1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "compiler/compileLog.hpp"
28#include "memory/allocation.inline.hpp"
29#include "memory/resourceArea.hpp"
30#include "oops/objArrayKlass.hpp"
31#include "opto/addnode.hpp"
32#include "opto/arraycopynode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/compile.hpp"
35#include "opto/connode.hpp"
36#include "opto/convertnode.hpp"
37#include "opto/loopnode.hpp"
38#include "opto/machnode.hpp"
39#include "opto/matcher.hpp"
40#include "opto/memnode.hpp"
41#include "opto/mulnode.hpp"
42#include "opto/narrowptrnode.hpp"
43#include "opto/phaseX.hpp"
44#include "opto/regmask.hpp"
45#include "utilities/align.hpp"
46#include "utilities/copy.hpp"
47#include "utilities/vmError.hpp"
48
49// Portions of code courtesy of Clifford Click
50
51// Optimization - Graph Style
52
53static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
54
55//=============================================================================
56uint MemNode::size_of() const { return sizeof(*this); }
57
58const TypePtr *MemNode::adr_type() const {
59  Node* adr = in(Address);
60  if (adr == NULL)  return NULL; // node is dead
61  const TypePtr* cross_check = NULL;
62  DEBUG_ONLY(cross_check = _adr_type);
63  return calculate_adr_type(adr->bottom_type(), cross_check);
64}
65
66bool MemNode::check_if_adr_maybe_raw(Node* adr) {
67  if (adr != NULL) {
68    if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
69      return true;
70    }
71  }
72  return false;
73}
74
75#ifndef PRODUCT
76void MemNode::dump_spec(outputStream *st) const {
77  if (in(Address) == NULL)  return; // node is dead
78#ifndef ASSERT
79  // fake the missing field
80  const TypePtr* _adr_type = NULL;
81  if (in(Address) != NULL)
82    _adr_type = in(Address)->bottom_type()->isa_ptr();
83#endif
84  dump_adr_type(this, _adr_type, st);
85
86  Compile* C = Compile::current();
87  if (C->alias_type(_adr_type)->is_volatile()) {
88    st->print(" Volatile!");
89  }
90  if (_unaligned_access) {
91    st->print(" unaligned");
92  }
93  if (_mismatched_access) {
94    st->print(" mismatched");
95  }
96}
97
98void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
99  st->print(" @");
100  if (adr_type == NULL) {
101    st->print("NULL");
102  } else {
103    adr_type->dump_on(st);
104    Compile* C = Compile::current();
105    Compile::AliasType* atp = NULL;
106    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
107    if (atp == NULL)
108      st->print(", idx=?\?;");
109    else if (atp->index() == Compile::AliasIdxBot)
110      st->print(", idx=Bot;");
111    else if (atp->index() == Compile::AliasIdxTop)
112      st->print(", idx=Top;");
113    else if (atp->index() == Compile::AliasIdxRaw)
114      st->print(", idx=Raw;");
115    else {
116      ciField* field = atp->field();
117      if (field) {
118        st->print(", name=");
119        field->print_name_on(st);
120      }
121      st->print(", idx=%d;", atp->index());
122    }
123  }
124}
125
126extern void print_alias_types();
127
128#endif
129
130Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
131  assert((t_oop != NULL), "sanity");
132  bool is_instance = t_oop->is_known_instance_field();
133  bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
134                             (load != NULL) && load->is_Load() &&
135                             (phase->is_IterGVN() != NULL);
136  if (!(is_instance || is_boxed_value_load))
137    return mchain;  // don't try to optimize non-instance types
138  uint instance_id = t_oop->instance_id();
139  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
140  Node *prev = NULL;
141  Node *result = mchain;
142  while (prev != result) {
143    prev = result;
144    if (result == start_mem)
145      break;  // hit one of our sentinels
146    // skip over a call which does not affect this memory slice
147    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
148      Node *proj_in = result->in(0);
149      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
150        break;  // hit one of our sentinels
151      } else if (proj_in->is_Call()) {
152        // ArrayCopyNodes processed here as well
153        CallNode *call = proj_in->as_Call();
154        if (!call->may_modify(t_oop, phase)) { // returns false for instances
155          result = call->in(TypeFunc::Memory);
156        }
157      } else if (proj_in->is_Initialize()) {
158        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
159        // Stop if this is the initialization for the object instance which
160        // contains this memory slice, otherwise skip over it.
161        if ((alloc == NULL) || (alloc->_idx == instance_id)) {
162          break;
163        }
164        if (is_instance) {
165          result = proj_in->in(TypeFunc::Memory);
166        } else if (is_boxed_value_load) {
167          Node* klass = alloc->in(AllocateNode::KlassNode);
168          const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
169          if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
170            result = proj_in->in(TypeFunc::Memory); // not related allocation
171          }
172        }
173      } else if (proj_in->is_MemBar()) {
174        ArrayCopyNode* ac = NULL;
175        if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
176          break;
177        }
178        result = proj_in->in(TypeFunc::Memory);
179      } else {
180        assert(false, "unexpected projection");
181      }
182    } else if (result->is_ClearArray()) {
183      if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
184        // Can not bypass initialization of the instance
185        // we are looking for.
186        break;
187      }
188      // Otherwise skip it (the call updated 'result' value).
189    } else if (result->is_MergeMem()) {
190      result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
191    }
192  }
193  return result;
194}
195
196Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
197  const TypeOopPtr* t_oop = t_adr->isa_oopptr();
198  if (t_oop == NULL)
199    return mchain;  // don't try to optimize non-oop types
200  Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
201  bool is_instance = t_oop->is_known_instance_field();
202  PhaseIterGVN *igvn = phase->is_IterGVN();
203  if (is_instance && igvn != NULL  && result->is_Phi()) {
204    PhiNode *mphi = result->as_Phi();
205    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
206    const TypePtr *t = mphi->adr_type();
207    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
208        (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
209         t->is_oopptr()->cast_to_exactness(true)
210           ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
211            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
212      // clone the Phi with our address type
213      result = mphi->split_out_instance(t_adr, igvn);
214    } else {
215      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
216    }
217  }
218  return result;
219}
220
221static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
222  uint alias_idx = phase->C->get_alias_index(tp);
223  Node *mem = mmem;
224#ifdef ASSERT
225  {
226    // Check that current type is consistent with the alias index used during graph construction
227    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
228    bool consistent =  adr_check == NULL || adr_check->empty() ||
229                       phase->C->must_alias(adr_check, alias_idx );
230    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
231    if( !consistent && adr_check != NULL && !adr_check->empty() &&
232               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
233        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
234        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
235          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
236          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
237      // don't assert if it is dead code.
238      consistent = true;
239    }
240    if( !consistent ) {
241      st->print("alias_idx==%d, adr_check==", alias_idx);
242      if( adr_check == NULL ) {
243        st->print("NULL");
244      } else {
245        adr_check->dump();
246      }
247      st->cr();
248      print_alias_types();
249      assert(consistent, "adr_check must match alias idx");
250    }
251  }
252#endif
253  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
254  // means an array I have not precisely typed yet.  Do not do any
255  // alias stuff with it any time soon.
256  const TypeOopPtr *toop = tp->isa_oopptr();
257  if( tp->base() != Type::AnyPtr &&
258      !(toop &&
259        toop->klass() != NULL &&
260        toop->klass()->is_java_lang_Object() &&
261        toop->offset() == Type::OffsetBot) ) {
262    // compress paths and change unreachable cycles to TOP
263    // If not, we can update the input infinitely along a MergeMem cycle
264    // Equivalent code in PhiNode::Ideal
265    Node* m  = phase->transform(mmem);
266    // If transformed to a MergeMem, get the desired slice
267    // Otherwise the returned node represents memory for every slice
268    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
269    // Update input if it is progress over what we have now
270  }
271  return mem;
272}
273
274//--------------------------Ideal_common---------------------------------------
275// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
276// Unhook non-raw memories from complete (macro-expanded) initializations.
277Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
278  // If our control input is a dead region, kill all below the region
279  Node *ctl = in(MemNode::Control);
280  if (ctl && remove_dead_region(phase, can_reshape))
281    return this;
282  ctl = in(MemNode::Control);
283  // Don't bother trying to transform a dead node
284  if (ctl && ctl->is_top())  return NodeSentinel;
285
286  PhaseIterGVN *igvn = phase->is_IterGVN();
287  // Wait if control on the worklist.
288  if (ctl && can_reshape && igvn != NULL) {
289    Node* bol = NULL;
290    Node* cmp = NULL;
291    if (ctl->in(0)->is_If()) {
292      assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
293      bol = ctl->in(0)->in(1);
294      if (bol->is_Bool())
295        cmp = ctl->in(0)->in(1)->in(1);
296    }
297    if (igvn->_worklist.member(ctl) ||
298        (bol != NULL && igvn->_worklist.member(bol)) ||
299        (cmp != NULL && igvn->_worklist.member(cmp)) ) {
300      // This control path may be dead.
301      // Delay this memory node transformation until the control is processed.
302      phase->is_IterGVN()->_worklist.push(this);
303      return NodeSentinel; // caller will return NULL
304    }
305  }
306  // Ignore if memory is dead, or self-loop
307  Node *mem = in(MemNode::Memory);
308  if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
309  assert(mem != this, "dead loop in MemNode::Ideal");
310
311  if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
312    // This memory slice may be dead.
313    // Delay this mem node transformation until the memory is processed.
314    phase->is_IterGVN()->_worklist.push(this);
315    return NodeSentinel; // caller will return NULL
316  }
317
318  Node *address = in(MemNode::Address);
319  const Type *t_adr = phase->type(address);
320  if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
321
322  if (can_reshape && igvn != NULL &&
323      (igvn->_worklist.member(address) ||
324       (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
325    // The address's base and type may change when the address is processed.
326    // Delay this mem node transformation until the address is processed.
327    phase->is_IterGVN()->_worklist.push(this);
328    return NodeSentinel; // caller will return NULL
329  }
330
331  // Do NOT remove or optimize the next lines: ensure a new alias index
332  // is allocated for an oop pointer type before Escape Analysis.
333  // Note: C++ will not remove it since the call has side effect.
334  if (t_adr->isa_oopptr()) {
335    int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
336  }
337
338  Node* base = NULL;
339  if (address->is_AddP()) {
340    base = address->in(AddPNode::Base);
341  }
342  if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
343      !t_adr->isa_rawptr()) {
344    // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
345    // Skip this node optimization if its address has TOP base.
346    return NodeSentinel; // caller will return NULL
347  }
348
349  // Avoid independent memory operations
350  Node* old_mem = mem;
351
352  // The code which unhooks non-raw memories from complete (macro-expanded)
353  // initializations was removed. After macro-expansion all stores catched
354  // by Initialize node became raw stores and there is no information
355  // which memory slices they modify. So it is unsafe to move any memory
356  // operation above these stores. Also in most cases hooked non-raw memories
357  // were already unhooked by using information from detect_ptr_independence()
358  // and find_previous_store().
359
360  if (mem->is_MergeMem()) {
361    MergeMemNode* mmem = mem->as_MergeMem();
362    const TypePtr *tp = t_adr->is_ptr();
363
364    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
365  }
366
367  if (mem != old_mem) {
368    set_req(MemNode::Memory, mem);
369    if (can_reshape && old_mem->outcnt() == 0) {
370        igvn->_worklist.push(old_mem);
371    }
372    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
373    return this;
374  }
375
376  // let the subclass continue analyzing...
377  return NULL;
378}
379
380// Helper function for proving some simple control dominations.
381// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
382// Already assumes that 'dom' is available at 'sub', and that 'sub'
383// is not a constant (dominated by the method's StartNode).
384// Used by MemNode::find_previous_store to prove that the
385// control input of a memory operation predates (dominates)
386// an allocation it wants to look past.
387bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
388  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
389    return false; // Conservative answer for dead code
390
391  // Check 'dom'. Skip Proj and CatchProj nodes.
392  dom = dom->find_exact_control(dom);
393  if (dom == NULL || dom->is_top())
394    return false; // Conservative answer for dead code
395
396  if (dom == sub) {
397    // For the case when, for example, 'sub' is Initialize and the original
398    // 'dom' is Proj node of the 'sub'.
399    return false;
400  }
401
402  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
403    return true;
404
405  // 'dom' dominates 'sub' if its control edge and control edges
406  // of all its inputs dominate or equal to sub's control edge.
407
408  // Currently 'sub' is either Allocate, Initialize or Start nodes.
409  // Or Region for the check in LoadNode::Ideal();
410  // 'sub' should have sub->in(0) != NULL.
411  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
412         sub->is_Region() || sub->is_Call(), "expecting only these nodes");
413
414  // Get control edge of 'sub'.
415  Node* orig_sub = sub;
416  sub = sub->find_exact_control(sub->in(0));
417  if (sub == NULL || sub->is_top())
418    return false; // Conservative answer for dead code
419
420  assert(sub->is_CFG(), "expecting control");
421
422  if (sub == dom)
423    return true;
424
425  if (sub->is_Start() || sub->is_Root())
426    return false;
427
428  {
429    // Check all control edges of 'dom'.
430
431    ResourceMark rm;
432    Arena* arena = Thread::current()->resource_area();
433    Node_List nlist(arena);
434    Unique_Node_List dom_list(arena);
435
436    dom_list.push(dom);
437    bool only_dominating_controls = false;
438
439    for (uint next = 0; next < dom_list.size(); next++) {
440      Node* n = dom_list.at(next);
441      if (n == orig_sub)
442        return false; // One of dom's inputs dominated by sub.
443      if (!n->is_CFG() && n->pinned()) {
444        // Check only own control edge for pinned non-control nodes.
445        n = n->find_exact_control(n->in(0));
446        if (n == NULL || n->is_top())
447          return false; // Conservative answer for dead code
448        assert(n->is_CFG(), "expecting control");
449        dom_list.push(n);
450      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
451        only_dominating_controls = true;
452      } else if (n->is_CFG()) {
453        if (n->dominates(sub, nlist))
454          only_dominating_controls = true;
455        else
456          return false;
457      } else {
458        // First, own control edge.
459        Node* m = n->find_exact_control(n->in(0));
460        if (m != NULL) {
461          if (m->is_top())
462            return false; // Conservative answer for dead code
463          dom_list.push(m);
464        }
465        // Now, the rest of edges.
466        uint cnt = n->req();
467        for (uint i = 1; i < cnt; i++) {
468          m = n->find_exact_control(n->in(i));
469          if (m == NULL || m->is_top())
470            continue;
471          dom_list.push(m);
472        }
473      }
474    }
475    return only_dominating_controls;
476  }
477}
478
479//---------------------detect_ptr_independence---------------------------------
480// Used by MemNode::find_previous_store to prove that two base
481// pointers are never equal.
482// The pointers are accompanied by their associated allocations,
483// if any, which have been previously discovered by the caller.
484bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
485                                      Node* p2, AllocateNode* a2,
486                                      PhaseTransform* phase) {
487  // Attempt to prove that these two pointers cannot be aliased.
488  // They may both manifestly be allocations, and they should differ.
489  // Or, if they are not both allocations, they can be distinct constants.
490  // Otherwise, one is an allocation and the other a pre-existing value.
491  if (a1 == NULL && a2 == NULL) {           // neither an allocation
492    return (p1 != p2) && p1->is_Con() && p2->is_Con();
493  } else if (a1 != NULL && a2 != NULL) {    // both allocations
494    return (a1 != a2);
495  } else if (a1 != NULL) {                  // one allocation a1
496    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
497    return all_controls_dominate(p2, a1);
498  } else { //(a2 != NULL)                   // one allocation a2
499    return all_controls_dominate(p1, a2);
500  }
501  return false;
502}
503
504
505// Find an arraycopy that must have set (can_see_stored_value=true) or
506// could have set (can_see_stored_value=false) the value for this load
507Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
508  if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
509                                               mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
510    Node* mb = mem->in(0);
511    if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
512        mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
513      ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
514      if (ac->is_clonebasic()) {
515        intptr_t offset;
516        AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
517        assert(alloc != NULL && (!ReduceBulkZeroing || alloc->initialization()->is_complete_with_arraycopy()), "broken allocation");
518        if (alloc == ld_alloc) {
519          return ac;
520        }
521      }
522    }
523  } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
524    ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
525
526    if (ac->is_arraycopy_validated() ||
527        ac->is_copyof_validated() ||
528        ac->is_copyofrange_validated()) {
529      Node* ld_addp = in(MemNode::Address);
530      if (ld_addp->is_AddP()) {
531        Node* ld_base = ld_addp->in(AddPNode::Address);
532        Node* ld_offs = ld_addp->in(AddPNode::Offset);
533
534        Node* dest = ac->in(ArrayCopyNode::Dest);
535
536        if (dest == ld_base) {
537          const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
538          if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
539            return ac;
540          }
541          if (!can_see_stored_value) {
542            mem = ac->in(TypeFunc::Memory);
543          }
544        }
545      }
546    }
547  }
548  return NULL;
549}
550
551// The logic for reordering loads and stores uses four steps:
552// (a) Walk carefully past stores and initializations which we
553//     can prove are independent of this load.
554// (b) Observe that the next memory state makes an exact match
555//     with self (load or store), and locate the relevant store.
556// (c) Ensure that, if we were to wire self directly to the store,
557//     the optimizer would fold it up somehow.
558// (d) Do the rewiring, and return, depending on some other part of
559//     the optimizer to fold up the load.
560// This routine handles steps (a) and (b).  Steps (c) and (d) are
561// specific to loads and stores, so they are handled by the callers.
562// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
563//
564Node* MemNode::find_previous_store(PhaseTransform* phase) {
565  Node*         ctrl   = in(MemNode::Control);
566  Node*         adr    = in(MemNode::Address);
567  intptr_t      offset = 0;
568  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
569  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
570
571  if (offset == Type::OffsetBot)
572    return NULL;            // cannot unalias unless there are precise offsets
573
574  const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
575  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
576
577  intptr_t size_in_bytes = memory_size();
578
579  Node* mem = in(MemNode::Memory);   // start searching here...
580
581  int cnt = 50;             // Cycle limiter
582  for (;;) {                // While we can dance past unrelated stores...
583    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
584
585    Node* prev = mem;
586    if (mem->is_Store()) {
587      Node* st_adr = mem->in(MemNode::Address);
588      intptr_t st_offset = 0;
589      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
590      if (st_base == NULL)
591        break;              // inscrutable pointer
592
593      // For raw accesses it's not enough to prove that constant offsets don't intersect.
594      // We need the bases to be the equal in order for the offset check to make sense.
595      if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
596        break;
597      }
598
599      if (st_offset != offset && st_offset != Type::OffsetBot) {
600        const int MAX_STORE = BytesPerLong;
601        if (st_offset >= offset + size_in_bytes ||
602            st_offset <= offset - MAX_STORE ||
603            st_offset <= offset - mem->as_Store()->memory_size()) {
604          // Success:  The offsets are provably independent.
605          // (You may ask, why not just test st_offset != offset and be done?
606          // The answer is that stores of different sizes can co-exist
607          // in the same sequence of RawMem effects.  We sometimes initialize
608          // a whole 'tile' of array elements with a single jint or jlong.)
609          mem = mem->in(MemNode::Memory);
610          continue;           // (a) advance through independent store memory
611        }
612      }
613      if (st_base != base &&
614          detect_ptr_independence(base, alloc,
615                                  st_base,
616                                  AllocateNode::Ideal_allocation(st_base, phase),
617                                  phase)) {
618        // Success:  The bases are provably independent.
619        mem = mem->in(MemNode::Memory);
620        continue;           // (a) advance through independent store memory
621      }
622
623      // (b) At this point, if the bases or offsets do not agree, we lose,
624      // since we have not managed to prove 'this' and 'mem' independent.
625      if (st_base == base && st_offset == offset) {
626        return mem;         // let caller handle steps (c), (d)
627      }
628
629    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
630      InitializeNode* st_init = mem->in(0)->as_Initialize();
631      AllocateNode*  st_alloc = st_init->allocation();
632      if (st_alloc == NULL)
633        break;              // something degenerated
634      bool known_identical = false;
635      bool known_independent = false;
636      if (alloc == st_alloc)
637        known_identical = true;
638      else if (alloc != NULL)
639        known_independent = true;
640      else if (all_controls_dominate(this, st_alloc))
641        known_independent = true;
642
643      if (known_independent) {
644        // The bases are provably independent: Either they are
645        // manifestly distinct allocations, or else the control
646        // of this load dominates the store's allocation.
647        int alias_idx = phase->C->get_alias_index(adr_type());
648        if (alias_idx == Compile::AliasIdxRaw) {
649          mem = st_alloc->in(TypeFunc::Memory);
650        } else {
651          mem = st_init->memory(alias_idx);
652        }
653        continue;           // (a) advance through independent store memory
654      }
655
656      // (b) at this point, if we are not looking at a store initializing
657      // the same allocation we are loading from, we lose.
658      if (known_identical) {
659        // From caller, can_see_stored_value will consult find_captured_store.
660        return mem;         // let caller handle steps (c), (d)
661      }
662
663    } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
664      if (prev != mem) {
665        // Found an arraycopy but it doesn't affect that load
666        continue;
667      }
668      // Found an arraycopy that may affect that load
669      return mem;
670    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
671      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
672      if (mem->is_Proj() && mem->in(0)->is_Call()) {
673        // ArrayCopyNodes processed here as well.
674        CallNode *call = mem->in(0)->as_Call();
675        if (!call->may_modify(addr_t, phase)) {
676          mem = call->in(TypeFunc::Memory);
677          continue;         // (a) advance through independent call memory
678        }
679      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
680        ArrayCopyNode* ac = NULL;
681        if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
682          break;
683        }
684        mem = mem->in(0)->in(TypeFunc::Memory);
685        continue;           // (a) advance through independent MemBar memory
686      } else if (mem->is_ClearArray()) {
687        if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
688          // (the call updated 'mem' value)
689          continue;         // (a) advance through independent allocation memory
690        } else {
691          // Can not bypass initialization of the instance
692          // we are looking for.
693          return mem;
694        }
695      } else if (mem->is_MergeMem()) {
696        int alias_idx = phase->C->get_alias_index(adr_type());
697        mem = mem->as_MergeMem()->memory_at(alias_idx);
698        continue;           // (a) advance through independent MergeMem memory
699      }
700    }
701
702    // Unless there is an explicit 'continue', we must bail out here,
703    // because 'mem' is an inscrutable memory state (e.g., a call).
704    break;
705  }
706
707  return NULL;              // bail out
708}
709
710//----------------------calculate_adr_type-------------------------------------
711// Helper function.  Notices when the given type of address hits top or bottom.
712// Also, asserts a cross-check of the type against the expected address type.
713const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
714  if (t == Type::TOP)  return NULL; // does not touch memory any more?
715  #ifdef PRODUCT
716  cross_check = NULL;
717  #else
718  if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
719  #endif
720  const TypePtr* tp = t->isa_ptr();
721  if (tp == NULL) {
722    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
723    return TypePtr::BOTTOM;           // touches lots of memory
724  } else {
725    #ifdef ASSERT
726    // %%%% [phh] We don't check the alias index if cross_check is
727    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
728    if (cross_check != NULL &&
729        cross_check != TypePtr::BOTTOM &&
730        cross_check != TypeRawPtr::BOTTOM) {
731      // Recheck the alias index, to see if it has changed (due to a bug).
732      Compile* C = Compile::current();
733      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
734             "must stay in the original alias category");
735      // The type of the address must be contained in the adr_type,
736      // disregarding "null"-ness.
737      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
738      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
739      assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
740             "real address must not escape from expected memory type");
741    }
742    #endif
743    return tp;
744  }
745}
746
747//=============================================================================
748// Should LoadNode::Ideal() attempt to remove control edges?
749bool LoadNode::can_remove_control() const {
750  return true;
751}
752uint LoadNode::size_of() const { return sizeof(*this); }
753uint LoadNode::cmp( const Node &n ) const
754{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
755const Type *LoadNode::bottom_type() const { return _type; }
756uint LoadNode::ideal_reg() const {
757  return _type->ideal_reg();
758}
759
760#ifndef PRODUCT
761void LoadNode::dump_spec(outputStream *st) const {
762  MemNode::dump_spec(st);
763  if( !Verbose && !WizardMode ) {
764    // standard dump does this in Verbose and WizardMode
765    st->print(" #"); _type->dump_on(st);
766  }
767  if (!depends_only_on_test()) {
768    st->print(" (does not depend only on test)");
769  }
770}
771#endif
772
773#ifdef ASSERT
774//----------------------------is_immutable_value-------------------------------
775// Helper function to allow a raw load without control edge for some cases
776bool LoadNode::is_immutable_value(Node* adr) {
777  return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
778          adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
779          (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
780           in_bytes(JavaThread::osthread_offset())));
781}
782#endif
783
784//----------------------------LoadNode::make-----------------------------------
785// Polymorphic factory method:
786Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
787                     ControlDependency control_dependency, bool unaligned, bool mismatched) {
788  Compile* C = gvn.C;
789
790  // sanity check the alias category against the created node type
791  assert(!(adr_type->isa_oopptr() &&
792           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
793         "use LoadKlassNode instead");
794  assert(!(adr_type->isa_aryptr() &&
795           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
796         "use LoadRangeNode instead");
797  // Check control edge of raw loads
798  assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
799          // oop will be recorded in oop map if load crosses safepoint
800          rt->isa_oopptr() || is_immutable_value(adr),
801          "raw memory operations should have control edge");
802  LoadNode* load = NULL;
803  switch (bt) {
804  case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
805  case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
806  case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
807  case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
808  case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
809  case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
810  case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
811  case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
812  case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
813  case T_OBJECT:
814#ifdef _LP64
815    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
816      load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
817    } else
818#endif
819    {
820      assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
821      load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
822    }
823    break;
824  default:
825    // ShouldNotReachHere(); ???
826    break;
827  }
828  assert(load != NULL, "LoadNode should have been created");
829  if (unaligned) {
830    load->set_unaligned_access();
831  }
832  if (mismatched) {
833    load->set_mismatched_access();
834  }
835  if (load->Opcode() == Op_LoadN) {
836    Node* ld = gvn.transform(load);
837    return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
838  }
839
840  return load;
841}
842
843LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
844                                  ControlDependency control_dependency, bool unaligned, bool mismatched) {
845  bool require_atomic = true;
846  LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
847  if (unaligned) {
848    load->set_unaligned_access();
849  }
850  if (mismatched) {
851    load->set_mismatched_access();
852  }
853  return load;
854}
855
856LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
857                                  ControlDependency control_dependency, bool unaligned, bool mismatched) {
858  bool require_atomic = true;
859  LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
860  if (unaligned) {
861    load->set_unaligned_access();
862  }
863  if (mismatched) {
864    load->set_mismatched_access();
865  }
866  return load;
867}
868
869
870
871//------------------------------hash-------------------------------------------
872uint LoadNode::hash() const {
873  // unroll addition of interesting fields
874  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
875}
876
877static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
878  if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
879    bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
880    bool is_stable_ary = FoldStableValues &&
881                         (tp != NULL) && (tp->isa_aryptr() != NULL) &&
882                         tp->isa_aryptr()->is_stable();
883
884    return (eliminate_boxing && non_volatile) || is_stable_ary;
885  }
886
887  return false;
888}
889
890// Is the value loaded previously stored by an arraycopy? If so return
891// a load node that reads from the source array so we may be able to
892// optimize out the ArrayCopy node later.
893Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
894  Node* ld_adr = in(MemNode::Address);
895  intptr_t ld_off = 0;
896  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
897  Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
898  if (ac != NULL) {
899    assert(ac->is_ArrayCopy(), "what kind of node can this be?");
900
901    Node* mem = ac->in(TypeFunc::Memory);
902    Node* ctl = ac->in(0);
903    Node* src = ac->in(ArrayCopyNode::Src);
904
905    if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
906      return NULL;
907    }
908
909    LoadNode* ld = clone()->as_Load();
910    Node* addp = in(MemNode::Address)->clone();
911    if (ac->as_ArrayCopy()->is_clonebasic()) {
912      assert(ld_alloc != NULL, "need an alloc");
913      assert(addp->is_AddP(), "address must be addp");
914      assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
915      assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
916      addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
917      addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
918    } else {
919      assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
920             ac->as_ArrayCopy()->is_copyof_validated() ||
921             ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
922      assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
923      addp->set_req(AddPNode::Base, src);
924      addp->set_req(AddPNode::Address, src);
925
926      const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
927      BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
928      uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
929      uint shift  = exact_log2(type2aelembytes(ary_elem));
930
931      Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
932#ifdef _LP64
933      diff = phase->transform(new ConvI2LNode(diff));
934#endif
935      diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
936
937      Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
938      addp->set_req(AddPNode::Offset, offset);
939    }
940    addp = phase->transform(addp);
941#ifdef ASSERT
942    const TypePtr* adr_type = phase->type(addp)->is_ptr();
943    ld->_adr_type = adr_type;
944#endif
945    ld->set_req(MemNode::Address, addp);
946    ld->set_req(0, ctl);
947    ld->set_req(MemNode::Memory, mem);
948    // load depends on the tests that validate the arraycopy
949    ld->_control_dependency = Pinned;
950    return ld;
951  }
952  return NULL;
953}
954
955
956//---------------------------can_see_stored_value------------------------------
957// This routine exists to make sure this set of tests is done the same
958// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
959// will change the graph shape in a way which makes memory alive twice at the
960// same time (uses the Oracle model of aliasing), then some
961// LoadXNode::Identity will fold things back to the equivalence-class model
962// of aliasing.
963Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
964  Node* ld_adr = in(MemNode::Address);
965  intptr_t ld_off = 0;
966  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
967  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
968  Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
969  // This is more general than load from boxing objects.
970  if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
971    uint alias_idx = atp->index();
972    bool final = !atp->is_rewritable();
973    Node* result = NULL;
974    Node* current = st;
975    // Skip through chains of MemBarNodes checking the MergeMems for
976    // new states for the slice of this load.  Stop once any other
977    // kind of node is encountered.  Loads from final memory can skip
978    // through any kind of MemBar but normal loads shouldn't skip
979    // through MemBarAcquire since the could allow them to move out of
980    // a synchronized region.
981    while (current->is_Proj()) {
982      int opc = current->in(0)->Opcode();
983      if ((final && (opc == Op_MemBarAcquire ||
984                     opc == Op_MemBarAcquireLock ||
985                     opc == Op_LoadFence)) ||
986          opc == Op_MemBarRelease ||
987          opc == Op_StoreFence ||
988          opc == Op_MemBarReleaseLock ||
989          opc == Op_MemBarStoreStore ||
990          opc == Op_MemBarCPUOrder) {
991        Node* mem = current->in(0)->in(TypeFunc::Memory);
992        if (mem->is_MergeMem()) {
993          MergeMemNode* merge = mem->as_MergeMem();
994          Node* new_st = merge->memory_at(alias_idx);
995          if (new_st == merge->base_memory()) {
996            // Keep searching
997            current = new_st;
998            continue;
999          }
1000          // Save the new memory state for the slice and fall through
1001          // to exit.
1002          result = new_st;
1003        }
1004      }
1005      break;
1006    }
1007    if (result != NULL) {
1008      st = result;
1009    }
1010  }
1011
1012  // Loop around twice in the case Load -> Initialize -> Store.
1013  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1014  for (int trip = 0; trip <= 1; trip++) {
1015
1016    if (st->is_Store()) {
1017      Node* st_adr = st->in(MemNode::Address);
1018      if (!phase->eqv(st_adr, ld_adr)) {
1019        // Try harder before giving up...  Match raw and non-raw pointers.
1020        intptr_t st_off = 0;
1021        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1022        if (alloc == NULL)       return NULL;
1023        if (alloc != ld_alloc)   return NULL;
1024        if (ld_off != st_off)    return NULL;
1025        // At this point we have proven something like this setup:
1026        //  A = Allocate(...)
1027        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1028        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1029        // (Actually, we haven't yet proven the Q's are the same.)
1030        // In other words, we are loading from a casted version of
1031        // the same pointer-and-offset that we stored to.
1032        // Thus, we are able to replace L by V.
1033      }
1034      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1035      if (store_Opcode() != st->Opcode())
1036        return NULL;
1037      return st->in(MemNode::ValueIn);
1038    }
1039
1040    // A load from a freshly-created object always returns zero.
1041    // (This can happen after LoadNode::Ideal resets the load's memory input
1042    // to find_captured_store, which returned InitializeNode::zero_memory.)
1043    if (st->is_Proj() && st->in(0)->is_Allocate() &&
1044        (st->in(0) == ld_alloc) &&
1045        (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1046      // return a zero value for the load's basic type
1047      // (This is one of the few places where a generic PhaseTransform
1048      // can create new nodes.  Think of it as lazily manifesting
1049      // virtually pre-existing constants.)
1050      return phase->zerocon(memory_type());
1051    }
1052
1053    // A load from an initialization barrier can match a captured store.
1054    if (st->is_Proj() && st->in(0)->is_Initialize()) {
1055      InitializeNode* init = st->in(0)->as_Initialize();
1056      AllocateNode* alloc = init->allocation();
1057      if ((alloc != NULL) && (alloc == ld_alloc)) {
1058        // examine a captured store value
1059        st = init->find_captured_store(ld_off, memory_size(), phase);
1060        if (st != NULL) {
1061          continue;             // take one more trip around
1062        }
1063      }
1064    }
1065
1066    // Load boxed value from result of valueOf() call is input parameter.
1067    if (this->is_Load() && ld_adr->is_AddP() &&
1068        (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1069      intptr_t ignore = 0;
1070      Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1071      if (base != NULL && base->is_Proj() &&
1072          base->as_Proj()->_con == TypeFunc::Parms &&
1073          base->in(0)->is_CallStaticJava() &&
1074          base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1075        return base->in(0)->in(TypeFunc::Parms);
1076      }
1077    }
1078
1079    break;
1080  }
1081
1082  return NULL;
1083}
1084
1085//----------------------is_instance_field_load_with_local_phi------------------
1086bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1087  if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1088      in(Address)->is_AddP() ) {
1089    const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1090    // Only instances and boxed values.
1091    if( t_oop != NULL &&
1092        (t_oop->is_ptr_to_boxed_value() ||
1093         t_oop->is_known_instance_field()) &&
1094        t_oop->offset() != Type::OffsetBot &&
1095        t_oop->offset() != Type::OffsetTop) {
1096      return true;
1097    }
1098  }
1099  return false;
1100}
1101
1102//------------------------------Identity---------------------------------------
1103// Loads are identity if previous store is to same address
1104Node* LoadNode::Identity(PhaseGVN* phase) {
1105  // If the previous store-maker is the right kind of Store, and the store is
1106  // to the same address, then we are equal to the value stored.
1107  Node* mem = in(Memory);
1108  Node* value = can_see_stored_value(mem, phase);
1109  if( value ) {
1110    // byte, short & char stores truncate naturally.
1111    // A load has to load the truncated value which requires
1112    // some sort of masking operation and that requires an
1113    // Ideal call instead of an Identity call.
1114    if (memory_size() < BytesPerInt) {
1115      // If the input to the store does not fit with the load's result type,
1116      // it must be truncated via an Ideal call.
1117      if (!phase->type(value)->higher_equal(phase->type(this)))
1118        return this;
1119    }
1120    // (This works even when value is a Con, but LoadNode::Value
1121    // usually runs first, producing the singleton type of the Con.)
1122    return value;
1123  }
1124
1125  // Search for an existing data phi which was generated before for the same
1126  // instance's field to avoid infinite generation of phis in a loop.
1127  Node *region = mem->in(0);
1128  if (is_instance_field_load_with_local_phi(region)) {
1129    const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1130    int this_index  = phase->C->get_alias_index(addr_t);
1131    int this_offset = addr_t->offset();
1132    int this_iid    = addr_t->instance_id();
1133    if (!addr_t->is_known_instance() &&
1134         addr_t->is_ptr_to_boxed_value()) {
1135      // Use _idx of address base (could be Phi node) for boxed values.
1136      intptr_t   ignore = 0;
1137      Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1138      if (base == NULL) {
1139        return this;
1140      }
1141      this_iid = base->_idx;
1142    }
1143    const Type* this_type = bottom_type();
1144    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1145      Node* phi = region->fast_out(i);
1146      if (phi->is_Phi() && phi != mem &&
1147          phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1148        return phi;
1149      }
1150    }
1151  }
1152
1153  return this;
1154}
1155
1156// Construct an equivalent unsigned load.
1157Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1158  BasicType bt = T_ILLEGAL;
1159  const Type* rt = NULL;
1160  switch (Opcode()) {
1161    case Op_LoadUB: return this;
1162    case Op_LoadUS: return this;
1163    case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1164    case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1165    default:
1166      assert(false, "no unsigned variant: %s", Name());
1167      return NULL;
1168  }
1169  return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1170                        raw_adr_type(), rt, bt, _mo, _control_dependency,
1171                        is_unaligned_access(), is_mismatched_access());
1172}
1173
1174// Construct an equivalent signed load.
1175Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1176  BasicType bt = T_ILLEGAL;
1177  const Type* rt = NULL;
1178  switch (Opcode()) {
1179    case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1180    case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1181    case Op_LoadB: // fall through
1182    case Op_LoadS: // fall through
1183    case Op_LoadI: // fall through
1184    case Op_LoadL: return this;
1185    default:
1186      assert(false, "no signed variant: %s", Name());
1187      return NULL;
1188  }
1189  return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1190                        raw_adr_type(), rt, bt, _mo, _control_dependency,
1191                        is_unaligned_access(), is_mismatched_access());
1192}
1193
1194// We're loading from an object which has autobox behaviour.
1195// If this object is result of a valueOf call we'll have a phi
1196// merging a newly allocated object and a load from the cache.
1197// We want to replace this load with the original incoming
1198// argument to the valueOf call.
1199Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1200  assert(phase->C->eliminate_boxing(), "sanity");
1201  intptr_t ignore = 0;
1202  Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1203  if ((base == NULL) || base->is_Phi()) {
1204    // Push the loads from the phi that comes from valueOf up
1205    // through it to allow elimination of the loads and the recovery
1206    // of the original value. It is done in split_through_phi().
1207    return NULL;
1208  } else if (base->is_Load() ||
1209             (base->is_DecodeN() && base->in(1)->is_Load())) {
1210    // Eliminate the load of boxed value for integer types from the cache
1211    // array by deriving the value from the index into the array.
1212    // Capture the offset of the load and then reverse the computation.
1213
1214    // Get LoadN node which loads a boxing object from 'cache' array.
1215    if (base->is_DecodeN()) {
1216      base = base->in(1);
1217    }
1218    if (!base->in(Address)->is_AddP()) {
1219      return NULL; // Complex address
1220    }
1221    AddPNode* address = base->in(Address)->as_AddP();
1222    Node* cache_base = address->in(AddPNode::Base);
1223    if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1224      // Get ConP node which is static 'cache' field.
1225      cache_base = cache_base->in(1);
1226    }
1227    if ((cache_base != NULL) && cache_base->is_Con()) {
1228      const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1229      if ((base_type != NULL) && base_type->is_autobox_cache()) {
1230        Node* elements[4];
1231        int shift = exact_log2(type2aelembytes(T_OBJECT));
1232        int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1233        if (count > 0 && elements[0]->is_Con() &&
1234            (count == 1 ||
1235             (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1236                            elements[1]->in(2) == phase->intcon(shift)))) {
1237          ciObjArray* array = base_type->const_oop()->as_obj_array();
1238          // Fetch the box object cache[0] at the base of the array and get its value
1239          ciInstance* box = array->obj_at(0)->as_instance();
1240          ciInstanceKlass* ik = box->klass()->as_instance_klass();
1241          assert(ik->is_box_klass(), "sanity");
1242          assert(ik->nof_nonstatic_fields() == 1, "change following code");
1243          if (ik->nof_nonstatic_fields() == 1) {
1244            // This should be true nonstatic_field_at requires calling
1245            // nof_nonstatic_fields so check it anyway
1246            ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1247            BasicType bt = c.basic_type();
1248            // Only integer types have boxing cache.
1249            assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1250                   bt == T_BYTE    || bt == T_SHORT ||
1251                   bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1252            jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1253            if (cache_low != (int)cache_low) {
1254              return NULL; // should not happen since cache is array indexed by value
1255            }
1256            jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1257            if (offset != (int)offset) {
1258              return NULL; // should not happen since cache is array indexed by value
1259            }
1260           // Add up all the offsets making of the address of the load
1261            Node* result = elements[0];
1262            for (int i = 1; i < count; i++) {
1263              result = phase->transform(new AddXNode(result, elements[i]));
1264            }
1265            // Remove the constant offset from the address and then
1266            result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1267            // remove the scaling of the offset to recover the original index.
1268            if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1269              // Peel the shift off directly but wrap it in a dummy node
1270              // since Ideal can't return existing nodes
1271              result = new RShiftXNode(result->in(1), phase->intcon(0));
1272            } else if (result->is_Add() && result->in(2)->is_Con() &&
1273                       result->in(1)->Opcode() == Op_LShiftX &&
1274                       result->in(1)->in(2) == phase->intcon(shift)) {
1275              // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1276              // but for boxing cache access we know that X<<Z will not overflow
1277              // (there is range check) so we do this optimizatrion by hand here.
1278              Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1279              result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1280            } else {
1281              result = new RShiftXNode(result, phase->intcon(shift));
1282            }
1283#ifdef _LP64
1284            if (bt != T_LONG) {
1285              result = new ConvL2INode(phase->transform(result));
1286            }
1287#else
1288            if (bt == T_LONG) {
1289              result = new ConvI2LNode(phase->transform(result));
1290            }
1291#endif
1292            // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1293            // Need to preserve unboxing load type if it is unsigned.
1294            switch(this->Opcode()) {
1295              case Op_LoadUB:
1296                result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1297                break;
1298              case Op_LoadUS:
1299                result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1300                break;
1301            }
1302            return result;
1303          }
1304        }
1305      }
1306    }
1307  }
1308  return NULL;
1309}
1310
1311static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1312  Node* region = phi->in(0);
1313  if (region == NULL) {
1314    return false; // Wait stable graph
1315  }
1316  uint cnt = phi->req();
1317  for (uint i = 1; i < cnt; i++) {
1318    Node* rc = region->in(i);
1319    if (rc == NULL || phase->type(rc) == Type::TOP)
1320      return false; // Wait stable graph
1321    Node* in = phi->in(i);
1322    if (in == NULL || phase->type(in) == Type::TOP)
1323      return false; // Wait stable graph
1324  }
1325  return true;
1326}
1327//------------------------------split_through_phi------------------------------
1328// Split instance or boxed field load through Phi.
1329Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1330  Node* mem     = in(Memory);
1331  Node* address = in(Address);
1332  const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1333
1334  assert((t_oop != NULL) &&
1335         (t_oop->is_known_instance_field() ||
1336          t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1337
1338  Compile* C = phase->C;
1339  intptr_t ignore = 0;
1340  Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1341  bool base_is_phi = (base != NULL) && base->is_Phi();
1342  bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1343                           (base != NULL) && (base == address->in(AddPNode::Base)) &&
1344                           phase->type(base)->higher_equal(TypePtr::NOTNULL);
1345
1346  if (!((mem->is_Phi() || base_is_phi) &&
1347        (load_boxed_values || t_oop->is_known_instance_field()))) {
1348    return NULL; // memory is not Phi
1349  }
1350
1351  if (mem->is_Phi()) {
1352    if (!stable_phi(mem->as_Phi(), phase)) {
1353      return NULL; // Wait stable graph
1354    }
1355    uint cnt = mem->req();
1356    // Check for loop invariant memory.
1357    if (cnt == 3) {
1358      for (uint i = 1; i < cnt; i++) {
1359        Node* in = mem->in(i);
1360        Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1361        if (m == mem) {
1362          set_req(Memory, mem->in(cnt - i));
1363          return this; // made change
1364        }
1365      }
1366    }
1367  }
1368  if (base_is_phi) {
1369    if (!stable_phi(base->as_Phi(), phase)) {
1370      return NULL; // Wait stable graph
1371    }
1372    uint cnt = base->req();
1373    // Check for loop invariant memory.
1374    if (cnt == 3) {
1375      for (uint i = 1; i < cnt; i++) {
1376        if (base->in(i) == base) {
1377          return NULL; // Wait stable graph
1378        }
1379      }
1380    }
1381  }
1382
1383  bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1384
1385  // Split through Phi (see original code in loopopts.cpp).
1386  assert(C->have_alias_type(t_oop), "instance should have alias type");
1387
1388  // Do nothing here if Identity will find a value
1389  // (to avoid infinite chain of value phis generation).
1390  if (!phase->eqv(this, this->Identity(phase)))
1391    return NULL;
1392
1393  // Select Region to split through.
1394  Node* region;
1395  if (!base_is_phi) {
1396    assert(mem->is_Phi(), "sanity");
1397    region = mem->in(0);
1398    // Skip if the region dominates some control edge of the address.
1399    if (!MemNode::all_controls_dominate(address, region))
1400      return NULL;
1401  } else if (!mem->is_Phi()) {
1402    assert(base_is_phi, "sanity");
1403    region = base->in(0);
1404    // Skip if the region dominates some control edge of the memory.
1405    if (!MemNode::all_controls_dominate(mem, region))
1406      return NULL;
1407  } else if (base->in(0) != mem->in(0)) {
1408    assert(base_is_phi && mem->is_Phi(), "sanity");
1409    if (MemNode::all_controls_dominate(mem, base->in(0))) {
1410      region = base->in(0);
1411    } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1412      region = mem->in(0);
1413    } else {
1414      return NULL; // complex graph
1415    }
1416  } else {
1417    assert(base->in(0) == mem->in(0), "sanity");
1418    region = mem->in(0);
1419  }
1420
1421  const Type* this_type = this->bottom_type();
1422  int this_index  = C->get_alias_index(t_oop);
1423  int this_offset = t_oop->offset();
1424  int this_iid    = t_oop->instance_id();
1425  if (!t_oop->is_known_instance() && load_boxed_values) {
1426    // Use _idx of address base for boxed values.
1427    this_iid = base->_idx;
1428  }
1429  PhaseIterGVN* igvn = phase->is_IterGVN();
1430  Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1431  for (uint i = 1; i < region->req(); i++) {
1432    Node* x;
1433    Node* the_clone = NULL;
1434    if (region->in(i) == C->top()) {
1435      x = C->top();      // Dead path?  Use a dead data op
1436    } else {
1437      x = this->clone();        // Else clone up the data op
1438      the_clone = x;            // Remember for possible deletion.
1439      // Alter data node to use pre-phi inputs
1440      if (this->in(0) == region) {
1441        x->set_req(0, region->in(i));
1442      } else {
1443        x->set_req(0, NULL);
1444      }
1445      if (mem->is_Phi() && (mem->in(0) == region)) {
1446        x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1447      }
1448      if (address->is_Phi() && address->in(0) == region) {
1449        x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1450      }
1451      if (base_is_phi && (base->in(0) == region)) {
1452        Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1453        Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1454        x->set_req(Address, adr_x);
1455      }
1456    }
1457    // Check for a 'win' on some paths
1458    const Type *t = x->Value(igvn);
1459
1460    bool singleton = t->singleton();
1461
1462    // See comments in PhaseIdealLoop::split_thru_phi().
1463    if (singleton && t == Type::TOP) {
1464      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1465    }
1466
1467    if (singleton) {
1468      x = igvn->makecon(t);
1469    } else {
1470      // We now call Identity to try to simplify the cloned node.
1471      // Note that some Identity methods call phase->type(this).
1472      // Make sure that the type array is big enough for
1473      // our new node, even though we may throw the node away.
1474      // (This tweaking with igvn only works because x is a new node.)
1475      igvn->set_type(x, t);
1476      // If x is a TypeNode, capture any more-precise type permanently into Node
1477      // otherwise it will be not updated during igvn->transform since
1478      // igvn->type(x) is set to x->Value() already.
1479      x->raise_bottom_type(t);
1480      Node *y = x->Identity(igvn);
1481      if (y != x) {
1482        x = y;
1483      } else {
1484        y = igvn->hash_find_insert(x);
1485        if (y) {
1486          x = y;
1487        } else {
1488          // Else x is a new node we are keeping
1489          // We do not need register_new_node_with_optimizer
1490          // because set_type has already been called.
1491          igvn->_worklist.push(x);
1492        }
1493      }
1494    }
1495    if (x != the_clone && the_clone != NULL) {
1496      igvn->remove_dead_node(the_clone);
1497    }
1498    phi->set_req(i, x);
1499  }
1500  // Record Phi
1501  igvn->register_new_node_with_optimizer(phi);
1502  return phi;
1503}
1504
1505//------------------------------Ideal------------------------------------------
1506// If the load is from Field memory and the pointer is non-null, it might be possible to
1507// zero out the control input.
1508// If the offset is constant and the base is an object allocation,
1509// try to hook me up to the exact initializing store.
1510Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1511  Node* p = MemNode::Ideal_common(phase, can_reshape);
1512  if (p)  return (p == NodeSentinel) ? NULL : p;
1513
1514  Node* ctrl    = in(MemNode::Control);
1515  Node* address = in(MemNode::Address);
1516  bool progress = false;
1517
1518  // Skip up past a SafePoint control.  Cannot do this for Stores because
1519  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1520  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1521      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1522    ctrl = ctrl->in(0);
1523    set_req(MemNode::Control,ctrl);
1524    progress = true;
1525  }
1526
1527  intptr_t ignore = 0;
1528  Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1529  if (base != NULL
1530      && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1531    // Check for useless control edge in some common special cases
1532    if (in(MemNode::Control) != NULL
1533        && can_remove_control()
1534        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1535        && all_controls_dominate(base, phase->C->start())) {
1536      // A method-invariant, non-null address (constant or 'this' argument).
1537      set_req(MemNode::Control, NULL);
1538      progress = true;
1539    }
1540  }
1541
1542  Node* mem = in(MemNode::Memory);
1543  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1544
1545  if (can_reshape && (addr_t != NULL)) {
1546    // try to optimize our memory input
1547    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1548    if (opt_mem != mem) {
1549      set_req(MemNode::Memory, opt_mem);
1550      if (phase->type( opt_mem ) == Type::TOP) return NULL;
1551      return this;
1552    }
1553    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1554    if ((t_oop != NULL) &&
1555        (t_oop->is_known_instance_field() ||
1556         t_oop->is_ptr_to_boxed_value())) {
1557      PhaseIterGVN *igvn = phase->is_IterGVN();
1558      if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1559        // Delay this transformation until memory Phi is processed.
1560        phase->is_IterGVN()->_worklist.push(this);
1561        return NULL;
1562      }
1563      // Split instance field load through Phi.
1564      Node* result = split_through_phi(phase);
1565      if (result != NULL) return result;
1566
1567      if (t_oop->is_ptr_to_boxed_value()) {
1568        Node* result = eliminate_autobox(phase);
1569        if (result != NULL) return result;
1570      }
1571    }
1572  }
1573
1574  // Is there a dominating load that loads the same value?  Leave
1575  // anything that is not a load of a field/array element (like
1576  // barriers etc.) alone
1577  if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) {
1578    for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1579      Node *use = mem->fast_out(i);
1580      if (use != this &&
1581          use->Opcode() == Opcode() &&
1582          use->in(0) != NULL &&
1583          use->in(0) != in(0) &&
1584          use->in(Address) == in(Address)) {
1585        Node* ctl = in(0);
1586        for (int i = 0; i < 10 && ctl != NULL; i++) {
1587          ctl = IfNode::up_one_dom(ctl);
1588          if (ctl == use->in(0)) {
1589            set_req(0, use->in(0));
1590            return this;
1591          }
1592        }
1593      }
1594    }
1595  }
1596
1597  // Check for prior store with a different base or offset; make Load
1598  // independent.  Skip through any number of them.  Bail out if the stores
1599  // are in an endless dead cycle and report no progress.  This is a key
1600  // transform for Reflection.  However, if after skipping through the Stores
1601  // we can't then fold up against a prior store do NOT do the transform as
1602  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1603  // array memory alive twice: once for the hoisted Load and again after the
1604  // bypassed Store.  This situation only works if EVERYBODY who does
1605  // anti-dependence work knows how to bypass.  I.e. we need all
1606  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1607  // the alias index stuff.  So instead, peek through Stores and IFF we can
1608  // fold up, do so.
1609  Node* prev_mem = find_previous_store(phase);
1610  if (prev_mem != NULL) {
1611    Node* value = can_see_arraycopy_value(prev_mem, phase);
1612    if (value != NULL) {
1613      return value;
1614    }
1615  }
1616  // Steps (a), (b):  Walk past independent stores to find an exact match.
1617  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1618    // (c) See if we can fold up on the spot, but don't fold up here.
1619    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1620    // just return a prior value, which is done by Identity calls.
1621    if (can_see_stored_value(prev_mem, phase)) {
1622      // Make ready for step (d):
1623      set_req(MemNode::Memory, prev_mem);
1624      return this;
1625    }
1626  }
1627
1628  return progress ? this : NULL;
1629}
1630
1631// Helper to recognize certain Klass fields which are invariant across
1632// some group of array types (e.g., int[] or all T[] where T < Object).
1633const Type*
1634LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1635                                 ciKlass* klass) const {
1636  if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1637    // The field is Klass::_modifier_flags.  Return its (constant) value.
1638    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1639    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1640    return TypeInt::make(klass->modifier_flags());
1641  }
1642  if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1643    // The field is Klass::_access_flags.  Return its (constant) value.
1644    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1645    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1646    return TypeInt::make(klass->access_flags());
1647  }
1648  if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1649    // The field is Klass::_layout_helper.  Return its constant value if known.
1650    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1651    return TypeInt::make(klass->layout_helper());
1652  }
1653
1654  // No match.
1655  return NULL;
1656}
1657
1658//------------------------------Value-----------------------------------------
1659const Type* LoadNode::Value(PhaseGVN* phase) const {
1660  // Either input is TOP ==> the result is TOP
1661  Node* mem = in(MemNode::Memory);
1662  const Type *t1 = phase->type(mem);
1663  if (t1 == Type::TOP)  return Type::TOP;
1664  Node* adr = in(MemNode::Address);
1665  const TypePtr* tp = phase->type(adr)->isa_ptr();
1666  if (tp == NULL || tp->empty())  return Type::TOP;
1667  int off = tp->offset();
1668  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1669  Compile* C = phase->C;
1670
1671  // Try to guess loaded type from pointer type
1672  if (tp->isa_aryptr()) {
1673    const TypeAryPtr* ary = tp->is_aryptr();
1674    const Type* t = ary->elem();
1675
1676    // Determine whether the reference is beyond the header or not, by comparing
1677    // the offset against the offset of the start of the array's data.
1678    // Different array types begin at slightly different offsets (12 vs. 16).
1679    // We choose T_BYTE as an example base type that is least restrictive
1680    // as to alignment, which will therefore produce the smallest
1681    // possible base offset.
1682    const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1683    const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1684
1685    // Try to constant-fold a stable array element.
1686    if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1687      // Make sure the reference is not into the header and the offset is constant
1688      ciObject* aobj = ary->const_oop();
1689      if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1690        int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1691        const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1692                                                                      stable_dimension,
1693                                                                      memory_type(), is_unsigned());
1694        if (con_type != NULL) {
1695          return con_type;
1696        }
1697      }
1698    }
1699
1700    // Don't do this for integer types. There is only potential profit if
1701    // the element type t is lower than _type; that is, for int types, if _type is
1702    // more restrictive than t.  This only happens here if one is short and the other
1703    // char (both 16 bits), and in those cases we've made an intentional decision
1704    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1705    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1706    //
1707    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1708    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1709    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1710    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1711    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1712    // In fact, that could have been the original type of p1, and p1 could have
1713    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1714    // expression (LShiftL quux 3) independently optimized to the constant 8.
1715    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1716        && (_type->isa_vect() == NULL)
1717        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1718      // t might actually be lower than _type, if _type is a unique
1719      // concrete subclass of abstract class t.
1720      if (off_beyond_header) {  // is the offset beyond the header?
1721        const Type* jt = t->join_speculative(_type);
1722        // In any case, do not allow the join, per se, to empty out the type.
1723        if (jt->empty() && !t->empty()) {
1724          // This can happen if a interface-typed array narrows to a class type.
1725          jt = _type;
1726        }
1727#ifdef ASSERT
1728        if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1729          // The pointers in the autobox arrays are always non-null
1730          Node* base = adr->in(AddPNode::Base);
1731          if ((base != NULL) && base->is_DecodeN()) {
1732            // Get LoadN node which loads IntegerCache.cache field
1733            base = base->in(1);
1734          }
1735          if ((base != NULL) && base->is_Con()) {
1736            const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1737            if ((base_type != NULL) && base_type->is_autobox_cache()) {
1738              // It could be narrow oop
1739              assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1740            }
1741          }
1742        }
1743#endif
1744        return jt;
1745      }
1746    }
1747  } else if (tp->base() == Type::InstPtr) {
1748    assert( off != Type::OffsetBot ||
1749            // arrays can be cast to Objects
1750            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1751            // unsafe field access may not have a constant offset
1752            C->has_unsafe_access(),
1753            "Field accesses must be precise" );
1754    // For oop loads, we expect the _type to be precise.
1755
1756    // Optimize loads from constant fields.
1757    const TypeInstPtr* tinst = tp->is_instptr();
1758    ciObject* const_oop = tinst->const_oop();
1759    if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1760      const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1761      if (con_type != NULL) {
1762        return con_type;
1763      }
1764    }
1765  } else if (tp->base() == Type::KlassPtr) {
1766    assert( off != Type::OffsetBot ||
1767            // arrays can be cast to Objects
1768            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1769            // also allow array-loading from the primary supertype
1770            // array during subtype checks
1771            Opcode() == Op_LoadKlass,
1772            "Field accesses must be precise" );
1773    // For klass/static loads, we expect the _type to be precise
1774  }
1775
1776  const TypeKlassPtr *tkls = tp->isa_klassptr();
1777  if (tkls != NULL && !StressReflectiveCode) {
1778    ciKlass* klass = tkls->klass();
1779    if (klass->is_loaded() && tkls->klass_is_exact()) {
1780      // We are loading a field from a Klass metaobject whose identity
1781      // is known at compile time (the type is "exact" or "precise").
1782      // Check for fields we know are maintained as constants by the VM.
1783      if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1784        // The field is Klass::_super_check_offset.  Return its (constant) value.
1785        // (Folds up type checking code.)
1786        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1787        return TypeInt::make(klass->super_check_offset());
1788      }
1789      // Compute index into primary_supers array
1790      juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1791      // Check for overflowing; use unsigned compare to handle the negative case.
1792      if( depth < ciKlass::primary_super_limit() ) {
1793        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1794        // (Folds up type checking code.)
1795        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1796        ciKlass *ss = klass->super_of_depth(depth);
1797        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1798      }
1799      const Type* aift = load_array_final_field(tkls, klass);
1800      if (aift != NULL)  return aift;
1801      if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1802        // The field is Klass::_java_mirror.  Return its (constant) value.
1803        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1804        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1805        return TypeInstPtr::make(klass->java_mirror());
1806      }
1807    }
1808
1809    // We can still check if we are loading from the primary_supers array at a
1810    // shallow enough depth.  Even though the klass is not exact, entries less
1811    // than or equal to its super depth are correct.
1812    if (klass->is_loaded() ) {
1813      ciType *inner = klass;
1814      while( inner->is_obj_array_klass() )
1815        inner = inner->as_obj_array_klass()->base_element_type();
1816      if( inner->is_instance_klass() &&
1817          !inner->as_instance_klass()->flags().is_interface() ) {
1818        // Compute index into primary_supers array
1819        juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1820        // Check for overflowing; use unsigned compare to handle the negative case.
1821        if( depth < ciKlass::primary_super_limit() &&
1822            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1823          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1824          // (Folds up type checking code.)
1825          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1826          ciKlass *ss = klass->super_of_depth(depth);
1827          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1828        }
1829      }
1830    }
1831
1832    // If the type is enough to determine that the thing is not an array,
1833    // we can give the layout_helper a positive interval type.
1834    // This will help short-circuit some reflective code.
1835    if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1836        && !klass->is_array_klass() // not directly typed as an array
1837        && !klass->is_interface()  // specifically not Serializable & Cloneable
1838        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1839        ) {
1840      // Note:  When interfaces are reliable, we can narrow the interface
1841      // test to (klass != Serializable && klass != Cloneable).
1842      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1843      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1844      // The key property of this type is that it folds up tests
1845      // for array-ness, since it proves that the layout_helper is positive.
1846      // Thus, a generic value like the basic object layout helper works fine.
1847      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1848    }
1849  }
1850
1851  // If we are loading from a freshly-allocated object, produce a zero,
1852  // if the load is provably beyond the header of the object.
1853  // (Also allow a variable load from a fresh array to produce zero.)
1854  const TypeOopPtr *tinst = tp->isa_oopptr();
1855  bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1856  bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1857  if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1858    Node* value = can_see_stored_value(mem,phase);
1859    if (value != NULL && value->is_Con()) {
1860      assert(value->bottom_type()->higher_equal(_type),"sanity");
1861      return value->bottom_type();
1862    }
1863  }
1864
1865  if (is_instance) {
1866    // If we have an instance type and our memory input is the
1867    // programs's initial memory state, there is no matching store,
1868    // so just return a zero of the appropriate type
1869    Node *mem = in(MemNode::Memory);
1870    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1871      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1872      return Type::get_zero_type(_type->basic_type());
1873    }
1874  }
1875  return _type;
1876}
1877
1878//------------------------------match_edge-------------------------------------
1879// Do we Match on this edge index or not?  Match only the address.
1880uint LoadNode::match_edge(uint idx) const {
1881  return idx == MemNode::Address;
1882}
1883
1884//--------------------------LoadBNode::Ideal--------------------------------------
1885//
1886//  If the previous store is to the same address as this load,
1887//  and the value stored was larger than a byte, replace this load
1888//  with the value stored truncated to a byte.  If no truncation is
1889//  needed, the replacement is done in LoadNode::Identity().
1890//
1891Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1892  Node* mem = in(MemNode::Memory);
1893  Node* value = can_see_stored_value(mem,phase);
1894  if( value && !phase->type(value)->higher_equal( _type ) ) {
1895    Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1896    return new RShiftINode(result, phase->intcon(24));
1897  }
1898  // Identity call will handle the case where truncation is not needed.
1899  return LoadNode::Ideal(phase, can_reshape);
1900}
1901
1902const Type* LoadBNode::Value(PhaseGVN* phase) const {
1903  Node* mem = in(MemNode::Memory);
1904  Node* value = can_see_stored_value(mem,phase);
1905  if (value != NULL && value->is_Con() &&
1906      !value->bottom_type()->higher_equal(_type)) {
1907    // If the input to the store does not fit with the load's result type,
1908    // it must be truncated. We can't delay until Ideal call since
1909    // a singleton Value is needed for split_thru_phi optimization.
1910    int con = value->get_int();
1911    return TypeInt::make((con << 24) >> 24);
1912  }
1913  return LoadNode::Value(phase);
1914}
1915
1916//--------------------------LoadUBNode::Ideal-------------------------------------
1917//
1918//  If the previous store is to the same address as this load,
1919//  and the value stored was larger than a byte, replace this load
1920//  with the value stored truncated to a byte.  If no truncation is
1921//  needed, the replacement is done in LoadNode::Identity().
1922//
1923Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1924  Node* mem = in(MemNode::Memory);
1925  Node* value = can_see_stored_value(mem, phase);
1926  if (value && !phase->type(value)->higher_equal(_type))
1927    return new AndINode(value, phase->intcon(0xFF));
1928  // Identity call will handle the case where truncation is not needed.
1929  return LoadNode::Ideal(phase, can_reshape);
1930}
1931
1932const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1933  Node* mem = in(MemNode::Memory);
1934  Node* value = can_see_stored_value(mem,phase);
1935  if (value != NULL && value->is_Con() &&
1936      !value->bottom_type()->higher_equal(_type)) {
1937    // If the input to the store does not fit with the load's result type,
1938    // it must be truncated. We can't delay until Ideal call since
1939    // a singleton Value is needed for split_thru_phi optimization.
1940    int con = value->get_int();
1941    return TypeInt::make(con & 0xFF);
1942  }
1943  return LoadNode::Value(phase);
1944}
1945
1946//--------------------------LoadUSNode::Ideal-------------------------------------
1947//
1948//  If the previous store is to the same address as this load,
1949//  and the value stored was larger than a char, replace this load
1950//  with the value stored truncated to a char.  If no truncation is
1951//  needed, the replacement is done in LoadNode::Identity().
1952//
1953Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1954  Node* mem = in(MemNode::Memory);
1955  Node* value = can_see_stored_value(mem,phase);
1956  if( value && !phase->type(value)->higher_equal( _type ) )
1957    return new AndINode(value,phase->intcon(0xFFFF));
1958  // Identity call will handle the case where truncation is not needed.
1959  return LoadNode::Ideal(phase, can_reshape);
1960}
1961
1962const Type* LoadUSNode::Value(PhaseGVN* phase) const {
1963  Node* mem = in(MemNode::Memory);
1964  Node* value = can_see_stored_value(mem,phase);
1965  if (value != NULL && value->is_Con() &&
1966      !value->bottom_type()->higher_equal(_type)) {
1967    // If the input to the store does not fit with the load's result type,
1968    // it must be truncated. We can't delay until Ideal call since
1969    // a singleton Value is needed for split_thru_phi optimization.
1970    int con = value->get_int();
1971    return TypeInt::make(con & 0xFFFF);
1972  }
1973  return LoadNode::Value(phase);
1974}
1975
1976//--------------------------LoadSNode::Ideal--------------------------------------
1977//
1978//  If the previous store is to the same address as this load,
1979//  and the value stored was larger than a short, replace this load
1980//  with the value stored truncated to a short.  If no truncation is
1981//  needed, the replacement is done in LoadNode::Identity().
1982//
1983Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1984  Node* mem = in(MemNode::Memory);
1985  Node* value = can_see_stored_value(mem,phase);
1986  if( value && !phase->type(value)->higher_equal( _type ) ) {
1987    Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
1988    return new RShiftINode(result, phase->intcon(16));
1989  }
1990  // Identity call will handle the case where truncation is not needed.
1991  return LoadNode::Ideal(phase, can_reshape);
1992}
1993
1994const Type* LoadSNode::Value(PhaseGVN* phase) const {
1995  Node* mem = in(MemNode::Memory);
1996  Node* value = can_see_stored_value(mem,phase);
1997  if (value != NULL && value->is_Con() &&
1998      !value->bottom_type()->higher_equal(_type)) {
1999    // If the input to the store does not fit with the load's result type,
2000    // it must be truncated. We can't delay until Ideal call since
2001    // a singleton Value is needed for split_thru_phi optimization.
2002    int con = value->get_int();
2003    return TypeInt::make((con << 16) >> 16);
2004  }
2005  return LoadNode::Value(phase);
2006}
2007
2008//=============================================================================
2009//----------------------------LoadKlassNode::make------------------------------
2010// Polymorphic factory method:
2011Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2012  // sanity check the alias category against the created node type
2013  const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2014  assert(adr_type != NULL, "expecting TypeKlassPtr");
2015#ifdef _LP64
2016  if (adr_type->is_ptr_to_narrowklass()) {
2017    assert(UseCompressedClassPointers, "no compressed klasses");
2018    Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2019    return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2020  }
2021#endif
2022  assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2023  return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2024}
2025
2026//------------------------------Value------------------------------------------
2027const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2028  return klass_value_common(phase);
2029}
2030
2031// In most cases, LoadKlassNode does not have the control input set. If the control
2032// input is set, it must not be removed (by LoadNode::Ideal()).
2033bool LoadKlassNode::can_remove_control() const {
2034  return false;
2035}
2036
2037const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2038  // Either input is TOP ==> the result is TOP
2039  const Type *t1 = phase->type( in(MemNode::Memory) );
2040  if (t1 == Type::TOP)  return Type::TOP;
2041  Node *adr = in(MemNode::Address);
2042  const Type *t2 = phase->type( adr );
2043  if (t2 == Type::TOP)  return Type::TOP;
2044  const TypePtr *tp = t2->is_ptr();
2045  if (TypePtr::above_centerline(tp->ptr()) ||
2046      tp->ptr() == TypePtr::Null)  return Type::TOP;
2047
2048  // Return a more precise klass, if possible
2049  const TypeInstPtr *tinst = tp->isa_instptr();
2050  if (tinst != NULL) {
2051    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2052    int offset = tinst->offset();
2053    if (ik == phase->C->env()->Class_klass()
2054        && (offset == java_lang_Class::klass_offset_in_bytes() ||
2055            offset == java_lang_Class::array_klass_offset_in_bytes())) {
2056      // We are loading a special hidden field from a Class mirror object,
2057      // the field which points to the VM's Klass metaobject.
2058      ciType* t = tinst->java_mirror_type();
2059      // java_mirror_type returns non-null for compile-time Class constants.
2060      if (t != NULL) {
2061        // constant oop => constant klass
2062        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2063          if (t->is_void()) {
2064            // We cannot create a void array.  Since void is a primitive type return null
2065            // klass.  Users of this result need to do a null check on the returned klass.
2066            return TypePtr::NULL_PTR;
2067          }
2068          return TypeKlassPtr::make(ciArrayKlass::make(t));
2069        }
2070        if (!t->is_klass()) {
2071          // a primitive Class (e.g., int.class) has NULL for a klass field
2072          return TypePtr::NULL_PTR;
2073        }
2074        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2075        return TypeKlassPtr::make(t->as_klass());
2076      }
2077      // non-constant mirror, so we can't tell what's going on
2078    }
2079    if( !ik->is_loaded() )
2080      return _type;             // Bail out if not loaded
2081    if (offset == oopDesc::klass_offset_in_bytes()) {
2082      if (tinst->klass_is_exact()) {
2083        return TypeKlassPtr::make(ik);
2084      }
2085      // See if we can become precise: no subklasses and no interface
2086      // (Note:  We need to support verified interfaces.)
2087      if (!ik->is_interface() && !ik->has_subklass()) {
2088        //assert(!UseExactTypes, "this code should be useless with exact types");
2089        // Add a dependence; if any subclass added we need to recompile
2090        if (!ik->is_final()) {
2091          // %%% should use stronger assert_unique_concrete_subtype instead
2092          phase->C->dependencies()->assert_leaf_type(ik);
2093        }
2094        // Return precise klass
2095        return TypeKlassPtr::make(ik);
2096      }
2097
2098      // Return root of possible klass
2099      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2100    }
2101  }
2102
2103  // Check for loading klass from an array
2104  const TypeAryPtr *tary = tp->isa_aryptr();
2105  if( tary != NULL ) {
2106    ciKlass *tary_klass = tary->klass();
2107    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2108        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2109      if (tary->klass_is_exact()) {
2110        return TypeKlassPtr::make(tary_klass);
2111      }
2112      ciArrayKlass *ak = tary->klass()->as_array_klass();
2113      // If the klass is an object array, we defer the question to the
2114      // array component klass.
2115      if( ak->is_obj_array_klass() ) {
2116        assert( ak->is_loaded(), "" );
2117        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2118        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2119          ciInstanceKlass* ik = base_k->as_instance_klass();
2120          // See if we can become precise: no subklasses and no interface
2121          if (!ik->is_interface() && !ik->has_subklass()) {
2122            //assert(!UseExactTypes, "this code should be useless with exact types");
2123            // Add a dependence; if any subclass added we need to recompile
2124            if (!ik->is_final()) {
2125              phase->C->dependencies()->assert_leaf_type(ik);
2126            }
2127            // Return precise array klass
2128            return TypeKlassPtr::make(ak);
2129          }
2130        }
2131        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2132      } else {                  // Found a type-array?
2133        //assert(!UseExactTypes, "this code should be useless with exact types");
2134        assert( ak->is_type_array_klass(), "" );
2135        return TypeKlassPtr::make(ak); // These are always precise
2136      }
2137    }
2138  }
2139
2140  // Check for loading klass from an array klass
2141  const TypeKlassPtr *tkls = tp->isa_klassptr();
2142  if (tkls != NULL && !StressReflectiveCode) {
2143    ciKlass* klass = tkls->klass();
2144    if( !klass->is_loaded() )
2145      return _type;             // Bail out if not loaded
2146    if( klass->is_obj_array_klass() &&
2147        tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2148      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2149      // // Always returning precise element type is incorrect,
2150      // // e.g., element type could be object and array may contain strings
2151      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2152
2153      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2154      // according to the element type's subclassing.
2155      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2156    }
2157    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2158        tkls->offset() == in_bytes(Klass::super_offset())) {
2159      ciKlass* sup = klass->as_instance_klass()->super();
2160      // The field is Klass::_super.  Return its (constant) value.
2161      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2162      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2163    }
2164  }
2165
2166  // Bailout case
2167  return LoadNode::Value(phase);
2168}
2169
2170//------------------------------Identity---------------------------------------
2171// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2172// Also feed through the klass in Allocate(...klass...)._klass.
2173Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2174  return klass_identity_common(phase);
2175}
2176
2177Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2178  Node* x = LoadNode::Identity(phase);
2179  if (x != this)  return x;
2180
2181  // Take apart the address into an oop and and offset.
2182  // Return 'this' if we cannot.
2183  Node*    adr    = in(MemNode::Address);
2184  intptr_t offset = 0;
2185  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2186  if (base == NULL)     return this;
2187  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2188  if (toop == NULL)     return this;
2189
2190  // We can fetch the klass directly through an AllocateNode.
2191  // This works even if the klass is not constant (clone or newArray).
2192  if (offset == oopDesc::klass_offset_in_bytes()) {
2193    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2194    if (allocated_klass != NULL) {
2195      return allocated_klass;
2196    }
2197  }
2198
2199  // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2200  // See inline_native_Class_query for occurrences of these patterns.
2201  // Java Example:  x.getClass().isAssignableFrom(y)
2202  //
2203  // This improves reflective code, often making the Class
2204  // mirror go completely dead.  (Current exception:  Class
2205  // mirrors may appear in debug info, but we could clean them out by
2206  // introducing a new debug info operator for Klass*.java_mirror).
2207  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2208      && offset == java_lang_Class::klass_offset_in_bytes()) {
2209    // We are loading a special hidden field from a Class mirror,
2210    // the field which points to its Klass or ArrayKlass metaobject.
2211    if (base->is_Load()) {
2212      Node* adr2 = base->in(MemNode::Address);
2213      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2214      if (tkls != NULL && !tkls->empty()
2215          && (tkls->klass()->is_instance_klass() ||
2216              tkls->klass()->is_array_klass())
2217          && adr2->is_AddP()
2218          ) {
2219        int mirror_field = in_bytes(Klass::java_mirror_offset());
2220        if (tkls->offset() == mirror_field) {
2221          return adr2->in(AddPNode::Base);
2222        }
2223      }
2224    }
2225  }
2226
2227  return this;
2228}
2229
2230
2231//------------------------------Value------------------------------------------
2232const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2233  const Type *t = klass_value_common(phase);
2234  if (t == Type::TOP)
2235    return t;
2236
2237  return t->make_narrowklass();
2238}
2239
2240//------------------------------Identity---------------------------------------
2241// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2242// Also feed through the klass in Allocate(...klass...)._klass.
2243Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2244  Node *x = klass_identity_common(phase);
2245
2246  const Type *t = phase->type( x );
2247  if( t == Type::TOP ) return x;
2248  if( t->isa_narrowklass()) return x;
2249  assert (!t->isa_narrowoop(), "no narrow oop here");
2250
2251  return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2252}
2253
2254//------------------------------Value-----------------------------------------
2255const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2256  // Either input is TOP ==> the result is TOP
2257  const Type *t1 = phase->type( in(MemNode::Memory) );
2258  if( t1 == Type::TOP ) return Type::TOP;
2259  Node *adr = in(MemNode::Address);
2260  const Type *t2 = phase->type( adr );
2261  if( t2 == Type::TOP ) return Type::TOP;
2262  const TypePtr *tp = t2->is_ptr();
2263  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2264  const TypeAryPtr *tap = tp->isa_aryptr();
2265  if( !tap ) return _type;
2266  return tap->size();
2267}
2268
2269//-------------------------------Ideal---------------------------------------
2270// Feed through the length in AllocateArray(...length...)._length.
2271Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2272  Node* p = MemNode::Ideal_common(phase, can_reshape);
2273  if (p)  return (p == NodeSentinel) ? NULL : p;
2274
2275  // Take apart the address into an oop and and offset.
2276  // Return 'this' if we cannot.
2277  Node*    adr    = in(MemNode::Address);
2278  intptr_t offset = 0;
2279  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2280  if (base == NULL)     return NULL;
2281  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2282  if (tary == NULL)     return NULL;
2283
2284  // We can fetch the length directly through an AllocateArrayNode.
2285  // This works even if the length is not constant (clone or newArray).
2286  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2287    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2288    if (alloc != NULL) {
2289      Node* allocated_length = alloc->Ideal_length();
2290      Node* len = alloc->make_ideal_length(tary, phase);
2291      if (allocated_length != len) {
2292        // New CastII improves on this.
2293        return len;
2294      }
2295    }
2296  }
2297
2298  return NULL;
2299}
2300
2301//------------------------------Identity---------------------------------------
2302// Feed through the length in AllocateArray(...length...)._length.
2303Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2304  Node* x = LoadINode::Identity(phase);
2305  if (x != this)  return x;
2306
2307  // Take apart the address into an oop and and offset.
2308  // Return 'this' if we cannot.
2309  Node*    adr    = in(MemNode::Address);
2310  intptr_t offset = 0;
2311  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2312  if (base == NULL)     return this;
2313  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2314  if (tary == NULL)     return this;
2315
2316  // We can fetch the length directly through an AllocateArrayNode.
2317  // This works even if the length is not constant (clone or newArray).
2318  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2319    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2320    if (alloc != NULL) {
2321      Node* allocated_length = alloc->Ideal_length();
2322      // Do not allow make_ideal_length to allocate a CastII node.
2323      Node* len = alloc->make_ideal_length(tary, phase, false);
2324      if (allocated_length == len) {
2325        // Return allocated_length only if it would not be improved by a CastII.
2326        return allocated_length;
2327      }
2328    }
2329  }
2330
2331  return this;
2332
2333}
2334
2335//=============================================================================
2336//---------------------------StoreNode::make-----------------------------------
2337// Polymorphic factory method:
2338StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2339  assert((mo == unordered || mo == release), "unexpected");
2340  Compile* C = gvn.C;
2341  assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2342         ctl != NULL, "raw memory operations should have control edge");
2343
2344  switch (bt) {
2345  case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2346  case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2347  case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2348  case T_CHAR:
2349  case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2350  case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2351  case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2352  case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2353  case T_METADATA:
2354  case T_ADDRESS:
2355  case T_OBJECT:
2356#ifdef _LP64
2357    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2358      val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2359      return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2360    } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2361               (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2362                adr->bottom_type()->isa_rawptr())) {
2363      val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2364      return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2365    }
2366#endif
2367    {
2368      return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2369    }
2370  default:
2371    ShouldNotReachHere();
2372    return (StoreNode*)NULL;
2373  }
2374}
2375
2376StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2377  bool require_atomic = true;
2378  return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2379}
2380
2381StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2382  bool require_atomic = true;
2383  return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2384}
2385
2386
2387//--------------------------bottom_type----------------------------------------
2388const Type *StoreNode::bottom_type() const {
2389  return Type::MEMORY;
2390}
2391
2392//------------------------------hash-------------------------------------------
2393uint StoreNode::hash() const {
2394  // unroll addition of interesting fields
2395  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2396
2397  // Since they are not commoned, do not hash them:
2398  return NO_HASH;
2399}
2400
2401//------------------------------Ideal------------------------------------------
2402// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2403// When a store immediately follows a relevant allocation/initialization,
2404// try to capture it into the initialization, or hoist it above.
2405Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2406  Node* p = MemNode::Ideal_common(phase, can_reshape);
2407  if (p)  return (p == NodeSentinel) ? NULL : p;
2408
2409  Node* mem     = in(MemNode::Memory);
2410  Node* address = in(MemNode::Address);
2411  // Back-to-back stores to same address?  Fold em up.  Generally
2412  // unsafe if I have intervening uses...  Also disallowed for StoreCM
2413  // since they must follow each StoreP operation.  Redundant StoreCMs
2414  // are eliminated just before matching in final_graph_reshape.
2415  {
2416    Node* st = mem;
2417    // If Store 'st' has more than one use, we cannot fold 'st' away.
2418    // For example, 'st' might be the final state at a conditional
2419    // return.  Or, 'st' might be used by some node which is live at
2420    // the same time 'st' is live, which might be unschedulable.  So,
2421    // require exactly ONE user until such time as we clone 'mem' for
2422    // each of 'mem's uses (thus making the exactly-1-user-rule hold
2423    // true).
2424    while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2425      // Looking at a dead closed cycle of memory?
2426      assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2427      assert(Opcode() == st->Opcode() ||
2428             st->Opcode() == Op_StoreVector ||
2429             Opcode() == Op_StoreVector ||
2430             phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2431             (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2432             (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2433             (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2434             "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2435
2436      if (st->in(MemNode::Address)->eqv_uncast(address) &&
2437          st->as_Store()->memory_size() <= this->memory_size()) {
2438        Node* use = st->raw_out(0);
2439        phase->igvn_rehash_node_delayed(use);
2440        if (can_reshape) {
2441          use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2442        } else {
2443          // It's OK to do this in the parser, since DU info is always accurate,
2444          // and the parser always refers to nodes via SafePointNode maps.
2445          use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2446        }
2447        return this;
2448      }
2449      st = st->in(MemNode::Memory);
2450    }
2451  }
2452
2453
2454  // Capture an unaliased, unconditional, simple store into an initializer.
2455  // Or, if it is independent of the allocation, hoist it above the allocation.
2456  if (ReduceFieldZeroing && /*can_reshape &&*/
2457      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2458    InitializeNode* init = mem->in(0)->as_Initialize();
2459    intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2460    if (offset > 0) {
2461      Node* moved = init->capture_store(this, offset, phase, can_reshape);
2462      // If the InitializeNode captured me, it made a raw copy of me,
2463      // and I need to disappear.
2464      if (moved != NULL) {
2465        // %%% hack to ensure that Ideal returns a new node:
2466        mem = MergeMemNode::make(mem);
2467        return mem;             // fold me away
2468      }
2469    }
2470  }
2471
2472  return NULL;                  // No further progress
2473}
2474
2475//------------------------------Value-----------------------------------------
2476const Type* StoreNode::Value(PhaseGVN* phase) const {
2477  // Either input is TOP ==> the result is TOP
2478  const Type *t1 = phase->type( in(MemNode::Memory) );
2479  if( t1 == Type::TOP ) return Type::TOP;
2480  const Type *t2 = phase->type( in(MemNode::Address) );
2481  if( t2 == Type::TOP ) return Type::TOP;
2482  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2483  if( t3 == Type::TOP ) return Type::TOP;
2484  return Type::MEMORY;
2485}
2486
2487//------------------------------Identity---------------------------------------
2488// Remove redundant stores:
2489//   Store(m, p, Load(m, p)) changes to m.
2490//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2491Node* StoreNode::Identity(PhaseGVN* phase) {
2492  Node* mem = in(MemNode::Memory);
2493  Node* adr = in(MemNode::Address);
2494  Node* val = in(MemNode::ValueIn);
2495
2496  // Load then Store?  Then the Store is useless
2497  if (val->is_Load() &&
2498      val->in(MemNode::Address)->eqv_uncast(adr) &&
2499      val->in(MemNode::Memory )->eqv_uncast(mem) &&
2500      val->as_Load()->store_Opcode() == Opcode()) {
2501    return mem;
2502  }
2503
2504  // Two stores in a row of the same value?
2505  if (mem->is_Store() &&
2506      mem->in(MemNode::Address)->eqv_uncast(adr) &&
2507      mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2508      mem->Opcode() == Opcode()) {
2509    return mem;
2510  }
2511
2512  // Store of zero anywhere into a freshly-allocated object?
2513  // Then the store is useless.
2514  // (It must already have been captured by the InitializeNode.)
2515  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2516    // a newly allocated object is already all-zeroes everywhere
2517    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2518      return mem;
2519    }
2520
2521    // the store may also apply to zero-bits in an earlier object
2522    Node* prev_mem = find_previous_store(phase);
2523    // Steps (a), (b):  Walk past independent stores to find an exact match.
2524    if (prev_mem != NULL) {
2525      Node* prev_val = can_see_stored_value(prev_mem, phase);
2526      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2527        // prev_val and val might differ by a cast; it would be good
2528        // to keep the more informative of the two.
2529        return mem;
2530      }
2531    }
2532  }
2533
2534  return this;
2535}
2536
2537//------------------------------match_edge-------------------------------------
2538// Do we Match on this edge index or not?  Match only memory & value
2539uint StoreNode::match_edge(uint idx) const {
2540  return idx == MemNode::Address || idx == MemNode::ValueIn;
2541}
2542
2543//------------------------------cmp--------------------------------------------
2544// Do not common stores up together.  They generally have to be split
2545// back up anyways, so do not bother.
2546uint StoreNode::cmp( const Node &n ) const {
2547  return (&n == this);          // Always fail except on self
2548}
2549
2550//------------------------------Ideal_masked_input-----------------------------
2551// Check for a useless mask before a partial-word store
2552// (StoreB ... (AndI valIn conIa) )
2553// If (conIa & mask == mask) this simplifies to
2554// (StoreB ... (valIn) )
2555Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2556  Node *val = in(MemNode::ValueIn);
2557  if( val->Opcode() == Op_AndI ) {
2558    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2559    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2560      set_req(MemNode::ValueIn, val->in(1));
2561      return this;
2562    }
2563  }
2564  return NULL;
2565}
2566
2567
2568//------------------------------Ideal_sign_extended_input----------------------
2569// Check for useless sign-extension before a partial-word store
2570// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2571// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2572// (StoreB ... (valIn) )
2573Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2574  Node *val = in(MemNode::ValueIn);
2575  if( val->Opcode() == Op_RShiftI ) {
2576    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2577    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2578      Node *shl = val->in(1);
2579      if( shl->Opcode() == Op_LShiftI ) {
2580        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2581        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2582          set_req(MemNode::ValueIn, shl->in(1));
2583          return this;
2584        }
2585      }
2586    }
2587  }
2588  return NULL;
2589}
2590
2591//------------------------------value_never_loaded-----------------------------------
2592// Determine whether there are any possible loads of the value stored.
2593// For simplicity, we actually check if there are any loads from the
2594// address stored to, not just for loads of the value stored by this node.
2595//
2596bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2597  Node *adr = in(Address);
2598  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2599  if (adr_oop == NULL)
2600    return false;
2601  if (!adr_oop->is_known_instance_field())
2602    return false; // if not a distinct instance, there may be aliases of the address
2603  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2604    Node *use = adr->fast_out(i);
2605    if (use->is_Load() || use->is_LoadStore()) {
2606      return false;
2607    }
2608  }
2609  return true;
2610}
2611
2612//=============================================================================
2613//------------------------------Ideal------------------------------------------
2614// If the store is from an AND mask that leaves the low bits untouched, then
2615// we can skip the AND operation.  If the store is from a sign-extension
2616// (a left shift, then right shift) we can skip both.
2617Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2618  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2619  if( progress != NULL ) return progress;
2620
2621  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2622  if( progress != NULL ) return progress;
2623
2624  // Finally check the default case
2625  return StoreNode::Ideal(phase, can_reshape);
2626}
2627
2628//=============================================================================
2629//------------------------------Ideal------------------------------------------
2630// If the store is from an AND mask that leaves the low bits untouched, then
2631// we can skip the AND operation
2632Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2633  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2634  if( progress != NULL ) return progress;
2635
2636  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2637  if( progress != NULL ) return progress;
2638
2639  // Finally check the default case
2640  return StoreNode::Ideal(phase, can_reshape);
2641}
2642
2643//=============================================================================
2644//------------------------------Identity---------------------------------------
2645Node* StoreCMNode::Identity(PhaseGVN* phase) {
2646  // No need to card mark when storing a null ptr
2647  Node* my_store = in(MemNode::OopStore);
2648  if (my_store->is_Store()) {
2649    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2650    if( t1 == TypePtr::NULL_PTR ) {
2651      return in(MemNode::Memory);
2652    }
2653  }
2654  return this;
2655}
2656
2657//=============================================================================
2658//------------------------------Ideal---------------------------------------
2659Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2660  Node* progress = StoreNode::Ideal(phase, can_reshape);
2661  if (progress != NULL) return progress;
2662
2663  Node* my_store = in(MemNode::OopStore);
2664  if (my_store->is_MergeMem()) {
2665    Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2666    set_req(MemNode::OopStore, mem);
2667    return this;
2668  }
2669
2670  return NULL;
2671}
2672
2673//------------------------------Value-----------------------------------------
2674const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2675  // Either input is TOP ==> the result is TOP
2676  const Type *t = phase->type( in(MemNode::Memory) );
2677  if( t == Type::TOP ) return Type::TOP;
2678  t = phase->type( in(MemNode::Address) );
2679  if( t == Type::TOP ) return Type::TOP;
2680  t = phase->type( in(MemNode::ValueIn) );
2681  if( t == Type::TOP ) return Type::TOP;
2682  // If extra input is TOP ==> the result is TOP
2683  t = phase->type( in(MemNode::OopStore) );
2684  if( t == Type::TOP ) return Type::TOP;
2685
2686  return StoreNode::Value( phase );
2687}
2688
2689
2690//=============================================================================
2691//----------------------------------SCMemProjNode------------------------------
2692const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2693{
2694  return bottom_type();
2695}
2696
2697//=============================================================================
2698//----------------------------------LoadStoreNode------------------------------
2699LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2700  : Node(required),
2701    _type(rt),
2702    _adr_type(at)
2703{
2704  init_req(MemNode::Control, c  );
2705  init_req(MemNode::Memory , mem);
2706  init_req(MemNode::Address, adr);
2707  init_req(MemNode::ValueIn, val);
2708  init_class_id(Class_LoadStore);
2709}
2710
2711uint LoadStoreNode::ideal_reg() const {
2712  return _type->ideal_reg();
2713}
2714
2715bool LoadStoreNode::result_not_used() const {
2716  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2717    Node *x = fast_out(i);
2718    if (x->Opcode() == Op_SCMemProj) continue;
2719    return false;
2720  }
2721  return true;
2722}
2723
2724uint LoadStoreNode::size_of() const { return sizeof(*this); }
2725
2726//=============================================================================
2727//----------------------------------LoadStoreConditionalNode--------------------
2728LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2729  init_req(ExpectedIn, ex );
2730}
2731
2732//=============================================================================
2733//-------------------------------adr_type--------------------------------------
2734const TypePtr* ClearArrayNode::adr_type() const {
2735  Node *adr = in(3);
2736  if (adr == NULL)  return NULL; // node is dead
2737  return MemNode::calculate_adr_type(adr->bottom_type());
2738}
2739
2740//------------------------------match_edge-------------------------------------
2741// Do we Match on this edge index or not?  Do not match memory
2742uint ClearArrayNode::match_edge(uint idx) const {
2743  return idx > 1;
2744}
2745
2746//------------------------------Identity---------------------------------------
2747// Clearing a zero length array does nothing
2748Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2749  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2750}
2751
2752//------------------------------Idealize---------------------------------------
2753// Clearing a short array is faster with stores
2754Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2755  // Already know this is a large node, do not try to ideal it
2756  if (!IdealizeClearArrayNode || _is_large) return NULL;
2757
2758  const int unit = BytesPerLong;
2759  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2760  if (!t)  return NULL;
2761  if (!t->is_con())  return NULL;
2762  intptr_t raw_count = t->get_con();
2763  intptr_t size = raw_count;
2764  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2765  // Clearing nothing uses the Identity call.
2766  // Negative clears are possible on dead ClearArrays
2767  // (see jck test stmt114.stmt11402.val).
2768  if (size <= 0 || size % unit != 0)  return NULL;
2769  intptr_t count = size / unit;
2770  // Length too long; communicate this to matchers and assemblers.
2771  // Assemblers are responsible to produce fast hardware clears for it.
2772  if (size > InitArrayShortSize) {
2773    return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2774  }
2775  Node *mem = in(1);
2776  if( phase->type(mem)==Type::TOP ) return NULL;
2777  Node *adr = in(3);
2778  const Type* at = phase->type(adr);
2779  if( at==Type::TOP ) return NULL;
2780  const TypePtr* atp = at->isa_ptr();
2781  // adjust atp to be the correct array element address type
2782  if (atp == NULL)  atp = TypePtr::BOTTOM;
2783  else              atp = atp->add_offset(Type::OffsetBot);
2784  // Get base for derived pointer purposes
2785  if( adr->Opcode() != Op_AddP ) Unimplemented();
2786  Node *base = adr->in(1);
2787
2788  Node *zero = phase->makecon(TypeLong::ZERO);
2789  Node *off  = phase->MakeConX(BytesPerLong);
2790  mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2791  count--;
2792  while( count-- ) {
2793    mem = phase->transform(mem);
2794    adr = phase->transform(new AddPNode(base,adr,off));
2795    mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2796  }
2797  return mem;
2798}
2799
2800//----------------------------step_through----------------------------------
2801// Return allocation input memory edge if it is different instance
2802// or itself if it is the one we are looking for.
2803bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2804  Node* n = *np;
2805  assert(n->is_ClearArray(), "sanity");
2806  intptr_t offset;
2807  AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2808  // This method is called only before Allocate nodes are expanded
2809  // during macro nodes expansion. Before that ClearArray nodes are
2810  // only generated in PhaseMacroExpand::generate_arraycopy() (before
2811  // Allocate nodes are expanded) which follows allocations.
2812  assert(alloc != NULL, "should have allocation");
2813  if (alloc->_idx == instance_id) {
2814    // Can not bypass initialization of the instance we are looking for.
2815    return false;
2816  }
2817  // Otherwise skip it.
2818  InitializeNode* init = alloc->initialization();
2819  if (init != NULL)
2820    *np = init->in(TypeFunc::Memory);
2821  else
2822    *np = alloc->in(TypeFunc::Memory);
2823  return true;
2824}
2825
2826//----------------------------clear_memory-------------------------------------
2827// Generate code to initialize object storage to zero.
2828Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2829                                   intptr_t start_offset,
2830                                   Node* end_offset,
2831                                   PhaseGVN* phase) {
2832  intptr_t offset = start_offset;
2833
2834  int unit = BytesPerLong;
2835  if ((offset % unit) != 0) {
2836    Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2837    adr = phase->transform(adr);
2838    const TypePtr* atp = TypeRawPtr::BOTTOM;
2839    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2840    mem = phase->transform(mem);
2841    offset += BytesPerInt;
2842  }
2843  assert((offset % unit) == 0, "");
2844
2845  // Initialize the remaining stuff, if any, with a ClearArray.
2846  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2847}
2848
2849Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2850                                   Node* start_offset,
2851                                   Node* end_offset,
2852                                   PhaseGVN* phase) {
2853  if (start_offset == end_offset) {
2854    // nothing to do
2855    return mem;
2856  }
2857
2858  int unit = BytesPerLong;
2859  Node* zbase = start_offset;
2860  Node* zend  = end_offset;
2861
2862  // Scale to the unit required by the CPU:
2863  if (!Matcher::init_array_count_is_in_bytes) {
2864    Node* shift = phase->intcon(exact_log2(unit));
2865    zbase = phase->transform(new URShiftXNode(zbase, shift) );
2866    zend  = phase->transform(new URShiftXNode(zend,  shift) );
2867  }
2868
2869  // Bulk clear double-words
2870  Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2871  Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2872  mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2873  return phase->transform(mem);
2874}
2875
2876Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2877                                   intptr_t start_offset,
2878                                   intptr_t end_offset,
2879                                   PhaseGVN* phase) {
2880  if (start_offset == end_offset) {
2881    // nothing to do
2882    return mem;
2883  }
2884
2885  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2886  intptr_t done_offset = end_offset;
2887  if ((done_offset % BytesPerLong) != 0) {
2888    done_offset -= BytesPerInt;
2889  }
2890  if (done_offset > start_offset) {
2891    mem = clear_memory(ctl, mem, dest,
2892                       start_offset, phase->MakeConX(done_offset), phase);
2893  }
2894  if (done_offset < end_offset) { // emit the final 32-bit store
2895    Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2896    adr = phase->transform(adr);
2897    const TypePtr* atp = TypeRawPtr::BOTTOM;
2898    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2899    mem = phase->transform(mem);
2900    done_offset += BytesPerInt;
2901  }
2902  assert(done_offset == end_offset, "");
2903  return mem;
2904}
2905
2906//=============================================================================
2907MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2908  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2909    _adr_type(C->get_adr_type(alias_idx))
2910{
2911  init_class_id(Class_MemBar);
2912  Node* top = C->top();
2913  init_req(TypeFunc::I_O,top);
2914  init_req(TypeFunc::FramePtr,top);
2915  init_req(TypeFunc::ReturnAdr,top);
2916  if (precedent != NULL)
2917    init_req(TypeFunc::Parms, precedent);
2918}
2919
2920//------------------------------cmp--------------------------------------------
2921uint MemBarNode::hash() const { return NO_HASH; }
2922uint MemBarNode::cmp( const Node &n ) const {
2923  return (&n == this);          // Always fail except on self
2924}
2925
2926//------------------------------make-------------------------------------------
2927MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2928  switch (opcode) {
2929  case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2930  case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2931  case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2932  case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2933  case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2934  case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2935  case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2936  case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2937  case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
2938  case Op_Initialize:        return new InitializeNode(C, atp, pn);
2939  case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2940  default: ShouldNotReachHere(); return NULL;
2941  }
2942}
2943
2944//------------------------------Ideal------------------------------------------
2945// Return a node which is more "ideal" than the current node.  Strip out
2946// control copies
2947Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2948  if (remove_dead_region(phase, can_reshape)) return this;
2949  // Don't bother trying to transform a dead node
2950  if (in(0) && in(0)->is_top()) {
2951    return NULL;
2952  }
2953
2954  bool progress = false;
2955  // Eliminate volatile MemBars for scalar replaced objects.
2956  if (can_reshape && req() == (Precedent+1)) {
2957    bool eliminate = false;
2958    int opc = Opcode();
2959    if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2960      // Volatile field loads and stores.
2961      Node* my_mem = in(MemBarNode::Precedent);
2962      // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2963      if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2964        // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2965        // replace this Precedent (decodeN) with the Load instead.
2966        if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2967          Node* load_node = my_mem->in(1);
2968          set_req(MemBarNode::Precedent, load_node);
2969          phase->is_IterGVN()->_worklist.push(my_mem);
2970          my_mem = load_node;
2971        } else {
2972          assert(my_mem->unique_out() == this, "sanity");
2973          del_req(Precedent);
2974          phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2975          my_mem = NULL;
2976        }
2977        progress = true;
2978      }
2979      if (my_mem != NULL && my_mem->is_Mem()) {
2980        const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2981        // Check for scalar replaced object reference.
2982        if( t_oop != NULL && t_oop->is_known_instance_field() &&
2983            t_oop->offset() != Type::OffsetBot &&
2984            t_oop->offset() != Type::OffsetTop) {
2985          eliminate = true;
2986        }
2987      }
2988    } else if (opc == Op_MemBarRelease) {
2989      // Final field stores.
2990      Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2991      if ((alloc != NULL) && alloc->is_Allocate() &&
2992          alloc->as_Allocate()->does_not_escape_thread()) {
2993        // The allocated object does not escape.
2994        eliminate = true;
2995      }
2996    }
2997    if (eliminate) {
2998      // Replace MemBar projections by its inputs.
2999      PhaseIterGVN* igvn = phase->is_IterGVN();
3000      igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3001      igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3002      // Must return either the original node (now dead) or a new node
3003      // (Do not return a top here, since that would break the uniqueness of top.)
3004      return new ConINode(TypeInt::ZERO);
3005    }
3006  }
3007  return progress ? this : NULL;
3008}
3009
3010//------------------------------Value------------------------------------------
3011const Type* MemBarNode::Value(PhaseGVN* phase) const {
3012  if( !in(0) ) return Type::TOP;
3013  if( phase->type(in(0)) == Type::TOP )
3014    return Type::TOP;
3015  return TypeTuple::MEMBAR;
3016}
3017
3018//------------------------------match------------------------------------------
3019// Construct projections for memory.
3020Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3021  switch (proj->_con) {
3022  case TypeFunc::Control:
3023  case TypeFunc::Memory:
3024    return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3025  }
3026  ShouldNotReachHere();
3027  return NULL;
3028}
3029
3030//===========================InitializeNode====================================
3031// SUMMARY:
3032// This node acts as a memory barrier on raw memory, after some raw stores.
3033// The 'cooked' oop value feeds from the Initialize, not the Allocation.
3034// The Initialize can 'capture' suitably constrained stores as raw inits.
3035// It can coalesce related raw stores into larger units (called 'tiles').
3036// It can avoid zeroing new storage for memory units which have raw inits.
3037// At macro-expansion, it is marked 'complete', and does not optimize further.
3038//
3039// EXAMPLE:
3040// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3041//   ctl = incoming control; mem* = incoming memory
3042// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3043// First allocate uninitialized memory and fill in the header:
3044//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3045//   ctl := alloc.Control; mem* := alloc.Memory*
3046//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3047// Then initialize to zero the non-header parts of the raw memory block:
3048//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3049//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3050// After the initialize node executes, the object is ready for service:
3051//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3052// Suppose its body is immediately initialized as {1,2}:
3053//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3054//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3055//   mem.SLICE(#short[*]) := store2
3056//
3057// DETAILS:
3058// An InitializeNode collects and isolates object initialization after
3059// an AllocateNode and before the next possible safepoint.  As a
3060// memory barrier (MemBarNode), it keeps critical stores from drifting
3061// down past any safepoint or any publication of the allocation.
3062// Before this barrier, a newly-allocated object may have uninitialized bits.
3063// After this barrier, it may be treated as a real oop, and GC is allowed.
3064//
3065// The semantics of the InitializeNode include an implicit zeroing of
3066// the new object from object header to the end of the object.
3067// (The object header and end are determined by the AllocateNode.)
3068//
3069// Certain stores may be added as direct inputs to the InitializeNode.
3070// These stores must update raw memory, and they must be to addresses
3071// derived from the raw address produced by AllocateNode, and with
3072// a constant offset.  They must be ordered by increasing offset.
3073// The first one is at in(RawStores), the last at in(req()-1).
3074// Unlike most memory operations, they are not linked in a chain,
3075// but are displayed in parallel as users of the rawmem output of
3076// the allocation.
3077//
3078// (See comments in InitializeNode::capture_store, which continue
3079// the example given above.)
3080//
3081// When the associated Allocate is macro-expanded, the InitializeNode
3082// may be rewritten to optimize collected stores.  A ClearArrayNode
3083// may also be created at that point to represent any required zeroing.
3084// The InitializeNode is then marked 'complete', prohibiting further
3085// capturing of nearby memory operations.
3086//
3087// During macro-expansion, all captured initializations which store
3088// constant values of 32 bits or smaller are coalesced (if advantageous)
3089// into larger 'tiles' 32 or 64 bits.  This allows an object to be
3090// initialized in fewer memory operations.  Memory words which are
3091// covered by neither tiles nor non-constant stores are pre-zeroed
3092// by explicit stores of zero.  (The code shape happens to do all
3093// zeroing first, then all other stores, with both sequences occurring
3094// in order of ascending offsets.)
3095//
3096// Alternatively, code may be inserted between an AllocateNode and its
3097// InitializeNode, to perform arbitrary initialization of the new object.
3098// E.g., the object copying intrinsics insert complex data transfers here.
3099// The initialization must then be marked as 'complete' disable the
3100// built-in zeroing semantics and the collection of initializing stores.
3101//
3102// While an InitializeNode is incomplete, reads from the memory state
3103// produced by it are optimizable if they match the control edge and
3104// new oop address associated with the allocation/initialization.
3105// They return a stored value (if the offset matches) or else zero.
3106// A write to the memory state, if it matches control and address,
3107// and if it is to a constant offset, may be 'captured' by the
3108// InitializeNode.  It is cloned as a raw memory operation and rewired
3109// inside the initialization, to the raw oop produced by the allocation.
3110// Operations on addresses which are provably distinct (e.g., to
3111// other AllocateNodes) are allowed to bypass the initialization.
3112//
3113// The effect of all this is to consolidate object initialization
3114// (both arrays and non-arrays, both piecewise and bulk) into a
3115// single location, where it can be optimized as a unit.
3116//
3117// Only stores with an offset less than TrackedInitializationLimit words
3118// will be considered for capture by an InitializeNode.  This puts a
3119// reasonable limit on the complexity of optimized initializations.
3120
3121//---------------------------InitializeNode------------------------------------
3122InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3123  : _is_complete(Incomplete), _does_not_escape(false),
3124    MemBarNode(C, adr_type, rawoop)
3125{
3126  init_class_id(Class_Initialize);
3127
3128  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3129  assert(in(RawAddress) == rawoop, "proper init");
3130  // Note:  allocation() can be NULL, for secondary initialization barriers
3131}
3132
3133// Since this node is not matched, it will be processed by the
3134// register allocator.  Declare that there are no constraints
3135// on the allocation of the RawAddress edge.
3136const RegMask &InitializeNode::in_RegMask(uint idx) const {
3137  // This edge should be set to top, by the set_complete.  But be conservative.
3138  if (idx == InitializeNode::RawAddress)
3139    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3140  return RegMask::Empty;
3141}
3142
3143Node* InitializeNode::memory(uint alias_idx) {
3144  Node* mem = in(Memory);
3145  if (mem->is_MergeMem()) {
3146    return mem->as_MergeMem()->memory_at(alias_idx);
3147  } else {
3148    // incoming raw memory is not split
3149    return mem;
3150  }
3151}
3152
3153bool InitializeNode::is_non_zero() {
3154  if (is_complete())  return false;
3155  remove_extra_zeroes();
3156  return (req() > RawStores);
3157}
3158
3159void InitializeNode::set_complete(PhaseGVN* phase) {
3160  assert(!is_complete(), "caller responsibility");
3161  _is_complete = Complete;
3162
3163  // After this node is complete, it contains a bunch of
3164  // raw-memory initializations.  There is no need for
3165  // it to have anything to do with non-raw memory effects.
3166  // Therefore, tell all non-raw users to re-optimize themselves,
3167  // after skipping the memory effects of this initialization.
3168  PhaseIterGVN* igvn = phase->is_IterGVN();
3169  if (igvn)  igvn->add_users_to_worklist(this);
3170}
3171
3172// convenience function
3173// return false if the init contains any stores already
3174bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3175  InitializeNode* init = initialization();
3176  if (init == NULL || init->is_complete())  return false;
3177  init->remove_extra_zeroes();
3178  // for now, if this allocation has already collected any inits, bail:
3179  if (init->is_non_zero())  return false;
3180  init->set_complete(phase);
3181  return true;
3182}
3183
3184void InitializeNode::remove_extra_zeroes() {
3185  if (req() == RawStores)  return;
3186  Node* zmem = zero_memory();
3187  uint fill = RawStores;
3188  for (uint i = fill; i < req(); i++) {
3189    Node* n = in(i);
3190    if (n->is_top() || n == zmem)  continue;  // skip
3191    if (fill < i)  set_req(fill, n);          // compact
3192    ++fill;
3193  }
3194  // delete any empty spaces created:
3195  while (fill < req()) {
3196    del_req(fill);
3197  }
3198}
3199
3200// Helper for remembering which stores go with which offsets.
3201intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3202  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3203  intptr_t offset = -1;
3204  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3205                                               phase, offset);
3206  if (base == NULL)     return -1;  // something is dead,
3207  if (offset < 0)       return -1;  //        dead, dead
3208  return offset;
3209}
3210
3211// Helper for proving that an initialization expression is
3212// "simple enough" to be folded into an object initialization.
3213// Attempts to prove that a store's initial value 'n' can be captured
3214// within the initialization without creating a vicious cycle, such as:
3215//     { Foo p = new Foo(); p.next = p; }
3216// True for constants and parameters and small combinations thereof.
3217bool InitializeNode::detect_init_independence(Node* n, int& count) {
3218  if (n == NULL)      return true;   // (can this really happen?)
3219  if (n->is_Proj())   n = n->in(0);
3220  if (n == this)      return false;  // found a cycle
3221  if (n->is_Con())    return true;
3222  if (n->is_Start())  return true;   // params, etc., are OK
3223  if (n->is_Root())   return true;   // even better
3224
3225  Node* ctl = n->in(0);
3226  if (ctl != NULL && !ctl->is_top()) {
3227    if (ctl->is_Proj())  ctl = ctl->in(0);
3228    if (ctl == this)  return false;
3229
3230    // If we already know that the enclosing memory op is pinned right after
3231    // the init, then any control flow that the store has picked up
3232    // must have preceded the init, or else be equal to the init.
3233    // Even after loop optimizations (which might change control edges)
3234    // a store is never pinned *before* the availability of its inputs.
3235    if (!MemNode::all_controls_dominate(n, this))
3236      return false;                  // failed to prove a good control
3237  }
3238
3239  // Check data edges for possible dependencies on 'this'.
3240  if ((count += 1) > 20)  return false;  // complexity limit
3241  for (uint i = 1; i < n->req(); i++) {
3242    Node* m = n->in(i);
3243    if (m == NULL || m == n || m->is_top())  continue;
3244    uint first_i = n->find_edge(m);
3245    if (i != first_i)  continue;  // process duplicate edge just once
3246    if (!detect_init_independence(m, count)) {
3247      return false;
3248    }
3249  }
3250
3251  return true;
3252}
3253
3254// Here are all the checks a Store must pass before it can be moved into
3255// an initialization.  Returns zero if a check fails.
3256// On success, returns the (constant) offset to which the store applies,
3257// within the initialized memory.
3258intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3259  const int FAIL = 0;
3260  if (st->is_unaligned_access()) {
3261    return FAIL;
3262  }
3263  if (st->req() != MemNode::ValueIn + 1)
3264    return FAIL;                // an inscrutable StoreNode (card mark?)
3265  Node* ctl = st->in(MemNode::Control);
3266  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3267    return FAIL;                // must be unconditional after the initialization
3268  Node* mem = st->in(MemNode::Memory);
3269  if (!(mem->is_Proj() && mem->in(0) == this))
3270    return FAIL;                // must not be preceded by other stores
3271  Node* adr = st->in(MemNode::Address);
3272  intptr_t offset;
3273  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3274  if (alloc == NULL)
3275    return FAIL;                // inscrutable address
3276  if (alloc != allocation())
3277    return FAIL;                // wrong allocation!  (store needs to float up)
3278  Node* val = st->in(MemNode::ValueIn);
3279  int complexity_count = 0;
3280  if (!detect_init_independence(val, complexity_count))
3281    return FAIL;                // stored value must be 'simple enough'
3282
3283  // The Store can be captured only if nothing after the allocation
3284  // and before the Store is using the memory location that the store
3285  // overwrites.
3286  bool failed = false;
3287  // If is_complete_with_arraycopy() is true the shape of the graph is
3288  // well defined and is safe so no need for extra checks.
3289  if (!is_complete_with_arraycopy()) {
3290    // We are going to look at each use of the memory state following
3291    // the allocation to make sure nothing reads the memory that the
3292    // Store writes.
3293    const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3294    int alias_idx = phase->C->get_alias_index(t_adr);
3295    ResourceMark rm;
3296    Unique_Node_List mems;
3297    mems.push(mem);
3298    Node* unique_merge = NULL;
3299    for (uint next = 0; next < mems.size(); ++next) {
3300      Node *m  = mems.at(next);
3301      for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3302        Node *n = m->fast_out(j);
3303        if (n->outcnt() == 0) {
3304          continue;
3305        }
3306        if (n == st) {
3307          continue;
3308        } else if (n->in(0) != NULL && n->in(0) != ctl) {
3309          // If the control of this use is different from the control
3310          // of the Store which is right after the InitializeNode then
3311          // this node cannot be between the InitializeNode and the
3312          // Store.
3313          continue;
3314        } else if (n->is_MergeMem()) {
3315          if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3316            // We can hit a MergeMemNode (that will likely go away
3317            // later) that is a direct use of the memory state
3318            // following the InitializeNode on the same slice as the
3319            // store node that we'd like to capture. We need to check
3320            // the uses of the MergeMemNode.
3321            mems.push(n);
3322          }
3323        } else if (n->is_Mem()) {
3324          Node* other_adr = n->in(MemNode::Address);
3325          if (other_adr == adr) {
3326            failed = true;
3327            break;
3328          } else {
3329            const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3330            if (other_t_adr != NULL) {
3331              int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3332              if (other_alias_idx == alias_idx) {
3333                // A load from the same memory slice as the store right
3334                // after the InitializeNode. We check the control of the
3335                // object/array that is loaded from. If it's the same as
3336                // the store control then we cannot capture the store.
3337                assert(!n->is_Store(), "2 stores to same slice on same control?");
3338                Node* base = other_adr;
3339                assert(base->is_AddP(), "should be addp but is %s", base->Name());
3340                base = base->in(AddPNode::Base);
3341                if (base != NULL) {
3342                  base = base->uncast();
3343                  if (base->is_Proj() && base->in(0) == alloc) {
3344                    failed = true;
3345                    break;
3346                  }
3347                }
3348              }
3349            }
3350          }
3351        } else {
3352          failed = true;
3353          break;
3354        }
3355      }
3356    }
3357  }
3358  if (failed) {
3359    if (!can_reshape) {
3360      // We decided we couldn't capture the store during parsing. We
3361      // should try again during the next IGVN once the graph is
3362      // cleaner.
3363      phase->C->record_for_igvn(st);
3364    }
3365    return FAIL;
3366  }
3367
3368  return offset;                // success
3369}
3370
3371// Find the captured store in(i) which corresponds to the range
3372// [start..start+size) in the initialized object.
3373// If there is one, return its index i.  If there isn't, return the
3374// negative of the index where it should be inserted.
3375// Return 0 if the queried range overlaps an initialization boundary
3376// or if dead code is encountered.
3377// If size_in_bytes is zero, do not bother with overlap checks.
3378int InitializeNode::captured_store_insertion_point(intptr_t start,
3379                                                   int size_in_bytes,
3380                                                   PhaseTransform* phase) {
3381  const int FAIL = 0, MAX_STORE = BytesPerLong;
3382
3383  if (is_complete())
3384    return FAIL;                // arraycopy got here first; punt
3385
3386  assert(allocation() != NULL, "must be present");
3387
3388  // no negatives, no header fields:
3389  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3390
3391  // after a certain size, we bail out on tracking all the stores:
3392  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3393  if (start >= ti_limit)  return FAIL;
3394
3395  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3396    if (i >= limit)  return -(int)i; // not found; here is where to put it
3397
3398    Node*    st     = in(i);
3399    intptr_t st_off = get_store_offset(st, phase);
3400    if (st_off < 0) {
3401      if (st != zero_memory()) {
3402        return FAIL;            // bail out if there is dead garbage
3403      }
3404    } else if (st_off > start) {
3405      // ...we are done, since stores are ordered
3406      if (st_off < start + size_in_bytes) {
3407        return FAIL;            // the next store overlaps
3408      }
3409      return -(int)i;           // not found; here is where to put it
3410    } else if (st_off < start) {
3411      if (size_in_bytes != 0 &&
3412          start < st_off + MAX_STORE &&
3413          start < st_off + st->as_Store()->memory_size()) {
3414        return FAIL;            // the previous store overlaps
3415      }
3416    } else {
3417      if (size_in_bytes != 0 &&
3418          st->as_Store()->memory_size() != size_in_bytes) {
3419        return FAIL;            // mismatched store size
3420      }
3421      return i;
3422    }
3423
3424    ++i;
3425  }
3426}
3427
3428// Look for a captured store which initializes at the offset 'start'
3429// with the given size.  If there is no such store, and no other
3430// initialization interferes, then return zero_memory (the memory
3431// projection of the AllocateNode).
3432Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3433                                          PhaseTransform* phase) {
3434  assert(stores_are_sane(phase), "");
3435  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3436  if (i == 0) {
3437    return NULL;                // something is dead
3438  } else if (i < 0) {
3439    return zero_memory();       // just primordial zero bits here
3440  } else {
3441    Node* st = in(i);           // here is the store at this position
3442    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3443    return st;
3444  }
3445}
3446
3447// Create, as a raw pointer, an address within my new object at 'offset'.
3448Node* InitializeNode::make_raw_address(intptr_t offset,
3449                                       PhaseTransform* phase) {
3450  Node* addr = in(RawAddress);
3451  if (offset != 0) {
3452    Compile* C = phase->C;
3453    addr = phase->transform( new AddPNode(C->top(), addr,
3454                                                 phase->MakeConX(offset)) );
3455  }
3456  return addr;
3457}
3458
3459// Clone the given store, converting it into a raw store
3460// initializing a field or element of my new object.
3461// Caller is responsible for retiring the original store,
3462// with subsume_node or the like.
3463//
3464// From the example above InitializeNode::InitializeNode,
3465// here are the old stores to be captured:
3466//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3467//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3468//
3469// Here is the changed code; note the extra edges on init:
3470//   alloc = (Allocate ...)
3471//   rawoop = alloc.RawAddress
3472//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3473//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3474//   init = (Initialize alloc.Control alloc.Memory rawoop
3475//                      rawstore1 rawstore2)
3476//
3477Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3478                                    PhaseTransform* phase, bool can_reshape) {
3479  assert(stores_are_sane(phase), "");
3480
3481  if (start < 0)  return NULL;
3482  assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3483
3484  Compile* C = phase->C;
3485  int size_in_bytes = st->memory_size();
3486  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3487  if (i == 0)  return NULL;     // bail out
3488  Node* prev_mem = NULL;        // raw memory for the captured store
3489  if (i > 0) {
3490    prev_mem = in(i);           // there is a pre-existing store under this one
3491    set_req(i, C->top());       // temporarily disconnect it
3492    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3493  } else {
3494    i = -i;                     // no pre-existing store
3495    prev_mem = zero_memory();   // a slice of the newly allocated object
3496    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3497      set_req(--i, C->top());   // reuse this edge; it has been folded away
3498    else
3499      ins_req(i, C->top());     // build a new edge
3500  }
3501  Node* new_st = st->clone();
3502  new_st->set_req(MemNode::Control, in(Control));
3503  new_st->set_req(MemNode::Memory,  prev_mem);
3504  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3505  new_st = phase->transform(new_st);
3506
3507  // At this point, new_st might have swallowed a pre-existing store
3508  // at the same offset, or perhaps new_st might have disappeared,
3509  // if it redundantly stored the same value (or zero to fresh memory).
3510
3511  // In any case, wire it in:
3512  phase->igvn_rehash_node_delayed(this);
3513  set_req(i, new_st);
3514
3515  // The caller may now kill the old guy.
3516  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3517  assert(check_st == new_st || check_st == NULL, "must be findable");
3518  assert(!is_complete(), "");
3519  return new_st;
3520}
3521
3522static bool store_constant(jlong* tiles, int num_tiles,
3523                           intptr_t st_off, int st_size,
3524                           jlong con) {
3525  if ((st_off & (st_size-1)) != 0)
3526    return false;               // strange store offset (assume size==2**N)
3527  address addr = (address)tiles + st_off;
3528  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3529  switch (st_size) {
3530  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3531  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3532  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3533  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3534  default: return false;        // strange store size (detect size!=2**N here)
3535  }
3536  return true;                  // return success to caller
3537}
3538
3539// Coalesce subword constants into int constants and possibly
3540// into long constants.  The goal, if the CPU permits,
3541// is to initialize the object with a small number of 64-bit tiles.
3542// Also, convert floating-point constants to bit patterns.
3543// Non-constants are not relevant to this pass.
3544//
3545// In terms of the running example on InitializeNode::InitializeNode
3546// and InitializeNode::capture_store, here is the transformation
3547// of rawstore1 and rawstore2 into rawstore12:
3548//   alloc = (Allocate ...)
3549//   rawoop = alloc.RawAddress
3550//   tile12 = 0x00010002
3551//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3552//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3553//
3554void
3555InitializeNode::coalesce_subword_stores(intptr_t header_size,
3556                                        Node* size_in_bytes,
3557                                        PhaseGVN* phase) {
3558  Compile* C = phase->C;
3559
3560  assert(stores_are_sane(phase), "");
3561  // Note:  After this pass, they are not completely sane,
3562  // since there may be some overlaps.
3563
3564  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3565
3566  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3567  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3568  size_limit = MIN2(size_limit, ti_limit);
3569  size_limit = align_up(size_limit, BytesPerLong);
3570  int num_tiles = size_limit / BytesPerLong;
3571
3572  // allocate space for the tile map:
3573  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3574  jlong  tiles_buf[small_len];
3575  Node*  nodes_buf[small_len];
3576  jlong  inits_buf[small_len];
3577  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3578                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3579  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3580                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3581  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3582                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3583  // tiles: exact bitwise model of all primitive constants
3584  // nodes: last constant-storing node subsumed into the tiles model
3585  // inits: which bytes (in each tile) are touched by any initializations
3586
3587  //// Pass A: Fill in the tile model with any relevant stores.
3588
3589  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3590  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3591  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3592  Node* zmem = zero_memory(); // initially zero memory state
3593  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3594    Node* st = in(i);
3595    intptr_t st_off = get_store_offset(st, phase);
3596
3597    // Figure out the store's offset and constant value:
3598    if (st_off < header_size)             continue; //skip (ignore header)
3599    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3600    int st_size = st->as_Store()->memory_size();
3601    if (st_off + st_size > size_limit)    break;
3602
3603    // Record which bytes are touched, whether by constant or not.
3604    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3605      continue;                 // skip (strange store size)
3606
3607    const Type* val = phase->type(st->in(MemNode::ValueIn));
3608    if (!val->singleton())                continue; //skip (non-con store)
3609    BasicType type = val->basic_type();
3610
3611    jlong con = 0;
3612    switch (type) {
3613    case T_INT:    con = val->is_int()->get_con();  break;
3614    case T_LONG:   con = val->is_long()->get_con(); break;
3615    case T_FLOAT:  con = jint_cast(val->getf());    break;
3616    case T_DOUBLE: con = jlong_cast(val->getd());   break;
3617    default:                              continue; //skip (odd store type)
3618    }
3619
3620    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3621        st->Opcode() == Op_StoreL) {
3622      continue;                 // This StoreL is already optimal.
3623    }
3624
3625    // Store down the constant.
3626    store_constant(tiles, num_tiles, st_off, st_size, con);
3627
3628    intptr_t j = st_off >> LogBytesPerLong;
3629
3630    if (type == T_INT && st_size == BytesPerInt
3631        && (st_off & BytesPerInt) == BytesPerInt) {
3632      jlong lcon = tiles[j];
3633      if (!Matcher::isSimpleConstant64(lcon) &&
3634          st->Opcode() == Op_StoreI) {
3635        // This StoreI is already optimal by itself.
3636        jint* intcon = (jint*) &tiles[j];
3637        intcon[1] = 0;  // undo the store_constant()
3638
3639        // If the previous store is also optimal by itself, back up and
3640        // undo the action of the previous loop iteration... if we can.
3641        // But if we can't, just let the previous half take care of itself.
3642        st = nodes[j];
3643        st_off -= BytesPerInt;
3644        con = intcon[0];
3645        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3646          assert(st_off >= header_size, "still ignoring header");
3647          assert(get_store_offset(st, phase) == st_off, "must be");
3648          assert(in(i-1) == zmem, "must be");
3649          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3650          assert(con == tcon->is_int()->get_con(), "must be");
3651          // Undo the effects of the previous loop trip, which swallowed st:
3652          intcon[0] = 0;        // undo store_constant()
3653          set_req(i-1, st);     // undo set_req(i, zmem)
3654          nodes[j] = NULL;      // undo nodes[j] = st
3655          --old_subword;        // undo ++old_subword
3656        }
3657        continue;               // This StoreI is already optimal.
3658      }
3659    }
3660
3661    // This store is not needed.
3662    set_req(i, zmem);
3663    nodes[j] = st;              // record for the moment
3664    if (st_size < BytesPerLong) // something has changed
3665          ++old_subword;        // includes int/float, but who's counting...
3666    else  ++old_long;
3667  }
3668
3669  if ((old_subword + old_long) == 0)
3670    return;                     // nothing more to do
3671
3672  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3673  // Be sure to insert them before overlapping non-constant stores.
3674  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3675  for (int j = 0; j < num_tiles; j++) {
3676    jlong con  = tiles[j];
3677    jlong init = inits[j];
3678    if (con == 0)  continue;
3679    jint con0,  con1;           // split the constant, address-wise
3680    jint init0, init1;          // split the init map, address-wise
3681    { union { jlong con; jint intcon[2]; } u;
3682      u.con = con;
3683      con0  = u.intcon[0];
3684      con1  = u.intcon[1];
3685      u.con = init;
3686      init0 = u.intcon[0];
3687      init1 = u.intcon[1];
3688    }
3689
3690    Node* old = nodes[j];
3691    assert(old != NULL, "need the prior store");
3692    intptr_t offset = (j * BytesPerLong);
3693
3694    bool split = !Matcher::isSimpleConstant64(con);
3695
3696    if (offset < header_size) {
3697      assert(offset + BytesPerInt >= header_size, "second int counts");
3698      assert(*(jint*)&tiles[j] == 0, "junk in header");
3699      split = true;             // only the second word counts
3700      // Example:  int a[] = { 42 ... }
3701    } else if (con0 == 0 && init0 == -1) {
3702      split = true;             // first word is covered by full inits
3703      // Example:  int a[] = { ... foo(), 42 ... }
3704    } else if (con1 == 0 && init1 == -1) {
3705      split = true;             // second word is covered by full inits
3706      // Example:  int a[] = { ... 42, foo() ... }
3707    }
3708
3709    // Here's a case where init0 is neither 0 nor -1:
3710    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3711    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3712    // In this case the tile is not split; it is (jlong)42.
3713    // The big tile is stored down, and then the foo() value is inserted.
3714    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3715
3716    Node* ctl = old->in(MemNode::Control);
3717    Node* adr = make_raw_address(offset, phase);
3718    const TypePtr* atp = TypeRawPtr::BOTTOM;
3719
3720    // One or two coalesced stores to plop down.
3721    Node*    st[2];
3722    intptr_t off[2];
3723    int  nst = 0;
3724    if (!split) {
3725      ++new_long;
3726      off[nst] = offset;
3727      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3728                                  phase->longcon(con), T_LONG, MemNode::unordered);
3729    } else {
3730      // Omit either if it is a zero.
3731      if (con0 != 0) {
3732        ++new_int;
3733        off[nst]  = offset;
3734        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3735                                    phase->intcon(con0), T_INT, MemNode::unordered);
3736      }
3737      if (con1 != 0) {
3738        ++new_int;
3739        offset += BytesPerInt;
3740        adr = make_raw_address(offset, phase);
3741        off[nst]  = offset;
3742        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3743                                    phase->intcon(con1), T_INT, MemNode::unordered);
3744      }
3745    }
3746
3747    // Insert second store first, then the first before the second.
3748    // Insert each one just before any overlapping non-constant stores.
3749    while (nst > 0) {
3750      Node* st1 = st[--nst];
3751      C->copy_node_notes_to(st1, old);
3752      st1 = phase->transform(st1);
3753      offset = off[nst];
3754      assert(offset >= header_size, "do not smash header");
3755      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3756      guarantee(ins_idx != 0, "must re-insert constant store");
3757      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3758      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3759        set_req(--ins_idx, st1);
3760      else
3761        ins_req(ins_idx, st1);
3762    }
3763  }
3764
3765  if (PrintCompilation && WizardMode)
3766    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3767                  old_subword, old_long, new_int, new_long);
3768  if (C->log() != NULL)
3769    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3770                   old_subword, old_long, new_int, new_long);
3771
3772  // Clean up any remaining occurrences of zmem:
3773  remove_extra_zeroes();
3774}
3775
3776// Explore forward from in(start) to find the first fully initialized
3777// word, and return its offset.  Skip groups of subword stores which
3778// together initialize full words.  If in(start) is itself part of a
3779// fully initialized word, return the offset of in(start).  If there
3780// are no following full-word stores, or if something is fishy, return
3781// a negative value.
3782intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3783  int       int_map = 0;
3784  intptr_t  int_map_off = 0;
3785  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3786
3787  for (uint i = start, limit = req(); i < limit; i++) {
3788    Node* st = in(i);
3789
3790    intptr_t st_off = get_store_offset(st, phase);
3791    if (st_off < 0)  break;  // return conservative answer
3792
3793    int st_size = st->as_Store()->memory_size();
3794    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3795      return st_off;            // we found a complete word init
3796    }
3797
3798    // update the map:
3799
3800    intptr_t this_int_off = align_down(st_off, BytesPerInt);
3801    if (this_int_off != int_map_off) {
3802      // reset the map:
3803      int_map = 0;
3804      int_map_off = this_int_off;
3805    }
3806
3807    int subword_off = st_off - this_int_off;
3808    int_map |= right_n_bits(st_size) << subword_off;
3809    if ((int_map & FULL_MAP) == FULL_MAP) {
3810      return this_int_off;      // we found a complete word init
3811    }
3812
3813    // Did this store hit or cross the word boundary?
3814    intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
3815    if (next_int_off == this_int_off + BytesPerInt) {
3816      // We passed the current int, without fully initializing it.
3817      int_map_off = next_int_off;
3818      int_map >>= BytesPerInt;
3819    } else if (next_int_off > this_int_off + BytesPerInt) {
3820      // We passed the current and next int.
3821      return this_int_off + BytesPerInt;
3822    }
3823  }
3824
3825  return -1;
3826}
3827
3828
3829// Called when the associated AllocateNode is expanded into CFG.
3830// At this point, we may perform additional optimizations.
3831// Linearize the stores by ascending offset, to make memory
3832// activity as coherent as possible.
3833Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3834                                      intptr_t header_size,
3835                                      Node* size_in_bytes,
3836                                      PhaseGVN* phase) {
3837  assert(!is_complete(), "not already complete");
3838  assert(stores_are_sane(phase), "");
3839  assert(allocation() != NULL, "must be present");
3840
3841  remove_extra_zeroes();
3842
3843  if (ReduceFieldZeroing || ReduceBulkZeroing)
3844    // reduce instruction count for common initialization patterns
3845    coalesce_subword_stores(header_size, size_in_bytes, phase);
3846
3847  Node* zmem = zero_memory();   // initially zero memory state
3848  Node* inits = zmem;           // accumulating a linearized chain of inits
3849  #ifdef ASSERT
3850  intptr_t first_offset = allocation()->minimum_header_size();
3851  intptr_t last_init_off = first_offset;  // previous init offset
3852  intptr_t last_init_end = first_offset;  // previous init offset+size
3853  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3854  #endif
3855  intptr_t zeroes_done = header_size;
3856
3857  bool do_zeroing = true;       // we might give up if inits are very sparse
3858  int  big_init_gaps = 0;       // how many large gaps have we seen?
3859
3860  if (UseTLAB && ZeroTLAB)  do_zeroing = false;
3861  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3862
3863  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3864    Node* st = in(i);
3865    intptr_t st_off = get_store_offset(st, phase);
3866    if (st_off < 0)
3867      break;                    // unknown junk in the inits
3868    if (st->in(MemNode::Memory) != zmem)
3869      break;                    // complicated store chains somehow in list
3870
3871    int st_size = st->as_Store()->memory_size();
3872    intptr_t next_init_off = st_off + st_size;
3873
3874    if (do_zeroing && zeroes_done < next_init_off) {
3875      // See if this store needs a zero before it or under it.
3876      intptr_t zeroes_needed = st_off;
3877
3878      if (st_size < BytesPerInt) {
3879        // Look for subword stores which only partially initialize words.
3880        // If we find some, we must lay down some word-level zeroes first,
3881        // underneath the subword stores.
3882        //
3883        // Examples:
3884        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3885        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3886        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3887        //
3888        // Note:  coalesce_subword_stores may have already done this,
3889        // if it was prompted by constant non-zero subword initializers.
3890        // But this case can still arise with non-constant stores.
3891
3892        intptr_t next_full_store = find_next_fullword_store(i, phase);
3893
3894        // In the examples above:
3895        //   in(i)          p   q   r   s     x   y     z
3896        //   st_off        12  13  14  15    12  13    14
3897        //   st_size        1   1   1   1     1   1     1
3898        //   next_full_s.  12  16  16  16    16  16    16
3899        //   z's_done      12  16  16  16    12  16    12
3900        //   z's_needed    12  16  16  16    16  16    16
3901        //   zsize          0   0   0   0     4   0     4
3902        if (next_full_store < 0) {
3903          // Conservative tack:  Zero to end of current word.
3904          zeroes_needed = align_up(zeroes_needed, BytesPerInt);
3905        } else {
3906          // Zero to beginning of next fully initialized word.
3907          // Or, don't zero at all, if we are already in that word.
3908          assert(next_full_store >= zeroes_needed, "must go forward");
3909          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3910          zeroes_needed = next_full_store;
3911        }
3912      }
3913
3914      if (zeroes_needed > zeroes_done) {
3915        intptr_t zsize = zeroes_needed - zeroes_done;
3916        // Do some incremental zeroing on rawmem, in parallel with inits.
3917        zeroes_done = align_down(zeroes_done, BytesPerInt);
3918        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3919                                              zeroes_done, zeroes_needed,
3920                                              phase);
3921        zeroes_done = zeroes_needed;
3922        if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
3923          do_zeroing = false;   // leave the hole, next time
3924      }
3925    }
3926
3927    // Collect the store and move on:
3928    st->set_req(MemNode::Memory, inits);
3929    inits = st;                 // put it on the linearized chain
3930    set_req(i, zmem);           // unhook from previous position
3931
3932    if (zeroes_done == st_off)
3933      zeroes_done = next_init_off;
3934
3935    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3936
3937    #ifdef ASSERT
3938    // Various order invariants.  Weaker than stores_are_sane because
3939    // a large constant tile can be filled in by smaller non-constant stores.
3940    assert(st_off >= last_init_off, "inits do not reverse");
3941    last_init_off = st_off;
3942    const Type* val = NULL;
3943    if (st_size >= BytesPerInt &&
3944        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3945        (int)val->basic_type() < (int)T_OBJECT) {
3946      assert(st_off >= last_tile_end, "tiles do not overlap");
3947      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3948      last_tile_end = MAX2(last_tile_end, next_init_off);
3949    } else {
3950      intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
3951      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3952      assert(st_off      >= last_init_end, "inits do not overlap");
3953      last_init_end = next_init_off;  // it's a non-tile
3954    }
3955    #endif //ASSERT
3956  }
3957
3958  remove_extra_zeroes();        // clear out all the zmems left over
3959  add_req(inits);
3960
3961  if (!(UseTLAB && ZeroTLAB)) {
3962    // If anything remains to be zeroed, zero it all now.
3963    zeroes_done = align_down(zeroes_done, BytesPerInt);
3964    // if it is the last unused 4 bytes of an instance, forget about it
3965    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3966    if (zeroes_done + BytesPerLong >= size_limit) {
3967      AllocateNode* alloc = allocation();
3968      assert(alloc != NULL, "must be present");
3969      if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
3970        Node* klass_node = alloc->in(AllocateNode::KlassNode);
3971        ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3972        if (zeroes_done == k->layout_helper())
3973          zeroes_done = size_limit;
3974      }
3975    }
3976    if (zeroes_done < size_limit) {
3977      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3978                                            zeroes_done, size_in_bytes, phase);
3979    }
3980  }
3981
3982  set_complete(phase);
3983  return rawmem;
3984}
3985
3986
3987#ifdef ASSERT
3988bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3989  if (is_complete())
3990    return true;                // stores could be anything at this point
3991  assert(allocation() != NULL, "must be present");
3992  intptr_t last_off = allocation()->minimum_header_size();
3993  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3994    Node* st = in(i);
3995    intptr_t st_off = get_store_offset(st, phase);
3996    if (st_off < 0)  continue;  // ignore dead garbage
3997    if (last_off > st_off) {
3998      tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
3999      this->dump(2);
4000      assert(false, "ascending store offsets");
4001      return false;
4002    }
4003    last_off = st_off + st->as_Store()->memory_size();
4004  }
4005  return true;
4006}
4007#endif //ASSERT
4008
4009
4010
4011
4012//============================MergeMemNode=====================================
4013//
4014// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4015// contributing store or call operations.  Each contributor provides the memory
4016// state for a particular "alias type" (see Compile::alias_type).  For example,
4017// if a MergeMem has an input X for alias category #6, then any memory reference
4018// to alias category #6 may use X as its memory state input, as an exact equivalent
4019// to using the MergeMem as a whole.
4020//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4021//
4022// (Here, the <N> notation gives the index of the relevant adr_type.)
4023//
4024// In one special case (and more cases in the future), alias categories overlap.
4025// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4026// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4027// it is exactly equivalent to that state W:
4028//   MergeMem(<Bot>: W) <==> W
4029//
4030// Usually, the merge has more than one input.  In that case, where inputs
4031// overlap (i.e., one is Bot), the narrower alias type determines the memory
4032// state for that type, and the wider alias type (Bot) fills in everywhere else:
4033//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4034//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4035//
4036// A merge can take a "wide" memory state as one of its narrow inputs.
4037// This simply means that the merge observes out only the relevant parts of
4038// the wide input.  That is, wide memory states arriving at narrow merge inputs
4039// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4040//
4041// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4042// and that memory slices "leak through":
4043//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4044//
4045// But, in such a cascade, repeated memory slices can "block the leak":
4046//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4047//
4048// In the last example, Y is not part of the combined memory state of the
4049// outermost MergeMem.  The system must, of course, prevent unschedulable
4050// memory states from arising, so you can be sure that the state Y is somehow
4051// a precursor to state Y'.
4052//
4053//
4054// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4055// of each MergeMemNode array are exactly the numerical alias indexes, including
4056// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4057// Compile::alias_type (and kin) produce and manage these indexes.
4058//
4059// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4060// (Note that this provides quick access to the top node inside MergeMem methods,
4061// without the need to reach out via TLS to Compile::current.)
4062//
4063// As a consequence of what was just described, a MergeMem that represents a full
4064// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4065// containing all alias categories.
4066//
4067// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4068//
4069// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4070// a memory state for the alias type <N>, or else the top node, meaning that
4071// there is no particular input for that alias type.  Note that the length of
4072// a MergeMem is variable, and may be extended at any time to accommodate new
4073// memory states at larger alias indexes.  When merges grow, they are of course
4074// filled with "top" in the unused in() positions.
4075//
4076// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4077// (Top was chosen because it works smoothly with passes like GCM.)
4078//
4079// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4080// the type of random VM bits like TLS references.)  Since it is always the
4081// first non-Bot memory slice, some low-level loops use it to initialize an
4082// index variable:  for (i = AliasIdxRaw; i < req(); i++).
4083//
4084//
4085// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4086// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4087// the memory state for alias type <N>, or (if there is no particular slice at <N>,
4088// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4089// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4090// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4091//
4092// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4093// really that different from the other memory inputs.  An abbreviation called
4094// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4095//
4096//
4097// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4098// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4099// that "emerges though" the base memory will be marked as excluding the alias types
4100// of the other (narrow-memory) copies which "emerged through" the narrow edges:
4101//
4102//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4103//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4104//
4105// This strange "subtraction" effect is necessary to ensure IGVN convergence.
4106// (It is currently unimplemented.)  As you can see, the resulting merge is
4107// actually a disjoint union of memory states, rather than an overlay.
4108//
4109
4110//------------------------------MergeMemNode-----------------------------------
4111Node* MergeMemNode::make_empty_memory() {
4112  Node* empty_memory = (Node*) Compile::current()->top();
4113  assert(empty_memory->is_top(), "correct sentinel identity");
4114  return empty_memory;
4115}
4116
4117MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4118  init_class_id(Class_MergeMem);
4119  // all inputs are nullified in Node::Node(int)
4120  // set_input(0, NULL);  // no control input
4121
4122  // Initialize the edges uniformly to top, for starters.
4123  Node* empty_mem = make_empty_memory();
4124  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4125    init_req(i,empty_mem);
4126  }
4127  assert(empty_memory() == empty_mem, "");
4128
4129  if( new_base != NULL && new_base->is_MergeMem() ) {
4130    MergeMemNode* mdef = new_base->as_MergeMem();
4131    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4132    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4133      mms.set_memory(mms.memory2());
4134    }
4135    assert(base_memory() == mdef->base_memory(), "");
4136  } else {
4137    set_base_memory(new_base);
4138  }
4139}
4140
4141// Make a new, untransformed MergeMem with the same base as 'mem'.
4142// If mem is itself a MergeMem, populate the result with the same edges.
4143MergeMemNode* MergeMemNode::make(Node* mem) {
4144  return new MergeMemNode(mem);
4145}
4146
4147//------------------------------cmp--------------------------------------------
4148uint MergeMemNode::hash() const { return NO_HASH; }
4149uint MergeMemNode::cmp( const Node &n ) const {
4150  return (&n == this);          // Always fail except on self
4151}
4152
4153//------------------------------Identity---------------------------------------
4154Node* MergeMemNode::Identity(PhaseGVN* phase) {
4155  // Identity if this merge point does not record any interesting memory
4156  // disambiguations.
4157  Node* base_mem = base_memory();
4158  Node* empty_mem = empty_memory();
4159  if (base_mem != empty_mem) {  // Memory path is not dead?
4160    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4161      Node* mem = in(i);
4162      if (mem != empty_mem && mem != base_mem) {
4163        return this;            // Many memory splits; no change
4164      }
4165    }
4166  }
4167  return base_mem;              // No memory splits; ID on the one true input
4168}
4169
4170//------------------------------Ideal------------------------------------------
4171// This method is invoked recursively on chains of MergeMem nodes
4172Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4173  // Remove chain'd MergeMems
4174  //
4175  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4176  // relative to the "in(Bot)".  Since we are patching both at the same time,
4177  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4178  // but rewrite each "in(i)" relative to the new "in(Bot)".
4179  Node *progress = NULL;
4180
4181
4182  Node* old_base = base_memory();
4183  Node* empty_mem = empty_memory();
4184  if (old_base == empty_mem)
4185    return NULL; // Dead memory path.
4186
4187  MergeMemNode* old_mbase;
4188  if (old_base != NULL && old_base->is_MergeMem())
4189    old_mbase = old_base->as_MergeMem();
4190  else
4191    old_mbase = NULL;
4192  Node* new_base = old_base;
4193
4194  // simplify stacked MergeMems in base memory
4195  if (old_mbase)  new_base = old_mbase->base_memory();
4196
4197  // the base memory might contribute new slices beyond my req()
4198  if (old_mbase)  grow_to_match(old_mbase);
4199
4200  // Look carefully at the base node if it is a phi.
4201  PhiNode* phi_base;
4202  if (new_base != NULL && new_base->is_Phi())
4203    phi_base = new_base->as_Phi();
4204  else
4205    phi_base = NULL;
4206
4207  Node*    phi_reg = NULL;
4208  uint     phi_len = (uint)-1;
4209  if (phi_base != NULL && !phi_base->is_copy()) {
4210    // do not examine phi if degraded to a copy
4211    phi_reg = phi_base->region();
4212    phi_len = phi_base->req();
4213    // see if the phi is unfinished
4214    for (uint i = 1; i < phi_len; i++) {
4215      if (phi_base->in(i) == NULL) {
4216        // incomplete phi; do not look at it yet!
4217        phi_reg = NULL;
4218        phi_len = (uint)-1;
4219        break;
4220      }
4221    }
4222  }
4223
4224  // Note:  We do not call verify_sparse on entry, because inputs
4225  // can normalize to the base_memory via subsume_node or similar
4226  // mechanisms.  This method repairs that damage.
4227
4228  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4229
4230  // Look at each slice.
4231  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4232    Node* old_in = in(i);
4233    // calculate the old memory value
4234    Node* old_mem = old_in;
4235    if (old_mem == empty_mem)  old_mem = old_base;
4236    assert(old_mem == memory_at(i), "");
4237
4238    // maybe update (reslice) the old memory value
4239
4240    // simplify stacked MergeMems
4241    Node* new_mem = old_mem;
4242    MergeMemNode* old_mmem;
4243    if (old_mem != NULL && old_mem->is_MergeMem())
4244      old_mmem = old_mem->as_MergeMem();
4245    else
4246      old_mmem = NULL;
4247    if (old_mmem == this) {
4248      // This can happen if loops break up and safepoints disappear.
4249      // A merge of BotPtr (default) with a RawPtr memory derived from a
4250      // safepoint can be rewritten to a merge of the same BotPtr with
4251      // the BotPtr phi coming into the loop.  If that phi disappears
4252      // also, we can end up with a self-loop of the mergemem.
4253      // In general, if loops degenerate and memory effects disappear,
4254      // a mergemem can be left looking at itself.  This simply means
4255      // that the mergemem's default should be used, since there is
4256      // no longer any apparent effect on this slice.
4257      // Note: If a memory slice is a MergeMem cycle, it is unreachable
4258      //       from start.  Update the input to TOP.
4259      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4260    }
4261    else if (old_mmem != NULL) {
4262      new_mem = old_mmem->memory_at(i);
4263    }
4264    // else preceding memory was not a MergeMem
4265
4266    // replace equivalent phis (unfortunately, they do not GVN together)
4267    if (new_mem != NULL && new_mem != new_base &&
4268        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4269      if (new_mem->is_Phi()) {
4270        PhiNode* phi_mem = new_mem->as_Phi();
4271        for (uint i = 1; i < phi_len; i++) {
4272          if (phi_base->in(i) != phi_mem->in(i)) {
4273            phi_mem = NULL;
4274            break;
4275          }
4276        }
4277        if (phi_mem != NULL) {
4278          // equivalent phi nodes; revert to the def
4279          new_mem = new_base;
4280        }
4281      }
4282    }
4283
4284    // maybe store down a new value
4285    Node* new_in = new_mem;
4286    if (new_in == new_base)  new_in = empty_mem;
4287
4288    if (new_in != old_in) {
4289      // Warning:  Do not combine this "if" with the previous "if"
4290      // A memory slice might have be be rewritten even if it is semantically
4291      // unchanged, if the base_memory value has changed.
4292      set_req(i, new_in);
4293      progress = this;          // Report progress
4294    }
4295  }
4296
4297  if (new_base != old_base) {
4298    set_req(Compile::AliasIdxBot, new_base);
4299    // Don't use set_base_memory(new_base), because we need to update du.
4300    assert(base_memory() == new_base, "");
4301    progress = this;
4302  }
4303
4304  if( base_memory() == this ) {
4305    // a self cycle indicates this memory path is dead
4306    set_req(Compile::AliasIdxBot, empty_mem);
4307  }
4308
4309  // Resolve external cycles by calling Ideal on a MergeMem base_memory
4310  // Recursion must occur after the self cycle check above
4311  if( base_memory()->is_MergeMem() ) {
4312    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4313    Node *m = phase->transform(new_mbase);  // Rollup any cycles
4314    if( m != NULL &&
4315        (m->is_top() ||
4316         (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4317      // propagate rollup of dead cycle to self
4318      set_req(Compile::AliasIdxBot, empty_mem);
4319    }
4320  }
4321
4322  if( base_memory() == empty_mem ) {
4323    progress = this;
4324    // Cut inputs during Parse phase only.
4325    // During Optimize phase a dead MergeMem node will be subsumed by Top.
4326    if( !can_reshape ) {
4327      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4328        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4329      }
4330    }
4331  }
4332
4333  if( !progress && base_memory()->is_Phi() && can_reshape ) {
4334    // Check if PhiNode::Ideal's "Split phis through memory merges"
4335    // transform should be attempted. Look for this->phi->this cycle.
4336    uint merge_width = req();
4337    if (merge_width > Compile::AliasIdxRaw) {
4338      PhiNode* phi = base_memory()->as_Phi();
4339      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4340        if (phi->in(i) == this) {
4341          phase->is_IterGVN()->_worklist.push(phi);
4342          break;
4343        }
4344      }
4345    }
4346  }
4347
4348  assert(progress || verify_sparse(), "please, no dups of base");
4349  return progress;
4350}
4351
4352//-------------------------set_base_memory-------------------------------------
4353void MergeMemNode::set_base_memory(Node *new_base) {
4354  Node* empty_mem = empty_memory();
4355  set_req(Compile::AliasIdxBot, new_base);
4356  assert(memory_at(req()) == new_base, "must set default memory");
4357  // Clear out other occurrences of new_base:
4358  if (new_base != empty_mem) {
4359    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4360      if (in(i) == new_base)  set_req(i, empty_mem);
4361    }
4362  }
4363}
4364
4365//------------------------------out_RegMask------------------------------------
4366const RegMask &MergeMemNode::out_RegMask() const {
4367  return RegMask::Empty;
4368}
4369
4370//------------------------------dump_spec--------------------------------------
4371#ifndef PRODUCT
4372void MergeMemNode::dump_spec(outputStream *st) const {
4373  st->print(" {");
4374  Node* base_mem = base_memory();
4375  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4376    Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4377    if (mem == base_mem) { st->print(" -"); continue; }
4378    st->print( " N%d:", mem->_idx );
4379    Compile::current()->get_adr_type(i)->dump_on(st);
4380  }
4381  st->print(" }");
4382}
4383#endif // !PRODUCT
4384
4385
4386#ifdef ASSERT
4387static bool might_be_same(Node* a, Node* b) {
4388  if (a == b)  return true;
4389  if (!(a->is_Phi() || b->is_Phi()))  return false;
4390  // phis shift around during optimization
4391  return true;  // pretty stupid...
4392}
4393
4394// verify a narrow slice (either incoming or outgoing)
4395static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4396  if (!VerifyAliases)                return;  // don't bother to verify unless requested
4397  if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4398  if (Node::in_dump())               return;  // muzzle asserts when printing
4399  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4400  assert(n != NULL, "");
4401  // Elide intervening MergeMem's
4402  while (n->is_MergeMem()) {
4403    n = n->as_MergeMem()->memory_at(alias_idx);
4404  }
4405  Compile* C = Compile::current();
4406  const TypePtr* n_adr_type = n->adr_type();
4407  if (n == m->empty_memory()) {
4408    // Implicit copy of base_memory()
4409  } else if (n_adr_type != TypePtr::BOTTOM) {
4410    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4411    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4412  } else {
4413    // A few places like make_runtime_call "know" that VM calls are narrow,
4414    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4415    bool expected_wide_mem = false;
4416    if (n == m->base_memory()) {
4417      expected_wide_mem = true;
4418    } else if (alias_idx == Compile::AliasIdxRaw ||
4419               n == m->memory_at(Compile::AliasIdxRaw)) {
4420      expected_wide_mem = true;
4421    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4422      // memory can "leak through" calls on channels that
4423      // are write-once.  Allow this also.
4424      expected_wide_mem = true;
4425    }
4426    assert(expected_wide_mem, "expected narrow slice replacement");
4427  }
4428}
4429#else // !ASSERT
4430#define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4431#endif
4432
4433
4434//-----------------------------memory_at---------------------------------------
4435Node* MergeMemNode::memory_at(uint alias_idx) const {
4436  assert(alias_idx >= Compile::AliasIdxRaw ||
4437         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4438         "must avoid base_memory and AliasIdxTop");
4439
4440  // Otherwise, it is a narrow slice.
4441  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4442  Compile *C = Compile::current();
4443  if (is_empty_memory(n)) {
4444    // the array is sparse; empty slots are the "top" node
4445    n = base_memory();
4446    assert(Node::in_dump()
4447           || n == NULL || n->bottom_type() == Type::TOP
4448           || n->adr_type() == NULL // address is TOP
4449           || n->adr_type() == TypePtr::BOTTOM
4450           || n->adr_type() == TypeRawPtr::BOTTOM
4451           || Compile::current()->AliasLevel() == 0,
4452           "must be a wide memory");
4453    // AliasLevel == 0 if we are organizing the memory states manually.
4454    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4455  } else {
4456    // make sure the stored slice is sane
4457    #ifdef ASSERT
4458    if (VMError::is_error_reported() || Node::in_dump()) {
4459    } else if (might_be_same(n, base_memory())) {
4460      // Give it a pass:  It is a mostly harmless repetition of the base.
4461      // This can arise normally from node subsumption during optimization.
4462    } else {
4463      verify_memory_slice(this, alias_idx, n);
4464    }
4465    #endif
4466  }
4467  return n;
4468}
4469
4470//---------------------------set_memory_at-------------------------------------
4471void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4472  verify_memory_slice(this, alias_idx, n);
4473  Node* empty_mem = empty_memory();
4474  if (n == base_memory())  n = empty_mem;  // collapse default
4475  uint need_req = alias_idx+1;
4476  if (req() < need_req) {
4477    if (n == empty_mem)  return;  // already the default, so do not grow me
4478    // grow the sparse array
4479    do {
4480      add_req(empty_mem);
4481    } while (req() < need_req);
4482  }
4483  set_req( alias_idx, n );
4484}
4485
4486
4487
4488//--------------------------iteration_setup------------------------------------
4489void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4490  if (other != NULL) {
4491    grow_to_match(other);
4492    // invariant:  the finite support of mm2 is within mm->req()
4493    #ifdef ASSERT
4494    for (uint i = req(); i < other->req(); i++) {
4495      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4496    }
4497    #endif
4498  }
4499  // Replace spurious copies of base_memory by top.
4500  Node* base_mem = base_memory();
4501  if (base_mem != NULL && !base_mem->is_top()) {
4502    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4503      if (in(i) == base_mem)
4504        set_req(i, empty_memory());
4505    }
4506  }
4507}
4508
4509//---------------------------grow_to_match-------------------------------------
4510void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4511  Node* empty_mem = empty_memory();
4512  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4513  // look for the finite support of the other memory
4514  for (uint i = other->req(); --i >= req(); ) {
4515    if (other->in(i) != empty_mem) {
4516      uint new_len = i+1;
4517      while (req() < new_len)  add_req(empty_mem);
4518      break;
4519    }
4520  }
4521}
4522
4523//---------------------------verify_sparse-------------------------------------
4524#ifndef PRODUCT
4525bool MergeMemNode::verify_sparse() const {
4526  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4527  Node* base_mem = base_memory();
4528  // The following can happen in degenerate cases, since empty==top.
4529  if (is_empty_memory(base_mem))  return true;
4530  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4531    assert(in(i) != NULL, "sane slice");
4532    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4533  }
4534  return true;
4535}
4536
4537bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4538  Node* n;
4539  n = mm->in(idx);
4540  if (mem == n)  return true;  // might be empty_memory()
4541  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4542  if (mem == n)  return true;
4543  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4544    if (mem == n)  return true;
4545    if (n == NULL)  break;
4546  }
4547  return false;
4548}
4549#endif // !PRODUCT
4550