memnode.cpp revision 579:0fbdb4381b99
1/*
2 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_memnode.cpp.incl"
31
32static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
33
34//=============================================================================
35uint MemNode::size_of() const { return sizeof(*this); }
36
37const TypePtr *MemNode::adr_type() const {
38  Node* adr = in(Address);
39  const TypePtr* cross_check = NULL;
40  DEBUG_ONLY(cross_check = _adr_type);
41  return calculate_adr_type(adr->bottom_type(), cross_check);
42}
43
44#ifndef PRODUCT
45void MemNode::dump_spec(outputStream *st) const {
46  if (in(Address) == NULL)  return; // node is dead
47#ifndef ASSERT
48  // fake the missing field
49  const TypePtr* _adr_type = NULL;
50  if (in(Address) != NULL)
51    _adr_type = in(Address)->bottom_type()->isa_ptr();
52#endif
53  dump_adr_type(this, _adr_type, st);
54
55  Compile* C = Compile::current();
56  if( C->alias_type(_adr_type)->is_volatile() )
57    st->print(" Volatile!");
58}
59
60void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
61  st->print(" @");
62  if (adr_type == NULL) {
63    st->print("NULL");
64  } else {
65    adr_type->dump_on(st);
66    Compile* C = Compile::current();
67    Compile::AliasType* atp = NULL;
68    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
69    if (atp == NULL)
70      st->print(", idx=?\?;");
71    else if (atp->index() == Compile::AliasIdxBot)
72      st->print(", idx=Bot;");
73    else if (atp->index() == Compile::AliasIdxTop)
74      st->print(", idx=Top;");
75    else if (atp->index() == Compile::AliasIdxRaw)
76      st->print(", idx=Raw;");
77    else {
78      ciField* field = atp->field();
79      if (field) {
80        st->print(", name=");
81        field->print_name_on(st);
82      }
83      st->print(", idx=%d;", atp->index());
84    }
85  }
86}
87
88extern void print_alias_types();
89
90#endif
91
92Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
93  const TypeOopPtr *tinst = t_adr->isa_oopptr();
94  if (tinst == NULL || !tinst->is_known_instance_field())
95    return mchain;  // don't try to optimize non-instance types
96  uint instance_id = tinst->instance_id();
97  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
98  Node *prev = NULL;
99  Node *result = mchain;
100  while (prev != result) {
101    prev = result;
102    if (result == start_mem)
103      break;  // hit one of our sentinals
104    // skip over a call which does not affect this memory slice
105    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
106      Node *proj_in = result->in(0);
107      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
108        break;  // hit one of our sentinals
109      } else if (proj_in->is_Call()) {
110        CallNode *call = proj_in->as_Call();
111        if (!call->may_modify(t_adr, phase)) {
112          result = call->in(TypeFunc::Memory);
113        }
114      } else if (proj_in->is_Initialize()) {
115        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
116        // Stop if this is the initialization for the object instance which
117        // which contains this memory slice, otherwise skip over it.
118        if (alloc != NULL && alloc->_idx != instance_id) {
119          result = proj_in->in(TypeFunc::Memory);
120        }
121      } else if (proj_in->is_MemBar()) {
122        result = proj_in->in(TypeFunc::Memory);
123      } else {
124        assert(false, "unexpected projection");
125      }
126    } else if (result->is_MergeMem()) {
127      result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
128    }
129  }
130  return result;
131}
132
133Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
134  const TypeOopPtr *t_oop = t_adr->isa_oopptr();
135  bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
136  PhaseIterGVN *igvn = phase->is_IterGVN();
137  Node *result = mchain;
138  result = optimize_simple_memory_chain(result, t_adr, phase);
139  if (is_instance && igvn != NULL  && result->is_Phi()) {
140    PhiNode *mphi = result->as_Phi();
141    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
142    const TypePtr *t = mphi->adr_type();
143    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
144        t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
145        t->is_oopptr()->cast_to_exactness(true)
146         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
147         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
148      // clone the Phi with our address type
149      result = mphi->split_out_instance(t_adr, igvn);
150    } else {
151      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
152    }
153  }
154  return result;
155}
156
157static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
158  uint alias_idx = phase->C->get_alias_index(tp);
159  Node *mem = mmem;
160#ifdef ASSERT
161  {
162    // Check that current type is consistent with the alias index used during graph construction
163    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
164    bool consistent =  adr_check == NULL || adr_check->empty() ||
165                       phase->C->must_alias(adr_check, alias_idx );
166    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
167    if( !consistent && adr_check != NULL && !adr_check->empty() &&
168               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
169        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
170        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
171          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
172          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
173      // don't assert if it is dead code.
174      consistent = true;
175    }
176    if( !consistent ) {
177      st->print("alias_idx==%d, adr_check==", alias_idx);
178      if( adr_check == NULL ) {
179        st->print("NULL");
180      } else {
181        adr_check->dump();
182      }
183      st->cr();
184      print_alias_types();
185      assert(consistent, "adr_check must match alias idx");
186    }
187  }
188#endif
189  // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
190  // means an array I have not precisely typed yet.  Do not do any
191  // alias stuff with it any time soon.
192  const TypeOopPtr *tinst = tp->isa_oopptr();
193  if( tp->base() != Type::AnyPtr &&
194      !(tinst &&
195        tinst->klass()->is_java_lang_Object() &&
196        tinst->offset() == Type::OffsetBot) ) {
197    // compress paths and change unreachable cycles to TOP
198    // If not, we can update the input infinitely along a MergeMem cycle
199    // Equivalent code in PhiNode::Ideal
200    Node* m  = phase->transform(mmem);
201    // If tranformed to a MergeMem, get the desired slice
202    // Otherwise the returned node represents memory for every slice
203    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
204    // Update input if it is progress over what we have now
205  }
206  return mem;
207}
208
209//--------------------------Ideal_common---------------------------------------
210// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
211// Unhook non-raw memories from complete (macro-expanded) initializations.
212Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
213  // If our control input is a dead region, kill all below the region
214  Node *ctl = in(MemNode::Control);
215  if (ctl && remove_dead_region(phase, can_reshape))
216    return this;
217  ctl = in(MemNode::Control);
218  // Don't bother trying to transform a dead node
219  if( ctl && ctl->is_top() )  return NodeSentinel;
220
221  // Ignore if memory is dead, or self-loop
222  Node *mem = in(MemNode::Memory);
223  if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
224  assert( mem != this, "dead loop in MemNode::Ideal" );
225
226  Node *address = in(MemNode::Address);
227  const Type *t_adr = phase->type( address );
228  if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
229
230  PhaseIterGVN *igvn = phase->is_IterGVN();
231  if( can_reshape && igvn != NULL && igvn->_worklist.member(address) ) {
232    // The address's base and type may change when the address is processed.
233    // Delay this mem node transformation until the address is processed.
234    phase->is_IterGVN()->_worklist.push(this);
235    return NodeSentinel; // caller will return NULL
236  }
237
238  // Avoid independent memory operations
239  Node* old_mem = mem;
240
241  // The code which unhooks non-raw memories from complete (macro-expanded)
242  // initializations was removed. After macro-expansion all stores catched
243  // by Initialize node became raw stores and there is no information
244  // which memory slices they modify. So it is unsafe to move any memory
245  // operation above these stores. Also in most cases hooked non-raw memories
246  // were already unhooked by using information from detect_ptr_independence()
247  // and find_previous_store().
248
249  if (mem->is_MergeMem()) {
250    MergeMemNode* mmem = mem->as_MergeMem();
251    const TypePtr *tp = t_adr->is_ptr();
252
253    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
254  }
255
256  if (mem != old_mem) {
257    set_req(MemNode::Memory, mem);
258    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
259    return this;
260  }
261
262  // let the subclass continue analyzing...
263  return NULL;
264}
265
266// Helper function for proving some simple control dominations.
267// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
268// Already assumes that 'dom' is available at 'sub', and that 'sub'
269// is not a constant (dominated by the method's StartNode).
270// Used by MemNode::find_previous_store to prove that the
271// control input of a memory operation predates (dominates)
272// an allocation it wants to look past.
273bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
274  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
275    return false; // Conservative answer for dead code
276
277  // Check 'dom'. Skip Proj and CatchProj nodes.
278  dom = dom->find_exact_control(dom);
279  if (dom == NULL || dom->is_top())
280    return false; // Conservative answer for dead code
281
282  if (dom == sub) {
283    // For the case when, for example, 'sub' is Initialize and the original
284    // 'dom' is Proj node of the 'sub'.
285    return false;
286  }
287
288  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
289    return true;
290
291  // 'dom' dominates 'sub' if its control edge and control edges
292  // of all its inputs dominate or equal to sub's control edge.
293
294  // Currently 'sub' is either Allocate, Initialize or Start nodes.
295  // Or Region for the check in LoadNode::Ideal();
296  // 'sub' should have sub->in(0) != NULL.
297  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
298         sub->is_Region(), "expecting only these nodes");
299
300  // Get control edge of 'sub'.
301  Node* orig_sub = sub;
302  sub = sub->find_exact_control(sub->in(0));
303  if (sub == NULL || sub->is_top())
304    return false; // Conservative answer for dead code
305
306  assert(sub->is_CFG(), "expecting control");
307
308  if (sub == dom)
309    return true;
310
311  if (sub->is_Start() || sub->is_Root())
312    return false;
313
314  {
315    // Check all control edges of 'dom'.
316
317    ResourceMark rm;
318    Arena* arena = Thread::current()->resource_area();
319    Node_List nlist(arena);
320    Unique_Node_List dom_list(arena);
321
322    dom_list.push(dom);
323    bool only_dominating_controls = false;
324
325    for (uint next = 0; next < dom_list.size(); next++) {
326      Node* n = dom_list.at(next);
327      if (n == orig_sub)
328        return false; // One of dom's inputs dominated by sub.
329      if (!n->is_CFG() && n->pinned()) {
330        // Check only own control edge for pinned non-control nodes.
331        n = n->find_exact_control(n->in(0));
332        if (n == NULL || n->is_top())
333          return false; // Conservative answer for dead code
334        assert(n->is_CFG(), "expecting control");
335        dom_list.push(n);
336      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
337        only_dominating_controls = true;
338      } else if (n->is_CFG()) {
339        if (n->dominates(sub, nlist))
340          only_dominating_controls = true;
341        else
342          return false;
343      } else {
344        // First, own control edge.
345        Node* m = n->find_exact_control(n->in(0));
346        if (m != NULL) {
347          if (m->is_top())
348            return false; // Conservative answer for dead code
349          dom_list.push(m);
350        }
351        // Now, the rest of edges.
352        uint cnt = n->req();
353        for (uint i = 1; i < cnt; i++) {
354          m = n->find_exact_control(n->in(i));
355          if (m == NULL || m->is_top())
356            continue;
357          dom_list.push(m);
358        }
359      }
360    }
361    return only_dominating_controls;
362  }
363}
364
365//---------------------detect_ptr_independence---------------------------------
366// Used by MemNode::find_previous_store to prove that two base
367// pointers are never equal.
368// The pointers are accompanied by their associated allocations,
369// if any, which have been previously discovered by the caller.
370bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
371                                      Node* p2, AllocateNode* a2,
372                                      PhaseTransform* phase) {
373  // Attempt to prove that these two pointers cannot be aliased.
374  // They may both manifestly be allocations, and they should differ.
375  // Or, if they are not both allocations, they can be distinct constants.
376  // Otherwise, one is an allocation and the other a pre-existing value.
377  if (a1 == NULL && a2 == NULL) {           // neither an allocation
378    return (p1 != p2) && p1->is_Con() && p2->is_Con();
379  } else if (a1 != NULL && a2 != NULL) {    // both allocations
380    return (a1 != a2);
381  } else if (a1 != NULL) {                  // one allocation a1
382    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
383    return all_controls_dominate(p2, a1);
384  } else { //(a2 != NULL)                   // one allocation a2
385    return all_controls_dominate(p1, a2);
386  }
387  return false;
388}
389
390
391// The logic for reordering loads and stores uses four steps:
392// (a) Walk carefully past stores and initializations which we
393//     can prove are independent of this load.
394// (b) Observe that the next memory state makes an exact match
395//     with self (load or store), and locate the relevant store.
396// (c) Ensure that, if we were to wire self directly to the store,
397//     the optimizer would fold it up somehow.
398// (d) Do the rewiring, and return, depending on some other part of
399//     the optimizer to fold up the load.
400// This routine handles steps (a) and (b).  Steps (c) and (d) are
401// specific to loads and stores, so they are handled by the callers.
402// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
403//
404Node* MemNode::find_previous_store(PhaseTransform* phase) {
405  Node*         ctrl   = in(MemNode::Control);
406  Node*         adr    = in(MemNode::Address);
407  intptr_t      offset = 0;
408  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
409  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
410
411  if (offset == Type::OffsetBot)
412    return NULL;            // cannot unalias unless there are precise offsets
413
414  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
415
416  intptr_t size_in_bytes = memory_size();
417
418  Node* mem = in(MemNode::Memory);   // start searching here...
419
420  int cnt = 50;             // Cycle limiter
421  for (;;) {                // While we can dance past unrelated stores...
422    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
423
424    if (mem->is_Store()) {
425      Node* st_adr = mem->in(MemNode::Address);
426      intptr_t st_offset = 0;
427      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
428      if (st_base == NULL)
429        break;              // inscrutable pointer
430      if (st_offset != offset && st_offset != Type::OffsetBot) {
431        const int MAX_STORE = BytesPerLong;
432        if (st_offset >= offset + size_in_bytes ||
433            st_offset <= offset - MAX_STORE ||
434            st_offset <= offset - mem->as_Store()->memory_size()) {
435          // Success:  The offsets are provably independent.
436          // (You may ask, why not just test st_offset != offset and be done?
437          // The answer is that stores of different sizes can co-exist
438          // in the same sequence of RawMem effects.  We sometimes initialize
439          // a whole 'tile' of array elements with a single jint or jlong.)
440          mem = mem->in(MemNode::Memory);
441          continue;           // (a) advance through independent store memory
442        }
443      }
444      if (st_base != base &&
445          detect_ptr_independence(base, alloc,
446                                  st_base,
447                                  AllocateNode::Ideal_allocation(st_base, phase),
448                                  phase)) {
449        // Success:  The bases are provably independent.
450        mem = mem->in(MemNode::Memory);
451        continue;           // (a) advance through independent store memory
452      }
453
454      // (b) At this point, if the bases or offsets do not agree, we lose,
455      // since we have not managed to prove 'this' and 'mem' independent.
456      if (st_base == base && st_offset == offset) {
457        return mem;         // let caller handle steps (c), (d)
458      }
459
460    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
461      InitializeNode* st_init = mem->in(0)->as_Initialize();
462      AllocateNode*  st_alloc = st_init->allocation();
463      if (st_alloc == NULL)
464        break;              // something degenerated
465      bool known_identical = false;
466      bool known_independent = false;
467      if (alloc == st_alloc)
468        known_identical = true;
469      else if (alloc != NULL)
470        known_independent = true;
471      else if (all_controls_dominate(this, st_alloc))
472        known_independent = true;
473
474      if (known_independent) {
475        // The bases are provably independent: Either they are
476        // manifestly distinct allocations, or else the control
477        // of this load dominates the store's allocation.
478        int alias_idx = phase->C->get_alias_index(adr_type());
479        if (alias_idx == Compile::AliasIdxRaw) {
480          mem = st_alloc->in(TypeFunc::Memory);
481        } else {
482          mem = st_init->memory(alias_idx);
483        }
484        continue;           // (a) advance through independent store memory
485      }
486
487      // (b) at this point, if we are not looking at a store initializing
488      // the same allocation we are loading from, we lose.
489      if (known_identical) {
490        // From caller, can_see_stored_value will consult find_captured_store.
491        return mem;         // let caller handle steps (c), (d)
492      }
493
494    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
495      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
496      if (mem->is_Proj() && mem->in(0)->is_Call()) {
497        CallNode *call = mem->in(0)->as_Call();
498        if (!call->may_modify(addr_t, phase)) {
499          mem = call->in(TypeFunc::Memory);
500          continue;         // (a) advance through independent call memory
501        }
502      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
503        mem = mem->in(0)->in(TypeFunc::Memory);
504        continue;           // (a) advance through independent MemBar memory
505      } else if (mem->is_MergeMem()) {
506        int alias_idx = phase->C->get_alias_index(adr_type());
507        mem = mem->as_MergeMem()->memory_at(alias_idx);
508        continue;           // (a) advance through independent MergeMem memory
509      }
510    }
511
512    // Unless there is an explicit 'continue', we must bail out here,
513    // because 'mem' is an inscrutable memory state (e.g., a call).
514    break;
515  }
516
517  return NULL;              // bail out
518}
519
520//----------------------calculate_adr_type-------------------------------------
521// Helper function.  Notices when the given type of address hits top or bottom.
522// Also, asserts a cross-check of the type against the expected address type.
523const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
524  if (t == Type::TOP)  return NULL; // does not touch memory any more?
525  #ifdef PRODUCT
526  cross_check = NULL;
527  #else
528  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
529  #endif
530  const TypePtr* tp = t->isa_ptr();
531  if (tp == NULL) {
532    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
533    return TypePtr::BOTTOM;           // touches lots of memory
534  } else {
535    #ifdef ASSERT
536    // %%%% [phh] We don't check the alias index if cross_check is
537    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
538    if (cross_check != NULL &&
539        cross_check != TypePtr::BOTTOM &&
540        cross_check != TypeRawPtr::BOTTOM) {
541      // Recheck the alias index, to see if it has changed (due to a bug).
542      Compile* C = Compile::current();
543      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
544             "must stay in the original alias category");
545      // The type of the address must be contained in the adr_type,
546      // disregarding "null"-ness.
547      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
548      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
549      assert(cross_check->meet(tp_notnull) == cross_check,
550             "real address must not escape from expected memory type");
551    }
552    #endif
553    return tp;
554  }
555}
556
557//------------------------adr_phi_is_loop_invariant----------------------------
558// A helper function for Ideal_DU_postCCP to check if a Phi in a counted
559// loop is loop invariant. Make a quick traversal of Phi and associated
560// CastPP nodes, looking to see if they are a closed group within the loop.
561bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
562  // The idea is that the phi-nest must boil down to only CastPP nodes
563  // with the same data. This implies that any path into the loop already
564  // includes such a CastPP, and so the original cast, whatever its input,
565  // must be covered by an equivalent cast, with an earlier control input.
566  ResourceMark rm;
567
568  // The loop entry input of the phi should be the unique dominating
569  // node for every Phi/CastPP in the loop.
570  Unique_Node_List closure;
571  closure.push(adr_phi->in(LoopNode::EntryControl));
572
573  // Add the phi node and the cast to the worklist.
574  Unique_Node_List worklist;
575  worklist.push(adr_phi);
576  if( cast != NULL ){
577    if( !cast->is_ConstraintCast() ) return false;
578    worklist.push(cast);
579  }
580
581  // Begin recursive walk of phi nodes.
582  while( worklist.size() ){
583    // Take a node off the worklist
584    Node *n = worklist.pop();
585    if( !closure.member(n) ){
586      // Add it to the closure.
587      closure.push(n);
588      // Make a sanity check to ensure we don't waste too much time here.
589      if( closure.size() > 20) return false;
590      // This node is OK if:
591      //  - it is a cast of an identical value
592      //  - or it is a phi node (then we add its inputs to the worklist)
593      // Otherwise, the node is not OK, and we presume the cast is not invariant
594      if( n->is_ConstraintCast() ){
595        worklist.push(n->in(1));
596      } else if( n->is_Phi() ) {
597        for( uint i = 1; i < n->req(); i++ ) {
598          worklist.push(n->in(i));
599        }
600      } else {
601        return false;
602      }
603    }
604  }
605
606  // Quit when the worklist is empty, and we've found no offending nodes.
607  return true;
608}
609
610//------------------------------Ideal_DU_postCCP-------------------------------
611// Find any cast-away of null-ness and keep its control.  Null cast-aways are
612// going away in this pass and we need to make this memory op depend on the
613// gating null check.
614Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
615  return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
616}
617
618// I tried to leave the CastPP's in.  This makes the graph more accurate in
619// some sense; we get to keep around the knowledge that an oop is not-null
620// after some test.  Alas, the CastPP's interfere with GVN (some values are
621// the regular oop, some are the CastPP of the oop, all merge at Phi's which
622// cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
623// some of the more trivial cases in the optimizer.  Removing more useless
624// Phi's started allowing Loads to illegally float above null checks.  I gave
625// up on this approach.  CNC 10/20/2000
626// This static method may be called not from MemNode (EncodePNode calls it).
627// Only the control edge of the node 'n' might be updated.
628Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
629  Node *skipped_cast = NULL;
630  // Need a null check?  Regular static accesses do not because they are
631  // from constant addresses.  Array ops are gated by the range check (which
632  // always includes a NULL check).  Just check field ops.
633  if( n->in(MemNode::Control) == NULL ) {
634    // Scan upwards for the highest location we can place this memory op.
635    while( true ) {
636      switch( adr->Opcode() ) {
637
638      case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
639        adr = adr->in(AddPNode::Base);
640        continue;
641
642      case Op_DecodeN:         // No change to NULL-ness, so peek thru
643        adr = adr->in(1);
644        continue;
645
646      case Op_CastPP:
647        // If the CastPP is useless, just peek on through it.
648        if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
649          // Remember the cast that we've peeked though. If we peek
650          // through more than one, then we end up remembering the highest
651          // one, that is, if in a loop, the one closest to the top.
652          skipped_cast = adr;
653          adr = adr->in(1);
654          continue;
655        }
656        // CastPP is going away in this pass!  We need this memory op to be
657        // control-dependent on the test that is guarding the CastPP.
658        ccp->hash_delete(n);
659        n->set_req(MemNode::Control, adr->in(0));
660        ccp->hash_insert(n);
661        return n;
662
663      case Op_Phi:
664        // Attempt to float above a Phi to some dominating point.
665        if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
666          // If we've already peeked through a Cast (which could have set the
667          // control), we can't float above a Phi, because the skipped Cast
668          // may not be loop invariant.
669          if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
670            adr = adr->in(1);
671            continue;
672          }
673        }
674
675        // Intentional fallthrough!
676
677        // No obvious dominating point.  The mem op is pinned below the Phi
678        // by the Phi itself.  If the Phi goes away (no true value is merged)
679        // then the mem op can float, but not indefinitely.  It must be pinned
680        // behind the controls leading to the Phi.
681      case Op_CheckCastPP:
682        // These usually stick around to change address type, however a
683        // useless one can be elided and we still need to pick up a control edge
684        if (adr->in(0) == NULL) {
685          // This CheckCastPP node has NO control and is likely useless. But we
686          // need check further up the ancestor chain for a control input to keep
687          // the node in place. 4959717.
688          skipped_cast = adr;
689          adr = adr->in(1);
690          continue;
691        }
692        ccp->hash_delete(n);
693        n->set_req(MemNode::Control, adr->in(0));
694        ccp->hash_insert(n);
695        return n;
696
697        // List of "safe" opcodes; those that implicitly block the memory
698        // op below any null check.
699      case Op_CastX2P:          // no null checks on native pointers
700      case Op_Parm:             // 'this' pointer is not null
701      case Op_LoadP:            // Loading from within a klass
702      case Op_LoadN:            // Loading from within a klass
703      case Op_LoadKlass:        // Loading from within a klass
704      case Op_LoadNKlass:       // Loading from within a klass
705      case Op_ConP:             // Loading from a klass
706      case Op_ConN:             // Loading from a klass
707      case Op_CreateEx:         // Sucking up the guts of an exception oop
708      case Op_Con:              // Reading from TLS
709      case Op_CMoveP:           // CMoveP is pinned
710      case Op_CMoveN:           // CMoveN is pinned
711        break;                  // No progress
712
713      case Op_Proj:             // Direct call to an allocation routine
714      case Op_SCMemProj:        // Memory state from store conditional ops
715#ifdef ASSERT
716        {
717          assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
718          const Node* call = adr->in(0);
719          if (call->is_CallJava()) {
720            const CallJavaNode* call_java = call->as_CallJava();
721            const TypeTuple *r = call_java->tf()->range();
722            assert(r->cnt() > TypeFunc::Parms, "must return value");
723            const Type* ret_type = r->field_at(TypeFunc::Parms);
724            assert(ret_type && ret_type->isa_ptr(), "must return pointer");
725            // We further presume that this is one of
726            // new_instance_Java, new_array_Java, or
727            // the like, but do not assert for this.
728          } else if (call->is_Allocate()) {
729            // similar case to new_instance_Java, etc.
730          } else if (!call->is_CallLeaf()) {
731            // Projections from fetch_oop (OSR) are allowed as well.
732            ShouldNotReachHere();
733          }
734        }
735#endif
736        break;
737      default:
738        ShouldNotReachHere();
739      }
740      break;
741    }
742  }
743
744  return  NULL;               // No progress
745}
746
747
748//=============================================================================
749uint LoadNode::size_of() const { return sizeof(*this); }
750uint LoadNode::cmp( const Node &n ) const
751{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
752const Type *LoadNode::bottom_type() const { return _type; }
753uint LoadNode::ideal_reg() const {
754  return Matcher::base2reg[_type->base()];
755}
756
757#ifndef PRODUCT
758void LoadNode::dump_spec(outputStream *st) const {
759  MemNode::dump_spec(st);
760  if( !Verbose && !WizardMode ) {
761    // standard dump does this in Verbose and WizardMode
762    st->print(" #"); _type->dump_on(st);
763  }
764}
765#endif
766
767
768//----------------------------LoadNode::make-----------------------------------
769// Polymorphic factory method:
770Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
771  Compile* C = gvn.C;
772
773  // sanity check the alias category against the created node type
774  assert(!(adr_type->isa_oopptr() &&
775           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
776         "use LoadKlassNode instead");
777  assert(!(adr_type->isa_aryptr() &&
778           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
779         "use LoadRangeNode instead");
780  switch (bt) {
781  case T_BOOLEAN:
782  case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
783  case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
784  case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
785  case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
786  case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
787  case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
788  case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
789  case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
790  case T_OBJECT:
791#ifdef _LP64
792    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
793      Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
794      return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
795    } else
796#endif
797    {
798      assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
799      return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
800    }
801  }
802  ShouldNotReachHere();
803  return (LoadNode*)NULL;
804}
805
806LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
807  bool require_atomic = true;
808  return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
809}
810
811
812
813
814//------------------------------hash-------------------------------------------
815uint LoadNode::hash() const {
816  // unroll addition of interesting fields
817  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
818}
819
820//---------------------------can_see_stored_value------------------------------
821// This routine exists to make sure this set of tests is done the same
822// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
823// will change the graph shape in a way which makes memory alive twice at the
824// same time (uses the Oracle model of aliasing), then some
825// LoadXNode::Identity will fold things back to the equivalence-class model
826// of aliasing.
827Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
828  Node* ld_adr = in(MemNode::Address);
829
830  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
831  Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
832  if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
833      atp->field() != NULL && !atp->field()->is_volatile()) {
834    uint alias_idx = atp->index();
835    bool final = atp->field()->is_final();
836    Node* result = NULL;
837    Node* current = st;
838    // Skip through chains of MemBarNodes checking the MergeMems for
839    // new states for the slice of this load.  Stop once any other
840    // kind of node is encountered.  Loads from final memory can skip
841    // through any kind of MemBar but normal loads shouldn't skip
842    // through MemBarAcquire since the could allow them to move out of
843    // a synchronized region.
844    while (current->is_Proj()) {
845      int opc = current->in(0)->Opcode();
846      if ((final && opc == Op_MemBarAcquire) ||
847          opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
848        Node* mem = current->in(0)->in(TypeFunc::Memory);
849        if (mem->is_MergeMem()) {
850          MergeMemNode* merge = mem->as_MergeMem();
851          Node* new_st = merge->memory_at(alias_idx);
852          if (new_st == merge->base_memory()) {
853            // Keep searching
854            current = merge->base_memory();
855            continue;
856          }
857          // Save the new memory state for the slice and fall through
858          // to exit.
859          result = new_st;
860        }
861      }
862      break;
863    }
864    if (result != NULL) {
865      st = result;
866    }
867  }
868
869
870  // Loop around twice in the case Load -> Initialize -> Store.
871  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
872  for (int trip = 0; trip <= 1; trip++) {
873
874    if (st->is_Store()) {
875      Node* st_adr = st->in(MemNode::Address);
876      if (!phase->eqv(st_adr, ld_adr)) {
877        // Try harder before giving up...  Match raw and non-raw pointers.
878        intptr_t st_off = 0;
879        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
880        if (alloc == NULL)       return NULL;
881        intptr_t ld_off = 0;
882        AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
883        if (alloc != allo2)      return NULL;
884        if (ld_off != st_off)    return NULL;
885        // At this point we have proven something like this setup:
886        //  A = Allocate(...)
887        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
888        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
889        // (Actually, we haven't yet proven the Q's are the same.)
890        // In other words, we are loading from a casted version of
891        // the same pointer-and-offset that we stored to.
892        // Thus, we are able to replace L by V.
893      }
894      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
895      if (store_Opcode() != st->Opcode())
896        return NULL;
897      return st->in(MemNode::ValueIn);
898    }
899
900    intptr_t offset = 0;  // scratch
901
902    // A load from a freshly-created object always returns zero.
903    // (This can happen after LoadNode::Ideal resets the load's memory input
904    // to find_captured_store, which returned InitializeNode::zero_memory.)
905    if (st->is_Proj() && st->in(0)->is_Allocate() &&
906        st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
907        offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
908      // return a zero value for the load's basic type
909      // (This is one of the few places where a generic PhaseTransform
910      // can create new nodes.  Think of it as lazily manifesting
911      // virtually pre-existing constants.)
912      return phase->zerocon(memory_type());
913    }
914
915    // A load from an initialization barrier can match a captured store.
916    if (st->is_Proj() && st->in(0)->is_Initialize()) {
917      InitializeNode* init = st->in(0)->as_Initialize();
918      AllocateNode* alloc = init->allocation();
919      if (alloc != NULL &&
920          alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
921        // examine a captured store value
922        st = init->find_captured_store(offset, memory_size(), phase);
923        if (st != NULL)
924          continue;             // take one more trip around
925      }
926    }
927
928    break;
929  }
930
931  return NULL;
932}
933
934//----------------------is_instance_field_load_with_local_phi------------------
935bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
936  if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
937      in(MemNode::Address)->is_AddP() ) {
938    const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
939    // Only instances.
940    if( t_oop != NULL && t_oop->is_known_instance_field() &&
941        t_oop->offset() != Type::OffsetBot &&
942        t_oop->offset() != Type::OffsetTop) {
943      return true;
944    }
945  }
946  return false;
947}
948
949//------------------------------Identity---------------------------------------
950// Loads are identity if previous store is to same address
951Node *LoadNode::Identity( PhaseTransform *phase ) {
952  // If the previous store-maker is the right kind of Store, and the store is
953  // to the same address, then we are equal to the value stored.
954  Node* mem = in(MemNode::Memory);
955  Node* value = can_see_stored_value(mem, phase);
956  if( value ) {
957    // byte, short & char stores truncate naturally.
958    // A load has to load the truncated value which requires
959    // some sort of masking operation and that requires an
960    // Ideal call instead of an Identity call.
961    if (memory_size() < BytesPerInt) {
962      // If the input to the store does not fit with the load's result type,
963      // it must be truncated via an Ideal call.
964      if (!phase->type(value)->higher_equal(phase->type(this)))
965        return this;
966    }
967    // (This works even when value is a Con, but LoadNode::Value
968    // usually runs first, producing the singleton type of the Con.)
969    return value;
970  }
971
972  // Search for an existing data phi which was generated before for the same
973  // instance's field to avoid infinite genertion of phis in a loop.
974  Node *region = mem->in(0);
975  if (is_instance_field_load_with_local_phi(region)) {
976    const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
977    int this_index  = phase->C->get_alias_index(addr_t);
978    int this_offset = addr_t->offset();
979    int this_id    = addr_t->is_oopptr()->instance_id();
980    const Type* this_type = bottom_type();
981    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
982      Node* phi = region->fast_out(i);
983      if (phi->is_Phi() && phi != mem &&
984          phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
985        return phi;
986      }
987    }
988  }
989
990  return this;
991}
992
993
994// Returns true if the AliasType refers to the field that holds the
995// cached box array.  Currently only handles the IntegerCache case.
996static bool is_autobox_cache(Compile::AliasType* atp) {
997  if (atp != NULL && atp->field() != NULL) {
998    ciField* field = atp->field();
999    ciSymbol* klass = field->holder()->name();
1000    if (field->name() == ciSymbol::cache_field_name() &&
1001        field->holder()->uses_default_loader() &&
1002        klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1003      return true;
1004    }
1005  }
1006  return false;
1007}
1008
1009// Fetch the base value in the autobox array
1010static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1011  if (atp != NULL && atp->field() != NULL) {
1012    ciField* field = atp->field();
1013    ciSymbol* klass = field->holder()->name();
1014    if (field->name() == ciSymbol::cache_field_name() &&
1015        field->holder()->uses_default_loader() &&
1016        klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1017      assert(field->is_constant(), "what?");
1018      ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1019      // Fetch the box object at the base of the array and get its value
1020      ciInstance* box = array->obj_at(0)->as_instance();
1021      ciInstanceKlass* ik = box->klass()->as_instance_klass();
1022      if (ik->nof_nonstatic_fields() == 1) {
1023        // This should be true nonstatic_field_at requires calling
1024        // nof_nonstatic_fields so check it anyway
1025        ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1026        cache_offset = c.as_int();
1027      }
1028      return true;
1029    }
1030  }
1031  return false;
1032}
1033
1034// Returns true if the AliasType refers to the value field of an
1035// autobox object.  Currently only handles Integer.
1036static bool is_autobox_object(Compile::AliasType* atp) {
1037  if (atp != NULL && atp->field() != NULL) {
1038    ciField* field = atp->field();
1039    ciSymbol* klass = field->holder()->name();
1040    if (field->name() == ciSymbol::value_name() &&
1041        field->holder()->uses_default_loader() &&
1042        klass == ciSymbol::java_lang_Integer()) {
1043      return true;
1044    }
1045  }
1046  return false;
1047}
1048
1049
1050// We're loading from an object which has autobox behaviour.
1051// If this object is result of a valueOf call we'll have a phi
1052// merging a newly allocated object and a load from the cache.
1053// We want to replace this load with the original incoming
1054// argument to the valueOf call.
1055Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1056  Node* base = in(Address)->in(AddPNode::Base);
1057  if (base->is_Phi() && base->req() == 3) {
1058    AllocateNode* allocation = NULL;
1059    int allocation_index = -1;
1060    int load_index = -1;
1061    for (uint i = 1; i < base->req(); i++) {
1062      allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1063      if (allocation != NULL) {
1064        allocation_index = i;
1065        load_index = 3 - allocation_index;
1066        break;
1067      }
1068    }
1069    LoadNode* load = NULL;
1070    if (allocation != NULL && base->in(load_index)->is_Load()) {
1071      load = base->in(load_index)->as_Load();
1072    }
1073    if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1074      // Push the loads from the phi that comes from valueOf up
1075      // through it to allow elimination of the loads and the recovery
1076      // of the original value.
1077      Node* mem_phi = in(Memory);
1078      Node* offset = in(Address)->in(AddPNode::Offset);
1079      Node* region = base->in(0);
1080
1081      Node* in1 = clone();
1082      Node* in1_addr = in1->in(Address)->clone();
1083      in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1084      in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1085      in1_addr->set_req(AddPNode::Offset, offset);
1086      in1->set_req(0, region->in(allocation_index));
1087      in1->set_req(Address, in1_addr);
1088      in1->set_req(Memory, mem_phi->in(allocation_index));
1089
1090      Node* in2 = clone();
1091      Node* in2_addr = in2->in(Address)->clone();
1092      in2_addr->set_req(AddPNode::Base, base->in(load_index));
1093      in2_addr->set_req(AddPNode::Address, base->in(load_index));
1094      in2_addr->set_req(AddPNode::Offset, offset);
1095      in2->set_req(0, region->in(load_index));
1096      in2->set_req(Address, in2_addr);
1097      in2->set_req(Memory, mem_phi->in(load_index));
1098
1099      in1_addr = phase->transform(in1_addr);
1100      in1 =      phase->transform(in1);
1101      in2_addr = phase->transform(in2_addr);
1102      in2 =      phase->transform(in2);
1103
1104      PhiNode* result = PhiNode::make_blank(region, this);
1105      result->set_req(allocation_index, in1);
1106      result->set_req(load_index, in2);
1107      return result;
1108    }
1109  } else if (base->is_Load()) {
1110    // Eliminate the load of Integer.value for integers from the cache
1111    // array by deriving the value from the index into the array.
1112    // Capture the offset of the load and then reverse the computation.
1113    Node* load_base = base->in(Address)->in(AddPNode::Base);
1114    if (load_base != NULL) {
1115      Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1116      intptr_t cache_offset;
1117      int shift = -1;
1118      Node* cache = NULL;
1119      if (is_autobox_cache(atp)) {
1120        shift  = exact_log2(type2aelembytes(T_OBJECT));
1121        cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1122      }
1123      if (cache != NULL && base->in(Address)->is_AddP()) {
1124        Node* elements[4];
1125        int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1126        int cache_low;
1127        if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1128          int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1129          // Add up all the offsets making of the address of the load
1130          Node* result = elements[0];
1131          for (int i = 1; i < count; i++) {
1132            result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1133          }
1134          // Remove the constant offset from the address and then
1135          // remove the scaling of the offset to recover the original index.
1136          result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1137          if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1138            // Peel the shift off directly but wrap it in a dummy node
1139            // since Ideal can't return existing nodes
1140            result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1141          } else {
1142            result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1143          }
1144#ifdef _LP64
1145          result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1146#endif
1147          return result;
1148        }
1149      }
1150    }
1151  }
1152  return NULL;
1153}
1154
1155//------------------------------split_through_phi------------------------------
1156// Split instance field load through Phi.
1157Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1158  Node* mem     = in(MemNode::Memory);
1159  Node* address = in(MemNode::Address);
1160  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1161  const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1162
1163  assert(mem->is_Phi() && (t_oop != NULL) &&
1164         t_oop->is_known_instance_field(), "invalide conditions");
1165
1166  Node *region = mem->in(0);
1167  if (region == NULL) {
1168    return NULL; // Wait stable graph
1169  }
1170  uint cnt = mem->req();
1171  for( uint i = 1; i < cnt; i++ ) {
1172    Node *in = mem->in(i);
1173    if( in == NULL ) {
1174      return NULL; // Wait stable graph
1175    }
1176  }
1177  // Check for loop invariant.
1178  if (cnt == 3) {
1179    for( uint i = 1; i < cnt; i++ ) {
1180      Node *in = mem->in(i);
1181      Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1182      if (m == mem) {
1183        set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1184        return this;
1185      }
1186    }
1187  }
1188  // Split through Phi (see original code in loopopts.cpp).
1189  assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1190
1191  // Do nothing here if Identity will find a value
1192  // (to avoid infinite chain of value phis generation).
1193  if ( !phase->eqv(this, this->Identity(phase)) )
1194    return NULL;
1195
1196  // Skip the split if the region dominates some control edge of the address.
1197  if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
1198    return NULL;
1199
1200  const Type* this_type = this->bottom_type();
1201  int this_index  = phase->C->get_alias_index(addr_t);
1202  int this_offset = addr_t->offset();
1203  int this_iid    = addr_t->is_oopptr()->instance_id();
1204  int wins = 0;
1205  PhaseIterGVN *igvn = phase->is_IterGVN();
1206  Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1207  for( uint i = 1; i < region->req(); i++ ) {
1208    Node *x;
1209    Node* the_clone = NULL;
1210    if( region->in(i) == phase->C->top() ) {
1211      x = phase->C->top();      // Dead path?  Use a dead data op
1212    } else {
1213      x = this->clone();        // Else clone up the data op
1214      the_clone = x;            // Remember for possible deletion.
1215      // Alter data node to use pre-phi inputs
1216      if( this->in(0) == region ) {
1217        x->set_req( 0, region->in(i) );
1218      } else {
1219        x->set_req( 0, NULL );
1220      }
1221      for( uint j = 1; j < this->req(); j++ ) {
1222        Node *in = this->in(j);
1223        if( in->is_Phi() && in->in(0) == region )
1224          x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
1225      }
1226    }
1227    // Check for a 'win' on some paths
1228    const Type *t = x->Value(igvn);
1229
1230    bool singleton = t->singleton();
1231
1232    // See comments in PhaseIdealLoop::split_thru_phi().
1233    if( singleton && t == Type::TOP ) {
1234      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1235    }
1236
1237    if( singleton ) {
1238      wins++;
1239      x = igvn->makecon(t);
1240    } else {
1241      // We now call Identity to try to simplify the cloned node.
1242      // Note that some Identity methods call phase->type(this).
1243      // Make sure that the type array is big enough for
1244      // our new node, even though we may throw the node away.
1245      // (This tweaking with igvn only works because x is a new node.)
1246      igvn->set_type(x, t);
1247      // If x is a TypeNode, capture any more-precise type permanently into Node
1248      // othewise it will be not updated during igvn->transform since
1249      // igvn->type(x) is set to x->Value() already.
1250      x->raise_bottom_type(t);
1251      Node *y = x->Identity(igvn);
1252      if( y != x ) {
1253        wins++;
1254        x = y;
1255      } else {
1256        y = igvn->hash_find(x);
1257        if( y ) {
1258          wins++;
1259          x = y;
1260        } else {
1261          // Else x is a new node we are keeping
1262          // We do not need register_new_node_with_optimizer
1263          // because set_type has already been called.
1264          igvn->_worklist.push(x);
1265        }
1266      }
1267    }
1268    if (x != the_clone && the_clone != NULL)
1269      igvn->remove_dead_node(the_clone);
1270    phi->set_req(i, x);
1271  }
1272  if( wins > 0 ) {
1273    // Record Phi
1274    igvn->register_new_node_with_optimizer(phi);
1275    return phi;
1276  }
1277  igvn->remove_dead_node(phi);
1278  return NULL;
1279}
1280
1281//------------------------------Ideal------------------------------------------
1282// If the load is from Field memory and the pointer is non-null, we can
1283// zero out the control input.
1284// If the offset is constant and the base is an object allocation,
1285// try to hook me up to the exact initializing store.
1286Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1287  Node* p = MemNode::Ideal_common(phase, can_reshape);
1288  if (p)  return (p == NodeSentinel) ? NULL : p;
1289
1290  Node* ctrl    = in(MemNode::Control);
1291  Node* address = in(MemNode::Address);
1292
1293  // Skip up past a SafePoint control.  Cannot do this for Stores because
1294  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1295  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1296      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1297    ctrl = ctrl->in(0);
1298    set_req(MemNode::Control,ctrl);
1299  }
1300
1301  // Check for useless control edge in some common special cases
1302  if (in(MemNode::Control) != NULL) {
1303    intptr_t ignore = 0;
1304    Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1305    if (base != NULL
1306        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1307        && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw
1308        && all_controls_dominate(base, phase->C->start())) {
1309      // A method-invariant, non-null address (constant or 'this' argument).
1310      set_req(MemNode::Control, NULL);
1311    }
1312  }
1313
1314  if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
1315    Node* base = in(Address)->in(AddPNode::Base);
1316    if (base != NULL) {
1317      Compile::AliasType* atp = phase->C->alias_type(adr_type());
1318      if (is_autobox_object(atp)) {
1319        Node* result = eliminate_autobox(phase);
1320        if (result != NULL) return result;
1321      }
1322    }
1323  }
1324
1325  Node* mem = in(MemNode::Memory);
1326  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1327
1328  if (addr_t != NULL) {
1329    // try to optimize our memory input
1330    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1331    if (opt_mem != mem) {
1332      set_req(MemNode::Memory, opt_mem);
1333      if (phase->type( opt_mem ) == Type::TOP) return NULL;
1334      return this;
1335    }
1336    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1337    if (can_reshape && opt_mem->is_Phi() &&
1338        (t_oop != NULL) && t_oop->is_known_instance_field()) {
1339      // Split instance field load through Phi.
1340      Node* result = split_through_phi(phase);
1341      if (result != NULL) return result;
1342    }
1343  }
1344
1345  // Check for prior store with a different base or offset; make Load
1346  // independent.  Skip through any number of them.  Bail out if the stores
1347  // are in an endless dead cycle and report no progress.  This is a key
1348  // transform for Reflection.  However, if after skipping through the Stores
1349  // we can't then fold up against a prior store do NOT do the transform as
1350  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1351  // array memory alive twice: once for the hoisted Load and again after the
1352  // bypassed Store.  This situation only works if EVERYBODY who does
1353  // anti-dependence work knows how to bypass.  I.e. we need all
1354  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1355  // the alias index stuff.  So instead, peek through Stores and IFF we can
1356  // fold up, do so.
1357  Node* prev_mem = find_previous_store(phase);
1358  // Steps (a), (b):  Walk past independent stores to find an exact match.
1359  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1360    // (c) See if we can fold up on the spot, but don't fold up here.
1361    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1362    // just return a prior value, which is done by Identity calls.
1363    if (can_see_stored_value(prev_mem, phase)) {
1364      // Make ready for step (d):
1365      set_req(MemNode::Memory, prev_mem);
1366      return this;
1367    }
1368  }
1369
1370  return NULL;                  // No further progress
1371}
1372
1373// Helper to recognize certain Klass fields which are invariant across
1374// some group of array types (e.g., int[] or all T[] where T < Object).
1375const Type*
1376LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1377                                 ciKlass* klass) const {
1378  if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1379    // The field is Klass::_modifier_flags.  Return its (constant) value.
1380    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1381    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1382    return TypeInt::make(klass->modifier_flags());
1383  }
1384  if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1385    // The field is Klass::_access_flags.  Return its (constant) value.
1386    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1387    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1388    return TypeInt::make(klass->access_flags());
1389  }
1390  if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
1391    // The field is Klass::_layout_helper.  Return its constant value if known.
1392    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1393    return TypeInt::make(klass->layout_helper());
1394  }
1395
1396  // No match.
1397  return NULL;
1398}
1399
1400//------------------------------Value-----------------------------------------
1401const Type *LoadNode::Value( PhaseTransform *phase ) const {
1402  // Either input is TOP ==> the result is TOP
1403  Node* mem = in(MemNode::Memory);
1404  const Type *t1 = phase->type(mem);
1405  if (t1 == Type::TOP)  return Type::TOP;
1406  Node* adr = in(MemNode::Address);
1407  const TypePtr* tp = phase->type(adr)->isa_ptr();
1408  if (tp == NULL || tp->empty())  return Type::TOP;
1409  int off = tp->offset();
1410  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1411
1412  // Try to guess loaded type from pointer type
1413  if (tp->base() == Type::AryPtr) {
1414    const Type *t = tp->is_aryptr()->elem();
1415    // Don't do this for integer types. There is only potential profit if
1416    // the element type t is lower than _type; that is, for int types, if _type is
1417    // more restrictive than t.  This only happens here if one is short and the other
1418    // char (both 16 bits), and in those cases we've made an intentional decision
1419    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1420    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1421    //
1422    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1423    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1424    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1425    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1426    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1427    // In fact, that could have been the original type of p1, and p1 could have
1428    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1429    // expression (LShiftL quux 3) independently optimized to the constant 8.
1430    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1431        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1432      // t might actually be lower than _type, if _type is a unique
1433      // concrete subclass of abstract class t.
1434      // Make sure the reference is not into the header, by comparing
1435      // the offset against the offset of the start of the array's data.
1436      // Different array types begin at slightly different offsets (12 vs. 16).
1437      // We choose T_BYTE as an example base type that is least restrictive
1438      // as to alignment, which will therefore produce the smallest
1439      // possible base offset.
1440      const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1441      if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1442        const Type* jt = t->join(_type);
1443        // In any case, do not allow the join, per se, to empty out the type.
1444        if (jt->empty() && !t->empty()) {
1445          // This can happen if a interface-typed array narrows to a class type.
1446          jt = _type;
1447        }
1448
1449        if (EliminateAutoBox) {
1450          // The pointers in the autobox arrays are always non-null
1451          Node* base = in(Address)->in(AddPNode::Base);
1452          if (base != NULL) {
1453            Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
1454            if (is_autobox_cache(atp)) {
1455              return jt->join(TypePtr::NOTNULL)->is_ptr();
1456            }
1457          }
1458        }
1459        return jt;
1460      }
1461    }
1462  } else if (tp->base() == Type::InstPtr) {
1463    assert( off != Type::OffsetBot ||
1464            // arrays can be cast to Objects
1465            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1466            // unsafe field access may not have a constant offset
1467            phase->C->has_unsafe_access(),
1468            "Field accesses must be precise" );
1469    // For oop loads, we expect the _type to be precise
1470  } else if (tp->base() == Type::KlassPtr) {
1471    assert( off != Type::OffsetBot ||
1472            // arrays can be cast to Objects
1473            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1474            // also allow array-loading from the primary supertype
1475            // array during subtype checks
1476            Opcode() == Op_LoadKlass,
1477            "Field accesses must be precise" );
1478    // For klass/static loads, we expect the _type to be precise
1479  }
1480
1481  const TypeKlassPtr *tkls = tp->isa_klassptr();
1482  if (tkls != NULL && !StressReflectiveCode) {
1483    ciKlass* klass = tkls->klass();
1484    if (klass->is_loaded() && tkls->klass_is_exact()) {
1485      // We are loading a field from a Klass metaobject whose identity
1486      // is known at compile time (the type is "exact" or "precise").
1487      // Check for fields we know are maintained as constants by the VM.
1488      if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
1489        // The field is Klass::_super_check_offset.  Return its (constant) value.
1490        // (Folds up type checking code.)
1491        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1492        return TypeInt::make(klass->super_check_offset());
1493      }
1494      // Compute index into primary_supers array
1495      juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1496      // Check for overflowing; use unsigned compare to handle the negative case.
1497      if( depth < ciKlass::primary_super_limit() ) {
1498        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1499        // (Folds up type checking code.)
1500        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1501        ciKlass *ss = klass->super_of_depth(depth);
1502        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1503      }
1504      const Type* aift = load_array_final_field(tkls, klass);
1505      if (aift != NULL)  return aift;
1506      if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
1507          && klass->is_array_klass()) {
1508        // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1509        // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1510        assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1511        return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1512      }
1513      if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
1514        // The field is Klass::_java_mirror.  Return its (constant) value.
1515        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1516        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1517        return TypeInstPtr::make(klass->java_mirror());
1518      }
1519    }
1520
1521    // We can still check if we are loading from the primary_supers array at a
1522    // shallow enough depth.  Even though the klass is not exact, entries less
1523    // than or equal to its super depth are correct.
1524    if (klass->is_loaded() ) {
1525      ciType *inner = klass->klass();
1526      while( inner->is_obj_array_klass() )
1527        inner = inner->as_obj_array_klass()->base_element_type();
1528      if( inner->is_instance_klass() &&
1529          !inner->as_instance_klass()->flags().is_interface() ) {
1530        // Compute index into primary_supers array
1531        juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1532        // Check for overflowing; use unsigned compare to handle the negative case.
1533        if( depth < ciKlass::primary_super_limit() &&
1534            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1535          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1536          // (Folds up type checking code.)
1537          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1538          ciKlass *ss = klass->super_of_depth(depth);
1539          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1540        }
1541      }
1542    }
1543
1544    // If the type is enough to determine that the thing is not an array,
1545    // we can give the layout_helper a positive interval type.
1546    // This will help short-circuit some reflective code.
1547    if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
1548        && !klass->is_array_klass() // not directly typed as an array
1549        && !klass->is_interface()  // specifically not Serializable & Cloneable
1550        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1551        ) {
1552      // Note:  When interfaces are reliable, we can narrow the interface
1553      // test to (klass != Serializable && klass != Cloneable).
1554      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1555      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1556      // The key property of this type is that it folds up tests
1557      // for array-ness, since it proves that the layout_helper is positive.
1558      // Thus, a generic value like the basic object layout helper works fine.
1559      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1560    }
1561  }
1562
1563  // If we are loading from a freshly-allocated object, produce a zero,
1564  // if the load is provably beyond the header of the object.
1565  // (Also allow a variable load from a fresh array to produce zero.)
1566  if (ReduceFieldZeroing) {
1567    Node* value = can_see_stored_value(mem,phase);
1568    if (value != NULL && value->is_Con())
1569      return value->bottom_type();
1570  }
1571
1572  const TypeOopPtr *tinst = tp->isa_oopptr();
1573  if (tinst != NULL && tinst->is_known_instance_field()) {
1574    // If we have an instance type and our memory input is the
1575    // programs's initial memory state, there is no matching store,
1576    // so just return a zero of the appropriate type
1577    Node *mem = in(MemNode::Memory);
1578    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1579      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1580      return Type::get_zero_type(_type->basic_type());
1581    }
1582  }
1583  return _type;
1584}
1585
1586//------------------------------match_edge-------------------------------------
1587// Do we Match on this edge index or not?  Match only the address.
1588uint LoadNode::match_edge(uint idx) const {
1589  return idx == MemNode::Address;
1590}
1591
1592//--------------------------LoadBNode::Ideal--------------------------------------
1593//
1594//  If the previous store is to the same address as this load,
1595//  and the value stored was larger than a byte, replace this load
1596//  with the value stored truncated to a byte.  If no truncation is
1597//  needed, the replacement is done in LoadNode::Identity().
1598//
1599Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1600  Node* mem = in(MemNode::Memory);
1601  Node* value = can_see_stored_value(mem,phase);
1602  if( value && !phase->type(value)->higher_equal( _type ) ) {
1603    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1604    return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1605  }
1606  // Identity call will handle the case where truncation is not needed.
1607  return LoadNode::Ideal(phase, can_reshape);
1608}
1609
1610//--------------------------LoadUSNode::Ideal-------------------------------------
1611//
1612//  If the previous store is to the same address as this load,
1613//  and the value stored was larger than a char, replace this load
1614//  with the value stored truncated to a char.  If no truncation is
1615//  needed, the replacement is done in LoadNode::Identity().
1616//
1617Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1618  Node* mem = in(MemNode::Memory);
1619  Node* value = can_see_stored_value(mem,phase);
1620  if( value && !phase->type(value)->higher_equal( _type ) )
1621    return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1622  // Identity call will handle the case where truncation is not needed.
1623  return LoadNode::Ideal(phase, can_reshape);
1624}
1625
1626//--------------------------LoadSNode::Ideal--------------------------------------
1627//
1628//  If the previous store is to the same address as this load,
1629//  and the value stored was larger than a short, replace this load
1630//  with the value stored truncated to a short.  If no truncation is
1631//  needed, the replacement is done in LoadNode::Identity().
1632//
1633Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1634  Node* mem = in(MemNode::Memory);
1635  Node* value = can_see_stored_value(mem,phase);
1636  if( value && !phase->type(value)->higher_equal( _type ) ) {
1637    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1638    return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1639  }
1640  // Identity call will handle the case where truncation is not needed.
1641  return LoadNode::Ideal(phase, can_reshape);
1642}
1643
1644//=============================================================================
1645//----------------------------LoadKlassNode::make------------------------------
1646// Polymorphic factory method:
1647Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1648  Compile* C = gvn.C;
1649  Node *ctl = NULL;
1650  // sanity check the alias category against the created node type
1651  const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
1652  assert(adr_type != NULL, "expecting TypeOopPtr");
1653#ifdef _LP64
1654  if (adr_type->is_ptr_to_narrowoop()) {
1655    Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
1656    return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
1657  }
1658#endif
1659  assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1660  return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
1661}
1662
1663//------------------------------Value------------------------------------------
1664const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1665  return klass_value_common(phase);
1666}
1667
1668const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1669  // Either input is TOP ==> the result is TOP
1670  const Type *t1 = phase->type( in(MemNode::Memory) );
1671  if (t1 == Type::TOP)  return Type::TOP;
1672  Node *adr = in(MemNode::Address);
1673  const Type *t2 = phase->type( adr );
1674  if (t2 == Type::TOP)  return Type::TOP;
1675  const TypePtr *tp = t2->is_ptr();
1676  if (TypePtr::above_centerline(tp->ptr()) ||
1677      tp->ptr() == TypePtr::Null)  return Type::TOP;
1678
1679  // Return a more precise klass, if possible
1680  const TypeInstPtr *tinst = tp->isa_instptr();
1681  if (tinst != NULL) {
1682    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1683    int offset = tinst->offset();
1684    if (ik == phase->C->env()->Class_klass()
1685        && (offset == java_lang_Class::klass_offset_in_bytes() ||
1686            offset == java_lang_Class::array_klass_offset_in_bytes())) {
1687      // We are loading a special hidden field from a Class mirror object,
1688      // the field which points to the VM's Klass metaobject.
1689      ciType* t = tinst->java_mirror_type();
1690      // java_mirror_type returns non-null for compile-time Class constants.
1691      if (t != NULL) {
1692        // constant oop => constant klass
1693        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1694          return TypeKlassPtr::make(ciArrayKlass::make(t));
1695        }
1696        if (!t->is_klass()) {
1697          // a primitive Class (e.g., int.class) has NULL for a klass field
1698          return TypePtr::NULL_PTR;
1699        }
1700        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1701        return TypeKlassPtr::make(t->as_klass());
1702      }
1703      // non-constant mirror, so we can't tell what's going on
1704    }
1705    if( !ik->is_loaded() )
1706      return _type;             // Bail out if not loaded
1707    if (offset == oopDesc::klass_offset_in_bytes()) {
1708      if (tinst->klass_is_exact()) {
1709        return TypeKlassPtr::make(ik);
1710      }
1711      // See if we can become precise: no subklasses and no interface
1712      // (Note:  We need to support verified interfaces.)
1713      if (!ik->is_interface() && !ik->has_subklass()) {
1714        //assert(!UseExactTypes, "this code should be useless with exact types");
1715        // Add a dependence; if any subclass added we need to recompile
1716        if (!ik->is_final()) {
1717          // %%% should use stronger assert_unique_concrete_subtype instead
1718          phase->C->dependencies()->assert_leaf_type(ik);
1719        }
1720        // Return precise klass
1721        return TypeKlassPtr::make(ik);
1722      }
1723
1724      // Return root of possible klass
1725      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1726    }
1727  }
1728
1729  // Check for loading klass from an array
1730  const TypeAryPtr *tary = tp->isa_aryptr();
1731  if( tary != NULL ) {
1732    ciKlass *tary_klass = tary->klass();
1733    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1734        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1735      if (tary->klass_is_exact()) {
1736        return TypeKlassPtr::make(tary_klass);
1737      }
1738      ciArrayKlass *ak = tary->klass()->as_array_klass();
1739      // If the klass is an object array, we defer the question to the
1740      // array component klass.
1741      if( ak->is_obj_array_klass() ) {
1742        assert( ak->is_loaded(), "" );
1743        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1744        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1745          ciInstanceKlass* ik = base_k->as_instance_klass();
1746          // See if we can become precise: no subklasses and no interface
1747          if (!ik->is_interface() && !ik->has_subklass()) {
1748            //assert(!UseExactTypes, "this code should be useless with exact types");
1749            // Add a dependence; if any subclass added we need to recompile
1750            if (!ik->is_final()) {
1751              phase->C->dependencies()->assert_leaf_type(ik);
1752            }
1753            // Return precise array klass
1754            return TypeKlassPtr::make(ak);
1755          }
1756        }
1757        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1758      } else {                  // Found a type-array?
1759        //assert(!UseExactTypes, "this code should be useless with exact types");
1760        assert( ak->is_type_array_klass(), "" );
1761        return TypeKlassPtr::make(ak); // These are always precise
1762      }
1763    }
1764  }
1765
1766  // Check for loading klass from an array klass
1767  const TypeKlassPtr *tkls = tp->isa_klassptr();
1768  if (tkls != NULL && !StressReflectiveCode) {
1769    ciKlass* klass = tkls->klass();
1770    if( !klass->is_loaded() )
1771      return _type;             // Bail out if not loaded
1772    if( klass->is_obj_array_klass() &&
1773        (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1774      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1775      // // Always returning precise element type is incorrect,
1776      // // e.g., element type could be object and array may contain strings
1777      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1778
1779      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1780      // according to the element type's subclassing.
1781      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1782    }
1783    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1784        (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1785      ciKlass* sup = klass->as_instance_klass()->super();
1786      // The field is Klass::_super.  Return its (constant) value.
1787      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1788      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1789    }
1790  }
1791
1792  // Bailout case
1793  return LoadNode::Value(phase);
1794}
1795
1796//------------------------------Identity---------------------------------------
1797// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1798// Also feed through the klass in Allocate(...klass...)._klass.
1799Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1800  return klass_identity_common(phase);
1801}
1802
1803Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
1804  Node* x = LoadNode::Identity(phase);
1805  if (x != this)  return x;
1806
1807  // Take apart the address into an oop and and offset.
1808  // Return 'this' if we cannot.
1809  Node*    adr    = in(MemNode::Address);
1810  intptr_t offset = 0;
1811  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1812  if (base == NULL)     return this;
1813  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1814  if (toop == NULL)     return this;
1815
1816  // We can fetch the klass directly through an AllocateNode.
1817  // This works even if the klass is not constant (clone or newArray).
1818  if (offset == oopDesc::klass_offset_in_bytes()) {
1819    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1820    if (allocated_klass != NULL) {
1821      return allocated_klass;
1822    }
1823  }
1824
1825  // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1826  // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1827  // See inline_native_Class_query for occurrences of these patterns.
1828  // Java Example:  x.getClass().isAssignableFrom(y)
1829  // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
1830  //
1831  // This improves reflective code, often making the Class
1832  // mirror go completely dead.  (Current exception:  Class
1833  // mirrors may appear in debug info, but we could clean them out by
1834  // introducing a new debug info operator for klassOop.java_mirror).
1835  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1836      && (offset == java_lang_Class::klass_offset_in_bytes() ||
1837          offset == java_lang_Class::array_klass_offset_in_bytes())) {
1838    // We are loading a special hidden field from a Class mirror,
1839    // the field which points to its Klass or arrayKlass metaobject.
1840    if (base->is_Load()) {
1841      Node* adr2 = base->in(MemNode::Address);
1842      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1843      if (tkls != NULL && !tkls->empty()
1844          && (tkls->klass()->is_instance_klass() ||
1845              tkls->klass()->is_array_klass())
1846          && adr2->is_AddP()
1847          ) {
1848        int mirror_field = Klass::java_mirror_offset_in_bytes();
1849        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1850          mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1851        }
1852        if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1853          return adr2->in(AddPNode::Base);
1854        }
1855      }
1856    }
1857  }
1858
1859  return this;
1860}
1861
1862
1863//------------------------------Value------------------------------------------
1864const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
1865  const Type *t = klass_value_common(phase);
1866  if (t == Type::TOP)
1867    return t;
1868
1869  return t->make_narrowoop();
1870}
1871
1872//------------------------------Identity---------------------------------------
1873// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
1874// Also feed through the klass in Allocate(...klass...)._klass.
1875Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
1876  Node *x = klass_identity_common(phase);
1877
1878  const Type *t = phase->type( x );
1879  if( t == Type::TOP ) return x;
1880  if( t->isa_narrowoop()) return x;
1881
1882  return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
1883}
1884
1885//------------------------------Value-----------------------------------------
1886const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
1887  // Either input is TOP ==> the result is TOP
1888  const Type *t1 = phase->type( in(MemNode::Memory) );
1889  if( t1 == Type::TOP ) return Type::TOP;
1890  Node *adr = in(MemNode::Address);
1891  const Type *t2 = phase->type( adr );
1892  if( t2 == Type::TOP ) return Type::TOP;
1893  const TypePtr *tp = t2->is_ptr();
1894  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
1895  const TypeAryPtr *tap = tp->isa_aryptr();
1896  if( !tap ) return _type;
1897  return tap->size();
1898}
1899
1900//-------------------------------Ideal---------------------------------------
1901// Feed through the length in AllocateArray(...length...)._length.
1902Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1903  Node* p = MemNode::Ideal_common(phase, can_reshape);
1904  if (p)  return (p == NodeSentinel) ? NULL : p;
1905
1906  // Take apart the address into an oop and and offset.
1907  // Return 'this' if we cannot.
1908  Node*    adr    = in(MemNode::Address);
1909  intptr_t offset = 0;
1910  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
1911  if (base == NULL)     return NULL;
1912  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1913  if (tary == NULL)     return NULL;
1914
1915  // We can fetch the length directly through an AllocateArrayNode.
1916  // This works even if the length is not constant (clone or newArray).
1917  if (offset == arrayOopDesc::length_offset_in_bytes()) {
1918    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
1919    if (alloc != NULL) {
1920      Node* allocated_length = alloc->Ideal_length();
1921      Node* len = alloc->make_ideal_length(tary, phase);
1922      if (allocated_length != len) {
1923        // New CastII improves on this.
1924        return len;
1925      }
1926    }
1927  }
1928
1929  return NULL;
1930}
1931
1932//------------------------------Identity---------------------------------------
1933// Feed through the length in AllocateArray(...length...)._length.
1934Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
1935  Node* x = LoadINode::Identity(phase);
1936  if (x != this)  return x;
1937
1938  // Take apart the address into an oop and and offset.
1939  // Return 'this' if we cannot.
1940  Node*    adr    = in(MemNode::Address);
1941  intptr_t offset = 0;
1942  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1943  if (base == NULL)     return this;
1944  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1945  if (tary == NULL)     return this;
1946
1947  // We can fetch the length directly through an AllocateArrayNode.
1948  // This works even if the length is not constant (clone or newArray).
1949  if (offset == arrayOopDesc::length_offset_in_bytes()) {
1950    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
1951    if (alloc != NULL) {
1952      Node* allocated_length = alloc->Ideal_length();
1953      // Do not allow make_ideal_length to allocate a CastII node.
1954      Node* len = alloc->make_ideal_length(tary, phase, false);
1955      if (allocated_length == len) {
1956        // Return allocated_length only if it would not be improved by a CastII.
1957        return allocated_length;
1958      }
1959    }
1960  }
1961
1962  return this;
1963
1964}
1965
1966//=============================================================================
1967//---------------------------StoreNode::make-----------------------------------
1968// Polymorphic factory method:
1969StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
1970  Compile* C = gvn.C;
1971
1972  switch (bt) {
1973  case T_BOOLEAN:
1974  case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
1975  case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
1976  case T_CHAR:
1977  case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
1978  case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
1979  case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
1980  case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
1981  case T_ADDRESS:
1982  case T_OBJECT:
1983#ifdef _LP64
1984    if (adr->bottom_type()->is_ptr_to_narrowoop() ||
1985        (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
1986         adr->bottom_type()->isa_rawptr())) {
1987      val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
1988      return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
1989    } else
1990#endif
1991    {
1992      return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
1993    }
1994  }
1995  ShouldNotReachHere();
1996  return (StoreNode*)NULL;
1997}
1998
1999StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2000  bool require_atomic = true;
2001  return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2002}
2003
2004
2005//--------------------------bottom_type----------------------------------------
2006const Type *StoreNode::bottom_type() const {
2007  return Type::MEMORY;
2008}
2009
2010//------------------------------hash-------------------------------------------
2011uint StoreNode::hash() const {
2012  // unroll addition of interesting fields
2013  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2014
2015  // Since they are not commoned, do not hash them:
2016  return NO_HASH;
2017}
2018
2019//------------------------------Ideal------------------------------------------
2020// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2021// When a store immediately follows a relevant allocation/initialization,
2022// try to capture it into the initialization, or hoist it above.
2023Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2024  Node* p = MemNode::Ideal_common(phase, can_reshape);
2025  if (p)  return (p == NodeSentinel) ? NULL : p;
2026
2027  Node* mem     = in(MemNode::Memory);
2028  Node* address = in(MemNode::Address);
2029
2030  // Back-to-back stores to same address?  Fold em up.
2031  // Generally unsafe if I have intervening uses...
2032  if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
2033    // Looking at a dead closed cycle of memory?
2034    assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2035
2036    assert(Opcode() == mem->Opcode() ||
2037           phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2038           "no mismatched stores, except on raw memory");
2039
2040    if (mem->outcnt() == 1 &&           // check for intervening uses
2041        mem->as_Store()->memory_size() <= this->memory_size()) {
2042      // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2043      // For example, 'mem' might be the final state at a conditional return.
2044      // Or, 'mem' might be used by some node which is live at the same time
2045      // 'this' is live, which might be unschedulable.  So, require exactly
2046      // ONE user, the 'this' store, until such time as we clone 'mem' for
2047      // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2048      if (can_reshape) {  // (%%% is this an anachronism?)
2049        set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2050                  phase->is_IterGVN());
2051      } else {
2052        // It's OK to do this in the parser, since DU info is always accurate,
2053        // and the parser always refers to nodes via SafePointNode maps.
2054        set_req(MemNode::Memory, mem->in(MemNode::Memory));
2055      }
2056      return this;
2057    }
2058  }
2059
2060  // Capture an unaliased, unconditional, simple store into an initializer.
2061  // Or, if it is independent of the allocation, hoist it above the allocation.
2062  if (ReduceFieldZeroing && /*can_reshape &&*/
2063      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2064    InitializeNode* init = mem->in(0)->as_Initialize();
2065    intptr_t offset = init->can_capture_store(this, phase);
2066    if (offset > 0) {
2067      Node* moved = init->capture_store(this, offset, phase);
2068      // If the InitializeNode captured me, it made a raw copy of me,
2069      // and I need to disappear.
2070      if (moved != NULL) {
2071        // %%% hack to ensure that Ideal returns a new node:
2072        mem = MergeMemNode::make(phase->C, mem);
2073        return mem;             // fold me away
2074      }
2075    }
2076  }
2077
2078  return NULL;                  // No further progress
2079}
2080
2081//------------------------------Value-----------------------------------------
2082const Type *StoreNode::Value( PhaseTransform *phase ) const {
2083  // Either input is TOP ==> the result is TOP
2084  const Type *t1 = phase->type( in(MemNode::Memory) );
2085  if( t1 == Type::TOP ) return Type::TOP;
2086  const Type *t2 = phase->type( in(MemNode::Address) );
2087  if( t2 == Type::TOP ) return Type::TOP;
2088  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2089  if( t3 == Type::TOP ) return Type::TOP;
2090  return Type::MEMORY;
2091}
2092
2093//------------------------------Identity---------------------------------------
2094// Remove redundant stores:
2095//   Store(m, p, Load(m, p)) changes to m.
2096//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2097Node *StoreNode::Identity( PhaseTransform *phase ) {
2098  Node* mem = in(MemNode::Memory);
2099  Node* adr = in(MemNode::Address);
2100  Node* val = in(MemNode::ValueIn);
2101
2102  // Load then Store?  Then the Store is useless
2103  if (val->is_Load() &&
2104      phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
2105      phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
2106      val->as_Load()->store_Opcode() == Opcode()) {
2107    return mem;
2108  }
2109
2110  // Two stores in a row of the same value?
2111  if (mem->is_Store() &&
2112      phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
2113      phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
2114      mem->Opcode() == Opcode()) {
2115    return mem;
2116  }
2117
2118  // Store of zero anywhere into a freshly-allocated object?
2119  // Then the store is useless.
2120  // (It must already have been captured by the InitializeNode.)
2121  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2122    // a newly allocated object is already all-zeroes everywhere
2123    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2124      return mem;
2125    }
2126
2127    // the store may also apply to zero-bits in an earlier object
2128    Node* prev_mem = find_previous_store(phase);
2129    // Steps (a), (b):  Walk past independent stores to find an exact match.
2130    if (prev_mem != NULL) {
2131      Node* prev_val = can_see_stored_value(prev_mem, phase);
2132      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2133        // prev_val and val might differ by a cast; it would be good
2134        // to keep the more informative of the two.
2135        return mem;
2136      }
2137    }
2138  }
2139
2140  return this;
2141}
2142
2143//------------------------------match_edge-------------------------------------
2144// Do we Match on this edge index or not?  Match only memory & value
2145uint StoreNode::match_edge(uint idx) const {
2146  return idx == MemNode::Address || idx == MemNode::ValueIn;
2147}
2148
2149//------------------------------cmp--------------------------------------------
2150// Do not common stores up together.  They generally have to be split
2151// back up anyways, so do not bother.
2152uint StoreNode::cmp( const Node &n ) const {
2153  return (&n == this);          // Always fail except on self
2154}
2155
2156//------------------------------Ideal_masked_input-----------------------------
2157// Check for a useless mask before a partial-word store
2158// (StoreB ... (AndI valIn conIa) )
2159// If (conIa & mask == mask) this simplifies to
2160// (StoreB ... (valIn) )
2161Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2162  Node *val = in(MemNode::ValueIn);
2163  if( val->Opcode() == Op_AndI ) {
2164    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2165    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2166      set_req(MemNode::ValueIn, val->in(1));
2167      return this;
2168    }
2169  }
2170  return NULL;
2171}
2172
2173
2174//------------------------------Ideal_sign_extended_input----------------------
2175// Check for useless sign-extension before a partial-word store
2176// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2177// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2178// (StoreB ... (valIn) )
2179Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2180  Node *val = in(MemNode::ValueIn);
2181  if( val->Opcode() == Op_RShiftI ) {
2182    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2183    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2184      Node *shl = val->in(1);
2185      if( shl->Opcode() == Op_LShiftI ) {
2186        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2187        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2188          set_req(MemNode::ValueIn, shl->in(1));
2189          return this;
2190        }
2191      }
2192    }
2193  }
2194  return NULL;
2195}
2196
2197//------------------------------value_never_loaded-----------------------------------
2198// Determine whether there are any possible loads of the value stored.
2199// For simplicity, we actually check if there are any loads from the
2200// address stored to, not just for loads of the value stored by this node.
2201//
2202bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2203  Node *adr = in(Address);
2204  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2205  if (adr_oop == NULL)
2206    return false;
2207  if (!adr_oop->is_known_instance_field())
2208    return false; // if not a distinct instance, there may be aliases of the address
2209  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2210    Node *use = adr->fast_out(i);
2211    int opc = use->Opcode();
2212    if (use->is_Load() || use->is_LoadStore()) {
2213      return false;
2214    }
2215  }
2216  return true;
2217}
2218
2219//=============================================================================
2220//------------------------------Ideal------------------------------------------
2221// If the store is from an AND mask that leaves the low bits untouched, then
2222// we can skip the AND operation.  If the store is from a sign-extension
2223// (a left shift, then right shift) we can skip both.
2224Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2225  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2226  if( progress != NULL ) return progress;
2227
2228  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2229  if( progress != NULL ) return progress;
2230
2231  // Finally check the default case
2232  return StoreNode::Ideal(phase, can_reshape);
2233}
2234
2235//=============================================================================
2236//------------------------------Ideal------------------------------------------
2237// If the store is from an AND mask that leaves the low bits untouched, then
2238// we can skip the AND operation
2239Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2240  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2241  if( progress != NULL ) return progress;
2242
2243  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2244  if( progress != NULL ) return progress;
2245
2246  // Finally check the default case
2247  return StoreNode::Ideal(phase, can_reshape);
2248}
2249
2250//=============================================================================
2251//------------------------------Identity---------------------------------------
2252Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2253  // No need to card mark when storing a null ptr
2254  Node* my_store = in(MemNode::OopStore);
2255  if (my_store->is_Store()) {
2256    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2257    if( t1 == TypePtr::NULL_PTR ) {
2258      return in(MemNode::Memory);
2259    }
2260  }
2261  return this;
2262}
2263
2264//------------------------------Value-----------------------------------------
2265const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2266  // Either input is TOP ==> the result is TOP
2267  const Type *t = phase->type( in(MemNode::Memory) );
2268  if( t == Type::TOP ) return Type::TOP;
2269  t = phase->type( in(MemNode::Address) );
2270  if( t == Type::TOP ) return Type::TOP;
2271  t = phase->type( in(MemNode::ValueIn) );
2272  if( t == Type::TOP ) return Type::TOP;
2273  // If extra input is TOP ==> the result is TOP
2274  t = phase->type( in(MemNode::OopStore) );
2275  if( t == Type::TOP ) return Type::TOP;
2276
2277  return StoreNode::Value( phase );
2278}
2279
2280
2281//=============================================================================
2282//----------------------------------SCMemProjNode------------------------------
2283const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2284{
2285  return bottom_type();
2286}
2287
2288//=============================================================================
2289LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2290  init_req(MemNode::Control, c  );
2291  init_req(MemNode::Memory , mem);
2292  init_req(MemNode::Address, adr);
2293  init_req(MemNode::ValueIn, val);
2294  init_req(         ExpectedIn, ex );
2295  init_class_id(Class_LoadStore);
2296
2297}
2298
2299//=============================================================================
2300//-------------------------------adr_type--------------------------------------
2301// Do we Match on this edge index or not?  Do not match memory
2302const TypePtr* ClearArrayNode::adr_type() const {
2303  Node *adr = in(3);
2304  return MemNode::calculate_adr_type(adr->bottom_type());
2305}
2306
2307//------------------------------match_edge-------------------------------------
2308// Do we Match on this edge index or not?  Do not match memory
2309uint ClearArrayNode::match_edge(uint idx) const {
2310  return idx > 1;
2311}
2312
2313//------------------------------Identity---------------------------------------
2314// Clearing a zero length array does nothing
2315Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2316  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2317}
2318
2319//------------------------------Idealize---------------------------------------
2320// Clearing a short array is faster with stores
2321Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2322  const int unit = BytesPerLong;
2323  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2324  if (!t)  return NULL;
2325  if (!t->is_con())  return NULL;
2326  intptr_t raw_count = t->get_con();
2327  intptr_t size = raw_count;
2328  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2329  // Clearing nothing uses the Identity call.
2330  // Negative clears are possible on dead ClearArrays
2331  // (see jck test stmt114.stmt11402.val).
2332  if (size <= 0 || size % unit != 0)  return NULL;
2333  intptr_t count = size / unit;
2334  // Length too long; use fast hardware clear
2335  if (size > Matcher::init_array_short_size)  return NULL;
2336  Node *mem = in(1);
2337  if( phase->type(mem)==Type::TOP ) return NULL;
2338  Node *adr = in(3);
2339  const Type* at = phase->type(adr);
2340  if( at==Type::TOP ) return NULL;
2341  const TypePtr* atp = at->isa_ptr();
2342  // adjust atp to be the correct array element address type
2343  if (atp == NULL)  atp = TypePtr::BOTTOM;
2344  else              atp = atp->add_offset(Type::OffsetBot);
2345  // Get base for derived pointer purposes
2346  if( adr->Opcode() != Op_AddP ) Unimplemented();
2347  Node *base = adr->in(1);
2348
2349  Node *zero = phase->makecon(TypeLong::ZERO);
2350  Node *off  = phase->MakeConX(BytesPerLong);
2351  mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2352  count--;
2353  while( count-- ) {
2354    mem = phase->transform(mem);
2355    adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2356    mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2357  }
2358  return mem;
2359}
2360
2361//----------------------------clear_memory-------------------------------------
2362// Generate code to initialize object storage to zero.
2363Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2364                                   intptr_t start_offset,
2365                                   Node* end_offset,
2366                                   PhaseGVN* phase) {
2367  Compile* C = phase->C;
2368  intptr_t offset = start_offset;
2369
2370  int unit = BytesPerLong;
2371  if ((offset % unit) != 0) {
2372    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2373    adr = phase->transform(adr);
2374    const TypePtr* atp = TypeRawPtr::BOTTOM;
2375    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2376    mem = phase->transform(mem);
2377    offset += BytesPerInt;
2378  }
2379  assert((offset % unit) == 0, "");
2380
2381  // Initialize the remaining stuff, if any, with a ClearArray.
2382  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2383}
2384
2385Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2386                                   Node* start_offset,
2387                                   Node* end_offset,
2388                                   PhaseGVN* phase) {
2389  if (start_offset == end_offset) {
2390    // nothing to do
2391    return mem;
2392  }
2393
2394  Compile* C = phase->C;
2395  int unit = BytesPerLong;
2396  Node* zbase = start_offset;
2397  Node* zend  = end_offset;
2398
2399  // Scale to the unit required by the CPU:
2400  if (!Matcher::init_array_count_is_in_bytes) {
2401    Node* shift = phase->intcon(exact_log2(unit));
2402    zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2403    zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2404  }
2405
2406  Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2407  Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2408
2409  // Bulk clear double-words
2410  Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2411  mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2412  return phase->transform(mem);
2413}
2414
2415Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2416                                   intptr_t start_offset,
2417                                   intptr_t end_offset,
2418                                   PhaseGVN* phase) {
2419  if (start_offset == end_offset) {
2420    // nothing to do
2421    return mem;
2422  }
2423
2424  Compile* C = phase->C;
2425  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2426  intptr_t done_offset = end_offset;
2427  if ((done_offset % BytesPerLong) != 0) {
2428    done_offset -= BytesPerInt;
2429  }
2430  if (done_offset > start_offset) {
2431    mem = clear_memory(ctl, mem, dest,
2432                       start_offset, phase->MakeConX(done_offset), phase);
2433  }
2434  if (done_offset < end_offset) { // emit the final 32-bit store
2435    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2436    adr = phase->transform(adr);
2437    const TypePtr* atp = TypeRawPtr::BOTTOM;
2438    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2439    mem = phase->transform(mem);
2440    done_offset += BytesPerInt;
2441  }
2442  assert(done_offset == end_offset, "");
2443  return mem;
2444}
2445
2446//=============================================================================
2447// Do we match on this edge? No memory edges
2448uint StrCompNode::match_edge(uint idx) const {
2449  return idx == 5 || idx == 6;
2450}
2451
2452//------------------------------Ideal------------------------------------------
2453// Return a node which is more "ideal" than the current node.  Strip out
2454// control copies
2455Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
2456  return remove_dead_region(phase, can_reshape) ? this : NULL;
2457}
2458
2459//------------------------------Ideal------------------------------------------
2460// Return a node which is more "ideal" than the current node.  Strip out
2461// control copies
2462Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
2463  return remove_dead_region(phase, can_reshape) ? this : NULL;
2464}
2465
2466
2467//=============================================================================
2468MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2469  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2470    _adr_type(C->get_adr_type(alias_idx))
2471{
2472  init_class_id(Class_MemBar);
2473  Node* top = C->top();
2474  init_req(TypeFunc::I_O,top);
2475  init_req(TypeFunc::FramePtr,top);
2476  init_req(TypeFunc::ReturnAdr,top);
2477  if (precedent != NULL)
2478    init_req(TypeFunc::Parms, precedent);
2479}
2480
2481//------------------------------cmp--------------------------------------------
2482uint MemBarNode::hash() const { return NO_HASH; }
2483uint MemBarNode::cmp( const Node &n ) const {
2484  return (&n == this);          // Always fail except on self
2485}
2486
2487//------------------------------make-------------------------------------------
2488MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2489  int len = Precedent + (pn == NULL? 0: 1);
2490  switch (opcode) {
2491  case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2492  case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2493  case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2494  case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2495  case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2496  default:                 ShouldNotReachHere(); return NULL;
2497  }
2498}
2499
2500//------------------------------Ideal------------------------------------------
2501// Return a node which is more "ideal" than the current node.  Strip out
2502// control copies
2503Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2504  return remove_dead_region(phase, can_reshape) ? this : NULL;
2505}
2506
2507//------------------------------Value------------------------------------------
2508const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2509  if( !in(0) ) return Type::TOP;
2510  if( phase->type(in(0)) == Type::TOP )
2511    return Type::TOP;
2512  return TypeTuple::MEMBAR;
2513}
2514
2515//------------------------------match------------------------------------------
2516// Construct projections for memory.
2517Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2518  switch (proj->_con) {
2519  case TypeFunc::Control:
2520  case TypeFunc::Memory:
2521    return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2522  }
2523  ShouldNotReachHere();
2524  return NULL;
2525}
2526
2527//===========================InitializeNode====================================
2528// SUMMARY:
2529// This node acts as a memory barrier on raw memory, after some raw stores.
2530// The 'cooked' oop value feeds from the Initialize, not the Allocation.
2531// The Initialize can 'capture' suitably constrained stores as raw inits.
2532// It can coalesce related raw stores into larger units (called 'tiles').
2533// It can avoid zeroing new storage for memory units which have raw inits.
2534// At macro-expansion, it is marked 'complete', and does not optimize further.
2535//
2536// EXAMPLE:
2537// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2538//   ctl = incoming control; mem* = incoming memory
2539// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2540// First allocate uninitialized memory and fill in the header:
2541//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2542//   ctl := alloc.Control; mem* := alloc.Memory*
2543//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2544// Then initialize to zero the non-header parts of the raw memory block:
2545//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2546//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2547// After the initialize node executes, the object is ready for service:
2548//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2549// Suppose its body is immediately initialized as {1,2}:
2550//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2551//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2552//   mem.SLICE(#short[*]) := store2
2553//
2554// DETAILS:
2555// An InitializeNode collects and isolates object initialization after
2556// an AllocateNode and before the next possible safepoint.  As a
2557// memory barrier (MemBarNode), it keeps critical stores from drifting
2558// down past any safepoint or any publication of the allocation.
2559// Before this barrier, a newly-allocated object may have uninitialized bits.
2560// After this barrier, it may be treated as a real oop, and GC is allowed.
2561//
2562// The semantics of the InitializeNode include an implicit zeroing of
2563// the new object from object header to the end of the object.
2564// (The object header and end are determined by the AllocateNode.)
2565//
2566// Certain stores may be added as direct inputs to the InitializeNode.
2567// These stores must update raw memory, and they must be to addresses
2568// derived from the raw address produced by AllocateNode, and with
2569// a constant offset.  They must be ordered by increasing offset.
2570// The first one is at in(RawStores), the last at in(req()-1).
2571// Unlike most memory operations, they are not linked in a chain,
2572// but are displayed in parallel as users of the rawmem output of
2573// the allocation.
2574//
2575// (See comments in InitializeNode::capture_store, which continue
2576// the example given above.)
2577//
2578// When the associated Allocate is macro-expanded, the InitializeNode
2579// may be rewritten to optimize collected stores.  A ClearArrayNode
2580// may also be created at that point to represent any required zeroing.
2581// The InitializeNode is then marked 'complete', prohibiting further
2582// capturing of nearby memory operations.
2583//
2584// During macro-expansion, all captured initializations which store
2585// constant values of 32 bits or smaller are coalesced (if advantagous)
2586// into larger 'tiles' 32 or 64 bits.  This allows an object to be
2587// initialized in fewer memory operations.  Memory words which are
2588// covered by neither tiles nor non-constant stores are pre-zeroed
2589// by explicit stores of zero.  (The code shape happens to do all
2590// zeroing first, then all other stores, with both sequences occurring
2591// in order of ascending offsets.)
2592//
2593// Alternatively, code may be inserted between an AllocateNode and its
2594// InitializeNode, to perform arbitrary initialization of the new object.
2595// E.g., the object copying intrinsics insert complex data transfers here.
2596// The initialization must then be marked as 'complete' disable the
2597// built-in zeroing semantics and the collection of initializing stores.
2598//
2599// While an InitializeNode is incomplete, reads from the memory state
2600// produced by it are optimizable if they match the control edge and
2601// new oop address associated with the allocation/initialization.
2602// They return a stored value (if the offset matches) or else zero.
2603// A write to the memory state, if it matches control and address,
2604// and if it is to a constant offset, may be 'captured' by the
2605// InitializeNode.  It is cloned as a raw memory operation and rewired
2606// inside the initialization, to the raw oop produced by the allocation.
2607// Operations on addresses which are provably distinct (e.g., to
2608// other AllocateNodes) are allowed to bypass the initialization.
2609//
2610// The effect of all this is to consolidate object initialization
2611// (both arrays and non-arrays, both piecewise and bulk) into a
2612// single location, where it can be optimized as a unit.
2613//
2614// Only stores with an offset less than TrackedInitializationLimit words
2615// will be considered for capture by an InitializeNode.  This puts a
2616// reasonable limit on the complexity of optimized initializations.
2617
2618//---------------------------InitializeNode------------------------------------
2619InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2620  : _is_complete(false),
2621    MemBarNode(C, adr_type, rawoop)
2622{
2623  init_class_id(Class_Initialize);
2624
2625  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2626  assert(in(RawAddress) == rawoop, "proper init");
2627  // Note:  allocation() can be NULL, for secondary initialization barriers
2628}
2629
2630// Since this node is not matched, it will be processed by the
2631// register allocator.  Declare that there are no constraints
2632// on the allocation of the RawAddress edge.
2633const RegMask &InitializeNode::in_RegMask(uint idx) const {
2634  // This edge should be set to top, by the set_complete.  But be conservative.
2635  if (idx == InitializeNode::RawAddress)
2636    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2637  return RegMask::Empty;
2638}
2639
2640Node* InitializeNode::memory(uint alias_idx) {
2641  Node* mem = in(Memory);
2642  if (mem->is_MergeMem()) {
2643    return mem->as_MergeMem()->memory_at(alias_idx);
2644  } else {
2645    // incoming raw memory is not split
2646    return mem;
2647  }
2648}
2649
2650bool InitializeNode::is_non_zero() {
2651  if (is_complete())  return false;
2652  remove_extra_zeroes();
2653  return (req() > RawStores);
2654}
2655
2656void InitializeNode::set_complete(PhaseGVN* phase) {
2657  assert(!is_complete(), "caller responsibility");
2658  _is_complete = true;
2659
2660  // After this node is complete, it contains a bunch of
2661  // raw-memory initializations.  There is no need for
2662  // it to have anything to do with non-raw memory effects.
2663  // Therefore, tell all non-raw users to re-optimize themselves,
2664  // after skipping the memory effects of this initialization.
2665  PhaseIterGVN* igvn = phase->is_IterGVN();
2666  if (igvn)  igvn->add_users_to_worklist(this);
2667}
2668
2669// convenience function
2670// return false if the init contains any stores already
2671bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2672  InitializeNode* init = initialization();
2673  if (init == NULL || init->is_complete())  return false;
2674  init->remove_extra_zeroes();
2675  // for now, if this allocation has already collected any inits, bail:
2676  if (init->is_non_zero())  return false;
2677  init->set_complete(phase);
2678  return true;
2679}
2680
2681void InitializeNode::remove_extra_zeroes() {
2682  if (req() == RawStores)  return;
2683  Node* zmem = zero_memory();
2684  uint fill = RawStores;
2685  for (uint i = fill; i < req(); i++) {
2686    Node* n = in(i);
2687    if (n->is_top() || n == zmem)  continue;  // skip
2688    if (fill < i)  set_req(fill, n);          // compact
2689    ++fill;
2690  }
2691  // delete any empty spaces created:
2692  while (fill < req()) {
2693    del_req(fill);
2694  }
2695}
2696
2697// Helper for remembering which stores go with which offsets.
2698intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
2699  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
2700  intptr_t offset = -1;
2701  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
2702                                               phase, offset);
2703  if (base == NULL)     return -1;  // something is dead,
2704  if (offset < 0)       return -1;  //        dead, dead
2705  return offset;
2706}
2707
2708// Helper for proving that an initialization expression is
2709// "simple enough" to be folded into an object initialization.
2710// Attempts to prove that a store's initial value 'n' can be captured
2711// within the initialization without creating a vicious cycle, such as:
2712//     { Foo p = new Foo(); p.next = p; }
2713// True for constants and parameters and small combinations thereof.
2714bool InitializeNode::detect_init_independence(Node* n,
2715                                              bool st_is_pinned,
2716                                              int& count) {
2717  if (n == NULL)      return true;   // (can this really happen?)
2718  if (n->is_Proj())   n = n->in(0);
2719  if (n == this)      return false;  // found a cycle
2720  if (n->is_Con())    return true;
2721  if (n->is_Start())  return true;   // params, etc., are OK
2722  if (n->is_Root())   return true;   // even better
2723
2724  Node* ctl = n->in(0);
2725  if (ctl != NULL && !ctl->is_top()) {
2726    if (ctl->is_Proj())  ctl = ctl->in(0);
2727    if (ctl == this)  return false;
2728
2729    // If we already know that the enclosing memory op is pinned right after
2730    // the init, then any control flow that the store has picked up
2731    // must have preceded the init, or else be equal to the init.
2732    // Even after loop optimizations (which might change control edges)
2733    // a store is never pinned *before* the availability of its inputs.
2734    if (!MemNode::all_controls_dominate(n, this))
2735      return false;                  // failed to prove a good control
2736
2737  }
2738
2739  // Check data edges for possible dependencies on 'this'.
2740  if ((count += 1) > 20)  return false;  // complexity limit
2741  for (uint i = 1; i < n->req(); i++) {
2742    Node* m = n->in(i);
2743    if (m == NULL || m == n || m->is_top())  continue;
2744    uint first_i = n->find_edge(m);
2745    if (i != first_i)  continue;  // process duplicate edge just once
2746    if (!detect_init_independence(m, st_is_pinned, count)) {
2747      return false;
2748    }
2749  }
2750
2751  return true;
2752}
2753
2754// Here are all the checks a Store must pass before it can be moved into
2755// an initialization.  Returns zero if a check fails.
2756// On success, returns the (constant) offset to which the store applies,
2757// within the initialized memory.
2758intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2759  const int FAIL = 0;
2760  if (st->req() != MemNode::ValueIn + 1)
2761    return FAIL;                // an inscrutable StoreNode (card mark?)
2762  Node* ctl = st->in(MemNode::Control);
2763  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2764    return FAIL;                // must be unconditional after the initialization
2765  Node* mem = st->in(MemNode::Memory);
2766  if (!(mem->is_Proj() && mem->in(0) == this))
2767    return FAIL;                // must not be preceded by other stores
2768  Node* adr = st->in(MemNode::Address);
2769  intptr_t offset;
2770  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2771  if (alloc == NULL)
2772    return FAIL;                // inscrutable address
2773  if (alloc != allocation())
2774    return FAIL;                // wrong allocation!  (store needs to float up)
2775  Node* val = st->in(MemNode::ValueIn);
2776  int complexity_count = 0;
2777  if (!detect_init_independence(val, true, complexity_count))
2778    return FAIL;                // stored value must be 'simple enough'
2779
2780  return offset;                // success
2781}
2782
2783// Find the captured store in(i) which corresponds to the range
2784// [start..start+size) in the initialized object.
2785// If there is one, return its index i.  If there isn't, return the
2786// negative of the index where it should be inserted.
2787// Return 0 if the queried range overlaps an initialization boundary
2788// or if dead code is encountered.
2789// If size_in_bytes is zero, do not bother with overlap checks.
2790int InitializeNode::captured_store_insertion_point(intptr_t start,
2791                                                   int size_in_bytes,
2792                                                   PhaseTransform* phase) {
2793  const int FAIL = 0, MAX_STORE = BytesPerLong;
2794
2795  if (is_complete())
2796    return FAIL;                // arraycopy got here first; punt
2797
2798  assert(allocation() != NULL, "must be present");
2799
2800  // no negatives, no header fields:
2801  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
2802
2803  // after a certain size, we bail out on tracking all the stores:
2804  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2805  if (start >= ti_limit)  return FAIL;
2806
2807  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
2808    if (i >= limit)  return -(int)i; // not found; here is where to put it
2809
2810    Node*    st     = in(i);
2811    intptr_t st_off = get_store_offset(st, phase);
2812    if (st_off < 0) {
2813      if (st != zero_memory()) {
2814        return FAIL;            // bail out if there is dead garbage
2815      }
2816    } else if (st_off > start) {
2817      // ...we are done, since stores are ordered
2818      if (st_off < start + size_in_bytes) {
2819        return FAIL;            // the next store overlaps
2820      }
2821      return -(int)i;           // not found; here is where to put it
2822    } else if (st_off < start) {
2823      if (size_in_bytes != 0 &&
2824          start < st_off + MAX_STORE &&
2825          start < st_off + st->as_Store()->memory_size()) {
2826        return FAIL;            // the previous store overlaps
2827      }
2828    } else {
2829      if (size_in_bytes != 0 &&
2830          st->as_Store()->memory_size() != size_in_bytes) {
2831        return FAIL;            // mismatched store size
2832      }
2833      return i;
2834    }
2835
2836    ++i;
2837  }
2838}
2839
2840// Look for a captured store which initializes at the offset 'start'
2841// with the given size.  If there is no such store, and no other
2842// initialization interferes, then return zero_memory (the memory
2843// projection of the AllocateNode).
2844Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
2845                                          PhaseTransform* phase) {
2846  assert(stores_are_sane(phase), "");
2847  int i = captured_store_insertion_point(start, size_in_bytes, phase);
2848  if (i == 0) {
2849    return NULL;                // something is dead
2850  } else if (i < 0) {
2851    return zero_memory();       // just primordial zero bits here
2852  } else {
2853    Node* st = in(i);           // here is the store at this position
2854    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
2855    return st;
2856  }
2857}
2858
2859// Create, as a raw pointer, an address within my new object at 'offset'.
2860Node* InitializeNode::make_raw_address(intptr_t offset,
2861                                       PhaseTransform* phase) {
2862  Node* addr = in(RawAddress);
2863  if (offset != 0) {
2864    Compile* C = phase->C;
2865    addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
2866                                                 phase->MakeConX(offset)) );
2867  }
2868  return addr;
2869}
2870
2871// Clone the given store, converting it into a raw store
2872// initializing a field or element of my new object.
2873// Caller is responsible for retiring the original store,
2874// with subsume_node or the like.
2875//
2876// From the example above InitializeNode::InitializeNode,
2877// here are the old stores to be captured:
2878//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2879//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2880//
2881// Here is the changed code; note the extra edges on init:
2882//   alloc = (Allocate ...)
2883//   rawoop = alloc.RawAddress
2884//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
2885//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
2886//   init = (Initialize alloc.Control alloc.Memory rawoop
2887//                      rawstore1 rawstore2)
2888//
2889Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
2890                                    PhaseTransform* phase) {
2891  assert(stores_are_sane(phase), "");
2892
2893  if (start < 0)  return NULL;
2894  assert(can_capture_store(st, phase) == start, "sanity");
2895
2896  Compile* C = phase->C;
2897  int size_in_bytes = st->memory_size();
2898  int i = captured_store_insertion_point(start, size_in_bytes, phase);
2899  if (i == 0)  return NULL;     // bail out
2900  Node* prev_mem = NULL;        // raw memory for the captured store
2901  if (i > 0) {
2902    prev_mem = in(i);           // there is a pre-existing store under this one
2903    set_req(i, C->top());       // temporarily disconnect it
2904    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
2905  } else {
2906    i = -i;                     // no pre-existing store
2907    prev_mem = zero_memory();   // a slice of the newly allocated object
2908    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
2909      set_req(--i, C->top());   // reuse this edge; it has been folded away
2910    else
2911      ins_req(i, C->top());     // build a new edge
2912  }
2913  Node* new_st = st->clone();
2914  new_st->set_req(MemNode::Control, in(Control));
2915  new_st->set_req(MemNode::Memory,  prev_mem);
2916  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
2917  new_st = phase->transform(new_st);
2918
2919  // At this point, new_st might have swallowed a pre-existing store
2920  // at the same offset, or perhaps new_st might have disappeared,
2921  // if it redundantly stored the same value (or zero to fresh memory).
2922
2923  // In any case, wire it in:
2924  set_req(i, new_st);
2925
2926  // The caller may now kill the old guy.
2927  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
2928  assert(check_st == new_st || check_st == NULL, "must be findable");
2929  assert(!is_complete(), "");
2930  return new_st;
2931}
2932
2933static bool store_constant(jlong* tiles, int num_tiles,
2934                           intptr_t st_off, int st_size,
2935                           jlong con) {
2936  if ((st_off & (st_size-1)) != 0)
2937    return false;               // strange store offset (assume size==2**N)
2938  address addr = (address)tiles + st_off;
2939  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
2940  switch (st_size) {
2941  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
2942  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
2943  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
2944  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
2945  default: return false;        // strange store size (detect size!=2**N here)
2946  }
2947  return true;                  // return success to caller
2948}
2949
2950// Coalesce subword constants into int constants and possibly
2951// into long constants.  The goal, if the CPU permits,
2952// is to initialize the object with a small number of 64-bit tiles.
2953// Also, convert floating-point constants to bit patterns.
2954// Non-constants are not relevant to this pass.
2955//
2956// In terms of the running example on InitializeNode::InitializeNode
2957// and InitializeNode::capture_store, here is the transformation
2958// of rawstore1 and rawstore2 into rawstore12:
2959//   alloc = (Allocate ...)
2960//   rawoop = alloc.RawAddress
2961//   tile12 = 0x00010002
2962//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
2963//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
2964//
2965void
2966InitializeNode::coalesce_subword_stores(intptr_t header_size,
2967                                        Node* size_in_bytes,
2968                                        PhaseGVN* phase) {
2969  Compile* C = phase->C;
2970
2971  assert(stores_are_sane(phase), "");
2972  // Note:  After this pass, they are not completely sane,
2973  // since there may be some overlaps.
2974
2975  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
2976
2977  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2978  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
2979  size_limit = MIN2(size_limit, ti_limit);
2980  size_limit = align_size_up(size_limit, BytesPerLong);
2981  int num_tiles = size_limit / BytesPerLong;
2982
2983  // allocate space for the tile map:
2984  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
2985  jlong  tiles_buf[small_len];
2986  Node*  nodes_buf[small_len];
2987  jlong  inits_buf[small_len];
2988  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
2989                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
2990  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
2991                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
2992  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
2993                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
2994  // tiles: exact bitwise model of all primitive constants
2995  // nodes: last constant-storing node subsumed into the tiles model
2996  // inits: which bytes (in each tile) are touched by any initializations
2997
2998  //// Pass A: Fill in the tile model with any relevant stores.
2999
3000  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3001  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3002  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3003  Node* zmem = zero_memory(); // initially zero memory state
3004  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3005    Node* st = in(i);
3006    intptr_t st_off = get_store_offset(st, phase);
3007
3008    // Figure out the store's offset and constant value:
3009    if (st_off < header_size)             continue; //skip (ignore header)
3010    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3011    int st_size = st->as_Store()->memory_size();
3012    if (st_off + st_size > size_limit)    break;
3013
3014    // Record which bytes are touched, whether by constant or not.
3015    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3016      continue;                 // skip (strange store size)
3017
3018    const Type* val = phase->type(st->in(MemNode::ValueIn));
3019    if (!val->singleton())                continue; //skip (non-con store)
3020    BasicType type = val->basic_type();
3021
3022    jlong con = 0;
3023    switch (type) {
3024    case T_INT:    con = val->is_int()->get_con();  break;
3025    case T_LONG:   con = val->is_long()->get_con(); break;
3026    case T_FLOAT:  con = jint_cast(val->getf());    break;
3027    case T_DOUBLE: con = jlong_cast(val->getd());   break;
3028    default:                              continue; //skip (odd store type)
3029    }
3030
3031    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3032        st->Opcode() == Op_StoreL) {
3033      continue;                 // This StoreL is already optimal.
3034    }
3035
3036    // Store down the constant.
3037    store_constant(tiles, num_tiles, st_off, st_size, con);
3038
3039    intptr_t j = st_off >> LogBytesPerLong;
3040
3041    if (type == T_INT && st_size == BytesPerInt
3042        && (st_off & BytesPerInt) == BytesPerInt) {
3043      jlong lcon = tiles[j];
3044      if (!Matcher::isSimpleConstant64(lcon) &&
3045          st->Opcode() == Op_StoreI) {
3046        // This StoreI is already optimal by itself.
3047        jint* intcon = (jint*) &tiles[j];
3048        intcon[1] = 0;  // undo the store_constant()
3049
3050        // If the previous store is also optimal by itself, back up and
3051        // undo the action of the previous loop iteration... if we can.
3052        // But if we can't, just let the previous half take care of itself.
3053        st = nodes[j];
3054        st_off -= BytesPerInt;
3055        con = intcon[0];
3056        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3057          assert(st_off >= header_size, "still ignoring header");
3058          assert(get_store_offset(st, phase) == st_off, "must be");
3059          assert(in(i-1) == zmem, "must be");
3060          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3061          assert(con == tcon->is_int()->get_con(), "must be");
3062          // Undo the effects of the previous loop trip, which swallowed st:
3063          intcon[0] = 0;        // undo store_constant()
3064          set_req(i-1, st);     // undo set_req(i, zmem)
3065          nodes[j] = NULL;      // undo nodes[j] = st
3066          --old_subword;        // undo ++old_subword
3067        }
3068        continue;               // This StoreI is already optimal.
3069      }
3070    }
3071
3072    // This store is not needed.
3073    set_req(i, zmem);
3074    nodes[j] = st;              // record for the moment
3075    if (st_size < BytesPerLong) // something has changed
3076          ++old_subword;        // includes int/float, but who's counting...
3077    else  ++old_long;
3078  }
3079
3080  if ((old_subword + old_long) == 0)
3081    return;                     // nothing more to do
3082
3083  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3084  // Be sure to insert them before overlapping non-constant stores.
3085  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3086  for (int j = 0; j < num_tiles; j++) {
3087    jlong con  = tiles[j];
3088    jlong init = inits[j];
3089    if (con == 0)  continue;
3090    jint con0,  con1;           // split the constant, address-wise
3091    jint init0, init1;          // split the init map, address-wise
3092    { union { jlong con; jint intcon[2]; } u;
3093      u.con = con;
3094      con0  = u.intcon[0];
3095      con1  = u.intcon[1];
3096      u.con = init;
3097      init0 = u.intcon[0];
3098      init1 = u.intcon[1];
3099    }
3100
3101    Node* old = nodes[j];
3102    assert(old != NULL, "need the prior store");
3103    intptr_t offset = (j * BytesPerLong);
3104
3105    bool split = !Matcher::isSimpleConstant64(con);
3106
3107    if (offset < header_size) {
3108      assert(offset + BytesPerInt >= header_size, "second int counts");
3109      assert(*(jint*)&tiles[j] == 0, "junk in header");
3110      split = true;             // only the second word counts
3111      // Example:  int a[] = { 42 ... }
3112    } else if (con0 == 0 && init0 == -1) {
3113      split = true;             // first word is covered by full inits
3114      // Example:  int a[] = { ... foo(), 42 ... }
3115    } else if (con1 == 0 && init1 == -1) {
3116      split = true;             // second word is covered by full inits
3117      // Example:  int a[] = { ... 42, foo() ... }
3118    }
3119
3120    // Here's a case where init0 is neither 0 nor -1:
3121    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3122    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3123    // In this case the tile is not split; it is (jlong)42.
3124    // The big tile is stored down, and then the foo() value is inserted.
3125    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3126
3127    Node* ctl = old->in(MemNode::Control);
3128    Node* adr = make_raw_address(offset, phase);
3129    const TypePtr* atp = TypeRawPtr::BOTTOM;
3130
3131    // One or two coalesced stores to plop down.
3132    Node*    st[2];
3133    intptr_t off[2];
3134    int  nst = 0;
3135    if (!split) {
3136      ++new_long;
3137      off[nst] = offset;
3138      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3139                                  phase->longcon(con), T_LONG);
3140    } else {
3141      // Omit either if it is a zero.
3142      if (con0 != 0) {
3143        ++new_int;
3144        off[nst]  = offset;
3145        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3146                                    phase->intcon(con0), T_INT);
3147      }
3148      if (con1 != 0) {
3149        ++new_int;
3150        offset += BytesPerInt;
3151        adr = make_raw_address(offset, phase);
3152        off[nst]  = offset;
3153        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3154                                    phase->intcon(con1), T_INT);
3155      }
3156    }
3157
3158    // Insert second store first, then the first before the second.
3159    // Insert each one just before any overlapping non-constant stores.
3160    while (nst > 0) {
3161      Node* st1 = st[--nst];
3162      C->copy_node_notes_to(st1, old);
3163      st1 = phase->transform(st1);
3164      offset = off[nst];
3165      assert(offset >= header_size, "do not smash header");
3166      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3167      guarantee(ins_idx != 0, "must re-insert constant store");
3168      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3169      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3170        set_req(--ins_idx, st1);
3171      else
3172        ins_req(ins_idx, st1);
3173    }
3174  }
3175
3176  if (PrintCompilation && WizardMode)
3177    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3178                  old_subword, old_long, new_int, new_long);
3179  if (C->log() != NULL)
3180    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3181                   old_subword, old_long, new_int, new_long);
3182
3183  // Clean up any remaining occurrences of zmem:
3184  remove_extra_zeroes();
3185}
3186
3187// Explore forward from in(start) to find the first fully initialized
3188// word, and return its offset.  Skip groups of subword stores which
3189// together initialize full words.  If in(start) is itself part of a
3190// fully initialized word, return the offset of in(start).  If there
3191// are no following full-word stores, or if something is fishy, return
3192// a negative value.
3193intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3194  int       int_map = 0;
3195  intptr_t  int_map_off = 0;
3196  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3197
3198  for (uint i = start, limit = req(); i < limit; i++) {
3199    Node* st = in(i);
3200
3201    intptr_t st_off = get_store_offset(st, phase);
3202    if (st_off < 0)  break;  // return conservative answer
3203
3204    int st_size = st->as_Store()->memory_size();
3205    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3206      return st_off;            // we found a complete word init
3207    }
3208
3209    // update the map:
3210
3211    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3212    if (this_int_off != int_map_off) {
3213      // reset the map:
3214      int_map = 0;
3215      int_map_off = this_int_off;
3216    }
3217
3218    int subword_off = st_off - this_int_off;
3219    int_map |= right_n_bits(st_size) << subword_off;
3220    if ((int_map & FULL_MAP) == FULL_MAP) {
3221      return this_int_off;      // we found a complete word init
3222    }
3223
3224    // Did this store hit or cross the word boundary?
3225    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3226    if (next_int_off == this_int_off + BytesPerInt) {
3227      // We passed the current int, without fully initializing it.
3228      int_map_off = next_int_off;
3229      int_map >>= BytesPerInt;
3230    } else if (next_int_off > this_int_off + BytesPerInt) {
3231      // We passed the current and next int.
3232      return this_int_off + BytesPerInt;
3233    }
3234  }
3235
3236  return -1;
3237}
3238
3239
3240// Called when the associated AllocateNode is expanded into CFG.
3241// At this point, we may perform additional optimizations.
3242// Linearize the stores by ascending offset, to make memory
3243// activity as coherent as possible.
3244Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3245                                      intptr_t header_size,
3246                                      Node* size_in_bytes,
3247                                      PhaseGVN* phase) {
3248  assert(!is_complete(), "not already complete");
3249  assert(stores_are_sane(phase), "");
3250  assert(allocation() != NULL, "must be present");
3251
3252  remove_extra_zeroes();
3253
3254  if (ReduceFieldZeroing || ReduceBulkZeroing)
3255    // reduce instruction count for common initialization patterns
3256    coalesce_subword_stores(header_size, size_in_bytes, phase);
3257
3258  Node* zmem = zero_memory();   // initially zero memory state
3259  Node* inits = zmem;           // accumulating a linearized chain of inits
3260  #ifdef ASSERT
3261  intptr_t first_offset = allocation()->minimum_header_size();
3262  intptr_t last_init_off = first_offset;  // previous init offset
3263  intptr_t last_init_end = first_offset;  // previous init offset+size
3264  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3265  #endif
3266  intptr_t zeroes_done = header_size;
3267
3268  bool do_zeroing = true;       // we might give up if inits are very sparse
3269  int  big_init_gaps = 0;       // how many large gaps have we seen?
3270
3271  if (ZeroTLAB)  do_zeroing = false;
3272  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3273
3274  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3275    Node* st = in(i);
3276    intptr_t st_off = get_store_offset(st, phase);
3277    if (st_off < 0)
3278      break;                    // unknown junk in the inits
3279    if (st->in(MemNode::Memory) != zmem)
3280      break;                    // complicated store chains somehow in list
3281
3282    int st_size = st->as_Store()->memory_size();
3283    intptr_t next_init_off = st_off + st_size;
3284
3285    if (do_zeroing && zeroes_done < next_init_off) {
3286      // See if this store needs a zero before it or under it.
3287      intptr_t zeroes_needed = st_off;
3288
3289      if (st_size < BytesPerInt) {
3290        // Look for subword stores which only partially initialize words.
3291        // If we find some, we must lay down some word-level zeroes first,
3292        // underneath the subword stores.
3293        //
3294        // Examples:
3295        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3296        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3297        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3298        //
3299        // Note:  coalesce_subword_stores may have already done this,
3300        // if it was prompted by constant non-zero subword initializers.
3301        // But this case can still arise with non-constant stores.
3302
3303        intptr_t next_full_store = find_next_fullword_store(i, phase);
3304
3305        // In the examples above:
3306        //   in(i)          p   q   r   s     x   y     z
3307        //   st_off        12  13  14  15    12  13    14
3308        //   st_size        1   1   1   1     1   1     1
3309        //   next_full_s.  12  16  16  16    16  16    16
3310        //   z's_done      12  16  16  16    12  16    12
3311        //   z's_needed    12  16  16  16    16  16    16
3312        //   zsize          0   0   0   0     4   0     4
3313        if (next_full_store < 0) {
3314          // Conservative tack:  Zero to end of current word.
3315          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3316        } else {
3317          // Zero to beginning of next fully initialized word.
3318          // Or, don't zero at all, if we are already in that word.
3319          assert(next_full_store >= zeroes_needed, "must go forward");
3320          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3321          zeroes_needed = next_full_store;
3322        }
3323      }
3324
3325      if (zeroes_needed > zeroes_done) {
3326        intptr_t zsize = zeroes_needed - zeroes_done;
3327        // Do some incremental zeroing on rawmem, in parallel with inits.
3328        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3329        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3330                                              zeroes_done, zeroes_needed,
3331                                              phase);
3332        zeroes_done = zeroes_needed;
3333        if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3334          do_zeroing = false;   // leave the hole, next time
3335      }
3336    }
3337
3338    // Collect the store and move on:
3339    st->set_req(MemNode::Memory, inits);
3340    inits = st;                 // put it on the linearized chain
3341    set_req(i, zmem);           // unhook from previous position
3342
3343    if (zeroes_done == st_off)
3344      zeroes_done = next_init_off;
3345
3346    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3347
3348    #ifdef ASSERT
3349    // Various order invariants.  Weaker than stores_are_sane because
3350    // a large constant tile can be filled in by smaller non-constant stores.
3351    assert(st_off >= last_init_off, "inits do not reverse");
3352    last_init_off = st_off;
3353    const Type* val = NULL;
3354    if (st_size >= BytesPerInt &&
3355        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3356        (int)val->basic_type() < (int)T_OBJECT) {
3357      assert(st_off >= last_tile_end, "tiles do not overlap");
3358      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3359      last_tile_end = MAX2(last_tile_end, next_init_off);
3360    } else {
3361      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3362      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3363      assert(st_off      >= last_init_end, "inits do not overlap");
3364      last_init_end = next_init_off;  // it's a non-tile
3365    }
3366    #endif //ASSERT
3367  }
3368
3369  remove_extra_zeroes();        // clear out all the zmems left over
3370  add_req(inits);
3371
3372  if (!ZeroTLAB) {
3373    // If anything remains to be zeroed, zero it all now.
3374    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3375    // if it is the last unused 4 bytes of an instance, forget about it
3376    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3377    if (zeroes_done + BytesPerLong >= size_limit) {
3378      assert(allocation() != NULL, "");
3379      Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3380      ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3381      if (zeroes_done == k->layout_helper())
3382        zeroes_done = size_limit;
3383    }
3384    if (zeroes_done < size_limit) {
3385      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3386                                            zeroes_done, size_in_bytes, phase);
3387    }
3388  }
3389
3390  set_complete(phase);
3391  return rawmem;
3392}
3393
3394
3395#ifdef ASSERT
3396bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3397  if (is_complete())
3398    return true;                // stores could be anything at this point
3399  assert(allocation() != NULL, "must be present");
3400  intptr_t last_off = allocation()->minimum_header_size();
3401  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3402    Node* st = in(i);
3403    intptr_t st_off = get_store_offset(st, phase);
3404    if (st_off < 0)  continue;  // ignore dead garbage
3405    if (last_off > st_off) {
3406      tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3407      this->dump(2);
3408      assert(false, "ascending store offsets");
3409      return false;
3410    }
3411    last_off = st_off + st->as_Store()->memory_size();
3412  }
3413  return true;
3414}
3415#endif //ASSERT
3416
3417
3418
3419
3420//============================MergeMemNode=====================================
3421//
3422// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3423// contributing store or call operations.  Each contributor provides the memory
3424// state for a particular "alias type" (see Compile::alias_type).  For example,
3425// if a MergeMem has an input X for alias category #6, then any memory reference
3426// to alias category #6 may use X as its memory state input, as an exact equivalent
3427// to using the MergeMem as a whole.
3428//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3429//
3430// (Here, the <N> notation gives the index of the relevant adr_type.)
3431//
3432// In one special case (and more cases in the future), alias categories overlap.
3433// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3434// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3435// it is exactly equivalent to that state W:
3436//   MergeMem(<Bot>: W) <==> W
3437//
3438// Usually, the merge has more than one input.  In that case, where inputs
3439// overlap (i.e., one is Bot), the narrower alias type determines the memory
3440// state for that type, and the wider alias type (Bot) fills in everywhere else:
3441//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3442//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3443//
3444// A merge can take a "wide" memory state as one of its narrow inputs.
3445// This simply means that the merge observes out only the relevant parts of
3446// the wide input.  That is, wide memory states arriving at narrow merge inputs
3447// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3448//
3449// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3450// and that memory slices "leak through":
3451//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3452//
3453// But, in such a cascade, repeated memory slices can "block the leak":
3454//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3455//
3456// In the last example, Y is not part of the combined memory state of the
3457// outermost MergeMem.  The system must, of course, prevent unschedulable
3458// memory states from arising, so you can be sure that the state Y is somehow
3459// a precursor to state Y'.
3460//
3461//
3462// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3463// of each MergeMemNode array are exactly the numerical alias indexes, including
3464// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3465// Compile::alias_type (and kin) produce and manage these indexes.
3466//
3467// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3468// (Note that this provides quick access to the top node inside MergeMem methods,
3469// without the need to reach out via TLS to Compile::current.)
3470//
3471// As a consequence of what was just described, a MergeMem that represents a full
3472// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3473// containing all alias categories.
3474//
3475// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3476//
3477// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3478// a memory state for the alias type <N>, or else the top node, meaning that
3479// there is no particular input for that alias type.  Note that the length of
3480// a MergeMem is variable, and may be extended at any time to accommodate new
3481// memory states at larger alias indexes.  When merges grow, they are of course
3482// filled with "top" in the unused in() positions.
3483//
3484// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3485// (Top was chosen because it works smoothly with passes like GCM.)
3486//
3487// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3488// the type of random VM bits like TLS references.)  Since it is always the
3489// first non-Bot memory slice, some low-level loops use it to initialize an
3490// index variable:  for (i = AliasIdxRaw; i < req(); i++).
3491//
3492//
3493// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3494// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3495// the memory state for alias type <N>, or (if there is no particular slice at <N>,
3496// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3497// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3498// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3499//
3500// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3501// really that different from the other memory inputs.  An abbreviation called
3502// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3503//
3504//
3505// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3506// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3507// that "emerges though" the base memory will be marked as excluding the alias types
3508// of the other (narrow-memory) copies which "emerged through" the narrow edges:
3509//
3510//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3511//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3512//
3513// This strange "subtraction" effect is necessary to ensure IGVN convergence.
3514// (It is currently unimplemented.)  As you can see, the resulting merge is
3515// actually a disjoint union of memory states, rather than an overlay.
3516//
3517
3518//------------------------------MergeMemNode-----------------------------------
3519Node* MergeMemNode::make_empty_memory() {
3520  Node* empty_memory = (Node*) Compile::current()->top();
3521  assert(empty_memory->is_top(), "correct sentinel identity");
3522  return empty_memory;
3523}
3524
3525MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3526  init_class_id(Class_MergeMem);
3527  // all inputs are nullified in Node::Node(int)
3528  // set_input(0, NULL);  // no control input
3529
3530  // Initialize the edges uniformly to top, for starters.
3531  Node* empty_mem = make_empty_memory();
3532  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3533    init_req(i,empty_mem);
3534  }
3535  assert(empty_memory() == empty_mem, "");
3536
3537  if( new_base != NULL && new_base->is_MergeMem() ) {
3538    MergeMemNode* mdef = new_base->as_MergeMem();
3539    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3540    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3541      mms.set_memory(mms.memory2());
3542    }
3543    assert(base_memory() == mdef->base_memory(), "");
3544  } else {
3545    set_base_memory(new_base);
3546  }
3547}
3548
3549// Make a new, untransformed MergeMem with the same base as 'mem'.
3550// If mem is itself a MergeMem, populate the result with the same edges.
3551MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3552  return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3553}
3554
3555//------------------------------cmp--------------------------------------------
3556uint MergeMemNode::hash() const { return NO_HASH; }
3557uint MergeMemNode::cmp( const Node &n ) const {
3558  return (&n == this);          // Always fail except on self
3559}
3560
3561//------------------------------Identity---------------------------------------
3562Node* MergeMemNode::Identity(PhaseTransform *phase) {
3563  // Identity if this merge point does not record any interesting memory
3564  // disambiguations.
3565  Node* base_mem = base_memory();
3566  Node* empty_mem = empty_memory();
3567  if (base_mem != empty_mem) {  // Memory path is not dead?
3568    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3569      Node* mem = in(i);
3570      if (mem != empty_mem && mem != base_mem) {
3571        return this;            // Many memory splits; no change
3572      }
3573    }
3574  }
3575  return base_mem;              // No memory splits; ID on the one true input
3576}
3577
3578//------------------------------Ideal------------------------------------------
3579// This method is invoked recursively on chains of MergeMem nodes
3580Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3581  // Remove chain'd MergeMems
3582  //
3583  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3584  // relative to the "in(Bot)".  Since we are patching both at the same time,
3585  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3586  // but rewrite each "in(i)" relative to the new "in(Bot)".
3587  Node *progress = NULL;
3588
3589
3590  Node* old_base = base_memory();
3591  Node* empty_mem = empty_memory();
3592  if (old_base == empty_mem)
3593    return NULL; // Dead memory path.
3594
3595  MergeMemNode* old_mbase;
3596  if (old_base != NULL && old_base->is_MergeMem())
3597    old_mbase = old_base->as_MergeMem();
3598  else
3599    old_mbase = NULL;
3600  Node* new_base = old_base;
3601
3602  // simplify stacked MergeMems in base memory
3603  if (old_mbase)  new_base = old_mbase->base_memory();
3604
3605  // the base memory might contribute new slices beyond my req()
3606  if (old_mbase)  grow_to_match(old_mbase);
3607
3608  // Look carefully at the base node if it is a phi.
3609  PhiNode* phi_base;
3610  if (new_base != NULL && new_base->is_Phi())
3611    phi_base = new_base->as_Phi();
3612  else
3613    phi_base = NULL;
3614
3615  Node*    phi_reg = NULL;
3616  uint     phi_len = (uint)-1;
3617  if (phi_base != NULL && !phi_base->is_copy()) {
3618    // do not examine phi if degraded to a copy
3619    phi_reg = phi_base->region();
3620    phi_len = phi_base->req();
3621    // see if the phi is unfinished
3622    for (uint i = 1; i < phi_len; i++) {
3623      if (phi_base->in(i) == NULL) {
3624        // incomplete phi; do not look at it yet!
3625        phi_reg = NULL;
3626        phi_len = (uint)-1;
3627        break;
3628      }
3629    }
3630  }
3631
3632  // Note:  We do not call verify_sparse on entry, because inputs
3633  // can normalize to the base_memory via subsume_node or similar
3634  // mechanisms.  This method repairs that damage.
3635
3636  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3637
3638  // Look at each slice.
3639  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3640    Node* old_in = in(i);
3641    // calculate the old memory value
3642    Node* old_mem = old_in;
3643    if (old_mem == empty_mem)  old_mem = old_base;
3644    assert(old_mem == memory_at(i), "");
3645
3646    // maybe update (reslice) the old memory value
3647
3648    // simplify stacked MergeMems
3649    Node* new_mem = old_mem;
3650    MergeMemNode* old_mmem;
3651    if (old_mem != NULL && old_mem->is_MergeMem())
3652      old_mmem = old_mem->as_MergeMem();
3653    else
3654      old_mmem = NULL;
3655    if (old_mmem == this) {
3656      // This can happen if loops break up and safepoints disappear.
3657      // A merge of BotPtr (default) with a RawPtr memory derived from a
3658      // safepoint can be rewritten to a merge of the same BotPtr with
3659      // the BotPtr phi coming into the loop.  If that phi disappears
3660      // also, we can end up with a self-loop of the mergemem.
3661      // In general, if loops degenerate and memory effects disappear,
3662      // a mergemem can be left looking at itself.  This simply means
3663      // that the mergemem's default should be used, since there is
3664      // no longer any apparent effect on this slice.
3665      // Note: If a memory slice is a MergeMem cycle, it is unreachable
3666      //       from start.  Update the input to TOP.
3667      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3668    }
3669    else if (old_mmem != NULL) {
3670      new_mem = old_mmem->memory_at(i);
3671    }
3672    // else preceeding memory was not a MergeMem
3673
3674    // replace equivalent phis (unfortunately, they do not GVN together)
3675    if (new_mem != NULL && new_mem != new_base &&
3676        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
3677      if (new_mem->is_Phi()) {
3678        PhiNode* phi_mem = new_mem->as_Phi();
3679        for (uint i = 1; i < phi_len; i++) {
3680          if (phi_base->in(i) != phi_mem->in(i)) {
3681            phi_mem = NULL;
3682            break;
3683          }
3684        }
3685        if (phi_mem != NULL) {
3686          // equivalent phi nodes; revert to the def
3687          new_mem = new_base;
3688        }
3689      }
3690    }
3691
3692    // maybe store down a new value
3693    Node* new_in = new_mem;
3694    if (new_in == new_base)  new_in = empty_mem;
3695
3696    if (new_in != old_in) {
3697      // Warning:  Do not combine this "if" with the previous "if"
3698      // A memory slice might have be be rewritten even if it is semantically
3699      // unchanged, if the base_memory value has changed.
3700      set_req(i, new_in);
3701      progress = this;          // Report progress
3702    }
3703  }
3704
3705  if (new_base != old_base) {
3706    set_req(Compile::AliasIdxBot, new_base);
3707    // Don't use set_base_memory(new_base), because we need to update du.
3708    assert(base_memory() == new_base, "");
3709    progress = this;
3710  }
3711
3712  if( base_memory() == this ) {
3713    // a self cycle indicates this memory path is dead
3714    set_req(Compile::AliasIdxBot, empty_mem);
3715  }
3716
3717  // Resolve external cycles by calling Ideal on a MergeMem base_memory
3718  // Recursion must occur after the self cycle check above
3719  if( base_memory()->is_MergeMem() ) {
3720    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
3721    Node *m = phase->transform(new_mbase);  // Rollup any cycles
3722    if( m != NULL && (m->is_top() ||
3723        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
3724      // propagate rollup of dead cycle to self
3725      set_req(Compile::AliasIdxBot, empty_mem);
3726    }
3727  }
3728
3729  if( base_memory() == empty_mem ) {
3730    progress = this;
3731    // Cut inputs during Parse phase only.
3732    // During Optimize phase a dead MergeMem node will be subsumed by Top.
3733    if( !can_reshape ) {
3734      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3735        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3736      }
3737    }
3738  }
3739
3740  if( !progress && base_memory()->is_Phi() && can_reshape ) {
3741    // Check if PhiNode::Ideal's "Split phis through memory merges"
3742    // transform should be attempted. Look for this->phi->this cycle.
3743    uint merge_width = req();
3744    if (merge_width > Compile::AliasIdxRaw) {
3745      PhiNode* phi = base_memory()->as_Phi();
3746      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3747        if (phi->in(i) == this) {
3748          phase->is_IterGVN()->_worklist.push(phi);
3749          break;
3750        }
3751      }
3752    }
3753  }
3754
3755  assert(progress || verify_sparse(), "please, no dups of base");
3756  return progress;
3757}
3758
3759//-------------------------set_base_memory-------------------------------------
3760void MergeMemNode::set_base_memory(Node *new_base) {
3761  Node* empty_mem = empty_memory();
3762  set_req(Compile::AliasIdxBot, new_base);
3763  assert(memory_at(req()) == new_base, "must set default memory");
3764  // Clear out other occurrences of new_base:
3765  if (new_base != empty_mem) {
3766    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3767      if (in(i) == new_base)  set_req(i, empty_mem);
3768    }
3769  }
3770}
3771
3772//------------------------------out_RegMask------------------------------------
3773const RegMask &MergeMemNode::out_RegMask() const {
3774  return RegMask::Empty;
3775}
3776
3777//------------------------------dump_spec--------------------------------------
3778#ifndef PRODUCT
3779void MergeMemNode::dump_spec(outputStream *st) const {
3780  st->print(" {");
3781  Node* base_mem = base_memory();
3782  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
3783    Node* mem = memory_at(i);
3784    if (mem == base_mem) { st->print(" -"); continue; }
3785    st->print( " N%d:", mem->_idx );
3786    Compile::current()->get_adr_type(i)->dump_on(st);
3787  }
3788  st->print(" }");
3789}
3790#endif // !PRODUCT
3791
3792
3793#ifdef ASSERT
3794static bool might_be_same(Node* a, Node* b) {
3795  if (a == b)  return true;
3796  if (!(a->is_Phi() || b->is_Phi()))  return false;
3797  // phis shift around during optimization
3798  return true;  // pretty stupid...
3799}
3800
3801// verify a narrow slice (either incoming or outgoing)
3802static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
3803  if (!VerifyAliases)       return;  // don't bother to verify unless requested
3804  if (is_error_reported())  return;  // muzzle asserts when debugging an error
3805  if (Node::in_dump())      return;  // muzzle asserts when printing
3806  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
3807  assert(n != NULL, "");
3808  // Elide intervening MergeMem's
3809  while (n->is_MergeMem()) {
3810    n = n->as_MergeMem()->memory_at(alias_idx);
3811  }
3812  Compile* C = Compile::current();
3813  const TypePtr* n_adr_type = n->adr_type();
3814  if (n == m->empty_memory()) {
3815    // Implicit copy of base_memory()
3816  } else if (n_adr_type != TypePtr::BOTTOM) {
3817    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
3818    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
3819  } else {
3820    // A few places like make_runtime_call "know" that VM calls are narrow,
3821    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
3822    bool expected_wide_mem = false;
3823    if (n == m->base_memory()) {
3824      expected_wide_mem = true;
3825    } else if (alias_idx == Compile::AliasIdxRaw ||
3826               n == m->memory_at(Compile::AliasIdxRaw)) {
3827      expected_wide_mem = true;
3828    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
3829      // memory can "leak through" calls on channels that
3830      // are write-once.  Allow this also.
3831      expected_wide_mem = true;
3832    }
3833    assert(expected_wide_mem, "expected narrow slice replacement");
3834  }
3835}
3836#else // !ASSERT
3837#define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
3838#endif
3839
3840
3841//-----------------------------memory_at---------------------------------------
3842Node* MergeMemNode::memory_at(uint alias_idx) const {
3843  assert(alias_idx >= Compile::AliasIdxRaw ||
3844         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
3845         "must avoid base_memory and AliasIdxTop");
3846
3847  // Otherwise, it is a narrow slice.
3848  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
3849  Compile *C = Compile::current();
3850  if (is_empty_memory(n)) {
3851    // the array is sparse; empty slots are the "top" node
3852    n = base_memory();
3853    assert(Node::in_dump()
3854           || n == NULL || n->bottom_type() == Type::TOP
3855           || n->adr_type() == TypePtr::BOTTOM
3856           || n->adr_type() == TypeRawPtr::BOTTOM
3857           || Compile::current()->AliasLevel() == 0,
3858           "must be a wide memory");
3859    // AliasLevel == 0 if we are organizing the memory states manually.
3860    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
3861  } else {
3862    // make sure the stored slice is sane
3863    #ifdef ASSERT
3864    if (is_error_reported() || Node::in_dump()) {
3865    } else if (might_be_same(n, base_memory())) {
3866      // Give it a pass:  It is a mostly harmless repetition of the base.
3867      // This can arise normally from node subsumption during optimization.
3868    } else {
3869      verify_memory_slice(this, alias_idx, n);
3870    }
3871    #endif
3872  }
3873  return n;
3874}
3875
3876//---------------------------set_memory_at-------------------------------------
3877void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
3878  verify_memory_slice(this, alias_idx, n);
3879  Node* empty_mem = empty_memory();
3880  if (n == base_memory())  n = empty_mem;  // collapse default
3881  uint need_req = alias_idx+1;
3882  if (req() < need_req) {
3883    if (n == empty_mem)  return;  // already the default, so do not grow me
3884    // grow the sparse array
3885    do {
3886      add_req(empty_mem);
3887    } while (req() < need_req);
3888  }
3889  set_req( alias_idx, n );
3890}
3891
3892
3893
3894//--------------------------iteration_setup------------------------------------
3895void MergeMemNode::iteration_setup(const MergeMemNode* other) {
3896  if (other != NULL) {
3897    grow_to_match(other);
3898    // invariant:  the finite support of mm2 is within mm->req()
3899    #ifdef ASSERT
3900    for (uint i = req(); i < other->req(); i++) {
3901      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
3902    }
3903    #endif
3904  }
3905  // Replace spurious copies of base_memory by top.
3906  Node* base_mem = base_memory();
3907  if (base_mem != NULL && !base_mem->is_top()) {
3908    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
3909      if (in(i) == base_mem)
3910        set_req(i, empty_memory());
3911    }
3912  }
3913}
3914
3915//---------------------------grow_to_match-------------------------------------
3916void MergeMemNode::grow_to_match(const MergeMemNode* other) {
3917  Node* empty_mem = empty_memory();
3918  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
3919  // look for the finite support of the other memory
3920  for (uint i = other->req(); --i >= req(); ) {
3921    if (other->in(i) != empty_mem) {
3922      uint new_len = i+1;
3923      while (req() < new_len)  add_req(empty_mem);
3924      break;
3925    }
3926  }
3927}
3928
3929//---------------------------verify_sparse-------------------------------------
3930#ifndef PRODUCT
3931bool MergeMemNode::verify_sparse() const {
3932  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
3933  Node* base_mem = base_memory();
3934  // The following can happen in degenerate cases, since empty==top.
3935  if (is_empty_memory(base_mem))  return true;
3936  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3937    assert(in(i) != NULL, "sane slice");
3938    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
3939  }
3940  return true;
3941}
3942
3943bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
3944  Node* n;
3945  n = mm->in(idx);
3946  if (mem == n)  return true;  // might be empty_memory()
3947  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
3948  if (mem == n)  return true;
3949  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
3950    if (mem == n)  return true;
3951    if (n == NULL)  break;
3952  }
3953  return false;
3954}
3955#endif // !PRODUCT
3956