1179  // Either input is TOP ==> the result is TOP
1180  if( t1 == Type::TOP ) return Type::TOP;
1181  if( t2 == Type::TOP ) return Type::TOP;
1182
1183  // Left input is ZERO ==> the result is ZERO.
1184  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1185  // Shift by zero does nothing
1186  if( t2 == TypeInt::ZERO ) return t1;
1187
1188  // Either input is BOTTOM ==> the result is BOTTOM
1189  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1190    return TypeInt::INT;
1191
1192  if (t2 == TypeInt::INT)
1193    return TypeInt::INT;
1194
1195  const TypeInt *r1 = t1->is_int();     // Handy access
1196  const TypeInt *r2 = t2->is_int();     // Handy access
1197
1198  if (r2->is_con()) {
1199    uint shift = r2->get_con();
1200    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1201    // Shift by a multiple of 32 does nothing:
1202    if (shift == 0)  return t1;
1203    // Calculate reasonably aggressive bounds for the result.
1204    jint lo = (juint)r1->_lo >> (juint)shift;
1205    jint hi = (juint)r1->_hi >> (juint)shift;
1206    if (r1->_hi >= 0 && r1->_lo < 0) {
1207      // If the type has both negative and positive values,
1208      // there are two separate sub-domains to worry about:
1209      // The positive half and the negative half.
1210      jint neg_lo = lo;
1211      jint neg_hi = (juint)-1 >> (juint)shift;
1212      jint pos_lo = (juint) 0 >> (juint)shift;
1213      jint pos_hi = hi;
1214      lo = MIN2(neg_lo, pos_lo);  // == 0
1215      hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1216    }
1217    assert(lo <= hi, "must have valid bounds");
1218    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1219    #ifdef ASSERT
1220    // Make sure we get the sign-capture idiom correct.
1221    if (shift == BitsPerJavaInteger-1) {
1222      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1223      if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1224    }
1225    #endif
1226    return ti;
1227  }
1228
1229  //
1230  // Do not support shifted oops in info for GC
1231  //
1232  // else if( t1->base() == Type::InstPtr ) {
1233  //
1234  //   const TypeInstPtr *o = t1->is_instptr();
1235  //   if( t1->singleton() )
1236  //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
1237  // }
1238  // else if( t1->base() == Type::KlassPtr ) {
1239  //   const TypeKlassPtr *o = t1->is_klassptr();
1240  //   if( t1->singleton() )
1241  //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
1242  // }
1243
1244  return TypeInt::INT;
1245}
1246
1247//=============================================================================
1248//------------------------------Identity---------------------------------------
1249Node *URShiftLNode::Identity( PhaseTransform *phase ) {
1250  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1251  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1252}
1253
1254//------------------------------Ideal------------------------------------------
1255Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1256  const TypeInt *t2 = phase->type( in(2) )->isa_int();
1257  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1258  const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
1259  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1260                              // note: mask computation below does not work for 0 shift count
1261  // We'll be wanting the right-shift amount as a mask of that many bits
1262  const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) -1);
1263
1264  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1265  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1266  // If Q is "X << z" the rounding is useless.  Look for patterns like
1267  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1268  Node *add = in(1);
1269  if( add->Opcode() == Op_AddL ) {
1270    Node *lshl = add->in(1);
1271    if( lshl->Opcode() == Op_LShiftL &&
1272        phase->type(lshl->in(2)) == t2 ) {
1273      Node *y_z = phase->transform( new (phase->C, 3) URShiftLNode(add->in(2),in(2)) );
1274      Node *sum = phase->transform( new (phase->C, 3) AddLNode( lshl->in(1), y_z ) );
1275      return new (phase->C, 3) AndLNode( sum, phase->longcon(mask) );
1276    }
1277  }
1278
1279  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1280  // This shortens the mask.  Also, if we are extracting a high byte and
1281  // storing it to a buffer, the mask will be removed completely.
1282  Node *andi = in(1);
1283  if( andi->Opcode() == Op_AndL ) {
1284    const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1285    if( t3 && t3->is_con() ) { // Right input is a constant
1286      jlong mask2 = t3->get_con();
1287      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1288      Node *newshr = phase->transform( new (phase->C, 3) URShiftLNode(andi->in(1), in(2)) );
1289      return new (phase->C, 3) AndLNode(newshr, phase->longcon(mask2));
1290    }
1291  }
1292
1293  // Check for "(X << z ) >>> z" which simply zero-extends
1294  Node *shl = in(1);
1295  if( shl->Opcode() == Op_LShiftL &&
1296      phase->type(shl->in(2)) == t2 )
1297    return new (phase->C, 3) AndLNode( shl->in(1), phase->longcon(mask) );
1298
1299  return NULL;
1300}
1301
1302//------------------------------Value------------------------------------------
1303// A URShiftINode shifts its input2 right by input1 amount.
1304const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
1305  // (This is a near clone of RShiftLNode::Value.)
1306  const Type *t1 = phase->type( in(1) );
1307  const Type *t2 = phase->type( in(2) );
1308  // Either input is TOP ==> the result is TOP
1309  if( t1 == Type::TOP ) return Type::TOP;
1310  if( t2 == Type::TOP ) return Type::TOP;
1311
1312  // Left input is ZERO ==> the result is ZERO.
1313  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1314  // Shift by zero does nothing
1315  if( t2 == TypeInt::ZERO ) return t1;
1316
1317  // Either input is BOTTOM ==> the result is BOTTOM
1318  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1319    return TypeLong::LONG;
1320
1321  if (t2 == TypeInt::INT)
1322    return TypeLong::LONG;
1323
1324  const TypeLong *r1 = t1->is_long(); // Handy access
1325  const TypeInt  *r2 = t2->is_int (); // Handy access
1326
1327  if (r2->is_con()) {
1328    uint shift = r2->get_con();
1329    shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1330    // Shift by a multiple of 64 does nothing:
1331    if (shift == 0)  return t1;
1332    // Calculate reasonably aggressive bounds for the result.
1333    jlong lo = (julong)r1->_lo >> (juint)shift;
1334    jlong hi = (julong)r1->_hi >> (juint)shift;
1335    if (r1->_hi >= 0 && r1->_lo < 0) {
1336      // If the type has both negative and positive values,
1337      // there are two separate sub-domains to worry about:
1338      // The positive half and the negative half.
1339      jlong neg_lo = lo;
1340      jlong neg_hi = (julong)-1 >> (juint)shift;
1341      jlong pos_lo = (julong) 0 >> (juint)shift;
1342      jlong pos_hi = hi;
1343      //lo = MIN2(neg_lo, pos_lo);  // == 0
1344      lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1345      //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1346      hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1347    }
1348    assert(lo <= hi, "must have valid bounds");
1349    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1350    #ifdef ASSERT
1351    // Make sure we get the sign-capture idiom correct.
1352    if (shift == BitsPerJavaLong - 1) {
1353      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1354      if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1355    }
1356    #endif
1357    return tl;
1358  }
1359
1360  return TypeLong::LONG;                // Give up
1361}
1362