memnode.cpp revision 6412:53a41e7cbe05
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "compiler/compileLog.hpp"
28#include "memory/allocation.inline.hpp"
29#include "oops/objArrayKlass.hpp"
30#include "opto/addnode.hpp"
31#include "opto/cfgnode.hpp"
32#include "opto/compile.hpp"
33#include "opto/connode.hpp"
34#include "opto/convertnode.hpp"
35#include "opto/loopnode.hpp"
36#include "opto/machnode.hpp"
37#include "opto/matcher.hpp"
38#include "opto/memnode.hpp"
39#include "opto/mulnode.hpp"
40#include "opto/narrowptrnode.hpp"
41#include "opto/phaseX.hpp"
42#include "opto/regmask.hpp"
43
44// Portions of code courtesy of Clifford Click
45
46// Optimization - Graph Style
47
48static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
49
50//=============================================================================
51uint MemNode::size_of() const { return sizeof(*this); }
52
53const TypePtr *MemNode::adr_type() const {
54  Node* adr = in(Address);
55  const TypePtr* cross_check = NULL;
56  DEBUG_ONLY(cross_check = _adr_type);
57  return calculate_adr_type(adr->bottom_type(), cross_check);
58}
59
60#ifndef PRODUCT
61void MemNode::dump_spec(outputStream *st) const {
62  if (in(Address) == NULL)  return; // node is dead
63#ifndef ASSERT
64  // fake the missing field
65  const TypePtr* _adr_type = NULL;
66  if (in(Address) != NULL)
67    _adr_type = in(Address)->bottom_type()->isa_ptr();
68#endif
69  dump_adr_type(this, _adr_type, st);
70
71  Compile* C = Compile::current();
72  if( C->alias_type(_adr_type)->is_volatile() )
73    st->print(" Volatile!");
74}
75
76void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
77  st->print(" @");
78  if (adr_type == NULL) {
79    st->print("NULL");
80  } else {
81    adr_type->dump_on(st);
82    Compile* C = Compile::current();
83    Compile::AliasType* atp = NULL;
84    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
85    if (atp == NULL)
86      st->print(", idx=?\?;");
87    else if (atp->index() == Compile::AliasIdxBot)
88      st->print(", idx=Bot;");
89    else if (atp->index() == Compile::AliasIdxTop)
90      st->print(", idx=Top;");
91    else if (atp->index() == Compile::AliasIdxRaw)
92      st->print(", idx=Raw;");
93    else {
94      ciField* field = atp->field();
95      if (field) {
96        st->print(", name=");
97        field->print_name_on(st);
98      }
99      st->print(", idx=%d;", atp->index());
100    }
101  }
102}
103
104extern void print_alias_types();
105
106#endif
107
108Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
109  assert((t_oop != NULL), "sanity");
110  bool is_instance = t_oop->is_known_instance_field();
111  bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
112                             (load != NULL) && load->is_Load() &&
113                             (phase->is_IterGVN() != NULL);
114  if (!(is_instance || is_boxed_value_load))
115    return mchain;  // don't try to optimize non-instance types
116  uint instance_id = t_oop->instance_id();
117  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
118  Node *prev = NULL;
119  Node *result = mchain;
120  while (prev != result) {
121    prev = result;
122    if (result == start_mem)
123      break;  // hit one of our sentinels
124    // skip over a call which does not affect this memory slice
125    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
126      Node *proj_in = result->in(0);
127      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
128        break;  // hit one of our sentinels
129      } else if (proj_in->is_Call()) {
130        CallNode *call = proj_in->as_Call();
131        if (!call->may_modify(t_oop, phase)) { // returns false for instances
132          result = call->in(TypeFunc::Memory);
133        }
134      } else if (proj_in->is_Initialize()) {
135        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
136        // Stop if this is the initialization for the object instance which
137        // which contains this memory slice, otherwise skip over it.
138        if ((alloc == NULL) || (alloc->_idx == instance_id)) {
139          break;
140        }
141        if (is_instance) {
142          result = proj_in->in(TypeFunc::Memory);
143        } else if (is_boxed_value_load) {
144          Node* klass = alloc->in(AllocateNode::KlassNode);
145          const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
146          if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
147            result = proj_in->in(TypeFunc::Memory); // not related allocation
148          }
149        }
150      } else if (proj_in->is_MemBar()) {
151        result = proj_in->in(TypeFunc::Memory);
152      } else {
153        assert(false, "unexpected projection");
154      }
155    } else if (result->is_ClearArray()) {
156      if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
157        // Can not bypass initialization of the instance
158        // we are looking for.
159        break;
160      }
161      // Otherwise skip it (the call updated 'result' value).
162    } else if (result->is_MergeMem()) {
163      result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
164    }
165  }
166  return result;
167}
168
169Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
170  const TypeOopPtr* t_oop = t_adr->isa_oopptr();
171  if (t_oop == NULL)
172    return mchain;  // don't try to optimize non-oop types
173  Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
174  bool is_instance = t_oop->is_known_instance_field();
175  PhaseIterGVN *igvn = phase->is_IterGVN();
176  if (is_instance && igvn != NULL  && result->is_Phi()) {
177    PhiNode *mphi = result->as_Phi();
178    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
179    const TypePtr *t = mphi->adr_type();
180    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
181        t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
182        t->is_oopptr()->cast_to_exactness(true)
183         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
184         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
185      // clone the Phi with our address type
186      result = mphi->split_out_instance(t_adr, igvn);
187    } else {
188      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
189    }
190  }
191  return result;
192}
193
194static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
195  uint alias_idx = phase->C->get_alias_index(tp);
196  Node *mem = mmem;
197#ifdef ASSERT
198  {
199    // Check that current type is consistent with the alias index used during graph construction
200    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
201    bool consistent =  adr_check == NULL || adr_check->empty() ||
202                       phase->C->must_alias(adr_check, alias_idx );
203    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
204    if( !consistent && adr_check != NULL && !adr_check->empty() &&
205               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
206        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
207        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
208          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
209          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
210      // don't assert if it is dead code.
211      consistent = true;
212    }
213    if( !consistent ) {
214      st->print("alias_idx==%d, adr_check==", alias_idx);
215      if( adr_check == NULL ) {
216        st->print("NULL");
217      } else {
218        adr_check->dump();
219      }
220      st->cr();
221      print_alias_types();
222      assert(consistent, "adr_check must match alias idx");
223    }
224  }
225#endif
226  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
227  // means an array I have not precisely typed yet.  Do not do any
228  // alias stuff with it any time soon.
229  const TypeOopPtr *toop = tp->isa_oopptr();
230  if( tp->base() != Type::AnyPtr &&
231      !(toop &&
232        toop->klass() != NULL &&
233        toop->klass()->is_java_lang_Object() &&
234        toop->offset() == Type::OffsetBot) ) {
235    // compress paths and change unreachable cycles to TOP
236    // If not, we can update the input infinitely along a MergeMem cycle
237    // Equivalent code in PhiNode::Ideal
238    Node* m  = phase->transform(mmem);
239    // If transformed to a MergeMem, get the desired slice
240    // Otherwise the returned node represents memory for every slice
241    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
242    // Update input if it is progress over what we have now
243  }
244  return mem;
245}
246
247//--------------------------Ideal_common---------------------------------------
248// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
249// Unhook non-raw memories from complete (macro-expanded) initializations.
250Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
251  // If our control input is a dead region, kill all below the region
252  Node *ctl = in(MemNode::Control);
253  if (ctl && remove_dead_region(phase, can_reshape))
254    return this;
255  ctl = in(MemNode::Control);
256  // Don't bother trying to transform a dead node
257  if (ctl && ctl->is_top())  return NodeSentinel;
258
259  PhaseIterGVN *igvn = phase->is_IterGVN();
260  // Wait if control on the worklist.
261  if (ctl && can_reshape && igvn != NULL) {
262    Node* bol = NULL;
263    Node* cmp = NULL;
264    if (ctl->in(0)->is_If()) {
265      assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
266      bol = ctl->in(0)->in(1);
267      if (bol->is_Bool())
268        cmp = ctl->in(0)->in(1)->in(1);
269    }
270    if (igvn->_worklist.member(ctl) ||
271        (bol != NULL && igvn->_worklist.member(bol)) ||
272        (cmp != NULL && igvn->_worklist.member(cmp)) ) {
273      // This control path may be dead.
274      // Delay this memory node transformation until the control is processed.
275      phase->is_IterGVN()->_worklist.push(this);
276      return NodeSentinel; // caller will return NULL
277    }
278  }
279  // Ignore if memory is dead, or self-loop
280  Node *mem = in(MemNode::Memory);
281  if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
282  assert(mem != this, "dead loop in MemNode::Ideal");
283
284  if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
285    // This memory slice may be dead.
286    // Delay this mem node transformation until the memory is processed.
287    phase->is_IterGVN()->_worklist.push(this);
288    return NodeSentinel; // caller will return NULL
289  }
290
291  Node *address = in(MemNode::Address);
292  const Type *t_adr = phase->type(address);
293  if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
294
295  if (can_reshape && igvn != NULL &&
296      (igvn->_worklist.member(address) ||
297       igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
298    // The address's base and type may change when the address is processed.
299    // Delay this mem node transformation until the address is processed.
300    phase->is_IterGVN()->_worklist.push(this);
301    return NodeSentinel; // caller will return NULL
302  }
303
304  // Do NOT remove or optimize the next lines: ensure a new alias index
305  // is allocated for an oop pointer type before Escape Analysis.
306  // Note: C++ will not remove it since the call has side effect.
307  if (t_adr->isa_oopptr()) {
308    int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
309  }
310
311  Node* base = NULL;
312  if (address->is_AddP()) {
313    base = address->in(AddPNode::Base);
314  }
315  if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
316      !t_adr->isa_rawptr()) {
317    // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
318    // Skip this node optimization if its address has TOP base.
319    return NodeSentinel; // caller will return NULL
320  }
321
322  // Avoid independent memory operations
323  Node* old_mem = mem;
324
325  // The code which unhooks non-raw memories from complete (macro-expanded)
326  // initializations was removed. After macro-expansion all stores catched
327  // by Initialize node became raw stores and there is no information
328  // which memory slices they modify. So it is unsafe to move any memory
329  // operation above these stores. Also in most cases hooked non-raw memories
330  // were already unhooked by using information from detect_ptr_independence()
331  // and find_previous_store().
332
333  if (mem->is_MergeMem()) {
334    MergeMemNode* mmem = mem->as_MergeMem();
335    const TypePtr *tp = t_adr->is_ptr();
336
337    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
338  }
339
340  if (mem != old_mem) {
341    set_req(MemNode::Memory, mem);
342    if (can_reshape && old_mem->outcnt() == 0) {
343        igvn->_worklist.push(old_mem);
344    }
345    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
346    return this;
347  }
348
349  // let the subclass continue analyzing...
350  return NULL;
351}
352
353// Helper function for proving some simple control dominations.
354// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
355// Already assumes that 'dom' is available at 'sub', and that 'sub'
356// is not a constant (dominated by the method's StartNode).
357// Used by MemNode::find_previous_store to prove that the
358// control input of a memory operation predates (dominates)
359// an allocation it wants to look past.
360bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
361  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
362    return false; // Conservative answer for dead code
363
364  // Check 'dom'. Skip Proj and CatchProj nodes.
365  dom = dom->find_exact_control(dom);
366  if (dom == NULL || dom->is_top())
367    return false; // Conservative answer for dead code
368
369  if (dom == sub) {
370    // For the case when, for example, 'sub' is Initialize and the original
371    // 'dom' is Proj node of the 'sub'.
372    return false;
373  }
374
375  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
376    return true;
377
378  // 'dom' dominates 'sub' if its control edge and control edges
379  // of all its inputs dominate or equal to sub's control edge.
380
381  // Currently 'sub' is either Allocate, Initialize or Start nodes.
382  // Or Region for the check in LoadNode::Ideal();
383  // 'sub' should have sub->in(0) != NULL.
384  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
385         sub->is_Region() || sub->is_Call(), "expecting only these nodes");
386
387  // Get control edge of 'sub'.
388  Node* orig_sub = sub;
389  sub = sub->find_exact_control(sub->in(0));
390  if (sub == NULL || sub->is_top())
391    return false; // Conservative answer for dead code
392
393  assert(sub->is_CFG(), "expecting control");
394
395  if (sub == dom)
396    return true;
397
398  if (sub->is_Start() || sub->is_Root())
399    return false;
400
401  {
402    // Check all control edges of 'dom'.
403
404    ResourceMark rm;
405    Arena* arena = Thread::current()->resource_area();
406    Node_List nlist(arena);
407    Unique_Node_List dom_list(arena);
408
409    dom_list.push(dom);
410    bool only_dominating_controls = false;
411
412    for (uint next = 0; next < dom_list.size(); next++) {
413      Node* n = dom_list.at(next);
414      if (n == orig_sub)
415        return false; // One of dom's inputs dominated by sub.
416      if (!n->is_CFG() && n->pinned()) {
417        // Check only own control edge for pinned non-control nodes.
418        n = n->find_exact_control(n->in(0));
419        if (n == NULL || n->is_top())
420          return false; // Conservative answer for dead code
421        assert(n->is_CFG(), "expecting control");
422        dom_list.push(n);
423      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
424        only_dominating_controls = true;
425      } else if (n->is_CFG()) {
426        if (n->dominates(sub, nlist))
427          only_dominating_controls = true;
428        else
429          return false;
430      } else {
431        // First, own control edge.
432        Node* m = n->find_exact_control(n->in(0));
433        if (m != NULL) {
434          if (m->is_top())
435            return false; // Conservative answer for dead code
436          dom_list.push(m);
437        }
438        // Now, the rest of edges.
439        uint cnt = n->req();
440        for (uint i = 1; i < cnt; i++) {
441          m = n->find_exact_control(n->in(i));
442          if (m == NULL || m->is_top())
443            continue;
444          dom_list.push(m);
445        }
446      }
447    }
448    return only_dominating_controls;
449  }
450}
451
452//---------------------detect_ptr_independence---------------------------------
453// Used by MemNode::find_previous_store to prove that two base
454// pointers are never equal.
455// The pointers are accompanied by their associated allocations,
456// if any, which have been previously discovered by the caller.
457bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
458                                      Node* p2, AllocateNode* a2,
459                                      PhaseTransform* phase) {
460  // Attempt to prove that these two pointers cannot be aliased.
461  // They may both manifestly be allocations, and they should differ.
462  // Or, if they are not both allocations, they can be distinct constants.
463  // Otherwise, one is an allocation and the other a pre-existing value.
464  if (a1 == NULL && a2 == NULL) {           // neither an allocation
465    return (p1 != p2) && p1->is_Con() && p2->is_Con();
466  } else if (a1 != NULL && a2 != NULL) {    // both allocations
467    return (a1 != a2);
468  } else if (a1 != NULL) {                  // one allocation a1
469    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
470    return all_controls_dominate(p2, a1);
471  } else { //(a2 != NULL)                   // one allocation a2
472    return all_controls_dominate(p1, a2);
473  }
474  return false;
475}
476
477
478// The logic for reordering loads and stores uses four steps:
479// (a) Walk carefully past stores and initializations which we
480//     can prove are independent of this load.
481// (b) Observe that the next memory state makes an exact match
482//     with self (load or store), and locate the relevant store.
483// (c) Ensure that, if we were to wire self directly to the store,
484//     the optimizer would fold it up somehow.
485// (d) Do the rewiring, and return, depending on some other part of
486//     the optimizer to fold up the load.
487// This routine handles steps (a) and (b).  Steps (c) and (d) are
488// specific to loads and stores, so they are handled by the callers.
489// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
490//
491Node* MemNode::find_previous_store(PhaseTransform* phase) {
492  Node*         ctrl   = in(MemNode::Control);
493  Node*         adr    = in(MemNode::Address);
494  intptr_t      offset = 0;
495  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
496  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
497
498  if (offset == Type::OffsetBot)
499    return NULL;            // cannot unalias unless there are precise offsets
500
501  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
502
503  intptr_t size_in_bytes = memory_size();
504
505  Node* mem = in(MemNode::Memory);   // start searching here...
506
507  int cnt = 50;             // Cycle limiter
508  for (;;) {                // While we can dance past unrelated stores...
509    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
510
511    if (mem->is_Store()) {
512      Node* st_adr = mem->in(MemNode::Address);
513      intptr_t st_offset = 0;
514      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
515      if (st_base == NULL)
516        break;              // inscrutable pointer
517      if (st_offset != offset && st_offset != Type::OffsetBot) {
518        const int MAX_STORE = BytesPerLong;
519        if (st_offset >= offset + size_in_bytes ||
520            st_offset <= offset - MAX_STORE ||
521            st_offset <= offset - mem->as_Store()->memory_size()) {
522          // Success:  The offsets are provably independent.
523          // (You may ask, why not just test st_offset != offset and be done?
524          // The answer is that stores of different sizes can co-exist
525          // in the same sequence of RawMem effects.  We sometimes initialize
526          // a whole 'tile' of array elements with a single jint or jlong.)
527          mem = mem->in(MemNode::Memory);
528          continue;           // (a) advance through independent store memory
529        }
530      }
531      if (st_base != base &&
532          detect_ptr_independence(base, alloc,
533                                  st_base,
534                                  AllocateNode::Ideal_allocation(st_base, phase),
535                                  phase)) {
536        // Success:  The bases are provably independent.
537        mem = mem->in(MemNode::Memory);
538        continue;           // (a) advance through independent store memory
539      }
540
541      // (b) At this point, if the bases or offsets do not agree, we lose,
542      // since we have not managed to prove 'this' and 'mem' independent.
543      if (st_base == base && st_offset == offset) {
544        return mem;         // let caller handle steps (c), (d)
545      }
546
547    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
548      InitializeNode* st_init = mem->in(0)->as_Initialize();
549      AllocateNode*  st_alloc = st_init->allocation();
550      if (st_alloc == NULL)
551        break;              // something degenerated
552      bool known_identical = false;
553      bool known_independent = false;
554      if (alloc == st_alloc)
555        known_identical = true;
556      else if (alloc != NULL)
557        known_independent = true;
558      else if (all_controls_dominate(this, st_alloc))
559        known_independent = true;
560
561      if (known_independent) {
562        // The bases are provably independent: Either they are
563        // manifestly distinct allocations, or else the control
564        // of this load dominates the store's allocation.
565        int alias_idx = phase->C->get_alias_index(adr_type());
566        if (alias_idx == Compile::AliasIdxRaw) {
567          mem = st_alloc->in(TypeFunc::Memory);
568        } else {
569          mem = st_init->memory(alias_idx);
570        }
571        continue;           // (a) advance through independent store memory
572      }
573
574      // (b) at this point, if we are not looking at a store initializing
575      // the same allocation we are loading from, we lose.
576      if (known_identical) {
577        // From caller, can_see_stored_value will consult find_captured_store.
578        return mem;         // let caller handle steps (c), (d)
579      }
580
581    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
582      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
583      if (mem->is_Proj() && mem->in(0)->is_Call()) {
584        CallNode *call = mem->in(0)->as_Call();
585        if (!call->may_modify(addr_t, phase)) {
586          mem = call->in(TypeFunc::Memory);
587          continue;         // (a) advance through independent call memory
588        }
589      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
590        mem = mem->in(0)->in(TypeFunc::Memory);
591        continue;           // (a) advance through independent MemBar memory
592      } else if (mem->is_ClearArray()) {
593        if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
594          // (the call updated 'mem' value)
595          continue;         // (a) advance through independent allocation memory
596        } else {
597          // Can not bypass initialization of the instance
598          // we are looking for.
599          return mem;
600        }
601      } else if (mem->is_MergeMem()) {
602        int alias_idx = phase->C->get_alias_index(adr_type());
603        mem = mem->as_MergeMem()->memory_at(alias_idx);
604        continue;           // (a) advance through independent MergeMem memory
605      }
606    }
607
608    // Unless there is an explicit 'continue', we must bail out here,
609    // because 'mem' is an inscrutable memory state (e.g., a call).
610    break;
611  }
612
613  return NULL;              // bail out
614}
615
616//----------------------calculate_adr_type-------------------------------------
617// Helper function.  Notices when the given type of address hits top or bottom.
618// Also, asserts a cross-check of the type against the expected address type.
619const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
620  if (t == Type::TOP)  return NULL; // does not touch memory any more?
621  #ifdef PRODUCT
622  cross_check = NULL;
623  #else
624  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
625  #endif
626  const TypePtr* tp = t->isa_ptr();
627  if (tp == NULL) {
628    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
629    return TypePtr::BOTTOM;           // touches lots of memory
630  } else {
631    #ifdef ASSERT
632    // %%%% [phh] We don't check the alias index if cross_check is
633    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
634    if (cross_check != NULL &&
635        cross_check != TypePtr::BOTTOM &&
636        cross_check != TypeRawPtr::BOTTOM) {
637      // Recheck the alias index, to see if it has changed (due to a bug).
638      Compile* C = Compile::current();
639      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
640             "must stay in the original alias category");
641      // The type of the address must be contained in the adr_type,
642      // disregarding "null"-ness.
643      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
644      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
645      assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
646             "real address must not escape from expected memory type");
647    }
648    #endif
649    return tp;
650  }
651}
652
653//------------------------adr_phi_is_loop_invariant----------------------------
654// A helper function for Ideal_DU_postCCP to check if a Phi in a counted
655// loop is loop invariant. Make a quick traversal of Phi and associated
656// CastPP nodes, looking to see if they are a closed group within the loop.
657bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
658  // The idea is that the phi-nest must boil down to only CastPP nodes
659  // with the same data. This implies that any path into the loop already
660  // includes such a CastPP, and so the original cast, whatever its input,
661  // must be covered by an equivalent cast, with an earlier control input.
662  ResourceMark rm;
663
664  // The loop entry input of the phi should be the unique dominating
665  // node for every Phi/CastPP in the loop.
666  Unique_Node_List closure;
667  closure.push(adr_phi->in(LoopNode::EntryControl));
668
669  // Add the phi node and the cast to the worklist.
670  Unique_Node_List worklist;
671  worklist.push(adr_phi);
672  if( cast != NULL ){
673    if( !cast->is_ConstraintCast() ) return false;
674    worklist.push(cast);
675  }
676
677  // Begin recursive walk of phi nodes.
678  while( worklist.size() ){
679    // Take a node off the worklist
680    Node *n = worklist.pop();
681    if( !closure.member(n) ){
682      // Add it to the closure.
683      closure.push(n);
684      // Make a sanity check to ensure we don't waste too much time here.
685      if( closure.size() > 20) return false;
686      // This node is OK if:
687      //  - it is a cast of an identical value
688      //  - or it is a phi node (then we add its inputs to the worklist)
689      // Otherwise, the node is not OK, and we presume the cast is not invariant
690      if( n->is_ConstraintCast() ){
691        worklist.push(n->in(1));
692      } else if( n->is_Phi() ) {
693        for( uint i = 1; i < n->req(); i++ ) {
694          worklist.push(n->in(i));
695        }
696      } else {
697        return false;
698      }
699    }
700  }
701
702  // Quit when the worklist is empty, and we've found no offending nodes.
703  return true;
704}
705
706//------------------------------Ideal_DU_postCCP-------------------------------
707// Find any cast-away of null-ness and keep its control.  Null cast-aways are
708// going away in this pass and we need to make this memory op depend on the
709// gating null check.
710Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
711  return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
712}
713
714// I tried to leave the CastPP's in.  This makes the graph more accurate in
715// some sense; we get to keep around the knowledge that an oop is not-null
716// after some test.  Alas, the CastPP's interfere with GVN (some values are
717// the regular oop, some are the CastPP of the oop, all merge at Phi's which
718// cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
719// some of the more trivial cases in the optimizer.  Removing more useless
720// Phi's started allowing Loads to illegally float above null checks.  I gave
721// up on this approach.  CNC 10/20/2000
722// This static method may be called not from MemNode (EncodePNode calls it).
723// Only the control edge of the node 'n' might be updated.
724Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
725  Node *skipped_cast = NULL;
726  // Need a null check?  Regular static accesses do not because they are
727  // from constant addresses.  Array ops are gated by the range check (which
728  // always includes a NULL check).  Just check field ops.
729  if( n->in(MemNode::Control) == NULL ) {
730    // Scan upwards for the highest location we can place this memory op.
731    while( true ) {
732      switch( adr->Opcode() ) {
733
734      case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
735        adr = adr->in(AddPNode::Base);
736        continue;
737
738      case Op_DecodeN:         // No change to NULL-ness, so peek thru
739      case Op_DecodeNKlass:
740        adr = adr->in(1);
741        continue;
742
743      case Op_EncodeP:
744      case Op_EncodePKlass:
745        // EncodeP node's control edge could be set by this method
746        // when EncodeP node depends on CastPP node.
747        //
748        // Use its control edge for memory op because EncodeP may go away
749        // later when it is folded with following or preceding DecodeN node.
750        if (adr->in(0) == NULL) {
751          // Keep looking for cast nodes.
752          adr = adr->in(1);
753          continue;
754        }
755        ccp->hash_delete(n);
756        n->set_req(MemNode::Control, adr->in(0));
757        ccp->hash_insert(n);
758        return n;
759
760      case Op_CastPP:
761        // If the CastPP is useless, just peek on through it.
762        if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
763          // Remember the cast that we've peeked though. If we peek
764          // through more than one, then we end up remembering the highest
765          // one, that is, if in a loop, the one closest to the top.
766          skipped_cast = adr;
767          adr = adr->in(1);
768          continue;
769        }
770        // CastPP is going away in this pass!  We need this memory op to be
771        // control-dependent on the test that is guarding the CastPP.
772        ccp->hash_delete(n);
773        n->set_req(MemNode::Control, adr->in(0));
774        ccp->hash_insert(n);
775        return n;
776
777      case Op_Phi:
778        // Attempt to float above a Phi to some dominating point.
779        if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
780          // If we've already peeked through a Cast (which could have set the
781          // control), we can't float above a Phi, because the skipped Cast
782          // may not be loop invariant.
783          if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
784            adr = adr->in(1);
785            continue;
786          }
787        }
788
789        // Intentional fallthrough!
790
791        // No obvious dominating point.  The mem op is pinned below the Phi
792        // by the Phi itself.  If the Phi goes away (no true value is merged)
793        // then the mem op can float, but not indefinitely.  It must be pinned
794        // behind the controls leading to the Phi.
795      case Op_CheckCastPP:
796        // These usually stick around to change address type, however a
797        // useless one can be elided and we still need to pick up a control edge
798        if (adr->in(0) == NULL) {
799          // This CheckCastPP node has NO control and is likely useless. But we
800          // need check further up the ancestor chain for a control input to keep
801          // the node in place. 4959717.
802          skipped_cast = adr;
803          adr = adr->in(1);
804          continue;
805        }
806        ccp->hash_delete(n);
807        n->set_req(MemNode::Control, adr->in(0));
808        ccp->hash_insert(n);
809        return n;
810
811        // List of "safe" opcodes; those that implicitly block the memory
812        // op below any null check.
813      case Op_CastX2P:          // no null checks on native pointers
814      case Op_Parm:             // 'this' pointer is not null
815      case Op_LoadP:            // Loading from within a klass
816      case Op_LoadN:            // Loading from within a klass
817      case Op_LoadKlass:        // Loading from within a klass
818      case Op_LoadNKlass:       // Loading from within a klass
819      case Op_ConP:             // Loading from a klass
820      case Op_ConN:             // Loading from a klass
821      case Op_ConNKlass:        // Loading from a klass
822      case Op_CreateEx:         // Sucking up the guts of an exception oop
823      case Op_Con:              // Reading from TLS
824      case Op_CMoveP:           // CMoveP is pinned
825      case Op_CMoveN:           // CMoveN is pinned
826        break;                  // No progress
827
828      case Op_Proj:             // Direct call to an allocation routine
829      case Op_SCMemProj:        // Memory state from store conditional ops
830#ifdef ASSERT
831        {
832          assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
833          const Node* call = adr->in(0);
834          if (call->is_CallJava()) {
835            const CallJavaNode* call_java = call->as_CallJava();
836            const TypeTuple *r = call_java->tf()->range();
837            assert(r->cnt() > TypeFunc::Parms, "must return value");
838            const Type* ret_type = r->field_at(TypeFunc::Parms);
839            assert(ret_type && ret_type->isa_ptr(), "must return pointer");
840            // We further presume that this is one of
841            // new_instance_Java, new_array_Java, or
842            // the like, but do not assert for this.
843          } else if (call->is_Allocate()) {
844            // similar case to new_instance_Java, etc.
845          } else if (!call->is_CallLeaf()) {
846            // Projections from fetch_oop (OSR) are allowed as well.
847            ShouldNotReachHere();
848          }
849        }
850#endif
851        break;
852      default:
853        ShouldNotReachHere();
854      }
855      break;
856    }
857  }
858
859  return  NULL;               // No progress
860}
861
862
863//=============================================================================
864uint LoadNode::size_of() const { return sizeof(*this); }
865uint LoadNode::cmp( const Node &n ) const
866{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
867const Type *LoadNode::bottom_type() const { return _type; }
868uint LoadNode::ideal_reg() const {
869  return _type->ideal_reg();
870}
871
872#ifndef PRODUCT
873void LoadNode::dump_spec(outputStream *st) const {
874  MemNode::dump_spec(st);
875  if( !Verbose && !WizardMode ) {
876    // standard dump does this in Verbose and WizardMode
877    st->print(" #"); _type->dump_on(st);
878  }
879}
880#endif
881
882#ifdef ASSERT
883//----------------------------is_immutable_value-------------------------------
884// Helper function to allow a raw load without control edge for some cases
885bool LoadNode::is_immutable_value(Node* adr) {
886  return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
887          adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
888          (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
889           in_bytes(JavaThread::osthread_offset())));
890}
891#endif
892
893//----------------------------LoadNode::make-----------------------------------
894// Polymorphic factory method:
895Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo) {
896  Compile* C = gvn.C;
897
898  // sanity check the alias category against the created node type
899  assert(!(adr_type->isa_oopptr() &&
900           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
901         "use LoadKlassNode instead");
902  assert(!(adr_type->isa_aryptr() &&
903           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
904         "use LoadRangeNode instead");
905  // Check control edge of raw loads
906  assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
907          // oop will be recorded in oop map if load crosses safepoint
908          rt->isa_oopptr() || is_immutable_value(adr),
909          "raw memory operations should have control edge");
910  switch (bt) {
911  case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
912  case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
913  case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
914  case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
915  case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
916  case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo);
917  case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt,            mo);
918  case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt,            mo);
919  case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo);
920  case T_OBJECT:
921#ifdef _LP64
922    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
923      Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo));
924      return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
925    } else
926#endif
927    {
928      assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
929      return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo);
930    }
931  }
932  ShouldNotReachHere();
933  return (LoadNode*)NULL;
934}
935
936LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
937  bool require_atomic = true;
938  return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, require_atomic);
939}
940
941LoadDNode* LoadDNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
942  bool require_atomic = true;
943  return new (C) LoadDNode(ctl, mem, adr, adr_type, rt, mo, require_atomic);
944}
945
946
947
948//------------------------------hash-------------------------------------------
949uint LoadNode::hash() const {
950  // unroll addition of interesting fields
951  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
952}
953
954static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
955  if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
956    bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
957    bool is_stable_ary = FoldStableValues &&
958                         (tp != NULL) && (tp->isa_aryptr() != NULL) &&
959                         tp->isa_aryptr()->is_stable();
960
961    return (eliminate_boxing && non_volatile) || is_stable_ary;
962  }
963
964  return false;
965}
966
967//---------------------------can_see_stored_value------------------------------
968// This routine exists to make sure this set of tests is done the same
969// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
970// will change the graph shape in a way which makes memory alive twice at the
971// same time (uses the Oracle model of aliasing), then some
972// LoadXNode::Identity will fold things back to the equivalence-class model
973// of aliasing.
974Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
975  Node* ld_adr = in(MemNode::Address);
976  intptr_t ld_off = 0;
977  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
978  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
979  Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
980  // This is more general than load from boxing objects.
981  if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
982    uint alias_idx = atp->index();
983    bool final = !atp->is_rewritable();
984    Node* result = NULL;
985    Node* current = st;
986    // Skip through chains of MemBarNodes checking the MergeMems for
987    // new states for the slice of this load.  Stop once any other
988    // kind of node is encountered.  Loads from final memory can skip
989    // through any kind of MemBar but normal loads shouldn't skip
990    // through MemBarAcquire since the could allow them to move out of
991    // a synchronized region.
992    while (current->is_Proj()) {
993      int opc = current->in(0)->Opcode();
994      if ((final && (opc == Op_MemBarAcquire ||
995                     opc == Op_MemBarAcquireLock ||
996                     opc == Op_LoadFence)) ||
997          opc == Op_MemBarRelease ||
998          opc == Op_StoreFence ||
999          opc == Op_MemBarReleaseLock ||
1000          opc == Op_MemBarCPUOrder) {
1001        Node* mem = current->in(0)->in(TypeFunc::Memory);
1002        if (mem->is_MergeMem()) {
1003          MergeMemNode* merge = mem->as_MergeMem();
1004          Node* new_st = merge->memory_at(alias_idx);
1005          if (new_st == merge->base_memory()) {
1006            // Keep searching
1007            current = new_st;
1008            continue;
1009          }
1010          // Save the new memory state for the slice and fall through
1011          // to exit.
1012          result = new_st;
1013        }
1014      }
1015      break;
1016    }
1017    if (result != NULL) {
1018      st = result;
1019    }
1020  }
1021
1022  // Loop around twice in the case Load -> Initialize -> Store.
1023  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1024  for (int trip = 0; trip <= 1; trip++) {
1025
1026    if (st->is_Store()) {
1027      Node* st_adr = st->in(MemNode::Address);
1028      if (!phase->eqv(st_adr, ld_adr)) {
1029        // Try harder before giving up...  Match raw and non-raw pointers.
1030        intptr_t st_off = 0;
1031        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1032        if (alloc == NULL)       return NULL;
1033        if (alloc != ld_alloc)   return NULL;
1034        if (ld_off != st_off)    return NULL;
1035        // At this point we have proven something like this setup:
1036        //  A = Allocate(...)
1037        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1038        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1039        // (Actually, we haven't yet proven the Q's are the same.)
1040        // In other words, we are loading from a casted version of
1041        // the same pointer-and-offset that we stored to.
1042        // Thus, we are able to replace L by V.
1043      }
1044      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1045      if (store_Opcode() != st->Opcode())
1046        return NULL;
1047      return st->in(MemNode::ValueIn);
1048    }
1049
1050    // A load from a freshly-created object always returns zero.
1051    // (This can happen after LoadNode::Ideal resets the load's memory input
1052    // to find_captured_store, which returned InitializeNode::zero_memory.)
1053    if (st->is_Proj() && st->in(0)->is_Allocate() &&
1054        (st->in(0) == ld_alloc) &&
1055        (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1056      // return a zero value for the load's basic type
1057      // (This is one of the few places where a generic PhaseTransform
1058      // can create new nodes.  Think of it as lazily manifesting
1059      // virtually pre-existing constants.)
1060      return phase->zerocon(memory_type());
1061    }
1062
1063    // A load from an initialization barrier can match a captured store.
1064    if (st->is_Proj() && st->in(0)->is_Initialize()) {
1065      InitializeNode* init = st->in(0)->as_Initialize();
1066      AllocateNode* alloc = init->allocation();
1067      if ((alloc != NULL) && (alloc == ld_alloc)) {
1068        // examine a captured store value
1069        st = init->find_captured_store(ld_off, memory_size(), phase);
1070        if (st != NULL)
1071          continue;             // take one more trip around
1072      }
1073    }
1074
1075    // Load boxed value from result of valueOf() call is input parameter.
1076    if (this->is_Load() && ld_adr->is_AddP() &&
1077        (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1078      intptr_t ignore = 0;
1079      Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1080      if (base != NULL && base->is_Proj() &&
1081          base->as_Proj()->_con == TypeFunc::Parms &&
1082          base->in(0)->is_CallStaticJava() &&
1083          base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1084        return base->in(0)->in(TypeFunc::Parms);
1085      }
1086    }
1087
1088    break;
1089  }
1090
1091  return NULL;
1092}
1093
1094//----------------------is_instance_field_load_with_local_phi------------------
1095bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1096  if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1097      in(Address)->is_AddP() ) {
1098    const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1099    // Only instances and boxed values.
1100    if( t_oop != NULL &&
1101        (t_oop->is_ptr_to_boxed_value() ||
1102         t_oop->is_known_instance_field()) &&
1103        t_oop->offset() != Type::OffsetBot &&
1104        t_oop->offset() != Type::OffsetTop) {
1105      return true;
1106    }
1107  }
1108  return false;
1109}
1110
1111//------------------------------Identity---------------------------------------
1112// Loads are identity if previous store is to same address
1113Node *LoadNode::Identity( PhaseTransform *phase ) {
1114  // If the previous store-maker is the right kind of Store, and the store is
1115  // to the same address, then we are equal to the value stored.
1116  Node* mem = in(Memory);
1117  Node* value = can_see_stored_value(mem, phase);
1118  if( value ) {
1119    // byte, short & char stores truncate naturally.
1120    // A load has to load the truncated value which requires
1121    // some sort of masking operation and that requires an
1122    // Ideal call instead of an Identity call.
1123    if (memory_size() < BytesPerInt) {
1124      // If the input to the store does not fit with the load's result type,
1125      // it must be truncated via an Ideal call.
1126      if (!phase->type(value)->higher_equal(phase->type(this)))
1127        return this;
1128    }
1129    // (This works even when value is a Con, but LoadNode::Value
1130    // usually runs first, producing the singleton type of the Con.)
1131    return value;
1132  }
1133
1134  // Search for an existing data phi which was generated before for the same
1135  // instance's field to avoid infinite generation of phis in a loop.
1136  Node *region = mem->in(0);
1137  if (is_instance_field_load_with_local_phi(region)) {
1138    const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1139    int this_index  = phase->C->get_alias_index(addr_t);
1140    int this_offset = addr_t->offset();
1141    int this_iid    = addr_t->instance_id();
1142    if (!addr_t->is_known_instance() &&
1143         addr_t->is_ptr_to_boxed_value()) {
1144      // Use _idx of address base (could be Phi node) for boxed values.
1145      intptr_t   ignore = 0;
1146      Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1147      this_iid = base->_idx;
1148    }
1149    const Type* this_type = bottom_type();
1150    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1151      Node* phi = region->fast_out(i);
1152      if (phi->is_Phi() && phi != mem &&
1153          phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1154        return phi;
1155      }
1156    }
1157  }
1158
1159  return this;
1160}
1161
1162// We're loading from an object which has autobox behaviour.
1163// If this object is result of a valueOf call we'll have a phi
1164// merging a newly allocated object and a load from the cache.
1165// We want to replace this load with the original incoming
1166// argument to the valueOf call.
1167Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1168  assert(phase->C->eliminate_boxing(), "sanity");
1169  intptr_t ignore = 0;
1170  Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1171  if ((base == NULL) || base->is_Phi()) {
1172    // Push the loads from the phi that comes from valueOf up
1173    // through it to allow elimination of the loads and the recovery
1174    // of the original value. It is done in split_through_phi().
1175    return NULL;
1176  } else if (base->is_Load() ||
1177             base->is_DecodeN() && base->in(1)->is_Load()) {
1178    // Eliminate the load of boxed value for integer types from the cache
1179    // array by deriving the value from the index into the array.
1180    // Capture the offset of the load and then reverse the computation.
1181
1182    // Get LoadN node which loads a boxing object from 'cache' array.
1183    if (base->is_DecodeN()) {
1184      base = base->in(1);
1185    }
1186    if (!base->in(Address)->is_AddP()) {
1187      return NULL; // Complex address
1188    }
1189    AddPNode* address = base->in(Address)->as_AddP();
1190    Node* cache_base = address->in(AddPNode::Base);
1191    if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1192      // Get ConP node which is static 'cache' field.
1193      cache_base = cache_base->in(1);
1194    }
1195    if ((cache_base != NULL) && cache_base->is_Con()) {
1196      const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1197      if ((base_type != NULL) && base_type->is_autobox_cache()) {
1198        Node* elements[4];
1199        int shift = exact_log2(type2aelembytes(T_OBJECT));
1200        int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1201        if ((count >  0) && elements[0]->is_Con() &&
1202            ((count == 1) ||
1203             (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1204                             elements[1]->in(2) == phase->intcon(shift))) {
1205          ciObjArray* array = base_type->const_oop()->as_obj_array();
1206          // Fetch the box object cache[0] at the base of the array and get its value
1207          ciInstance* box = array->obj_at(0)->as_instance();
1208          ciInstanceKlass* ik = box->klass()->as_instance_klass();
1209          assert(ik->is_box_klass(), "sanity");
1210          assert(ik->nof_nonstatic_fields() == 1, "change following code");
1211          if (ik->nof_nonstatic_fields() == 1) {
1212            // This should be true nonstatic_field_at requires calling
1213            // nof_nonstatic_fields so check it anyway
1214            ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1215            BasicType bt = c.basic_type();
1216            // Only integer types have boxing cache.
1217            assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1218                   bt == T_BYTE    || bt == T_SHORT ||
1219                   bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1220            jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1221            if (cache_low != (int)cache_low) {
1222              return NULL; // should not happen since cache is array indexed by value
1223            }
1224            jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1225            if (offset != (int)offset) {
1226              return NULL; // should not happen since cache is array indexed by value
1227            }
1228           // Add up all the offsets making of the address of the load
1229            Node* result = elements[0];
1230            for (int i = 1; i < count; i++) {
1231              result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1232            }
1233            // Remove the constant offset from the address and then
1234            result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1235            // remove the scaling of the offset to recover the original index.
1236            if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1237              // Peel the shift off directly but wrap it in a dummy node
1238              // since Ideal can't return existing nodes
1239              result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1240            } else if (result->is_Add() && result->in(2)->is_Con() &&
1241                       result->in(1)->Opcode() == Op_LShiftX &&
1242                       result->in(1)->in(2) == phase->intcon(shift)) {
1243              // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1244              // but for boxing cache access we know that X<<Z will not overflow
1245              // (there is range check) so we do this optimizatrion by hand here.
1246              Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1247              result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1248            } else {
1249              result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1250            }
1251#ifdef _LP64
1252            if (bt != T_LONG) {
1253              result = new (phase->C) ConvL2INode(phase->transform(result));
1254            }
1255#else
1256            if (bt == T_LONG) {
1257              result = new (phase->C) ConvI2LNode(phase->transform(result));
1258            }
1259#endif
1260            return result;
1261          }
1262        }
1263      }
1264    }
1265  }
1266  return NULL;
1267}
1268
1269static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1270  Node* region = phi->in(0);
1271  if (region == NULL) {
1272    return false; // Wait stable graph
1273  }
1274  uint cnt = phi->req();
1275  for (uint i = 1; i < cnt; i++) {
1276    Node* rc = region->in(i);
1277    if (rc == NULL || phase->type(rc) == Type::TOP)
1278      return false; // Wait stable graph
1279    Node* in = phi->in(i);
1280    if (in == NULL || phase->type(in) == Type::TOP)
1281      return false; // Wait stable graph
1282  }
1283  return true;
1284}
1285//------------------------------split_through_phi------------------------------
1286// Split instance or boxed field load through Phi.
1287Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1288  Node* mem     = in(Memory);
1289  Node* address = in(Address);
1290  const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1291
1292  assert((t_oop != NULL) &&
1293         (t_oop->is_known_instance_field() ||
1294          t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1295
1296  Compile* C = phase->C;
1297  intptr_t ignore = 0;
1298  Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1299  bool base_is_phi = (base != NULL) && base->is_Phi();
1300  bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1301                           (base != NULL) && (base == address->in(AddPNode::Base)) &&
1302                           phase->type(base)->higher_equal(TypePtr::NOTNULL);
1303
1304  if (!((mem->is_Phi() || base_is_phi) &&
1305        (load_boxed_values || t_oop->is_known_instance_field()))) {
1306    return NULL; // memory is not Phi
1307  }
1308
1309  if (mem->is_Phi()) {
1310    if (!stable_phi(mem->as_Phi(), phase)) {
1311      return NULL; // Wait stable graph
1312    }
1313    uint cnt = mem->req();
1314    // Check for loop invariant memory.
1315    if (cnt == 3) {
1316      for (uint i = 1; i < cnt; i++) {
1317        Node* in = mem->in(i);
1318        Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1319        if (m == mem) {
1320          set_req(Memory, mem->in(cnt - i));
1321          return this; // made change
1322        }
1323      }
1324    }
1325  }
1326  if (base_is_phi) {
1327    if (!stable_phi(base->as_Phi(), phase)) {
1328      return NULL; // Wait stable graph
1329    }
1330    uint cnt = base->req();
1331    // Check for loop invariant memory.
1332    if (cnt == 3) {
1333      for (uint i = 1; i < cnt; i++) {
1334        if (base->in(i) == base) {
1335          return NULL; // Wait stable graph
1336        }
1337      }
1338    }
1339  }
1340
1341  bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1342
1343  // Split through Phi (see original code in loopopts.cpp).
1344  assert(C->have_alias_type(t_oop), "instance should have alias type");
1345
1346  // Do nothing here if Identity will find a value
1347  // (to avoid infinite chain of value phis generation).
1348  if (!phase->eqv(this, this->Identity(phase)))
1349    return NULL;
1350
1351  // Select Region to split through.
1352  Node* region;
1353  if (!base_is_phi) {
1354    assert(mem->is_Phi(), "sanity");
1355    region = mem->in(0);
1356    // Skip if the region dominates some control edge of the address.
1357    if (!MemNode::all_controls_dominate(address, region))
1358      return NULL;
1359  } else if (!mem->is_Phi()) {
1360    assert(base_is_phi, "sanity");
1361    region = base->in(0);
1362    // Skip if the region dominates some control edge of the memory.
1363    if (!MemNode::all_controls_dominate(mem, region))
1364      return NULL;
1365  } else if (base->in(0) != mem->in(0)) {
1366    assert(base_is_phi && mem->is_Phi(), "sanity");
1367    if (MemNode::all_controls_dominate(mem, base->in(0))) {
1368      region = base->in(0);
1369    } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1370      region = mem->in(0);
1371    } else {
1372      return NULL; // complex graph
1373    }
1374  } else {
1375    assert(base->in(0) == mem->in(0), "sanity");
1376    region = mem->in(0);
1377  }
1378
1379  const Type* this_type = this->bottom_type();
1380  int this_index  = C->get_alias_index(t_oop);
1381  int this_offset = t_oop->offset();
1382  int this_iid    = t_oop->instance_id();
1383  if (!t_oop->is_known_instance() && load_boxed_values) {
1384    // Use _idx of address base for boxed values.
1385    this_iid = base->_idx;
1386  }
1387  PhaseIterGVN* igvn = phase->is_IterGVN();
1388  Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1389  for (uint i = 1; i < region->req(); i++) {
1390    Node* x;
1391    Node* the_clone = NULL;
1392    if (region->in(i) == C->top()) {
1393      x = C->top();      // Dead path?  Use a dead data op
1394    } else {
1395      x = this->clone();        // Else clone up the data op
1396      the_clone = x;            // Remember for possible deletion.
1397      // Alter data node to use pre-phi inputs
1398      if (this->in(0) == region) {
1399        x->set_req(0, region->in(i));
1400      } else {
1401        x->set_req(0, NULL);
1402      }
1403      if (mem->is_Phi() && (mem->in(0) == region)) {
1404        x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1405      }
1406      if (address->is_Phi() && address->in(0) == region) {
1407        x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1408      }
1409      if (base_is_phi && (base->in(0) == region)) {
1410        Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1411        Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1412        x->set_req(Address, adr_x);
1413      }
1414    }
1415    // Check for a 'win' on some paths
1416    const Type *t = x->Value(igvn);
1417
1418    bool singleton = t->singleton();
1419
1420    // See comments in PhaseIdealLoop::split_thru_phi().
1421    if (singleton && t == Type::TOP) {
1422      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1423    }
1424
1425    if (singleton) {
1426      x = igvn->makecon(t);
1427    } else {
1428      // We now call Identity to try to simplify the cloned node.
1429      // Note that some Identity methods call phase->type(this).
1430      // Make sure that the type array is big enough for
1431      // our new node, even though we may throw the node away.
1432      // (This tweaking with igvn only works because x is a new node.)
1433      igvn->set_type(x, t);
1434      // If x is a TypeNode, capture any more-precise type permanently into Node
1435      // otherwise it will be not updated during igvn->transform since
1436      // igvn->type(x) is set to x->Value() already.
1437      x->raise_bottom_type(t);
1438      Node *y = x->Identity(igvn);
1439      if (y != x) {
1440        x = y;
1441      } else {
1442        y = igvn->hash_find_insert(x);
1443        if (y) {
1444          x = y;
1445        } else {
1446          // Else x is a new node we are keeping
1447          // We do not need register_new_node_with_optimizer
1448          // because set_type has already been called.
1449          igvn->_worklist.push(x);
1450        }
1451      }
1452    }
1453    if (x != the_clone && the_clone != NULL) {
1454      igvn->remove_dead_node(the_clone);
1455    }
1456    phi->set_req(i, x);
1457  }
1458  // Record Phi
1459  igvn->register_new_node_with_optimizer(phi);
1460  return phi;
1461}
1462
1463//------------------------------Ideal------------------------------------------
1464// If the load is from Field memory and the pointer is non-null, we can
1465// zero out the control input.
1466// If the offset is constant and the base is an object allocation,
1467// try to hook me up to the exact initializing store.
1468Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1469  Node* p = MemNode::Ideal_common(phase, can_reshape);
1470  if (p)  return (p == NodeSentinel) ? NULL : p;
1471
1472  Node* ctrl    = in(MemNode::Control);
1473  Node* address = in(MemNode::Address);
1474
1475  // Skip up past a SafePoint control.  Cannot do this for Stores because
1476  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1477  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1478      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1479    ctrl = ctrl->in(0);
1480    set_req(MemNode::Control,ctrl);
1481  }
1482
1483  intptr_t ignore = 0;
1484  Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1485  if (base != NULL
1486      && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1487    // Check for useless control edge in some common special cases
1488    if (in(MemNode::Control) != NULL
1489        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1490        && all_controls_dominate(base, phase->C->start())) {
1491      // A method-invariant, non-null address (constant or 'this' argument).
1492      set_req(MemNode::Control, NULL);
1493    }
1494  }
1495
1496  Node* mem = in(MemNode::Memory);
1497  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1498
1499  if (can_reshape && (addr_t != NULL)) {
1500    // try to optimize our memory input
1501    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1502    if (opt_mem != mem) {
1503      set_req(MemNode::Memory, opt_mem);
1504      if (phase->type( opt_mem ) == Type::TOP) return NULL;
1505      return this;
1506    }
1507    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1508    if ((t_oop != NULL) &&
1509        (t_oop->is_known_instance_field() ||
1510         t_oop->is_ptr_to_boxed_value())) {
1511      PhaseIterGVN *igvn = phase->is_IterGVN();
1512      if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1513        // Delay this transformation until memory Phi is processed.
1514        phase->is_IterGVN()->_worklist.push(this);
1515        return NULL;
1516      }
1517      // Split instance field load through Phi.
1518      Node* result = split_through_phi(phase);
1519      if (result != NULL) return result;
1520
1521      if (t_oop->is_ptr_to_boxed_value()) {
1522        Node* result = eliminate_autobox(phase);
1523        if (result != NULL) return result;
1524      }
1525    }
1526  }
1527
1528  // Check for prior store with a different base or offset; make Load
1529  // independent.  Skip through any number of them.  Bail out if the stores
1530  // are in an endless dead cycle and report no progress.  This is a key
1531  // transform for Reflection.  However, if after skipping through the Stores
1532  // we can't then fold up against a prior store do NOT do the transform as
1533  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1534  // array memory alive twice: once for the hoisted Load and again after the
1535  // bypassed Store.  This situation only works if EVERYBODY who does
1536  // anti-dependence work knows how to bypass.  I.e. we need all
1537  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1538  // the alias index stuff.  So instead, peek through Stores and IFF we can
1539  // fold up, do so.
1540  Node* prev_mem = find_previous_store(phase);
1541  // Steps (a), (b):  Walk past independent stores to find an exact match.
1542  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1543    // (c) See if we can fold up on the spot, but don't fold up here.
1544    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1545    // just return a prior value, which is done by Identity calls.
1546    if (can_see_stored_value(prev_mem, phase)) {
1547      // Make ready for step (d):
1548      set_req(MemNode::Memory, prev_mem);
1549      return this;
1550    }
1551  }
1552
1553  return NULL;                  // No further progress
1554}
1555
1556// Helper to recognize certain Klass fields which are invariant across
1557// some group of array types (e.g., int[] or all T[] where T < Object).
1558const Type*
1559LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1560                                 ciKlass* klass) const {
1561  if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1562    // The field is Klass::_modifier_flags.  Return its (constant) value.
1563    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1564    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1565    return TypeInt::make(klass->modifier_flags());
1566  }
1567  if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1568    // The field is Klass::_access_flags.  Return its (constant) value.
1569    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1570    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1571    return TypeInt::make(klass->access_flags());
1572  }
1573  if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1574    // The field is Klass::_layout_helper.  Return its constant value if known.
1575    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1576    return TypeInt::make(klass->layout_helper());
1577  }
1578
1579  // No match.
1580  return NULL;
1581}
1582
1583// Try to constant-fold a stable array element.
1584static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1585  assert(ary->const_oop(), "array should be constant");
1586  assert(ary->is_stable(), "array should be stable");
1587
1588  // Decode the results of GraphKit::array_element_address.
1589  ciArray* aobj = ary->const_oop()->as_array();
1590  ciConstant con = aobj->element_value_by_offset(off);
1591
1592  if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1593    const Type* con_type = Type::make_from_constant(con);
1594    if (con_type != NULL) {
1595      if (con_type->isa_aryptr()) {
1596        // Join with the array element type, in case it is also stable.
1597        int dim = ary->stable_dimension();
1598        con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1599      }
1600      if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1601        con_type = con_type->make_narrowoop();
1602      }
1603#ifndef PRODUCT
1604      if (TraceIterativeGVN) {
1605        tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1606        con_type->dump(); tty->cr();
1607      }
1608#endif //PRODUCT
1609      return con_type;
1610    }
1611  }
1612  return NULL;
1613}
1614
1615//------------------------------Value-----------------------------------------
1616const Type *LoadNode::Value( PhaseTransform *phase ) const {
1617  // Either input is TOP ==> the result is TOP
1618  Node* mem = in(MemNode::Memory);
1619  const Type *t1 = phase->type(mem);
1620  if (t1 == Type::TOP)  return Type::TOP;
1621  Node* adr = in(MemNode::Address);
1622  const TypePtr* tp = phase->type(adr)->isa_ptr();
1623  if (tp == NULL || tp->empty())  return Type::TOP;
1624  int off = tp->offset();
1625  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1626  Compile* C = phase->C;
1627
1628  // Try to guess loaded type from pointer type
1629  if (tp->isa_aryptr()) {
1630    const TypeAryPtr* ary = tp->is_aryptr();
1631    const Type* t = ary->elem();
1632
1633    // Determine whether the reference is beyond the header or not, by comparing
1634    // the offset against the offset of the start of the array's data.
1635    // Different array types begin at slightly different offsets (12 vs. 16).
1636    // We choose T_BYTE as an example base type that is least restrictive
1637    // as to alignment, which will therefore produce the smallest
1638    // possible base offset.
1639    const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1640    const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1641
1642    // Try to constant-fold a stable array element.
1643    if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
1644      // Make sure the reference is not into the header and the offset is constant
1645      if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1646        const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1647        if (con_type != NULL) {
1648          return con_type;
1649        }
1650      }
1651    }
1652
1653    // Don't do this for integer types. There is only potential profit if
1654    // the element type t is lower than _type; that is, for int types, if _type is
1655    // more restrictive than t.  This only happens here if one is short and the other
1656    // char (both 16 bits), and in those cases we've made an intentional decision
1657    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1658    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1659    //
1660    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1661    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1662    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1663    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1664    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1665    // In fact, that could have been the original type of p1, and p1 could have
1666    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1667    // expression (LShiftL quux 3) independently optimized to the constant 8.
1668    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1669        && (_type->isa_vect() == NULL)
1670        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1671      // t might actually be lower than _type, if _type is a unique
1672      // concrete subclass of abstract class t.
1673      if (off_beyond_header) {  // is the offset beyond the header?
1674        const Type* jt = t->join_speculative(_type);
1675        // In any case, do not allow the join, per se, to empty out the type.
1676        if (jt->empty() && !t->empty()) {
1677          // This can happen if a interface-typed array narrows to a class type.
1678          jt = _type;
1679        }
1680#ifdef ASSERT
1681        if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1682          // The pointers in the autobox arrays are always non-null
1683          Node* base = adr->in(AddPNode::Base);
1684          if ((base != NULL) && base->is_DecodeN()) {
1685            // Get LoadN node which loads IntegerCache.cache field
1686            base = base->in(1);
1687          }
1688          if ((base != NULL) && base->is_Con()) {
1689            const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1690            if ((base_type != NULL) && base_type->is_autobox_cache()) {
1691              // It could be narrow oop
1692              assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1693            }
1694          }
1695        }
1696#endif
1697        return jt;
1698      }
1699    }
1700  } else if (tp->base() == Type::InstPtr) {
1701    ciEnv* env = C->env();
1702    const TypeInstPtr* tinst = tp->is_instptr();
1703    ciKlass* klass = tinst->klass();
1704    assert( off != Type::OffsetBot ||
1705            // arrays can be cast to Objects
1706            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1707            // unsafe field access may not have a constant offset
1708            C->has_unsafe_access(),
1709            "Field accesses must be precise" );
1710    // For oop loads, we expect the _type to be precise
1711    if (klass == env->String_klass() &&
1712        adr->is_AddP() && off != Type::OffsetBot) {
1713      // For constant Strings treat the final fields as compile time constants.
1714      Node* base = adr->in(AddPNode::Base);
1715      const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1716      if (t != NULL && t->singleton()) {
1717        ciField* field = env->String_klass()->get_field_by_offset(off, false);
1718        if (field != NULL && field->is_final()) {
1719          ciObject* string = t->const_oop();
1720          ciConstant constant = string->as_instance()->field_value(field);
1721          if (constant.basic_type() == T_INT) {
1722            return TypeInt::make(constant.as_int());
1723          } else if (constant.basic_type() == T_ARRAY) {
1724            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1725              return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1726            } else {
1727              return TypeOopPtr::make_from_constant(constant.as_object(), true);
1728            }
1729          }
1730        }
1731      }
1732    }
1733    // Optimizations for constant objects
1734    ciObject* const_oop = tinst->const_oop();
1735    if (const_oop != NULL) {
1736      // For constant Boxed value treat the target field as a compile time constant.
1737      if (tinst->is_ptr_to_boxed_value()) {
1738        return tinst->get_const_boxed_value();
1739      } else
1740      // For constant CallSites treat the target field as a compile time constant.
1741      if (const_oop->is_call_site()) {
1742        ciCallSite* call_site = const_oop->as_call_site();
1743        ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1744        if (field != NULL && field->is_call_site_target()) {
1745          ciMethodHandle* target = call_site->get_target();
1746          if (target != NULL) {  // just in case
1747            ciConstant constant(T_OBJECT, target);
1748            const Type* t;
1749            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1750              t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1751            } else {
1752              t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1753            }
1754            // Add a dependence for invalidation of the optimization.
1755            if (!call_site->is_constant_call_site()) {
1756              C->dependencies()->assert_call_site_target_value(call_site, target);
1757            }
1758            return t;
1759          }
1760        }
1761      }
1762    }
1763  } else if (tp->base() == Type::KlassPtr) {
1764    assert( off != Type::OffsetBot ||
1765            // arrays can be cast to Objects
1766            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1767            // also allow array-loading from the primary supertype
1768            // array during subtype checks
1769            Opcode() == Op_LoadKlass,
1770            "Field accesses must be precise" );
1771    // For klass/static loads, we expect the _type to be precise
1772  }
1773
1774  const TypeKlassPtr *tkls = tp->isa_klassptr();
1775  if (tkls != NULL && !StressReflectiveCode) {
1776    ciKlass* klass = tkls->klass();
1777    if (klass->is_loaded() && tkls->klass_is_exact()) {
1778      // We are loading a field from a Klass metaobject whose identity
1779      // is known at compile time (the type is "exact" or "precise").
1780      // Check for fields we know are maintained as constants by the VM.
1781      if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1782        // The field is Klass::_super_check_offset.  Return its (constant) value.
1783        // (Folds up type checking code.)
1784        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1785        return TypeInt::make(klass->super_check_offset());
1786      }
1787      // Compute index into primary_supers array
1788      juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1789      // Check for overflowing; use unsigned compare to handle the negative case.
1790      if( depth < ciKlass::primary_super_limit() ) {
1791        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1792        // (Folds up type checking code.)
1793        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1794        ciKlass *ss = klass->super_of_depth(depth);
1795        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1796      }
1797      const Type* aift = load_array_final_field(tkls, klass);
1798      if (aift != NULL)  return aift;
1799      if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1800          && klass->is_array_klass()) {
1801        // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1802        // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1803        assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1804        return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1805      }
1806      if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1807        // The field is Klass::_java_mirror.  Return its (constant) value.
1808        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1809        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1810        return TypeInstPtr::make(klass->java_mirror());
1811      }
1812    }
1813
1814    // We can still check if we are loading from the primary_supers array at a
1815    // shallow enough depth.  Even though the klass is not exact, entries less
1816    // than or equal to its super depth are correct.
1817    if (klass->is_loaded() ) {
1818      ciType *inner = klass;
1819      while( inner->is_obj_array_klass() )
1820        inner = inner->as_obj_array_klass()->base_element_type();
1821      if( inner->is_instance_klass() &&
1822          !inner->as_instance_klass()->flags().is_interface() ) {
1823        // Compute index into primary_supers array
1824        juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1825        // Check for overflowing; use unsigned compare to handle the negative case.
1826        if( depth < ciKlass::primary_super_limit() &&
1827            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1828          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1829          // (Folds up type checking code.)
1830          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1831          ciKlass *ss = klass->super_of_depth(depth);
1832          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1833        }
1834      }
1835    }
1836
1837    // If the type is enough to determine that the thing is not an array,
1838    // we can give the layout_helper a positive interval type.
1839    // This will help short-circuit some reflective code.
1840    if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1841        && !klass->is_array_klass() // not directly typed as an array
1842        && !klass->is_interface()  // specifically not Serializable & Cloneable
1843        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1844        ) {
1845      // Note:  When interfaces are reliable, we can narrow the interface
1846      // test to (klass != Serializable && klass != Cloneable).
1847      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1848      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1849      // The key property of this type is that it folds up tests
1850      // for array-ness, since it proves that the layout_helper is positive.
1851      // Thus, a generic value like the basic object layout helper works fine.
1852      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1853    }
1854  }
1855
1856  // If we are loading from a freshly-allocated object, produce a zero,
1857  // if the load is provably beyond the header of the object.
1858  // (Also allow a variable load from a fresh array to produce zero.)
1859  const TypeOopPtr *tinst = tp->isa_oopptr();
1860  bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1861  bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1862  if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1863    Node* value = can_see_stored_value(mem,phase);
1864    if (value != NULL && value->is_Con()) {
1865      assert(value->bottom_type()->higher_equal(_type),"sanity");
1866      return value->bottom_type();
1867    }
1868  }
1869
1870  if (is_instance) {
1871    // If we have an instance type and our memory input is the
1872    // programs's initial memory state, there is no matching store,
1873    // so just return a zero of the appropriate type
1874    Node *mem = in(MemNode::Memory);
1875    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1876      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1877      return Type::get_zero_type(_type->basic_type());
1878    }
1879  }
1880  return _type;
1881}
1882
1883//------------------------------match_edge-------------------------------------
1884// Do we Match on this edge index or not?  Match only the address.
1885uint LoadNode::match_edge(uint idx) const {
1886  return idx == MemNode::Address;
1887}
1888
1889//--------------------------LoadBNode::Ideal--------------------------------------
1890//
1891//  If the previous store is to the same address as this load,
1892//  and the value stored was larger than a byte, replace this load
1893//  with the value stored truncated to a byte.  If no truncation is
1894//  needed, the replacement is done in LoadNode::Identity().
1895//
1896Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1897  Node* mem = in(MemNode::Memory);
1898  Node* value = can_see_stored_value(mem,phase);
1899  if( value && !phase->type(value)->higher_equal( _type ) ) {
1900    Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1901    return new (phase->C) RShiftINode(result, phase->intcon(24));
1902  }
1903  // Identity call will handle the case where truncation is not needed.
1904  return LoadNode::Ideal(phase, can_reshape);
1905}
1906
1907const Type* LoadBNode::Value(PhaseTransform *phase) const {
1908  Node* mem = in(MemNode::Memory);
1909  Node* value = can_see_stored_value(mem,phase);
1910  if (value != NULL && value->is_Con() &&
1911      !value->bottom_type()->higher_equal(_type)) {
1912    // If the input to the store does not fit with the load's result type,
1913    // it must be truncated. We can't delay until Ideal call since
1914    // a singleton Value is needed for split_thru_phi optimization.
1915    int con = value->get_int();
1916    return TypeInt::make((con << 24) >> 24);
1917  }
1918  return LoadNode::Value(phase);
1919}
1920
1921//--------------------------LoadUBNode::Ideal-------------------------------------
1922//
1923//  If the previous store is to the same address as this load,
1924//  and the value stored was larger than a byte, replace this load
1925//  with the value stored truncated to a byte.  If no truncation is
1926//  needed, the replacement is done in LoadNode::Identity().
1927//
1928Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1929  Node* mem = in(MemNode::Memory);
1930  Node* value = can_see_stored_value(mem, phase);
1931  if (value && !phase->type(value)->higher_equal(_type))
1932    return new (phase->C) AndINode(value, phase->intcon(0xFF));
1933  // Identity call will handle the case where truncation is not needed.
1934  return LoadNode::Ideal(phase, can_reshape);
1935}
1936
1937const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1938  Node* mem = in(MemNode::Memory);
1939  Node* value = can_see_stored_value(mem,phase);
1940  if (value != NULL && value->is_Con() &&
1941      !value->bottom_type()->higher_equal(_type)) {
1942    // If the input to the store does not fit with the load's result type,
1943    // it must be truncated. We can't delay until Ideal call since
1944    // a singleton Value is needed for split_thru_phi optimization.
1945    int con = value->get_int();
1946    return TypeInt::make(con & 0xFF);
1947  }
1948  return LoadNode::Value(phase);
1949}
1950
1951//--------------------------LoadUSNode::Ideal-------------------------------------
1952//
1953//  If the previous store is to the same address as this load,
1954//  and the value stored was larger than a char, replace this load
1955//  with the value stored truncated to a char.  If no truncation is
1956//  needed, the replacement is done in LoadNode::Identity().
1957//
1958Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1959  Node* mem = in(MemNode::Memory);
1960  Node* value = can_see_stored_value(mem,phase);
1961  if( value && !phase->type(value)->higher_equal( _type ) )
1962    return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1963  // Identity call will handle the case where truncation is not needed.
1964  return LoadNode::Ideal(phase, can_reshape);
1965}
1966
1967const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1968  Node* mem = in(MemNode::Memory);
1969  Node* value = can_see_stored_value(mem,phase);
1970  if (value != NULL && value->is_Con() &&
1971      !value->bottom_type()->higher_equal(_type)) {
1972    // If the input to the store does not fit with the load's result type,
1973    // it must be truncated. We can't delay until Ideal call since
1974    // a singleton Value is needed for split_thru_phi optimization.
1975    int con = value->get_int();
1976    return TypeInt::make(con & 0xFFFF);
1977  }
1978  return LoadNode::Value(phase);
1979}
1980
1981//--------------------------LoadSNode::Ideal--------------------------------------
1982//
1983//  If the previous store is to the same address as this load,
1984//  and the value stored was larger than a short, replace this load
1985//  with the value stored truncated to a short.  If no truncation is
1986//  needed, the replacement is done in LoadNode::Identity().
1987//
1988Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1989  Node* mem = in(MemNode::Memory);
1990  Node* value = can_see_stored_value(mem,phase);
1991  if( value && !phase->type(value)->higher_equal( _type ) ) {
1992    Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
1993    return new (phase->C) RShiftINode(result, phase->intcon(16));
1994  }
1995  // Identity call will handle the case where truncation is not needed.
1996  return LoadNode::Ideal(phase, can_reshape);
1997}
1998
1999const Type* LoadSNode::Value(PhaseTransform *phase) const {
2000  Node* mem = in(MemNode::Memory);
2001  Node* value = can_see_stored_value(mem,phase);
2002  if (value != NULL && value->is_Con() &&
2003      !value->bottom_type()->higher_equal(_type)) {
2004    // If the input to the store does not fit with the load's result type,
2005    // it must be truncated. We can't delay until Ideal call since
2006    // a singleton Value is needed for split_thru_phi optimization.
2007    int con = value->get_int();
2008    return TypeInt::make((con << 16) >> 16);
2009  }
2010  return LoadNode::Value(phase);
2011}
2012
2013//=============================================================================
2014//----------------------------LoadKlassNode::make------------------------------
2015// Polymorphic factory method:
2016Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
2017  Compile* C = gvn.C;
2018  Node *ctl = NULL;
2019  // sanity check the alias category against the created node type
2020  const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2021  assert(adr_type != NULL, "expecting TypeKlassPtr");
2022#ifdef _LP64
2023  if (adr_type->is_ptr_to_narrowklass()) {
2024    assert(UseCompressedClassPointers, "no compressed klasses");
2025    Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2026    return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2027  }
2028#endif
2029  assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2030  return new (C) LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2031}
2032
2033//------------------------------Value------------------------------------------
2034const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2035  return klass_value_common(phase);
2036}
2037
2038const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2039  // Either input is TOP ==> the result is TOP
2040  const Type *t1 = phase->type( in(MemNode::Memory) );
2041  if (t1 == Type::TOP)  return Type::TOP;
2042  Node *adr = in(MemNode::Address);
2043  const Type *t2 = phase->type( adr );
2044  if (t2 == Type::TOP)  return Type::TOP;
2045  const TypePtr *tp = t2->is_ptr();
2046  if (TypePtr::above_centerline(tp->ptr()) ||
2047      tp->ptr() == TypePtr::Null)  return Type::TOP;
2048
2049  // Return a more precise klass, if possible
2050  const TypeInstPtr *tinst = tp->isa_instptr();
2051  if (tinst != NULL) {
2052    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2053    int offset = tinst->offset();
2054    if (ik == phase->C->env()->Class_klass()
2055        && (offset == java_lang_Class::klass_offset_in_bytes() ||
2056            offset == java_lang_Class::array_klass_offset_in_bytes())) {
2057      // We are loading a special hidden field from a Class mirror object,
2058      // the field which points to the VM's Klass metaobject.
2059      ciType* t = tinst->java_mirror_type();
2060      // java_mirror_type returns non-null for compile-time Class constants.
2061      if (t != NULL) {
2062        // constant oop => constant klass
2063        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2064          if (t->is_void()) {
2065            // We cannot create a void array.  Since void is a primitive type return null
2066            // klass.  Users of this result need to do a null check on the returned klass.
2067            return TypePtr::NULL_PTR;
2068          }
2069          return TypeKlassPtr::make(ciArrayKlass::make(t));
2070        }
2071        if (!t->is_klass()) {
2072          // a primitive Class (e.g., int.class) has NULL for a klass field
2073          return TypePtr::NULL_PTR;
2074        }
2075        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2076        return TypeKlassPtr::make(t->as_klass());
2077      }
2078      // non-constant mirror, so we can't tell what's going on
2079    }
2080    if( !ik->is_loaded() )
2081      return _type;             // Bail out if not loaded
2082    if (offset == oopDesc::klass_offset_in_bytes()) {
2083      if (tinst->klass_is_exact()) {
2084        return TypeKlassPtr::make(ik);
2085      }
2086      // See if we can become precise: no subklasses and no interface
2087      // (Note:  We need to support verified interfaces.)
2088      if (!ik->is_interface() && !ik->has_subklass()) {
2089        //assert(!UseExactTypes, "this code should be useless with exact types");
2090        // Add a dependence; if any subclass added we need to recompile
2091        if (!ik->is_final()) {
2092          // %%% should use stronger assert_unique_concrete_subtype instead
2093          phase->C->dependencies()->assert_leaf_type(ik);
2094        }
2095        // Return precise klass
2096        return TypeKlassPtr::make(ik);
2097      }
2098
2099      // Return root of possible klass
2100      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2101    }
2102  }
2103
2104  // Check for loading klass from an array
2105  const TypeAryPtr *tary = tp->isa_aryptr();
2106  if( tary != NULL ) {
2107    ciKlass *tary_klass = tary->klass();
2108    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2109        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2110      if (tary->klass_is_exact()) {
2111        return TypeKlassPtr::make(tary_klass);
2112      }
2113      ciArrayKlass *ak = tary->klass()->as_array_klass();
2114      // If the klass is an object array, we defer the question to the
2115      // array component klass.
2116      if( ak->is_obj_array_klass() ) {
2117        assert( ak->is_loaded(), "" );
2118        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2119        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2120          ciInstanceKlass* ik = base_k->as_instance_klass();
2121          // See if we can become precise: no subklasses and no interface
2122          if (!ik->is_interface() && !ik->has_subklass()) {
2123            //assert(!UseExactTypes, "this code should be useless with exact types");
2124            // Add a dependence; if any subclass added we need to recompile
2125            if (!ik->is_final()) {
2126              phase->C->dependencies()->assert_leaf_type(ik);
2127            }
2128            // Return precise array klass
2129            return TypeKlassPtr::make(ak);
2130          }
2131        }
2132        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2133      } else {                  // Found a type-array?
2134        //assert(!UseExactTypes, "this code should be useless with exact types");
2135        assert( ak->is_type_array_klass(), "" );
2136        return TypeKlassPtr::make(ak); // These are always precise
2137      }
2138    }
2139  }
2140
2141  // Check for loading klass from an array klass
2142  const TypeKlassPtr *tkls = tp->isa_klassptr();
2143  if (tkls != NULL && !StressReflectiveCode) {
2144    ciKlass* klass = tkls->klass();
2145    if( !klass->is_loaded() )
2146      return _type;             // Bail out if not loaded
2147    if( klass->is_obj_array_klass() &&
2148        tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2149      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2150      // // Always returning precise element type is incorrect,
2151      // // e.g., element type could be object and array may contain strings
2152      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2153
2154      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2155      // according to the element type's subclassing.
2156      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2157    }
2158    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2159        tkls->offset() == in_bytes(Klass::super_offset())) {
2160      ciKlass* sup = klass->as_instance_klass()->super();
2161      // The field is Klass::_super.  Return its (constant) value.
2162      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2163      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2164    }
2165  }
2166
2167  // Bailout case
2168  return LoadNode::Value(phase);
2169}
2170
2171//------------------------------Identity---------------------------------------
2172// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2173// Also feed through the klass in Allocate(...klass...)._klass.
2174Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2175  return klass_identity_common(phase);
2176}
2177
2178Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2179  Node* x = LoadNode::Identity(phase);
2180  if (x != this)  return x;
2181
2182  // Take apart the address into an oop and and offset.
2183  // Return 'this' if we cannot.
2184  Node*    adr    = in(MemNode::Address);
2185  intptr_t offset = 0;
2186  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2187  if (base == NULL)     return this;
2188  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2189  if (toop == NULL)     return this;
2190
2191  // We can fetch the klass directly through an AllocateNode.
2192  // This works even if the klass is not constant (clone or newArray).
2193  if (offset == oopDesc::klass_offset_in_bytes()) {
2194    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2195    if (allocated_klass != NULL) {
2196      return allocated_klass;
2197    }
2198  }
2199
2200  // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2201  // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2202  // See inline_native_Class_query for occurrences of these patterns.
2203  // Java Example:  x.getClass().isAssignableFrom(y)
2204  // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2205  //
2206  // This improves reflective code, often making the Class
2207  // mirror go completely dead.  (Current exception:  Class
2208  // mirrors may appear in debug info, but we could clean them out by
2209  // introducing a new debug info operator for Klass*.java_mirror).
2210  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2211      && (offset == java_lang_Class::klass_offset_in_bytes() ||
2212          offset == java_lang_Class::array_klass_offset_in_bytes())) {
2213    // We are loading a special hidden field from a Class mirror,
2214    // the field which points to its Klass or ArrayKlass metaobject.
2215    if (base->is_Load()) {
2216      Node* adr2 = base->in(MemNode::Address);
2217      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2218      if (tkls != NULL && !tkls->empty()
2219          && (tkls->klass()->is_instance_klass() ||
2220              tkls->klass()->is_array_klass())
2221          && adr2->is_AddP()
2222          ) {
2223        int mirror_field = in_bytes(Klass::java_mirror_offset());
2224        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2225          mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2226        }
2227        if (tkls->offset() == mirror_field) {
2228          return adr2->in(AddPNode::Base);
2229        }
2230      }
2231    }
2232  }
2233
2234  return this;
2235}
2236
2237
2238//------------------------------Value------------------------------------------
2239const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2240  const Type *t = klass_value_common(phase);
2241  if (t == Type::TOP)
2242    return t;
2243
2244  return t->make_narrowklass();
2245}
2246
2247//------------------------------Identity---------------------------------------
2248// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2249// Also feed through the klass in Allocate(...klass...)._klass.
2250Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2251  Node *x = klass_identity_common(phase);
2252
2253  const Type *t = phase->type( x );
2254  if( t == Type::TOP ) return x;
2255  if( t->isa_narrowklass()) return x;
2256  assert (!t->isa_narrowoop(), "no narrow oop here");
2257
2258  return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2259}
2260
2261//------------------------------Value-----------------------------------------
2262const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2263  // Either input is TOP ==> the result is TOP
2264  const Type *t1 = phase->type( in(MemNode::Memory) );
2265  if( t1 == Type::TOP ) return Type::TOP;
2266  Node *adr = in(MemNode::Address);
2267  const Type *t2 = phase->type( adr );
2268  if( t2 == Type::TOP ) return Type::TOP;
2269  const TypePtr *tp = t2->is_ptr();
2270  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2271  const TypeAryPtr *tap = tp->isa_aryptr();
2272  if( !tap ) return _type;
2273  return tap->size();
2274}
2275
2276//-------------------------------Ideal---------------------------------------
2277// Feed through the length in AllocateArray(...length...)._length.
2278Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2279  Node* p = MemNode::Ideal_common(phase, can_reshape);
2280  if (p)  return (p == NodeSentinel) ? NULL : p;
2281
2282  // Take apart the address into an oop and and offset.
2283  // Return 'this' if we cannot.
2284  Node*    adr    = in(MemNode::Address);
2285  intptr_t offset = 0;
2286  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2287  if (base == NULL)     return NULL;
2288  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2289  if (tary == NULL)     return NULL;
2290
2291  // We can fetch the length directly through an AllocateArrayNode.
2292  // This works even if the length is not constant (clone or newArray).
2293  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2294    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2295    if (alloc != NULL) {
2296      Node* allocated_length = alloc->Ideal_length();
2297      Node* len = alloc->make_ideal_length(tary, phase);
2298      if (allocated_length != len) {
2299        // New CastII improves on this.
2300        return len;
2301      }
2302    }
2303  }
2304
2305  return NULL;
2306}
2307
2308//------------------------------Identity---------------------------------------
2309// Feed through the length in AllocateArray(...length...)._length.
2310Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2311  Node* x = LoadINode::Identity(phase);
2312  if (x != this)  return x;
2313
2314  // Take apart the address into an oop and and offset.
2315  // Return 'this' if we cannot.
2316  Node*    adr    = in(MemNode::Address);
2317  intptr_t offset = 0;
2318  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2319  if (base == NULL)     return this;
2320  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2321  if (tary == NULL)     return this;
2322
2323  // We can fetch the length directly through an AllocateArrayNode.
2324  // This works even if the length is not constant (clone or newArray).
2325  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2326    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2327    if (alloc != NULL) {
2328      Node* allocated_length = alloc->Ideal_length();
2329      // Do not allow make_ideal_length to allocate a CastII node.
2330      Node* len = alloc->make_ideal_length(tary, phase, false);
2331      if (allocated_length == len) {
2332        // Return allocated_length only if it would not be improved by a CastII.
2333        return allocated_length;
2334      }
2335    }
2336  }
2337
2338  return this;
2339
2340}
2341
2342//=============================================================================
2343//---------------------------StoreNode::make-----------------------------------
2344// Polymorphic factory method:
2345StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2346  assert((mo == unordered || mo == release), "unexpected");
2347  Compile* C = gvn.C;
2348  assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2349         ctl != NULL, "raw memory operations should have control edge");
2350
2351  switch (bt) {
2352  case T_BOOLEAN:
2353  case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val, mo);
2354  case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val, mo);
2355  case T_CHAR:
2356  case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val, mo);
2357  case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo);
2358  case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val, mo);
2359  case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo);
2360  case T_METADATA:
2361  case T_ADDRESS:
2362  case T_OBJECT:
2363#ifdef _LP64
2364    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2365      val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2366      return new (C) StoreNNode(ctl, mem, adr, adr_type, val, mo);
2367    } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2368               (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2369                adr->bottom_type()->isa_rawptr())) {
2370      val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2371      return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2372    }
2373#endif
2374    {
2375      return new (C) StorePNode(ctl, mem, adr, adr_type, val, mo);
2376    }
2377  }
2378  ShouldNotReachHere();
2379  return (StoreNode*)NULL;
2380}
2381
2382StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2383  bool require_atomic = true;
2384  return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2385}
2386
2387StoreDNode* StoreDNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2388  bool require_atomic = true;
2389  return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2390}
2391
2392
2393//--------------------------bottom_type----------------------------------------
2394const Type *StoreNode::bottom_type() const {
2395  return Type::MEMORY;
2396}
2397
2398//------------------------------hash-------------------------------------------
2399uint StoreNode::hash() const {
2400  // unroll addition of interesting fields
2401  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2402
2403  // Since they are not commoned, do not hash them:
2404  return NO_HASH;
2405}
2406
2407//------------------------------Ideal------------------------------------------
2408// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2409// When a store immediately follows a relevant allocation/initialization,
2410// try to capture it into the initialization, or hoist it above.
2411Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2412  Node* p = MemNode::Ideal_common(phase, can_reshape);
2413  if (p)  return (p == NodeSentinel) ? NULL : p;
2414
2415  Node* mem     = in(MemNode::Memory);
2416  Node* address = in(MemNode::Address);
2417
2418  // Back-to-back stores to same address?  Fold em up.  Generally
2419  // unsafe if I have intervening uses...  Also disallowed for StoreCM
2420  // since they must follow each StoreP operation.  Redundant StoreCMs
2421  // are eliminated just before matching in final_graph_reshape.
2422  if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2423      mem->Opcode() != Op_StoreCM) {
2424    // Looking at a dead closed cycle of memory?
2425    assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2426
2427    assert(Opcode() == mem->Opcode() ||
2428           phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2429           "no mismatched stores, except on raw memory");
2430
2431    if (mem->outcnt() == 1 &&           // check for intervening uses
2432        mem->as_Store()->memory_size() <= this->memory_size()) {
2433      // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2434      // For example, 'mem' might be the final state at a conditional return.
2435      // Or, 'mem' might be used by some node which is live at the same time
2436      // 'this' is live, which might be unschedulable.  So, require exactly
2437      // ONE user, the 'this' store, until such time as we clone 'mem' for
2438      // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2439      if (can_reshape) {  // (%%% is this an anachronism?)
2440        set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2441                  phase->is_IterGVN());
2442      } else {
2443        // It's OK to do this in the parser, since DU info is always accurate,
2444        // and the parser always refers to nodes via SafePointNode maps.
2445        set_req(MemNode::Memory, mem->in(MemNode::Memory));
2446      }
2447      return this;
2448    }
2449  }
2450
2451  // Capture an unaliased, unconditional, simple store into an initializer.
2452  // Or, if it is independent of the allocation, hoist it above the allocation.
2453  if (ReduceFieldZeroing && /*can_reshape &&*/
2454      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2455    InitializeNode* init = mem->in(0)->as_Initialize();
2456    intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2457    if (offset > 0) {
2458      Node* moved = init->capture_store(this, offset, phase, can_reshape);
2459      // If the InitializeNode captured me, it made a raw copy of me,
2460      // and I need to disappear.
2461      if (moved != NULL) {
2462        // %%% hack to ensure that Ideal returns a new node:
2463        mem = MergeMemNode::make(phase->C, mem);
2464        return mem;             // fold me away
2465      }
2466    }
2467  }
2468
2469  return NULL;                  // No further progress
2470}
2471
2472//------------------------------Value-----------------------------------------
2473const Type *StoreNode::Value( PhaseTransform *phase ) const {
2474  // Either input is TOP ==> the result is TOP
2475  const Type *t1 = phase->type( in(MemNode::Memory) );
2476  if( t1 == Type::TOP ) return Type::TOP;
2477  const Type *t2 = phase->type( in(MemNode::Address) );
2478  if( t2 == Type::TOP ) return Type::TOP;
2479  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2480  if( t3 == Type::TOP ) return Type::TOP;
2481  return Type::MEMORY;
2482}
2483
2484//------------------------------Identity---------------------------------------
2485// Remove redundant stores:
2486//   Store(m, p, Load(m, p)) changes to m.
2487//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2488Node *StoreNode::Identity( PhaseTransform *phase ) {
2489  Node* mem = in(MemNode::Memory);
2490  Node* adr = in(MemNode::Address);
2491  Node* val = in(MemNode::ValueIn);
2492
2493  // Load then Store?  Then the Store is useless
2494  if (val->is_Load() &&
2495      val->in(MemNode::Address)->eqv_uncast(adr) &&
2496      val->in(MemNode::Memory )->eqv_uncast(mem) &&
2497      val->as_Load()->store_Opcode() == Opcode()) {
2498    return mem;
2499  }
2500
2501  // Two stores in a row of the same value?
2502  if (mem->is_Store() &&
2503      mem->in(MemNode::Address)->eqv_uncast(adr) &&
2504      mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2505      mem->Opcode() == Opcode()) {
2506    return mem;
2507  }
2508
2509  // Store of zero anywhere into a freshly-allocated object?
2510  // Then the store is useless.
2511  // (It must already have been captured by the InitializeNode.)
2512  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2513    // a newly allocated object is already all-zeroes everywhere
2514    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2515      return mem;
2516    }
2517
2518    // the store may also apply to zero-bits in an earlier object
2519    Node* prev_mem = find_previous_store(phase);
2520    // Steps (a), (b):  Walk past independent stores to find an exact match.
2521    if (prev_mem != NULL) {
2522      Node* prev_val = can_see_stored_value(prev_mem, phase);
2523      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2524        // prev_val and val might differ by a cast; it would be good
2525        // to keep the more informative of the two.
2526        return mem;
2527      }
2528    }
2529  }
2530
2531  return this;
2532}
2533
2534//------------------------------match_edge-------------------------------------
2535// Do we Match on this edge index or not?  Match only memory & value
2536uint StoreNode::match_edge(uint idx) const {
2537  return idx == MemNode::Address || idx == MemNode::ValueIn;
2538}
2539
2540//------------------------------cmp--------------------------------------------
2541// Do not common stores up together.  They generally have to be split
2542// back up anyways, so do not bother.
2543uint StoreNode::cmp( const Node &n ) const {
2544  return (&n == this);          // Always fail except on self
2545}
2546
2547//------------------------------Ideal_masked_input-----------------------------
2548// Check for a useless mask before a partial-word store
2549// (StoreB ... (AndI valIn conIa) )
2550// If (conIa & mask == mask) this simplifies to
2551// (StoreB ... (valIn) )
2552Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2553  Node *val = in(MemNode::ValueIn);
2554  if( val->Opcode() == Op_AndI ) {
2555    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2556    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2557      set_req(MemNode::ValueIn, val->in(1));
2558      return this;
2559    }
2560  }
2561  return NULL;
2562}
2563
2564
2565//------------------------------Ideal_sign_extended_input----------------------
2566// Check for useless sign-extension before a partial-word store
2567// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2568// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2569// (StoreB ... (valIn) )
2570Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2571  Node *val = in(MemNode::ValueIn);
2572  if( val->Opcode() == Op_RShiftI ) {
2573    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2574    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2575      Node *shl = val->in(1);
2576      if( shl->Opcode() == Op_LShiftI ) {
2577        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2578        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2579          set_req(MemNode::ValueIn, shl->in(1));
2580          return this;
2581        }
2582      }
2583    }
2584  }
2585  return NULL;
2586}
2587
2588//------------------------------value_never_loaded-----------------------------------
2589// Determine whether there are any possible loads of the value stored.
2590// For simplicity, we actually check if there are any loads from the
2591// address stored to, not just for loads of the value stored by this node.
2592//
2593bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2594  Node *adr = in(Address);
2595  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2596  if (adr_oop == NULL)
2597    return false;
2598  if (!adr_oop->is_known_instance_field())
2599    return false; // if not a distinct instance, there may be aliases of the address
2600  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2601    Node *use = adr->fast_out(i);
2602    int opc = use->Opcode();
2603    if (use->is_Load() || use->is_LoadStore()) {
2604      return false;
2605    }
2606  }
2607  return true;
2608}
2609
2610//=============================================================================
2611//------------------------------Ideal------------------------------------------
2612// If the store is from an AND mask that leaves the low bits untouched, then
2613// we can skip the AND operation.  If the store is from a sign-extension
2614// (a left shift, then right shift) we can skip both.
2615Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2616  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2617  if( progress != NULL ) return progress;
2618
2619  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2620  if( progress != NULL ) return progress;
2621
2622  // Finally check the default case
2623  return StoreNode::Ideal(phase, can_reshape);
2624}
2625
2626//=============================================================================
2627//------------------------------Ideal------------------------------------------
2628// If the store is from an AND mask that leaves the low bits untouched, then
2629// we can skip the AND operation
2630Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2631  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2632  if( progress != NULL ) return progress;
2633
2634  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2635  if( progress != NULL ) return progress;
2636
2637  // Finally check the default case
2638  return StoreNode::Ideal(phase, can_reshape);
2639}
2640
2641//=============================================================================
2642//------------------------------Identity---------------------------------------
2643Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2644  // No need to card mark when storing a null ptr
2645  Node* my_store = in(MemNode::OopStore);
2646  if (my_store->is_Store()) {
2647    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2648    if( t1 == TypePtr::NULL_PTR ) {
2649      return in(MemNode::Memory);
2650    }
2651  }
2652  return this;
2653}
2654
2655//=============================================================================
2656//------------------------------Ideal---------------------------------------
2657Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2658  Node* progress = StoreNode::Ideal(phase, can_reshape);
2659  if (progress != NULL) return progress;
2660
2661  Node* my_store = in(MemNode::OopStore);
2662  if (my_store->is_MergeMem()) {
2663    Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2664    set_req(MemNode::OopStore, mem);
2665    return this;
2666  }
2667
2668  return NULL;
2669}
2670
2671//------------------------------Value-----------------------------------------
2672const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2673  // Either input is TOP ==> the result is TOP
2674  const Type *t = phase->type( in(MemNode::Memory) );
2675  if( t == Type::TOP ) return Type::TOP;
2676  t = phase->type( in(MemNode::Address) );
2677  if( t == Type::TOP ) return Type::TOP;
2678  t = phase->type( in(MemNode::ValueIn) );
2679  if( t == Type::TOP ) return Type::TOP;
2680  // If extra input is TOP ==> the result is TOP
2681  t = phase->type( in(MemNode::OopStore) );
2682  if( t == Type::TOP ) return Type::TOP;
2683
2684  return StoreNode::Value( phase );
2685}
2686
2687
2688//=============================================================================
2689//----------------------------------SCMemProjNode------------------------------
2690const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2691{
2692  return bottom_type();
2693}
2694
2695//=============================================================================
2696//----------------------------------LoadStoreNode------------------------------
2697LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2698  : Node(required),
2699    _type(rt),
2700    _adr_type(at)
2701{
2702  init_req(MemNode::Control, c  );
2703  init_req(MemNode::Memory , mem);
2704  init_req(MemNode::Address, adr);
2705  init_req(MemNode::ValueIn, val);
2706  init_class_id(Class_LoadStore);
2707}
2708
2709uint LoadStoreNode::ideal_reg() const {
2710  return _type->ideal_reg();
2711}
2712
2713bool LoadStoreNode::result_not_used() const {
2714  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2715    Node *x = fast_out(i);
2716    if (x->Opcode() == Op_SCMemProj) continue;
2717    return false;
2718  }
2719  return true;
2720}
2721
2722uint LoadStoreNode::size_of() const { return sizeof(*this); }
2723
2724//=============================================================================
2725//----------------------------------LoadStoreConditionalNode--------------------
2726LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2727  init_req(ExpectedIn, ex );
2728}
2729
2730//=============================================================================
2731//-------------------------------adr_type--------------------------------------
2732// Do we Match on this edge index or not?  Do not match memory
2733const TypePtr* ClearArrayNode::adr_type() const {
2734  Node *adr = in(3);
2735  return MemNode::calculate_adr_type(adr->bottom_type());
2736}
2737
2738//------------------------------match_edge-------------------------------------
2739// Do we Match on this edge index or not?  Do not match memory
2740uint ClearArrayNode::match_edge(uint idx) const {
2741  return idx > 1;
2742}
2743
2744//------------------------------Identity---------------------------------------
2745// Clearing a zero length array does nothing
2746Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2747  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2748}
2749
2750//------------------------------Idealize---------------------------------------
2751// Clearing a short array is faster with stores
2752Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2753  const int unit = BytesPerLong;
2754  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2755  if (!t)  return NULL;
2756  if (!t->is_con())  return NULL;
2757  intptr_t raw_count = t->get_con();
2758  intptr_t size = raw_count;
2759  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2760  // Clearing nothing uses the Identity call.
2761  // Negative clears are possible on dead ClearArrays
2762  // (see jck test stmt114.stmt11402.val).
2763  if (size <= 0 || size % unit != 0)  return NULL;
2764  intptr_t count = size / unit;
2765  // Length too long; use fast hardware clear
2766  if (size > Matcher::init_array_short_size)  return NULL;
2767  Node *mem = in(1);
2768  if( phase->type(mem)==Type::TOP ) return NULL;
2769  Node *adr = in(3);
2770  const Type* at = phase->type(adr);
2771  if( at==Type::TOP ) return NULL;
2772  const TypePtr* atp = at->isa_ptr();
2773  // adjust atp to be the correct array element address type
2774  if (atp == NULL)  atp = TypePtr::BOTTOM;
2775  else              atp = atp->add_offset(Type::OffsetBot);
2776  // Get base for derived pointer purposes
2777  if( adr->Opcode() != Op_AddP ) Unimplemented();
2778  Node *base = adr->in(1);
2779
2780  Node *zero = phase->makecon(TypeLong::ZERO);
2781  Node *off  = phase->MakeConX(BytesPerLong);
2782  mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2783  count--;
2784  while( count-- ) {
2785    mem = phase->transform(mem);
2786    adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2787    mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2788  }
2789  return mem;
2790}
2791
2792//----------------------------step_through----------------------------------
2793// Return allocation input memory edge if it is different instance
2794// or itself if it is the one we are looking for.
2795bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2796  Node* n = *np;
2797  assert(n->is_ClearArray(), "sanity");
2798  intptr_t offset;
2799  AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2800  // This method is called only before Allocate nodes are expanded during
2801  // macro nodes expansion. Before that ClearArray nodes are only generated
2802  // in LibraryCallKit::generate_arraycopy() which follows allocations.
2803  assert(alloc != NULL, "should have allocation");
2804  if (alloc->_idx == instance_id) {
2805    // Can not bypass initialization of the instance we are looking for.
2806    return false;
2807  }
2808  // Otherwise skip it.
2809  InitializeNode* init = alloc->initialization();
2810  if (init != NULL)
2811    *np = init->in(TypeFunc::Memory);
2812  else
2813    *np = alloc->in(TypeFunc::Memory);
2814  return true;
2815}
2816
2817//----------------------------clear_memory-------------------------------------
2818// Generate code to initialize object storage to zero.
2819Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2820                                   intptr_t start_offset,
2821                                   Node* end_offset,
2822                                   PhaseGVN* phase) {
2823  Compile* C = phase->C;
2824  intptr_t offset = start_offset;
2825
2826  int unit = BytesPerLong;
2827  if ((offset % unit) != 0) {
2828    Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2829    adr = phase->transform(adr);
2830    const TypePtr* atp = TypeRawPtr::BOTTOM;
2831    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2832    mem = phase->transform(mem);
2833    offset += BytesPerInt;
2834  }
2835  assert((offset % unit) == 0, "");
2836
2837  // Initialize the remaining stuff, if any, with a ClearArray.
2838  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2839}
2840
2841Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2842                                   Node* start_offset,
2843                                   Node* end_offset,
2844                                   PhaseGVN* phase) {
2845  if (start_offset == end_offset) {
2846    // nothing to do
2847    return mem;
2848  }
2849
2850  Compile* C = phase->C;
2851  int unit = BytesPerLong;
2852  Node* zbase = start_offset;
2853  Node* zend  = end_offset;
2854
2855  // Scale to the unit required by the CPU:
2856  if (!Matcher::init_array_count_is_in_bytes) {
2857    Node* shift = phase->intcon(exact_log2(unit));
2858    zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2859    zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2860  }
2861
2862  // Bulk clear double-words
2863  Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2864  Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2865  mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2866  return phase->transform(mem);
2867}
2868
2869Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2870                                   intptr_t start_offset,
2871                                   intptr_t end_offset,
2872                                   PhaseGVN* phase) {
2873  if (start_offset == end_offset) {
2874    // nothing to do
2875    return mem;
2876  }
2877
2878  Compile* C = phase->C;
2879  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2880  intptr_t done_offset = end_offset;
2881  if ((done_offset % BytesPerLong) != 0) {
2882    done_offset -= BytesPerInt;
2883  }
2884  if (done_offset > start_offset) {
2885    mem = clear_memory(ctl, mem, dest,
2886                       start_offset, phase->MakeConX(done_offset), phase);
2887  }
2888  if (done_offset < end_offset) { // emit the final 32-bit store
2889    Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2890    adr = phase->transform(adr);
2891    const TypePtr* atp = TypeRawPtr::BOTTOM;
2892    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2893    mem = phase->transform(mem);
2894    done_offset += BytesPerInt;
2895  }
2896  assert(done_offset == end_offset, "");
2897  return mem;
2898}
2899
2900//=============================================================================
2901MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2902  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2903    _adr_type(C->get_adr_type(alias_idx))
2904{
2905  init_class_id(Class_MemBar);
2906  Node* top = C->top();
2907  init_req(TypeFunc::I_O,top);
2908  init_req(TypeFunc::FramePtr,top);
2909  init_req(TypeFunc::ReturnAdr,top);
2910  if (precedent != NULL)
2911    init_req(TypeFunc::Parms, precedent);
2912}
2913
2914//------------------------------cmp--------------------------------------------
2915uint MemBarNode::hash() const { return NO_HASH; }
2916uint MemBarNode::cmp( const Node &n ) const {
2917  return (&n == this);          // Always fail except on self
2918}
2919
2920//------------------------------make-------------------------------------------
2921MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2922  switch (opcode) {
2923  case Op_MemBarAcquire:     return new(C) MemBarAcquireNode(C, atp, pn);
2924  case Op_LoadFence:         return new(C) LoadFenceNode(C, atp, pn);
2925  case Op_MemBarRelease:     return new(C) MemBarReleaseNode(C, atp, pn);
2926  case Op_StoreFence:        return new(C) StoreFenceNode(C, atp, pn);
2927  case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
2928  case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
2929  case Op_MemBarVolatile:    return new(C) MemBarVolatileNode(C, atp, pn);
2930  case Op_MemBarCPUOrder:    return new(C) MemBarCPUOrderNode(C, atp, pn);
2931  case Op_Initialize:        return new(C) InitializeNode(C, atp, pn);
2932  case Op_MemBarStoreStore:  return new(C) MemBarStoreStoreNode(C, atp, pn);
2933  default: ShouldNotReachHere(); return NULL;
2934  }
2935}
2936
2937//------------------------------Ideal------------------------------------------
2938// Return a node which is more "ideal" than the current node.  Strip out
2939// control copies
2940Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2941  if (remove_dead_region(phase, can_reshape)) return this;
2942  // Don't bother trying to transform a dead node
2943  if (in(0) && in(0)->is_top()) {
2944    return NULL;
2945  }
2946
2947  // Eliminate volatile MemBars for scalar replaced objects.
2948  if (can_reshape && req() == (Precedent+1)) {
2949    bool eliminate = false;
2950    int opc = Opcode();
2951    if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2952      // Volatile field loads and stores.
2953      Node* my_mem = in(MemBarNode::Precedent);
2954      // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2955      if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2956        // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2957        // replace this Precedent (decodeN) with the Load instead.
2958        if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2959          Node* load_node = my_mem->in(1);
2960          set_req(MemBarNode::Precedent, load_node);
2961          phase->is_IterGVN()->_worklist.push(my_mem);
2962          my_mem = load_node;
2963        } else {
2964          assert(my_mem->unique_out() == this, "sanity");
2965          del_req(Precedent);
2966          phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2967          my_mem = NULL;
2968        }
2969      }
2970      if (my_mem != NULL && my_mem->is_Mem()) {
2971        const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2972        // Check for scalar replaced object reference.
2973        if( t_oop != NULL && t_oop->is_known_instance_field() &&
2974            t_oop->offset() != Type::OffsetBot &&
2975            t_oop->offset() != Type::OffsetTop) {
2976          eliminate = true;
2977        }
2978      }
2979    } else if (opc == Op_MemBarRelease) {
2980      // Final field stores.
2981      Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2982      if ((alloc != NULL) && alloc->is_Allocate() &&
2983          alloc->as_Allocate()->_is_non_escaping) {
2984        // The allocated object does not escape.
2985        eliminate = true;
2986      }
2987    }
2988    if (eliminate) {
2989      // Replace MemBar projections by its inputs.
2990      PhaseIterGVN* igvn = phase->is_IterGVN();
2991      igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2992      igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2993      // Must return either the original node (now dead) or a new node
2994      // (Do not return a top here, since that would break the uniqueness of top.)
2995      return new (phase->C) ConINode(TypeInt::ZERO);
2996    }
2997  }
2998  return NULL;
2999}
3000
3001//------------------------------Value------------------------------------------
3002const Type *MemBarNode::Value( PhaseTransform *phase ) const {
3003  if( !in(0) ) return Type::TOP;
3004  if( phase->type(in(0)) == Type::TOP )
3005    return Type::TOP;
3006  return TypeTuple::MEMBAR;
3007}
3008
3009//------------------------------match------------------------------------------
3010// Construct projections for memory.
3011Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3012  switch (proj->_con) {
3013  case TypeFunc::Control:
3014  case TypeFunc::Memory:
3015    return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3016  }
3017  ShouldNotReachHere();
3018  return NULL;
3019}
3020
3021//===========================InitializeNode====================================
3022// SUMMARY:
3023// This node acts as a memory barrier on raw memory, after some raw stores.
3024// The 'cooked' oop value feeds from the Initialize, not the Allocation.
3025// The Initialize can 'capture' suitably constrained stores as raw inits.
3026// It can coalesce related raw stores into larger units (called 'tiles').
3027// It can avoid zeroing new storage for memory units which have raw inits.
3028// At macro-expansion, it is marked 'complete', and does not optimize further.
3029//
3030// EXAMPLE:
3031// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3032//   ctl = incoming control; mem* = incoming memory
3033// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3034// First allocate uninitialized memory and fill in the header:
3035//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3036//   ctl := alloc.Control; mem* := alloc.Memory*
3037//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3038// Then initialize to zero the non-header parts of the raw memory block:
3039//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3040//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3041// After the initialize node executes, the object is ready for service:
3042//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3043// Suppose its body is immediately initialized as {1,2}:
3044//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3045//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3046//   mem.SLICE(#short[*]) := store2
3047//
3048// DETAILS:
3049// An InitializeNode collects and isolates object initialization after
3050// an AllocateNode and before the next possible safepoint.  As a
3051// memory barrier (MemBarNode), it keeps critical stores from drifting
3052// down past any safepoint or any publication of the allocation.
3053// Before this barrier, a newly-allocated object may have uninitialized bits.
3054// After this barrier, it may be treated as a real oop, and GC is allowed.
3055//
3056// The semantics of the InitializeNode include an implicit zeroing of
3057// the new object from object header to the end of the object.
3058// (The object header and end are determined by the AllocateNode.)
3059//
3060// Certain stores may be added as direct inputs to the InitializeNode.
3061// These stores must update raw memory, and they must be to addresses
3062// derived from the raw address produced by AllocateNode, and with
3063// a constant offset.  They must be ordered by increasing offset.
3064// The first one is at in(RawStores), the last at in(req()-1).
3065// Unlike most memory operations, they are not linked in a chain,
3066// but are displayed in parallel as users of the rawmem output of
3067// the allocation.
3068//
3069// (See comments in InitializeNode::capture_store, which continue
3070// the example given above.)
3071//
3072// When the associated Allocate is macro-expanded, the InitializeNode
3073// may be rewritten to optimize collected stores.  A ClearArrayNode
3074// may also be created at that point to represent any required zeroing.
3075// The InitializeNode is then marked 'complete', prohibiting further
3076// capturing of nearby memory operations.
3077//
3078// During macro-expansion, all captured initializations which store
3079// constant values of 32 bits or smaller are coalesced (if advantageous)
3080// into larger 'tiles' 32 or 64 bits.  This allows an object to be
3081// initialized in fewer memory operations.  Memory words which are
3082// covered by neither tiles nor non-constant stores are pre-zeroed
3083// by explicit stores of zero.  (The code shape happens to do all
3084// zeroing first, then all other stores, with both sequences occurring
3085// in order of ascending offsets.)
3086//
3087// Alternatively, code may be inserted between an AllocateNode and its
3088// InitializeNode, to perform arbitrary initialization of the new object.
3089// E.g., the object copying intrinsics insert complex data transfers here.
3090// The initialization must then be marked as 'complete' disable the
3091// built-in zeroing semantics and the collection of initializing stores.
3092//
3093// While an InitializeNode is incomplete, reads from the memory state
3094// produced by it are optimizable if they match the control edge and
3095// new oop address associated with the allocation/initialization.
3096// They return a stored value (if the offset matches) or else zero.
3097// A write to the memory state, if it matches control and address,
3098// and if it is to a constant offset, may be 'captured' by the
3099// InitializeNode.  It is cloned as a raw memory operation and rewired
3100// inside the initialization, to the raw oop produced by the allocation.
3101// Operations on addresses which are provably distinct (e.g., to
3102// other AllocateNodes) are allowed to bypass the initialization.
3103//
3104// The effect of all this is to consolidate object initialization
3105// (both arrays and non-arrays, both piecewise and bulk) into a
3106// single location, where it can be optimized as a unit.
3107//
3108// Only stores with an offset less than TrackedInitializationLimit words
3109// will be considered for capture by an InitializeNode.  This puts a
3110// reasonable limit on the complexity of optimized initializations.
3111
3112//---------------------------InitializeNode------------------------------------
3113InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3114  : _is_complete(Incomplete), _does_not_escape(false),
3115    MemBarNode(C, adr_type, rawoop)
3116{
3117  init_class_id(Class_Initialize);
3118
3119  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3120  assert(in(RawAddress) == rawoop, "proper init");
3121  // Note:  allocation() can be NULL, for secondary initialization barriers
3122}
3123
3124// Since this node is not matched, it will be processed by the
3125// register allocator.  Declare that there are no constraints
3126// on the allocation of the RawAddress edge.
3127const RegMask &InitializeNode::in_RegMask(uint idx) const {
3128  // This edge should be set to top, by the set_complete.  But be conservative.
3129  if (idx == InitializeNode::RawAddress)
3130    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3131  return RegMask::Empty;
3132}
3133
3134Node* InitializeNode::memory(uint alias_idx) {
3135  Node* mem = in(Memory);
3136  if (mem->is_MergeMem()) {
3137    return mem->as_MergeMem()->memory_at(alias_idx);
3138  } else {
3139    // incoming raw memory is not split
3140    return mem;
3141  }
3142}
3143
3144bool InitializeNode::is_non_zero() {
3145  if (is_complete())  return false;
3146  remove_extra_zeroes();
3147  return (req() > RawStores);
3148}
3149
3150void InitializeNode::set_complete(PhaseGVN* phase) {
3151  assert(!is_complete(), "caller responsibility");
3152  _is_complete = Complete;
3153
3154  // After this node is complete, it contains a bunch of
3155  // raw-memory initializations.  There is no need for
3156  // it to have anything to do with non-raw memory effects.
3157  // Therefore, tell all non-raw users to re-optimize themselves,
3158  // after skipping the memory effects of this initialization.
3159  PhaseIterGVN* igvn = phase->is_IterGVN();
3160  if (igvn)  igvn->add_users_to_worklist(this);
3161}
3162
3163// convenience function
3164// return false if the init contains any stores already
3165bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3166  InitializeNode* init = initialization();
3167  if (init == NULL || init->is_complete())  return false;
3168  init->remove_extra_zeroes();
3169  // for now, if this allocation has already collected any inits, bail:
3170  if (init->is_non_zero())  return false;
3171  init->set_complete(phase);
3172  return true;
3173}
3174
3175void InitializeNode::remove_extra_zeroes() {
3176  if (req() == RawStores)  return;
3177  Node* zmem = zero_memory();
3178  uint fill = RawStores;
3179  for (uint i = fill; i < req(); i++) {
3180    Node* n = in(i);
3181    if (n->is_top() || n == zmem)  continue;  // skip
3182    if (fill < i)  set_req(fill, n);          // compact
3183    ++fill;
3184  }
3185  // delete any empty spaces created:
3186  while (fill < req()) {
3187    del_req(fill);
3188  }
3189}
3190
3191// Helper for remembering which stores go with which offsets.
3192intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3193  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3194  intptr_t offset = -1;
3195  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3196                                               phase, offset);
3197  if (base == NULL)     return -1;  // something is dead,
3198  if (offset < 0)       return -1;  //        dead, dead
3199  return offset;
3200}
3201
3202// Helper for proving that an initialization expression is
3203// "simple enough" to be folded into an object initialization.
3204// Attempts to prove that a store's initial value 'n' can be captured
3205// within the initialization without creating a vicious cycle, such as:
3206//     { Foo p = new Foo(); p.next = p; }
3207// True for constants and parameters and small combinations thereof.
3208bool InitializeNode::detect_init_independence(Node* n, int& count) {
3209  if (n == NULL)      return true;   // (can this really happen?)
3210  if (n->is_Proj())   n = n->in(0);
3211  if (n == this)      return false;  // found a cycle
3212  if (n->is_Con())    return true;
3213  if (n->is_Start())  return true;   // params, etc., are OK
3214  if (n->is_Root())   return true;   // even better
3215
3216  Node* ctl = n->in(0);
3217  if (ctl != NULL && !ctl->is_top()) {
3218    if (ctl->is_Proj())  ctl = ctl->in(0);
3219    if (ctl == this)  return false;
3220
3221    // If we already know that the enclosing memory op is pinned right after
3222    // the init, then any control flow that the store has picked up
3223    // must have preceded the init, or else be equal to the init.
3224    // Even after loop optimizations (which might change control edges)
3225    // a store is never pinned *before* the availability of its inputs.
3226    if (!MemNode::all_controls_dominate(n, this))
3227      return false;                  // failed to prove a good control
3228  }
3229
3230  // Check data edges for possible dependencies on 'this'.
3231  if ((count += 1) > 20)  return false;  // complexity limit
3232  for (uint i = 1; i < n->req(); i++) {
3233    Node* m = n->in(i);
3234    if (m == NULL || m == n || m->is_top())  continue;
3235    uint first_i = n->find_edge(m);
3236    if (i != first_i)  continue;  // process duplicate edge just once
3237    if (!detect_init_independence(m, count)) {
3238      return false;
3239    }
3240  }
3241
3242  return true;
3243}
3244
3245// Here are all the checks a Store must pass before it can be moved into
3246// an initialization.  Returns zero if a check fails.
3247// On success, returns the (constant) offset to which the store applies,
3248// within the initialized memory.
3249intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3250  const int FAIL = 0;
3251  if (st->req() != MemNode::ValueIn + 1)
3252    return FAIL;                // an inscrutable StoreNode (card mark?)
3253  Node* ctl = st->in(MemNode::Control);
3254  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3255    return FAIL;                // must be unconditional after the initialization
3256  Node* mem = st->in(MemNode::Memory);
3257  if (!(mem->is_Proj() && mem->in(0) == this))
3258    return FAIL;                // must not be preceded by other stores
3259  Node* adr = st->in(MemNode::Address);
3260  intptr_t offset;
3261  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3262  if (alloc == NULL)
3263    return FAIL;                // inscrutable address
3264  if (alloc != allocation())
3265    return FAIL;                // wrong allocation!  (store needs to float up)
3266  Node* val = st->in(MemNode::ValueIn);
3267  int complexity_count = 0;
3268  if (!detect_init_independence(val, complexity_count))
3269    return FAIL;                // stored value must be 'simple enough'
3270
3271  // The Store can be captured only if nothing after the allocation
3272  // and before the Store is using the memory location that the store
3273  // overwrites.
3274  bool failed = false;
3275  // If is_complete_with_arraycopy() is true the shape of the graph is
3276  // well defined and is safe so no need for extra checks.
3277  if (!is_complete_with_arraycopy()) {
3278    // We are going to look at each use of the memory state following
3279    // the allocation to make sure nothing reads the memory that the
3280    // Store writes.
3281    const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3282    int alias_idx = phase->C->get_alias_index(t_adr);
3283    ResourceMark rm;
3284    Unique_Node_List mems;
3285    mems.push(mem);
3286    Node* unique_merge = NULL;
3287    for (uint next = 0; next < mems.size(); ++next) {
3288      Node *m  = mems.at(next);
3289      for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3290        Node *n = m->fast_out(j);
3291        if (n->outcnt() == 0) {
3292          continue;
3293        }
3294        if (n == st) {
3295          continue;
3296        } else if (n->in(0) != NULL && n->in(0) != ctl) {
3297          // If the control of this use is different from the control
3298          // of the Store which is right after the InitializeNode then
3299          // this node cannot be between the InitializeNode and the
3300          // Store.
3301          continue;
3302        } else if (n->is_MergeMem()) {
3303          if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3304            // We can hit a MergeMemNode (that will likely go away
3305            // later) that is a direct use of the memory state
3306            // following the InitializeNode on the same slice as the
3307            // store node that we'd like to capture. We need to check
3308            // the uses of the MergeMemNode.
3309            mems.push(n);
3310          }
3311        } else if (n->is_Mem()) {
3312          Node* other_adr = n->in(MemNode::Address);
3313          if (other_adr == adr) {
3314            failed = true;
3315            break;
3316          } else {
3317            const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3318            if (other_t_adr != NULL) {
3319              int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3320              if (other_alias_idx == alias_idx) {
3321                // A load from the same memory slice as the store right
3322                // after the InitializeNode. We check the control of the
3323                // object/array that is loaded from. If it's the same as
3324                // the store control then we cannot capture the store.
3325                assert(!n->is_Store(), "2 stores to same slice on same control?");
3326                Node* base = other_adr;
3327                assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3328                base = base->in(AddPNode::Base);
3329                if (base != NULL) {
3330                  base = base->uncast();
3331                  if (base->is_Proj() && base->in(0) == alloc) {
3332                    failed = true;
3333                    break;
3334                  }
3335                }
3336              }
3337            }
3338          }
3339        } else {
3340          failed = true;
3341          break;
3342        }
3343      }
3344    }
3345  }
3346  if (failed) {
3347    if (!can_reshape) {
3348      // We decided we couldn't capture the store during parsing. We
3349      // should try again during the next IGVN once the graph is
3350      // cleaner.
3351      phase->C->record_for_igvn(st);
3352    }
3353    return FAIL;
3354  }
3355
3356  return offset;                // success
3357}
3358
3359// Find the captured store in(i) which corresponds to the range
3360// [start..start+size) in the initialized object.
3361// If there is one, return its index i.  If there isn't, return the
3362// negative of the index where it should be inserted.
3363// Return 0 if the queried range overlaps an initialization boundary
3364// or if dead code is encountered.
3365// If size_in_bytes is zero, do not bother with overlap checks.
3366int InitializeNode::captured_store_insertion_point(intptr_t start,
3367                                                   int size_in_bytes,
3368                                                   PhaseTransform* phase) {
3369  const int FAIL = 0, MAX_STORE = BytesPerLong;
3370
3371  if (is_complete())
3372    return FAIL;                // arraycopy got here first; punt
3373
3374  assert(allocation() != NULL, "must be present");
3375
3376  // no negatives, no header fields:
3377  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3378
3379  // after a certain size, we bail out on tracking all the stores:
3380  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3381  if (start >= ti_limit)  return FAIL;
3382
3383  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3384    if (i >= limit)  return -(int)i; // not found; here is where to put it
3385
3386    Node*    st     = in(i);
3387    intptr_t st_off = get_store_offset(st, phase);
3388    if (st_off < 0) {
3389      if (st != zero_memory()) {
3390        return FAIL;            // bail out if there is dead garbage
3391      }
3392    } else if (st_off > start) {
3393      // ...we are done, since stores are ordered
3394      if (st_off < start + size_in_bytes) {
3395        return FAIL;            // the next store overlaps
3396      }
3397      return -(int)i;           // not found; here is where to put it
3398    } else if (st_off < start) {
3399      if (size_in_bytes != 0 &&
3400          start < st_off + MAX_STORE &&
3401          start < st_off + st->as_Store()->memory_size()) {
3402        return FAIL;            // the previous store overlaps
3403      }
3404    } else {
3405      if (size_in_bytes != 0 &&
3406          st->as_Store()->memory_size() != size_in_bytes) {
3407        return FAIL;            // mismatched store size
3408      }
3409      return i;
3410    }
3411
3412    ++i;
3413  }
3414}
3415
3416// Look for a captured store which initializes at the offset 'start'
3417// with the given size.  If there is no such store, and no other
3418// initialization interferes, then return zero_memory (the memory
3419// projection of the AllocateNode).
3420Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3421                                          PhaseTransform* phase) {
3422  assert(stores_are_sane(phase), "");
3423  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3424  if (i == 0) {
3425    return NULL;                // something is dead
3426  } else if (i < 0) {
3427    return zero_memory();       // just primordial zero bits here
3428  } else {
3429    Node* st = in(i);           // here is the store at this position
3430    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3431    return st;
3432  }
3433}
3434
3435// Create, as a raw pointer, an address within my new object at 'offset'.
3436Node* InitializeNode::make_raw_address(intptr_t offset,
3437                                       PhaseTransform* phase) {
3438  Node* addr = in(RawAddress);
3439  if (offset != 0) {
3440    Compile* C = phase->C;
3441    addr = phase->transform( new (C) AddPNode(C->top(), addr,
3442                                                 phase->MakeConX(offset)) );
3443  }
3444  return addr;
3445}
3446
3447// Clone the given store, converting it into a raw store
3448// initializing a field or element of my new object.
3449// Caller is responsible for retiring the original store,
3450// with subsume_node or the like.
3451//
3452// From the example above InitializeNode::InitializeNode,
3453// here are the old stores to be captured:
3454//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3455//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3456//
3457// Here is the changed code; note the extra edges on init:
3458//   alloc = (Allocate ...)
3459//   rawoop = alloc.RawAddress
3460//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3461//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3462//   init = (Initialize alloc.Control alloc.Memory rawoop
3463//                      rawstore1 rawstore2)
3464//
3465Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3466                                    PhaseTransform* phase, bool can_reshape) {
3467  assert(stores_are_sane(phase), "");
3468
3469  if (start < 0)  return NULL;
3470  assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3471
3472  Compile* C = phase->C;
3473  int size_in_bytes = st->memory_size();
3474  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3475  if (i == 0)  return NULL;     // bail out
3476  Node* prev_mem = NULL;        // raw memory for the captured store
3477  if (i > 0) {
3478    prev_mem = in(i);           // there is a pre-existing store under this one
3479    set_req(i, C->top());       // temporarily disconnect it
3480    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3481  } else {
3482    i = -i;                     // no pre-existing store
3483    prev_mem = zero_memory();   // a slice of the newly allocated object
3484    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3485      set_req(--i, C->top());   // reuse this edge; it has been folded away
3486    else
3487      ins_req(i, C->top());     // build a new edge
3488  }
3489  Node* new_st = st->clone();
3490  new_st->set_req(MemNode::Control, in(Control));
3491  new_st->set_req(MemNode::Memory,  prev_mem);
3492  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3493  new_st = phase->transform(new_st);
3494
3495  // At this point, new_st might have swallowed a pre-existing store
3496  // at the same offset, or perhaps new_st might have disappeared,
3497  // if it redundantly stored the same value (or zero to fresh memory).
3498
3499  // In any case, wire it in:
3500  set_req(i, new_st);
3501
3502  // The caller may now kill the old guy.
3503  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3504  assert(check_st == new_st || check_st == NULL, "must be findable");
3505  assert(!is_complete(), "");
3506  return new_st;
3507}
3508
3509static bool store_constant(jlong* tiles, int num_tiles,
3510                           intptr_t st_off, int st_size,
3511                           jlong con) {
3512  if ((st_off & (st_size-1)) != 0)
3513    return false;               // strange store offset (assume size==2**N)
3514  address addr = (address)tiles + st_off;
3515  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3516  switch (st_size) {
3517  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3518  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3519  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3520  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3521  default: return false;        // strange store size (detect size!=2**N here)
3522  }
3523  return true;                  // return success to caller
3524}
3525
3526// Coalesce subword constants into int constants and possibly
3527// into long constants.  The goal, if the CPU permits,
3528// is to initialize the object with a small number of 64-bit tiles.
3529// Also, convert floating-point constants to bit patterns.
3530// Non-constants are not relevant to this pass.
3531//
3532// In terms of the running example on InitializeNode::InitializeNode
3533// and InitializeNode::capture_store, here is the transformation
3534// of rawstore1 and rawstore2 into rawstore12:
3535//   alloc = (Allocate ...)
3536//   rawoop = alloc.RawAddress
3537//   tile12 = 0x00010002
3538//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3539//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3540//
3541void
3542InitializeNode::coalesce_subword_stores(intptr_t header_size,
3543                                        Node* size_in_bytes,
3544                                        PhaseGVN* phase) {
3545  Compile* C = phase->C;
3546
3547  assert(stores_are_sane(phase), "");
3548  // Note:  After this pass, they are not completely sane,
3549  // since there may be some overlaps.
3550
3551  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3552
3553  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3554  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3555  size_limit = MIN2(size_limit, ti_limit);
3556  size_limit = align_size_up(size_limit, BytesPerLong);
3557  int num_tiles = size_limit / BytesPerLong;
3558
3559  // allocate space for the tile map:
3560  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3561  jlong  tiles_buf[small_len];
3562  Node*  nodes_buf[small_len];
3563  jlong  inits_buf[small_len];
3564  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3565                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3566  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3567                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3568  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3569                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3570  // tiles: exact bitwise model of all primitive constants
3571  // nodes: last constant-storing node subsumed into the tiles model
3572  // inits: which bytes (in each tile) are touched by any initializations
3573
3574  //// Pass A: Fill in the tile model with any relevant stores.
3575
3576  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3577  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3578  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3579  Node* zmem = zero_memory(); // initially zero memory state
3580  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3581    Node* st = in(i);
3582    intptr_t st_off = get_store_offset(st, phase);
3583
3584    // Figure out the store's offset and constant value:
3585    if (st_off < header_size)             continue; //skip (ignore header)
3586    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3587    int st_size = st->as_Store()->memory_size();
3588    if (st_off + st_size > size_limit)    break;
3589
3590    // Record which bytes are touched, whether by constant or not.
3591    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3592      continue;                 // skip (strange store size)
3593
3594    const Type* val = phase->type(st->in(MemNode::ValueIn));
3595    if (!val->singleton())                continue; //skip (non-con store)
3596    BasicType type = val->basic_type();
3597
3598    jlong con = 0;
3599    switch (type) {
3600    case T_INT:    con = val->is_int()->get_con();  break;
3601    case T_LONG:   con = val->is_long()->get_con(); break;
3602    case T_FLOAT:  con = jint_cast(val->getf());    break;
3603    case T_DOUBLE: con = jlong_cast(val->getd());   break;
3604    default:                              continue; //skip (odd store type)
3605    }
3606
3607    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3608        st->Opcode() == Op_StoreL) {
3609      continue;                 // This StoreL is already optimal.
3610    }
3611
3612    // Store down the constant.
3613    store_constant(tiles, num_tiles, st_off, st_size, con);
3614
3615    intptr_t j = st_off >> LogBytesPerLong;
3616
3617    if (type == T_INT && st_size == BytesPerInt
3618        && (st_off & BytesPerInt) == BytesPerInt) {
3619      jlong lcon = tiles[j];
3620      if (!Matcher::isSimpleConstant64(lcon) &&
3621          st->Opcode() == Op_StoreI) {
3622        // This StoreI is already optimal by itself.
3623        jint* intcon = (jint*) &tiles[j];
3624        intcon[1] = 0;  // undo the store_constant()
3625
3626        // If the previous store is also optimal by itself, back up and
3627        // undo the action of the previous loop iteration... if we can.
3628        // But if we can't, just let the previous half take care of itself.
3629        st = nodes[j];
3630        st_off -= BytesPerInt;
3631        con = intcon[0];
3632        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3633          assert(st_off >= header_size, "still ignoring header");
3634          assert(get_store_offset(st, phase) == st_off, "must be");
3635          assert(in(i-1) == zmem, "must be");
3636          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3637          assert(con == tcon->is_int()->get_con(), "must be");
3638          // Undo the effects of the previous loop trip, which swallowed st:
3639          intcon[0] = 0;        // undo store_constant()
3640          set_req(i-1, st);     // undo set_req(i, zmem)
3641          nodes[j] = NULL;      // undo nodes[j] = st
3642          --old_subword;        // undo ++old_subword
3643        }
3644        continue;               // This StoreI is already optimal.
3645      }
3646    }
3647
3648    // This store is not needed.
3649    set_req(i, zmem);
3650    nodes[j] = st;              // record for the moment
3651    if (st_size < BytesPerLong) // something has changed
3652          ++old_subword;        // includes int/float, but who's counting...
3653    else  ++old_long;
3654  }
3655
3656  if ((old_subword + old_long) == 0)
3657    return;                     // nothing more to do
3658
3659  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3660  // Be sure to insert them before overlapping non-constant stores.
3661  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3662  for (int j = 0; j < num_tiles; j++) {
3663    jlong con  = tiles[j];
3664    jlong init = inits[j];
3665    if (con == 0)  continue;
3666    jint con0,  con1;           // split the constant, address-wise
3667    jint init0, init1;          // split the init map, address-wise
3668    { union { jlong con; jint intcon[2]; } u;
3669      u.con = con;
3670      con0  = u.intcon[0];
3671      con1  = u.intcon[1];
3672      u.con = init;
3673      init0 = u.intcon[0];
3674      init1 = u.intcon[1];
3675    }
3676
3677    Node* old = nodes[j];
3678    assert(old != NULL, "need the prior store");
3679    intptr_t offset = (j * BytesPerLong);
3680
3681    bool split = !Matcher::isSimpleConstant64(con);
3682
3683    if (offset < header_size) {
3684      assert(offset + BytesPerInt >= header_size, "second int counts");
3685      assert(*(jint*)&tiles[j] == 0, "junk in header");
3686      split = true;             // only the second word counts
3687      // Example:  int a[] = { 42 ... }
3688    } else if (con0 == 0 && init0 == -1) {
3689      split = true;             // first word is covered by full inits
3690      // Example:  int a[] = { ... foo(), 42 ... }
3691    } else if (con1 == 0 && init1 == -1) {
3692      split = true;             // second word is covered by full inits
3693      // Example:  int a[] = { ... 42, foo() ... }
3694    }
3695
3696    // Here's a case where init0 is neither 0 nor -1:
3697    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3698    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3699    // In this case the tile is not split; it is (jlong)42.
3700    // The big tile is stored down, and then the foo() value is inserted.
3701    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3702
3703    Node* ctl = old->in(MemNode::Control);
3704    Node* adr = make_raw_address(offset, phase);
3705    const TypePtr* atp = TypeRawPtr::BOTTOM;
3706
3707    // One or two coalesced stores to plop down.
3708    Node*    st[2];
3709    intptr_t off[2];
3710    int  nst = 0;
3711    if (!split) {
3712      ++new_long;
3713      off[nst] = offset;
3714      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3715                                  phase->longcon(con), T_LONG, MemNode::unordered);
3716    } else {
3717      // Omit either if it is a zero.
3718      if (con0 != 0) {
3719        ++new_int;
3720        off[nst]  = offset;
3721        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3722                                    phase->intcon(con0), T_INT, MemNode::unordered);
3723      }
3724      if (con1 != 0) {
3725        ++new_int;
3726        offset += BytesPerInt;
3727        adr = make_raw_address(offset, phase);
3728        off[nst]  = offset;
3729        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3730                                    phase->intcon(con1), T_INT, MemNode::unordered);
3731      }
3732    }
3733
3734    // Insert second store first, then the first before the second.
3735    // Insert each one just before any overlapping non-constant stores.
3736    while (nst > 0) {
3737      Node* st1 = st[--nst];
3738      C->copy_node_notes_to(st1, old);
3739      st1 = phase->transform(st1);
3740      offset = off[nst];
3741      assert(offset >= header_size, "do not smash header");
3742      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3743      guarantee(ins_idx != 0, "must re-insert constant store");
3744      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3745      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3746        set_req(--ins_idx, st1);
3747      else
3748        ins_req(ins_idx, st1);
3749    }
3750  }
3751
3752  if (PrintCompilation && WizardMode)
3753    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3754                  old_subword, old_long, new_int, new_long);
3755  if (C->log() != NULL)
3756    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3757                   old_subword, old_long, new_int, new_long);
3758
3759  // Clean up any remaining occurrences of zmem:
3760  remove_extra_zeroes();
3761}
3762
3763// Explore forward from in(start) to find the first fully initialized
3764// word, and return its offset.  Skip groups of subword stores which
3765// together initialize full words.  If in(start) is itself part of a
3766// fully initialized word, return the offset of in(start).  If there
3767// are no following full-word stores, or if something is fishy, return
3768// a negative value.
3769intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3770  int       int_map = 0;
3771  intptr_t  int_map_off = 0;
3772  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3773
3774  for (uint i = start, limit = req(); i < limit; i++) {
3775    Node* st = in(i);
3776
3777    intptr_t st_off = get_store_offset(st, phase);
3778    if (st_off < 0)  break;  // return conservative answer
3779
3780    int st_size = st->as_Store()->memory_size();
3781    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3782      return st_off;            // we found a complete word init
3783    }
3784
3785    // update the map:
3786
3787    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3788    if (this_int_off != int_map_off) {
3789      // reset the map:
3790      int_map = 0;
3791      int_map_off = this_int_off;
3792    }
3793
3794    int subword_off = st_off - this_int_off;
3795    int_map |= right_n_bits(st_size) << subword_off;
3796    if ((int_map & FULL_MAP) == FULL_MAP) {
3797      return this_int_off;      // we found a complete word init
3798    }
3799
3800    // Did this store hit or cross the word boundary?
3801    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3802    if (next_int_off == this_int_off + BytesPerInt) {
3803      // We passed the current int, without fully initializing it.
3804      int_map_off = next_int_off;
3805      int_map >>= BytesPerInt;
3806    } else if (next_int_off > this_int_off + BytesPerInt) {
3807      // We passed the current and next int.
3808      return this_int_off + BytesPerInt;
3809    }
3810  }
3811
3812  return -1;
3813}
3814
3815
3816// Called when the associated AllocateNode is expanded into CFG.
3817// At this point, we may perform additional optimizations.
3818// Linearize the stores by ascending offset, to make memory
3819// activity as coherent as possible.
3820Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3821                                      intptr_t header_size,
3822                                      Node* size_in_bytes,
3823                                      PhaseGVN* phase) {
3824  assert(!is_complete(), "not already complete");
3825  assert(stores_are_sane(phase), "");
3826  assert(allocation() != NULL, "must be present");
3827
3828  remove_extra_zeroes();
3829
3830  if (ReduceFieldZeroing || ReduceBulkZeroing)
3831    // reduce instruction count for common initialization patterns
3832    coalesce_subword_stores(header_size, size_in_bytes, phase);
3833
3834  Node* zmem = zero_memory();   // initially zero memory state
3835  Node* inits = zmem;           // accumulating a linearized chain of inits
3836  #ifdef ASSERT
3837  intptr_t first_offset = allocation()->minimum_header_size();
3838  intptr_t last_init_off = first_offset;  // previous init offset
3839  intptr_t last_init_end = first_offset;  // previous init offset+size
3840  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3841  #endif
3842  intptr_t zeroes_done = header_size;
3843
3844  bool do_zeroing = true;       // we might give up if inits are very sparse
3845  int  big_init_gaps = 0;       // how many large gaps have we seen?
3846
3847  if (ZeroTLAB)  do_zeroing = false;
3848  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3849
3850  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3851    Node* st = in(i);
3852    intptr_t st_off = get_store_offset(st, phase);
3853    if (st_off < 0)
3854      break;                    // unknown junk in the inits
3855    if (st->in(MemNode::Memory) != zmem)
3856      break;                    // complicated store chains somehow in list
3857
3858    int st_size = st->as_Store()->memory_size();
3859    intptr_t next_init_off = st_off + st_size;
3860
3861    if (do_zeroing && zeroes_done < next_init_off) {
3862      // See if this store needs a zero before it or under it.
3863      intptr_t zeroes_needed = st_off;
3864
3865      if (st_size < BytesPerInt) {
3866        // Look for subword stores which only partially initialize words.
3867        // If we find some, we must lay down some word-level zeroes first,
3868        // underneath the subword stores.
3869        //
3870        // Examples:
3871        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3872        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3873        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3874        //
3875        // Note:  coalesce_subword_stores may have already done this,
3876        // if it was prompted by constant non-zero subword initializers.
3877        // But this case can still arise with non-constant stores.
3878
3879        intptr_t next_full_store = find_next_fullword_store(i, phase);
3880
3881        // In the examples above:
3882        //   in(i)          p   q   r   s     x   y     z
3883        //   st_off        12  13  14  15    12  13    14
3884        //   st_size        1   1   1   1     1   1     1
3885        //   next_full_s.  12  16  16  16    16  16    16
3886        //   z's_done      12  16  16  16    12  16    12
3887        //   z's_needed    12  16  16  16    16  16    16
3888        //   zsize          0   0   0   0     4   0     4
3889        if (next_full_store < 0) {
3890          // Conservative tack:  Zero to end of current word.
3891          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3892        } else {
3893          // Zero to beginning of next fully initialized word.
3894          // Or, don't zero at all, if we are already in that word.
3895          assert(next_full_store >= zeroes_needed, "must go forward");
3896          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3897          zeroes_needed = next_full_store;
3898        }
3899      }
3900
3901      if (zeroes_needed > zeroes_done) {
3902        intptr_t zsize = zeroes_needed - zeroes_done;
3903        // Do some incremental zeroing on rawmem, in parallel with inits.
3904        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3905        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3906                                              zeroes_done, zeroes_needed,
3907                                              phase);
3908        zeroes_done = zeroes_needed;
3909        if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3910          do_zeroing = false;   // leave the hole, next time
3911      }
3912    }
3913
3914    // Collect the store and move on:
3915    st->set_req(MemNode::Memory, inits);
3916    inits = st;                 // put it on the linearized chain
3917    set_req(i, zmem);           // unhook from previous position
3918
3919    if (zeroes_done == st_off)
3920      zeroes_done = next_init_off;
3921
3922    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3923
3924    #ifdef ASSERT
3925    // Various order invariants.  Weaker than stores_are_sane because
3926    // a large constant tile can be filled in by smaller non-constant stores.
3927    assert(st_off >= last_init_off, "inits do not reverse");
3928    last_init_off = st_off;
3929    const Type* val = NULL;
3930    if (st_size >= BytesPerInt &&
3931        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3932        (int)val->basic_type() < (int)T_OBJECT) {
3933      assert(st_off >= last_tile_end, "tiles do not overlap");
3934      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3935      last_tile_end = MAX2(last_tile_end, next_init_off);
3936    } else {
3937      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3938      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3939      assert(st_off      >= last_init_end, "inits do not overlap");
3940      last_init_end = next_init_off;  // it's a non-tile
3941    }
3942    #endif //ASSERT
3943  }
3944
3945  remove_extra_zeroes();        // clear out all the zmems left over
3946  add_req(inits);
3947
3948  if (!ZeroTLAB) {
3949    // If anything remains to be zeroed, zero it all now.
3950    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3951    // if it is the last unused 4 bytes of an instance, forget about it
3952    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3953    if (zeroes_done + BytesPerLong >= size_limit) {
3954      assert(allocation() != NULL, "");
3955      if (allocation()->Opcode() == Op_Allocate) {
3956        Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3957        ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3958        if (zeroes_done == k->layout_helper())
3959          zeroes_done = size_limit;
3960      }
3961    }
3962    if (zeroes_done < size_limit) {
3963      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3964                                            zeroes_done, size_in_bytes, phase);
3965    }
3966  }
3967
3968  set_complete(phase);
3969  return rawmem;
3970}
3971
3972
3973#ifdef ASSERT
3974bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3975  if (is_complete())
3976    return true;                // stores could be anything at this point
3977  assert(allocation() != NULL, "must be present");
3978  intptr_t last_off = allocation()->minimum_header_size();
3979  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3980    Node* st = in(i);
3981    intptr_t st_off = get_store_offset(st, phase);
3982    if (st_off < 0)  continue;  // ignore dead garbage
3983    if (last_off > st_off) {
3984      tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
3985      this->dump(2);
3986      assert(false, "ascending store offsets");
3987      return false;
3988    }
3989    last_off = st_off + st->as_Store()->memory_size();
3990  }
3991  return true;
3992}
3993#endif //ASSERT
3994
3995
3996
3997
3998//============================MergeMemNode=====================================
3999//
4000// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4001// contributing store or call operations.  Each contributor provides the memory
4002// state for a particular "alias type" (see Compile::alias_type).  For example,
4003// if a MergeMem has an input X for alias category #6, then any memory reference
4004// to alias category #6 may use X as its memory state input, as an exact equivalent
4005// to using the MergeMem as a whole.
4006//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4007//
4008// (Here, the <N> notation gives the index of the relevant adr_type.)
4009//
4010// In one special case (and more cases in the future), alias categories overlap.
4011// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4012// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4013// it is exactly equivalent to that state W:
4014//   MergeMem(<Bot>: W) <==> W
4015//
4016// Usually, the merge has more than one input.  In that case, where inputs
4017// overlap (i.e., one is Bot), the narrower alias type determines the memory
4018// state for that type, and the wider alias type (Bot) fills in everywhere else:
4019//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4020//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4021//
4022// A merge can take a "wide" memory state as one of its narrow inputs.
4023// This simply means that the merge observes out only the relevant parts of
4024// the wide input.  That is, wide memory states arriving at narrow merge inputs
4025// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4026//
4027// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4028// and that memory slices "leak through":
4029//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4030//
4031// But, in such a cascade, repeated memory slices can "block the leak":
4032//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4033//
4034// In the last example, Y is not part of the combined memory state of the
4035// outermost MergeMem.  The system must, of course, prevent unschedulable
4036// memory states from arising, so you can be sure that the state Y is somehow
4037// a precursor to state Y'.
4038//
4039//
4040// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4041// of each MergeMemNode array are exactly the numerical alias indexes, including
4042// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4043// Compile::alias_type (and kin) produce and manage these indexes.
4044//
4045// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4046// (Note that this provides quick access to the top node inside MergeMem methods,
4047// without the need to reach out via TLS to Compile::current.)
4048//
4049// As a consequence of what was just described, a MergeMem that represents a full
4050// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4051// containing all alias categories.
4052//
4053// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4054//
4055// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4056// a memory state for the alias type <N>, or else the top node, meaning that
4057// there is no particular input for that alias type.  Note that the length of
4058// a MergeMem is variable, and may be extended at any time to accommodate new
4059// memory states at larger alias indexes.  When merges grow, they are of course
4060// filled with "top" in the unused in() positions.
4061//
4062// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4063// (Top was chosen because it works smoothly with passes like GCM.)
4064//
4065// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4066// the type of random VM bits like TLS references.)  Since it is always the
4067// first non-Bot memory slice, some low-level loops use it to initialize an
4068// index variable:  for (i = AliasIdxRaw; i < req(); i++).
4069//
4070//
4071// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4072// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4073// the memory state for alias type <N>, or (if there is no particular slice at <N>,
4074// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4075// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4076// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4077//
4078// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4079// really that different from the other memory inputs.  An abbreviation called
4080// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4081//
4082//
4083// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4084// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4085// that "emerges though" the base memory will be marked as excluding the alias types
4086// of the other (narrow-memory) copies which "emerged through" the narrow edges:
4087//
4088//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4089//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4090//
4091// This strange "subtraction" effect is necessary to ensure IGVN convergence.
4092// (It is currently unimplemented.)  As you can see, the resulting merge is
4093// actually a disjoint union of memory states, rather than an overlay.
4094//
4095
4096//------------------------------MergeMemNode-----------------------------------
4097Node* MergeMemNode::make_empty_memory() {
4098  Node* empty_memory = (Node*) Compile::current()->top();
4099  assert(empty_memory->is_top(), "correct sentinel identity");
4100  return empty_memory;
4101}
4102
4103MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4104  init_class_id(Class_MergeMem);
4105  // all inputs are nullified in Node::Node(int)
4106  // set_input(0, NULL);  // no control input
4107
4108  // Initialize the edges uniformly to top, for starters.
4109  Node* empty_mem = make_empty_memory();
4110  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4111    init_req(i,empty_mem);
4112  }
4113  assert(empty_memory() == empty_mem, "");
4114
4115  if( new_base != NULL && new_base->is_MergeMem() ) {
4116    MergeMemNode* mdef = new_base->as_MergeMem();
4117    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4118    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4119      mms.set_memory(mms.memory2());
4120    }
4121    assert(base_memory() == mdef->base_memory(), "");
4122  } else {
4123    set_base_memory(new_base);
4124  }
4125}
4126
4127// Make a new, untransformed MergeMem with the same base as 'mem'.
4128// If mem is itself a MergeMem, populate the result with the same edges.
4129MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4130  return new(C) MergeMemNode(mem);
4131}
4132
4133//------------------------------cmp--------------------------------------------
4134uint MergeMemNode::hash() const { return NO_HASH; }
4135uint MergeMemNode::cmp( const Node &n ) const {
4136  return (&n == this);          // Always fail except on self
4137}
4138
4139//------------------------------Identity---------------------------------------
4140Node* MergeMemNode::Identity(PhaseTransform *phase) {
4141  // Identity if this merge point does not record any interesting memory
4142  // disambiguations.
4143  Node* base_mem = base_memory();
4144  Node* empty_mem = empty_memory();
4145  if (base_mem != empty_mem) {  // Memory path is not dead?
4146    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4147      Node* mem = in(i);
4148      if (mem != empty_mem && mem != base_mem) {
4149        return this;            // Many memory splits; no change
4150      }
4151    }
4152  }
4153  return base_mem;              // No memory splits; ID on the one true input
4154}
4155
4156//------------------------------Ideal------------------------------------------
4157// This method is invoked recursively on chains of MergeMem nodes
4158Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4159  // Remove chain'd MergeMems
4160  //
4161  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4162  // relative to the "in(Bot)".  Since we are patching both at the same time,
4163  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4164  // but rewrite each "in(i)" relative to the new "in(Bot)".
4165  Node *progress = NULL;
4166
4167
4168  Node* old_base = base_memory();
4169  Node* empty_mem = empty_memory();
4170  if (old_base == empty_mem)
4171    return NULL; // Dead memory path.
4172
4173  MergeMemNode* old_mbase;
4174  if (old_base != NULL && old_base->is_MergeMem())
4175    old_mbase = old_base->as_MergeMem();
4176  else
4177    old_mbase = NULL;
4178  Node* new_base = old_base;
4179
4180  // simplify stacked MergeMems in base memory
4181  if (old_mbase)  new_base = old_mbase->base_memory();
4182
4183  // the base memory might contribute new slices beyond my req()
4184  if (old_mbase)  grow_to_match(old_mbase);
4185
4186  // Look carefully at the base node if it is a phi.
4187  PhiNode* phi_base;
4188  if (new_base != NULL && new_base->is_Phi())
4189    phi_base = new_base->as_Phi();
4190  else
4191    phi_base = NULL;
4192
4193  Node*    phi_reg = NULL;
4194  uint     phi_len = (uint)-1;
4195  if (phi_base != NULL && !phi_base->is_copy()) {
4196    // do not examine phi if degraded to a copy
4197    phi_reg = phi_base->region();
4198    phi_len = phi_base->req();
4199    // see if the phi is unfinished
4200    for (uint i = 1; i < phi_len; i++) {
4201      if (phi_base->in(i) == NULL) {
4202        // incomplete phi; do not look at it yet!
4203        phi_reg = NULL;
4204        phi_len = (uint)-1;
4205        break;
4206      }
4207    }
4208  }
4209
4210  // Note:  We do not call verify_sparse on entry, because inputs
4211  // can normalize to the base_memory via subsume_node or similar
4212  // mechanisms.  This method repairs that damage.
4213
4214  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4215
4216  // Look at each slice.
4217  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4218    Node* old_in = in(i);
4219    // calculate the old memory value
4220    Node* old_mem = old_in;
4221    if (old_mem == empty_mem)  old_mem = old_base;
4222    assert(old_mem == memory_at(i), "");
4223
4224    // maybe update (reslice) the old memory value
4225
4226    // simplify stacked MergeMems
4227    Node* new_mem = old_mem;
4228    MergeMemNode* old_mmem;
4229    if (old_mem != NULL && old_mem->is_MergeMem())
4230      old_mmem = old_mem->as_MergeMem();
4231    else
4232      old_mmem = NULL;
4233    if (old_mmem == this) {
4234      // This can happen if loops break up and safepoints disappear.
4235      // A merge of BotPtr (default) with a RawPtr memory derived from a
4236      // safepoint can be rewritten to a merge of the same BotPtr with
4237      // the BotPtr phi coming into the loop.  If that phi disappears
4238      // also, we can end up with a self-loop of the mergemem.
4239      // In general, if loops degenerate and memory effects disappear,
4240      // a mergemem can be left looking at itself.  This simply means
4241      // that the mergemem's default should be used, since there is
4242      // no longer any apparent effect on this slice.
4243      // Note: If a memory slice is a MergeMem cycle, it is unreachable
4244      //       from start.  Update the input to TOP.
4245      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4246    }
4247    else if (old_mmem != NULL) {
4248      new_mem = old_mmem->memory_at(i);
4249    }
4250    // else preceding memory was not a MergeMem
4251
4252    // replace equivalent phis (unfortunately, they do not GVN together)
4253    if (new_mem != NULL && new_mem != new_base &&
4254        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4255      if (new_mem->is_Phi()) {
4256        PhiNode* phi_mem = new_mem->as_Phi();
4257        for (uint i = 1; i < phi_len; i++) {
4258          if (phi_base->in(i) != phi_mem->in(i)) {
4259            phi_mem = NULL;
4260            break;
4261          }
4262        }
4263        if (phi_mem != NULL) {
4264          // equivalent phi nodes; revert to the def
4265          new_mem = new_base;
4266        }
4267      }
4268    }
4269
4270    // maybe store down a new value
4271    Node* new_in = new_mem;
4272    if (new_in == new_base)  new_in = empty_mem;
4273
4274    if (new_in != old_in) {
4275      // Warning:  Do not combine this "if" with the previous "if"
4276      // A memory slice might have be be rewritten even if it is semantically
4277      // unchanged, if the base_memory value has changed.
4278      set_req(i, new_in);
4279      progress = this;          // Report progress
4280    }
4281  }
4282
4283  if (new_base != old_base) {
4284    set_req(Compile::AliasIdxBot, new_base);
4285    // Don't use set_base_memory(new_base), because we need to update du.
4286    assert(base_memory() == new_base, "");
4287    progress = this;
4288  }
4289
4290  if( base_memory() == this ) {
4291    // a self cycle indicates this memory path is dead
4292    set_req(Compile::AliasIdxBot, empty_mem);
4293  }
4294
4295  // Resolve external cycles by calling Ideal on a MergeMem base_memory
4296  // Recursion must occur after the self cycle check above
4297  if( base_memory()->is_MergeMem() ) {
4298    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4299    Node *m = phase->transform(new_mbase);  // Rollup any cycles
4300    if( m != NULL && (m->is_top() ||
4301        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4302      // propagate rollup of dead cycle to self
4303      set_req(Compile::AliasIdxBot, empty_mem);
4304    }
4305  }
4306
4307  if( base_memory() == empty_mem ) {
4308    progress = this;
4309    // Cut inputs during Parse phase only.
4310    // During Optimize phase a dead MergeMem node will be subsumed by Top.
4311    if( !can_reshape ) {
4312      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4313        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4314      }
4315    }
4316  }
4317
4318  if( !progress && base_memory()->is_Phi() && can_reshape ) {
4319    // Check if PhiNode::Ideal's "Split phis through memory merges"
4320    // transform should be attempted. Look for this->phi->this cycle.
4321    uint merge_width = req();
4322    if (merge_width > Compile::AliasIdxRaw) {
4323      PhiNode* phi = base_memory()->as_Phi();
4324      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4325        if (phi->in(i) == this) {
4326          phase->is_IterGVN()->_worklist.push(phi);
4327          break;
4328        }
4329      }
4330    }
4331  }
4332
4333  assert(progress || verify_sparse(), "please, no dups of base");
4334  return progress;
4335}
4336
4337//-------------------------set_base_memory-------------------------------------
4338void MergeMemNode::set_base_memory(Node *new_base) {
4339  Node* empty_mem = empty_memory();
4340  set_req(Compile::AliasIdxBot, new_base);
4341  assert(memory_at(req()) == new_base, "must set default memory");
4342  // Clear out other occurrences of new_base:
4343  if (new_base != empty_mem) {
4344    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4345      if (in(i) == new_base)  set_req(i, empty_mem);
4346    }
4347  }
4348}
4349
4350//------------------------------out_RegMask------------------------------------
4351const RegMask &MergeMemNode::out_RegMask() const {
4352  return RegMask::Empty;
4353}
4354
4355//------------------------------dump_spec--------------------------------------
4356#ifndef PRODUCT
4357void MergeMemNode::dump_spec(outputStream *st) const {
4358  st->print(" {");
4359  Node* base_mem = base_memory();
4360  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4361    Node* mem = memory_at(i);
4362    if (mem == base_mem) { st->print(" -"); continue; }
4363    st->print( " N%d:", mem->_idx );
4364    Compile::current()->get_adr_type(i)->dump_on(st);
4365  }
4366  st->print(" }");
4367}
4368#endif // !PRODUCT
4369
4370
4371#ifdef ASSERT
4372static bool might_be_same(Node* a, Node* b) {
4373  if (a == b)  return true;
4374  if (!(a->is_Phi() || b->is_Phi()))  return false;
4375  // phis shift around during optimization
4376  return true;  // pretty stupid...
4377}
4378
4379// verify a narrow slice (either incoming or outgoing)
4380static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4381  if (!VerifyAliases)       return;  // don't bother to verify unless requested
4382  if (is_error_reported())  return;  // muzzle asserts when debugging an error
4383  if (Node::in_dump())      return;  // muzzle asserts when printing
4384  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4385  assert(n != NULL, "");
4386  // Elide intervening MergeMem's
4387  while (n->is_MergeMem()) {
4388    n = n->as_MergeMem()->memory_at(alias_idx);
4389  }
4390  Compile* C = Compile::current();
4391  const TypePtr* n_adr_type = n->adr_type();
4392  if (n == m->empty_memory()) {
4393    // Implicit copy of base_memory()
4394  } else if (n_adr_type != TypePtr::BOTTOM) {
4395    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4396    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4397  } else {
4398    // A few places like make_runtime_call "know" that VM calls are narrow,
4399    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4400    bool expected_wide_mem = false;
4401    if (n == m->base_memory()) {
4402      expected_wide_mem = true;
4403    } else if (alias_idx == Compile::AliasIdxRaw ||
4404               n == m->memory_at(Compile::AliasIdxRaw)) {
4405      expected_wide_mem = true;
4406    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4407      // memory can "leak through" calls on channels that
4408      // are write-once.  Allow this also.
4409      expected_wide_mem = true;
4410    }
4411    assert(expected_wide_mem, "expected narrow slice replacement");
4412  }
4413}
4414#else // !ASSERT
4415#define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4416#endif
4417
4418
4419//-----------------------------memory_at---------------------------------------
4420Node* MergeMemNode::memory_at(uint alias_idx) const {
4421  assert(alias_idx >= Compile::AliasIdxRaw ||
4422         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4423         "must avoid base_memory and AliasIdxTop");
4424
4425  // Otherwise, it is a narrow slice.
4426  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4427  Compile *C = Compile::current();
4428  if (is_empty_memory(n)) {
4429    // the array is sparse; empty slots are the "top" node
4430    n = base_memory();
4431    assert(Node::in_dump()
4432           || n == NULL || n->bottom_type() == Type::TOP
4433           || n->adr_type() == NULL // address is TOP
4434           || n->adr_type() == TypePtr::BOTTOM
4435           || n->adr_type() == TypeRawPtr::BOTTOM
4436           || Compile::current()->AliasLevel() == 0,
4437           "must be a wide memory");
4438    // AliasLevel == 0 if we are organizing the memory states manually.
4439    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4440  } else {
4441    // make sure the stored slice is sane
4442    #ifdef ASSERT
4443    if (is_error_reported() || Node::in_dump()) {
4444    } else if (might_be_same(n, base_memory())) {
4445      // Give it a pass:  It is a mostly harmless repetition of the base.
4446      // This can arise normally from node subsumption during optimization.
4447    } else {
4448      verify_memory_slice(this, alias_idx, n);
4449    }
4450    #endif
4451  }
4452  return n;
4453}
4454
4455//---------------------------set_memory_at-------------------------------------
4456void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4457  verify_memory_slice(this, alias_idx, n);
4458  Node* empty_mem = empty_memory();
4459  if (n == base_memory())  n = empty_mem;  // collapse default
4460  uint need_req = alias_idx+1;
4461  if (req() < need_req) {
4462    if (n == empty_mem)  return;  // already the default, so do not grow me
4463    // grow the sparse array
4464    do {
4465      add_req(empty_mem);
4466    } while (req() < need_req);
4467  }
4468  set_req( alias_idx, n );
4469}
4470
4471
4472
4473//--------------------------iteration_setup------------------------------------
4474void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4475  if (other != NULL) {
4476    grow_to_match(other);
4477    // invariant:  the finite support of mm2 is within mm->req()
4478    #ifdef ASSERT
4479    for (uint i = req(); i < other->req(); i++) {
4480      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4481    }
4482    #endif
4483  }
4484  // Replace spurious copies of base_memory by top.
4485  Node* base_mem = base_memory();
4486  if (base_mem != NULL && !base_mem->is_top()) {
4487    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4488      if (in(i) == base_mem)
4489        set_req(i, empty_memory());
4490    }
4491  }
4492}
4493
4494//---------------------------grow_to_match-------------------------------------
4495void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4496  Node* empty_mem = empty_memory();
4497  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4498  // look for the finite support of the other memory
4499  for (uint i = other->req(); --i >= req(); ) {
4500    if (other->in(i) != empty_mem) {
4501      uint new_len = i+1;
4502      while (req() < new_len)  add_req(empty_mem);
4503      break;
4504    }
4505  }
4506}
4507
4508//---------------------------verify_sparse-------------------------------------
4509#ifndef PRODUCT
4510bool MergeMemNode::verify_sparse() const {
4511  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4512  Node* base_mem = base_memory();
4513  // The following can happen in degenerate cases, since empty==top.
4514  if (is_empty_memory(base_mem))  return true;
4515  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4516    assert(in(i) != NULL, "sane slice");
4517    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4518  }
4519  return true;
4520}
4521
4522bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4523  Node* n;
4524  n = mm->in(idx);
4525  if (mem == n)  return true;  // might be empty_memory()
4526  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4527  if (mem == n)  return true;
4528  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4529    if (mem == n)  return true;
4530    if (n == NULL)  break;
4531  }
4532  return false;
4533}
4534#endif // !PRODUCT
4535