memnode.cpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "compiler/compileLog.hpp"
28#include "memory/allocation.inline.hpp"
29#include "oops/objArrayKlass.hpp"
30#include "opto/addnode.hpp"
31#include "opto/cfgnode.hpp"
32#include "opto/compile.hpp"
33#include "opto/connode.hpp"
34#include "opto/loopnode.hpp"
35#include "opto/machnode.hpp"
36#include "opto/matcher.hpp"
37#include "opto/memnode.hpp"
38#include "opto/mulnode.hpp"
39#include "opto/phaseX.hpp"
40#include "opto/regmask.hpp"
41
42// Portions of code courtesy of Clifford Click
43
44// Optimization - Graph Style
45
46static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
47
48//=============================================================================
49uint MemNode::size_of() const { return sizeof(*this); }
50
51const TypePtr *MemNode::adr_type() const {
52  Node* adr = in(Address);
53  const TypePtr* cross_check = NULL;
54  DEBUG_ONLY(cross_check = _adr_type);
55  return calculate_adr_type(adr->bottom_type(), cross_check);
56}
57
58#ifndef PRODUCT
59void MemNode::dump_spec(outputStream *st) const {
60  if (in(Address) == NULL)  return; // node is dead
61#ifndef ASSERT
62  // fake the missing field
63  const TypePtr* _adr_type = NULL;
64  if (in(Address) != NULL)
65    _adr_type = in(Address)->bottom_type()->isa_ptr();
66#endif
67  dump_adr_type(this, _adr_type, st);
68
69  Compile* C = Compile::current();
70  if( C->alias_type(_adr_type)->is_volatile() )
71    st->print(" Volatile!");
72}
73
74void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
75  st->print(" @");
76  if (adr_type == NULL) {
77    st->print("NULL");
78  } else {
79    adr_type->dump_on(st);
80    Compile* C = Compile::current();
81    Compile::AliasType* atp = NULL;
82    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
83    if (atp == NULL)
84      st->print(", idx=?\?;");
85    else if (atp->index() == Compile::AliasIdxBot)
86      st->print(", idx=Bot;");
87    else if (atp->index() == Compile::AliasIdxTop)
88      st->print(", idx=Top;");
89    else if (atp->index() == Compile::AliasIdxRaw)
90      st->print(", idx=Raw;");
91    else {
92      ciField* field = atp->field();
93      if (field) {
94        st->print(", name=");
95        field->print_name_on(st);
96      }
97      st->print(", idx=%d;", atp->index());
98    }
99  }
100}
101
102extern void print_alias_types();
103
104#endif
105
106Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
107  assert((t_oop != NULL), "sanity");
108  bool is_instance = t_oop->is_known_instance_field();
109  bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
110                             (load != NULL) && load->is_Load() &&
111                             (phase->is_IterGVN() != NULL);
112  if (!(is_instance || is_boxed_value_load))
113    return mchain;  // don't try to optimize non-instance types
114  uint instance_id = t_oop->instance_id();
115  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
116  Node *prev = NULL;
117  Node *result = mchain;
118  while (prev != result) {
119    prev = result;
120    if (result == start_mem)
121      break;  // hit one of our sentinels
122    // skip over a call which does not affect this memory slice
123    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
124      Node *proj_in = result->in(0);
125      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
126        break;  // hit one of our sentinels
127      } else if (proj_in->is_Call()) {
128        CallNode *call = proj_in->as_Call();
129        if (!call->may_modify(t_oop, phase)) { // returns false for instances
130          result = call->in(TypeFunc::Memory);
131        }
132      } else if (proj_in->is_Initialize()) {
133        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
134        // Stop if this is the initialization for the object instance which
135        // which contains this memory slice, otherwise skip over it.
136        if ((alloc == NULL) || (alloc->_idx == instance_id)) {
137          break;
138        }
139        if (is_instance) {
140          result = proj_in->in(TypeFunc::Memory);
141        } else if (is_boxed_value_load) {
142          Node* klass = alloc->in(AllocateNode::KlassNode);
143          const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
144          if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
145            result = proj_in->in(TypeFunc::Memory); // not related allocation
146          }
147        }
148      } else if (proj_in->is_MemBar()) {
149        result = proj_in->in(TypeFunc::Memory);
150      } else {
151        assert(false, "unexpected projection");
152      }
153    } else if (result->is_ClearArray()) {
154      if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
155        // Can not bypass initialization of the instance
156        // we are looking for.
157        break;
158      }
159      // Otherwise skip it (the call updated 'result' value).
160    } else if (result->is_MergeMem()) {
161      result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
162    }
163  }
164  return result;
165}
166
167Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
168  const TypeOopPtr* t_oop = t_adr->isa_oopptr();
169  if (t_oop == NULL)
170    return mchain;  // don't try to optimize non-oop types
171  Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
172  bool is_instance = t_oop->is_known_instance_field();
173  PhaseIterGVN *igvn = phase->is_IterGVN();
174  if (is_instance && igvn != NULL  && result->is_Phi()) {
175    PhiNode *mphi = result->as_Phi();
176    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
177    const TypePtr *t = mphi->adr_type();
178    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
179        t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
180        t->is_oopptr()->cast_to_exactness(true)
181         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
182         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
183      // clone the Phi with our address type
184      result = mphi->split_out_instance(t_adr, igvn);
185    } else {
186      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
187    }
188  }
189  return result;
190}
191
192static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
193  uint alias_idx = phase->C->get_alias_index(tp);
194  Node *mem = mmem;
195#ifdef ASSERT
196  {
197    // Check that current type is consistent with the alias index used during graph construction
198    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
199    bool consistent =  adr_check == NULL || adr_check->empty() ||
200                       phase->C->must_alias(adr_check, alias_idx );
201    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
202    if( !consistent && adr_check != NULL && !adr_check->empty() &&
203               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
204        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
205        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
206          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
207          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
208      // don't assert if it is dead code.
209      consistent = true;
210    }
211    if( !consistent ) {
212      st->print("alias_idx==%d, adr_check==", alias_idx);
213      if( adr_check == NULL ) {
214        st->print("NULL");
215      } else {
216        adr_check->dump();
217      }
218      st->cr();
219      print_alias_types();
220      assert(consistent, "adr_check must match alias idx");
221    }
222  }
223#endif
224  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
225  // means an array I have not precisely typed yet.  Do not do any
226  // alias stuff with it any time soon.
227  const TypeOopPtr *toop = tp->isa_oopptr();
228  if( tp->base() != Type::AnyPtr &&
229      !(toop &&
230        toop->klass() != NULL &&
231        toop->klass()->is_java_lang_Object() &&
232        toop->offset() == Type::OffsetBot) ) {
233    // compress paths and change unreachable cycles to TOP
234    // If not, we can update the input infinitely along a MergeMem cycle
235    // Equivalent code in PhiNode::Ideal
236    Node* m  = phase->transform(mmem);
237    // If transformed to a MergeMem, get the desired slice
238    // Otherwise the returned node represents memory for every slice
239    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
240    // Update input if it is progress over what we have now
241  }
242  return mem;
243}
244
245//--------------------------Ideal_common---------------------------------------
246// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
247// Unhook non-raw memories from complete (macro-expanded) initializations.
248Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
249  // If our control input is a dead region, kill all below the region
250  Node *ctl = in(MemNode::Control);
251  if (ctl && remove_dead_region(phase, can_reshape))
252    return this;
253  ctl = in(MemNode::Control);
254  // Don't bother trying to transform a dead node
255  if (ctl && ctl->is_top())  return NodeSentinel;
256
257  PhaseIterGVN *igvn = phase->is_IterGVN();
258  // Wait if control on the worklist.
259  if (ctl && can_reshape && igvn != NULL) {
260    Node* bol = NULL;
261    Node* cmp = NULL;
262    if (ctl->in(0)->is_If()) {
263      assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
264      bol = ctl->in(0)->in(1);
265      if (bol->is_Bool())
266        cmp = ctl->in(0)->in(1)->in(1);
267    }
268    if (igvn->_worklist.member(ctl) ||
269        (bol != NULL && igvn->_worklist.member(bol)) ||
270        (cmp != NULL && igvn->_worklist.member(cmp)) ) {
271      // This control path may be dead.
272      // Delay this memory node transformation until the control is processed.
273      phase->is_IterGVN()->_worklist.push(this);
274      return NodeSentinel; // caller will return NULL
275    }
276  }
277  // Ignore if memory is dead, or self-loop
278  Node *mem = in(MemNode::Memory);
279  if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
280  assert(mem != this, "dead loop in MemNode::Ideal");
281
282  if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
283    // This memory slice may be dead.
284    // Delay this mem node transformation until the memory is processed.
285    phase->is_IterGVN()->_worklist.push(this);
286    return NodeSentinel; // caller will return NULL
287  }
288
289  Node *address = in(MemNode::Address);
290  const Type *t_adr = phase->type(address);
291  if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
292
293  if (can_reshape && igvn != NULL &&
294      (igvn->_worklist.member(address) ||
295       igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
296    // The address's base and type may change when the address is processed.
297    // Delay this mem node transformation until the address is processed.
298    phase->is_IterGVN()->_worklist.push(this);
299    return NodeSentinel; // caller will return NULL
300  }
301
302  // Do NOT remove or optimize the next lines: ensure a new alias index
303  // is allocated for an oop pointer type before Escape Analysis.
304  // Note: C++ will not remove it since the call has side effect.
305  if (t_adr->isa_oopptr()) {
306    int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
307  }
308
309#ifdef ASSERT
310  Node* base = NULL;
311  if (address->is_AddP())
312    base = address->in(AddPNode::Base);
313  if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
314      !t_adr->isa_rawptr()) {
315    // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
316    Compile* C = phase->C;
317    tty->cr();
318    tty->print_cr("===== NULL+offs not RAW address =====");
319    if (C->is_dead_node(this->_idx))    tty->print_cr("'this' is dead");
320    if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
321    if (C->is_dead_node(mem->_idx))     tty->print_cr("'mem' is dead");
322    if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
323    if (C->is_dead_node(base->_idx))    tty->print_cr("'base' is dead");
324    tty->cr();
325    base->dump(1);
326    tty->cr();
327    this->dump(2);
328    tty->print("this->adr_type():     "); adr_type()->dump(); tty->cr();
329    tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
330    tty->print("phase->type(base):    "); phase->type(address)->dump(); tty->cr();
331    tty->cr();
332  }
333  assert(base == NULL || t_adr->isa_rawptr() ||
334        !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
335#endif
336
337  // Avoid independent memory operations
338  Node* old_mem = mem;
339
340  // The code which unhooks non-raw memories from complete (macro-expanded)
341  // initializations was removed. After macro-expansion all stores catched
342  // by Initialize node became raw stores and there is no information
343  // which memory slices they modify. So it is unsafe to move any memory
344  // operation above these stores. Also in most cases hooked non-raw memories
345  // were already unhooked by using information from detect_ptr_independence()
346  // and find_previous_store().
347
348  if (mem->is_MergeMem()) {
349    MergeMemNode* mmem = mem->as_MergeMem();
350    const TypePtr *tp = t_adr->is_ptr();
351
352    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
353  }
354
355  if (mem != old_mem) {
356    set_req(MemNode::Memory, mem);
357    if (can_reshape && old_mem->outcnt() == 0) {
358        igvn->_worklist.push(old_mem);
359    }
360    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
361    return this;
362  }
363
364  // let the subclass continue analyzing...
365  return NULL;
366}
367
368// Helper function for proving some simple control dominations.
369// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
370// Already assumes that 'dom' is available at 'sub', and that 'sub'
371// is not a constant (dominated by the method's StartNode).
372// Used by MemNode::find_previous_store to prove that the
373// control input of a memory operation predates (dominates)
374// an allocation it wants to look past.
375bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
376  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
377    return false; // Conservative answer for dead code
378
379  // Check 'dom'. Skip Proj and CatchProj nodes.
380  dom = dom->find_exact_control(dom);
381  if (dom == NULL || dom->is_top())
382    return false; // Conservative answer for dead code
383
384  if (dom == sub) {
385    // For the case when, for example, 'sub' is Initialize and the original
386    // 'dom' is Proj node of the 'sub'.
387    return false;
388  }
389
390  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
391    return true;
392
393  // 'dom' dominates 'sub' if its control edge and control edges
394  // of all its inputs dominate or equal to sub's control edge.
395
396  // Currently 'sub' is either Allocate, Initialize or Start nodes.
397  // Or Region for the check in LoadNode::Ideal();
398  // 'sub' should have sub->in(0) != NULL.
399  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
400         sub->is_Region() || sub->is_Call(), "expecting only these nodes");
401
402  // Get control edge of 'sub'.
403  Node* orig_sub = sub;
404  sub = sub->find_exact_control(sub->in(0));
405  if (sub == NULL || sub->is_top())
406    return false; // Conservative answer for dead code
407
408  assert(sub->is_CFG(), "expecting control");
409
410  if (sub == dom)
411    return true;
412
413  if (sub->is_Start() || sub->is_Root())
414    return false;
415
416  {
417    // Check all control edges of 'dom'.
418
419    ResourceMark rm;
420    Arena* arena = Thread::current()->resource_area();
421    Node_List nlist(arena);
422    Unique_Node_List dom_list(arena);
423
424    dom_list.push(dom);
425    bool only_dominating_controls = false;
426
427    for (uint next = 0; next < dom_list.size(); next++) {
428      Node* n = dom_list.at(next);
429      if (n == orig_sub)
430        return false; // One of dom's inputs dominated by sub.
431      if (!n->is_CFG() && n->pinned()) {
432        // Check only own control edge for pinned non-control nodes.
433        n = n->find_exact_control(n->in(0));
434        if (n == NULL || n->is_top())
435          return false; // Conservative answer for dead code
436        assert(n->is_CFG(), "expecting control");
437        dom_list.push(n);
438      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
439        only_dominating_controls = true;
440      } else if (n->is_CFG()) {
441        if (n->dominates(sub, nlist))
442          only_dominating_controls = true;
443        else
444          return false;
445      } else {
446        // First, own control edge.
447        Node* m = n->find_exact_control(n->in(0));
448        if (m != NULL) {
449          if (m->is_top())
450            return false; // Conservative answer for dead code
451          dom_list.push(m);
452        }
453        // Now, the rest of edges.
454        uint cnt = n->req();
455        for (uint i = 1; i < cnt; i++) {
456          m = n->find_exact_control(n->in(i));
457          if (m == NULL || m->is_top())
458            continue;
459          dom_list.push(m);
460        }
461      }
462    }
463    return only_dominating_controls;
464  }
465}
466
467//---------------------detect_ptr_independence---------------------------------
468// Used by MemNode::find_previous_store to prove that two base
469// pointers are never equal.
470// The pointers are accompanied by their associated allocations,
471// if any, which have been previously discovered by the caller.
472bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
473                                      Node* p2, AllocateNode* a2,
474                                      PhaseTransform* phase) {
475  // Attempt to prove that these two pointers cannot be aliased.
476  // They may both manifestly be allocations, and they should differ.
477  // Or, if they are not both allocations, they can be distinct constants.
478  // Otherwise, one is an allocation and the other a pre-existing value.
479  if (a1 == NULL && a2 == NULL) {           // neither an allocation
480    return (p1 != p2) && p1->is_Con() && p2->is_Con();
481  } else if (a1 != NULL && a2 != NULL) {    // both allocations
482    return (a1 != a2);
483  } else if (a1 != NULL) {                  // one allocation a1
484    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
485    return all_controls_dominate(p2, a1);
486  } else { //(a2 != NULL)                   // one allocation a2
487    return all_controls_dominate(p1, a2);
488  }
489  return false;
490}
491
492
493// The logic for reordering loads and stores uses four steps:
494// (a) Walk carefully past stores and initializations which we
495//     can prove are independent of this load.
496// (b) Observe that the next memory state makes an exact match
497//     with self (load or store), and locate the relevant store.
498// (c) Ensure that, if we were to wire self directly to the store,
499//     the optimizer would fold it up somehow.
500// (d) Do the rewiring, and return, depending on some other part of
501//     the optimizer to fold up the load.
502// This routine handles steps (a) and (b).  Steps (c) and (d) are
503// specific to loads and stores, so they are handled by the callers.
504// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
505//
506Node* MemNode::find_previous_store(PhaseTransform* phase) {
507  Node*         ctrl   = in(MemNode::Control);
508  Node*         adr    = in(MemNode::Address);
509  intptr_t      offset = 0;
510  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
511  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
512
513  if (offset == Type::OffsetBot)
514    return NULL;            // cannot unalias unless there are precise offsets
515
516  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
517
518  intptr_t size_in_bytes = memory_size();
519
520  Node* mem = in(MemNode::Memory);   // start searching here...
521
522  int cnt = 50;             // Cycle limiter
523  for (;;) {                // While we can dance past unrelated stores...
524    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
525
526    if (mem->is_Store()) {
527      Node* st_adr = mem->in(MemNode::Address);
528      intptr_t st_offset = 0;
529      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
530      if (st_base == NULL)
531        break;              // inscrutable pointer
532      if (st_offset != offset && st_offset != Type::OffsetBot) {
533        const int MAX_STORE = BytesPerLong;
534        if (st_offset >= offset + size_in_bytes ||
535            st_offset <= offset - MAX_STORE ||
536            st_offset <= offset - mem->as_Store()->memory_size()) {
537          // Success:  The offsets are provably independent.
538          // (You may ask, why not just test st_offset != offset and be done?
539          // The answer is that stores of different sizes can co-exist
540          // in the same sequence of RawMem effects.  We sometimes initialize
541          // a whole 'tile' of array elements with a single jint or jlong.)
542          mem = mem->in(MemNode::Memory);
543          continue;           // (a) advance through independent store memory
544        }
545      }
546      if (st_base != base &&
547          detect_ptr_independence(base, alloc,
548                                  st_base,
549                                  AllocateNode::Ideal_allocation(st_base, phase),
550                                  phase)) {
551        // Success:  The bases are provably independent.
552        mem = mem->in(MemNode::Memory);
553        continue;           // (a) advance through independent store memory
554      }
555
556      // (b) At this point, if the bases or offsets do not agree, we lose,
557      // since we have not managed to prove 'this' and 'mem' independent.
558      if (st_base == base && st_offset == offset) {
559        return mem;         // let caller handle steps (c), (d)
560      }
561
562    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
563      InitializeNode* st_init = mem->in(0)->as_Initialize();
564      AllocateNode*  st_alloc = st_init->allocation();
565      if (st_alloc == NULL)
566        break;              // something degenerated
567      bool known_identical = false;
568      bool known_independent = false;
569      if (alloc == st_alloc)
570        known_identical = true;
571      else if (alloc != NULL)
572        known_independent = true;
573      else if (all_controls_dominate(this, st_alloc))
574        known_independent = true;
575
576      if (known_independent) {
577        // The bases are provably independent: Either they are
578        // manifestly distinct allocations, or else the control
579        // of this load dominates the store's allocation.
580        int alias_idx = phase->C->get_alias_index(adr_type());
581        if (alias_idx == Compile::AliasIdxRaw) {
582          mem = st_alloc->in(TypeFunc::Memory);
583        } else {
584          mem = st_init->memory(alias_idx);
585        }
586        continue;           // (a) advance through independent store memory
587      }
588
589      // (b) at this point, if we are not looking at a store initializing
590      // the same allocation we are loading from, we lose.
591      if (known_identical) {
592        // From caller, can_see_stored_value will consult find_captured_store.
593        return mem;         // let caller handle steps (c), (d)
594      }
595
596    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
597      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
598      if (mem->is_Proj() && mem->in(0)->is_Call()) {
599        CallNode *call = mem->in(0)->as_Call();
600        if (!call->may_modify(addr_t, phase)) {
601          mem = call->in(TypeFunc::Memory);
602          continue;         // (a) advance through independent call memory
603        }
604      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
605        mem = mem->in(0)->in(TypeFunc::Memory);
606        continue;           // (a) advance through independent MemBar memory
607      } else if (mem->is_ClearArray()) {
608        if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
609          // (the call updated 'mem' value)
610          continue;         // (a) advance through independent allocation memory
611        } else {
612          // Can not bypass initialization of the instance
613          // we are looking for.
614          return mem;
615        }
616      } else if (mem->is_MergeMem()) {
617        int alias_idx = phase->C->get_alias_index(adr_type());
618        mem = mem->as_MergeMem()->memory_at(alias_idx);
619        continue;           // (a) advance through independent MergeMem memory
620      }
621    }
622
623    // Unless there is an explicit 'continue', we must bail out here,
624    // because 'mem' is an inscrutable memory state (e.g., a call).
625    break;
626  }
627
628  return NULL;              // bail out
629}
630
631//----------------------calculate_adr_type-------------------------------------
632// Helper function.  Notices when the given type of address hits top or bottom.
633// Also, asserts a cross-check of the type against the expected address type.
634const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
635  if (t == Type::TOP)  return NULL; // does not touch memory any more?
636  #ifdef PRODUCT
637  cross_check = NULL;
638  #else
639  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
640  #endif
641  const TypePtr* tp = t->isa_ptr();
642  if (tp == NULL) {
643    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
644    return TypePtr::BOTTOM;           // touches lots of memory
645  } else {
646    #ifdef ASSERT
647    // %%%% [phh] We don't check the alias index if cross_check is
648    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
649    if (cross_check != NULL &&
650        cross_check != TypePtr::BOTTOM &&
651        cross_check != TypeRawPtr::BOTTOM) {
652      // Recheck the alias index, to see if it has changed (due to a bug).
653      Compile* C = Compile::current();
654      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
655             "must stay in the original alias category");
656      // The type of the address must be contained in the adr_type,
657      // disregarding "null"-ness.
658      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
659      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
660      assert(cross_check->meet(tp_notnull) == cross_check,
661             "real address must not escape from expected memory type");
662    }
663    #endif
664    return tp;
665  }
666}
667
668//------------------------adr_phi_is_loop_invariant----------------------------
669// A helper function for Ideal_DU_postCCP to check if a Phi in a counted
670// loop is loop invariant. Make a quick traversal of Phi and associated
671// CastPP nodes, looking to see if they are a closed group within the loop.
672bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
673  // The idea is that the phi-nest must boil down to only CastPP nodes
674  // with the same data. This implies that any path into the loop already
675  // includes such a CastPP, and so the original cast, whatever its input,
676  // must be covered by an equivalent cast, with an earlier control input.
677  ResourceMark rm;
678
679  // The loop entry input of the phi should be the unique dominating
680  // node for every Phi/CastPP in the loop.
681  Unique_Node_List closure;
682  closure.push(adr_phi->in(LoopNode::EntryControl));
683
684  // Add the phi node and the cast to the worklist.
685  Unique_Node_List worklist;
686  worklist.push(adr_phi);
687  if( cast != NULL ){
688    if( !cast->is_ConstraintCast() ) return false;
689    worklist.push(cast);
690  }
691
692  // Begin recursive walk of phi nodes.
693  while( worklist.size() ){
694    // Take a node off the worklist
695    Node *n = worklist.pop();
696    if( !closure.member(n) ){
697      // Add it to the closure.
698      closure.push(n);
699      // Make a sanity check to ensure we don't waste too much time here.
700      if( closure.size() > 20) return false;
701      // This node is OK if:
702      //  - it is a cast of an identical value
703      //  - or it is a phi node (then we add its inputs to the worklist)
704      // Otherwise, the node is not OK, and we presume the cast is not invariant
705      if( n->is_ConstraintCast() ){
706        worklist.push(n->in(1));
707      } else if( n->is_Phi() ) {
708        for( uint i = 1; i < n->req(); i++ ) {
709          worklist.push(n->in(i));
710        }
711      } else {
712        return false;
713      }
714    }
715  }
716
717  // Quit when the worklist is empty, and we've found no offending nodes.
718  return true;
719}
720
721//------------------------------Ideal_DU_postCCP-------------------------------
722// Find any cast-away of null-ness and keep its control.  Null cast-aways are
723// going away in this pass and we need to make this memory op depend on the
724// gating null check.
725Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
726  return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
727}
728
729// I tried to leave the CastPP's in.  This makes the graph more accurate in
730// some sense; we get to keep around the knowledge that an oop is not-null
731// after some test.  Alas, the CastPP's interfere with GVN (some values are
732// the regular oop, some are the CastPP of the oop, all merge at Phi's which
733// cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
734// some of the more trivial cases in the optimizer.  Removing more useless
735// Phi's started allowing Loads to illegally float above null checks.  I gave
736// up on this approach.  CNC 10/20/2000
737// This static method may be called not from MemNode (EncodePNode calls it).
738// Only the control edge of the node 'n' might be updated.
739Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
740  Node *skipped_cast = NULL;
741  // Need a null check?  Regular static accesses do not because they are
742  // from constant addresses.  Array ops are gated by the range check (which
743  // always includes a NULL check).  Just check field ops.
744  if( n->in(MemNode::Control) == NULL ) {
745    // Scan upwards for the highest location we can place this memory op.
746    while( true ) {
747      switch( adr->Opcode() ) {
748
749      case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
750        adr = adr->in(AddPNode::Base);
751        continue;
752
753      case Op_DecodeN:         // No change to NULL-ness, so peek thru
754      case Op_DecodeNKlass:
755        adr = adr->in(1);
756        continue;
757
758      case Op_EncodeP:
759      case Op_EncodePKlass:
760        // EncodeP node's control edge could be set by this method
761        // when EncodeP node depends on CastPP node.
762        //
763        // Use its control edge for memory op because EncodeP may go away
764        // later when it is folded with following or preceding DecodeN node.
765        if (adr->in(0) == NULL) {
766          // Keep looking for cast nodes.
767          adr = adr->in(1);
768          continue;
769        }
770        ccp->hash_delete(n);
771        n->set_req(MemNode::Control, adr->in(0));
772        ccp->hash_insert(n);
773        return n;
774
775      case Op_CastPP:
776        // If the CastPP is useless, just peek on through it.
777        if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
778          // Remember the cast that we've peeked though. If we peek
779          // through more than one, then we end up remembering the highest
780          // one, that is, if in a loop, the one closest to the top.
781          skipped_cast = adr;
782          adr = adr->in(1);
783          continue;
784        }
785        // CastPP is going away in this pass!  We need this memory op to be
786        // control-dependent on the test that is guarding the CastPP.
787        ccp->hash_delete(n);
788        n->set_req(MemNode::Control, adr->in(0));
789        ccp->hash_insert(n);
790        return n;
791
792      case Op_Phi:
793        // Attempt to float above a Phi to some dominating point.
794        if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
795          // If we've already peeked through a Cast (which could have set the
796          // control), we can't float above a Phi, because the skipped Cast
797          // may not be loop invariant.
798          if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
799            adr = adr->in(1);
800            continue;
801          }
802        }
803
804        // Intentional fallthrough!
805
806        // No obvious dominating point.  The mem op is pinned below the Phi
807        // by the Phi itself.  If the Phi goes away (no true value is merged)
808        // then the mem op can float, but not indefinitely.  It must be pinned
809        // behind the controls leading to the Phi.
810      case Op_CheckCastPP:
811        // These usually stick around to change address type, however a
812        // useless one can be elided and we still need to pick up a control edge
813        if (adr->in(0) == NULL) {
814          // This CheckCastPP node has NO control and is likely useless. But we
815          // need check further up the ancestor chain for a control input to keep
816          // the node in place. 4959717.
817          skipped_cast = adr;
818          adr = adr->in(1);
819          continue;
820        }
821        ccp->hash_delete(n);
822        n->set_req(MemNode::Control, adr->in(0));
823        ccp->hash_insert(n);
824        return n;
825
826        // List of "safe" opcodes; those that implicitly block the memory
827        // op below any null check.
828      case Op_CastX2P:          // no null checks on native pointers
829      case Op_Parm:             // 'this' pointer is not null
830      case Op_LoadP:            // Loading from within a klass
831      case Op_LoadN:            // Loading from within a klass
832      case Op_LoadKlass:        // Loading from within a klass
833      case Op_LoadNKlass:       // Loading from within a klass
834      case Op_ConP:             // Loading from a klass
835      case Op_ConN:             // Loading from a klass
836      case Op_ConNKlass:        // Loading from a klass
837      case Op_CreateEx:         // Sucking up the guts of an exception oop
838      case Op_Con:              // Reading from TLS
839      case Op_CMoveP:           // CMoveP is pinned
840      case Op_CMoveN:           // CMoveN is pinned
841        break;                  // No progress
842
843      case Op_Proj:             // Direct call to an allocation routine
844      case Op_SCMemProj:        // Memory state from store conditional ops
845#ifdef ASSERT
846        {
847          assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
848          const Node* call = adr->in(0);
849          if (call->is_CallJava()) {
850            const CallJavaNode* call_java = call->as_CallJava();
851            const TypeTuple *r = call_java->tf()->range();
852            assert(r->cnt() > TypeFunc::Parms, "must return value");
853            const Type* ret_type = r->field_at(TypeFunc::Parms);
854            assert(ret_type && ret_type->isa_ptr(), "must return pointer");
855            // We further presume that this is one of
856            // new_instance_Java, new_array_Java, or
857            // the like, but do not assert for this.
858          } else if (call->is_Allocate()) {
859            // similar case to new_instance_Java, etc.
860          } else if (!call->is_CallLeaf()) {
861            // Projections from fetch_oop (OSR) are allowed as well.
862            ShouldNotReachHere();
863          }
864        }
865#endif
866        break;
867      default:
868        ShouldNotReachHere();
869      }
870      break;
871    }
872  }
873
874  return  NULL;               // No progress
875}
876
877
878//=============================================================================
879uint LoadNode::size_of() const { return sizeof(*this); }
880uint LoadNode::cmp( const Node &n ) const
881{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
882const Type *LoadNode::bottom_type() const { return _type; }
883uint LoadNode::ideal_reg() const {
884  return _type->ideal_reg();
885}
886
887#ifndef PRODUCT
888void LoadNode::dump_spec(outputStream *st) const {
889  MemNode::dump_spec(st);
890  if( !Verbose && !WizardMode ) {
891    // standard dump does this in Verbose and WizardMode
892    st->print(" #"); _type->dump_on(st);
893  }
894}
895#endif
896
897#ifdef ASSERT
898//----------------------------is_immutable_value-------------------------------
899// Helper function to allow a raw load without control edge for some cases
900bool LoadNode::is_immutable_value(Node* adr) {
901  return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
902          adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
903          (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
904           in_bytes(JavaThread::osthread_offset())));
905}
906#endif
907
908//----------------------------LoadNode::make-----------------------------------
909// Polymorphic factory method:
910Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
911  Compile* C = gvn.C;
912
913  // sanity check the alias category against the created node type
914  assert(!(adr_type->isa_oopptr() &&
915           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
916         "use LoadKlassNode instead");
917  assert(!(adr_type->isa_aryptr() &&
918           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
919         "use LoadRangeNode instead");
920  // Check control edge of raw loads
921  assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
922          // oop will be recorded in oop map if load crosses safepoint
923          rt->isa_oopptr() || is_immutable_value(adr),
924          "raw memory operations should have control edge");
925  switch (bt) {
926  case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
927  case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
928  case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
929  case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
930  case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
931  case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
932  case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt              );
933  case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt              );
934  case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
935  case T_OBJECT:
936#ifdef _LP64
937    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
938      Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
939      return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
940    } else
941#endif
942    {
943      assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
944      return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
945    }
946  }
947  ShouldNotReachHere();
948  return (LoadNode*)NULL;
949}
950
951LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
952  bool require_atomic = true;
953  return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
954}
955
956
957
958
959//------------------------------hash-------------------------------------------
960uint LoadNode::hash() const {
961  // unroll addition of interesting fields
962  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
963}
964
965static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
966  if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
967    bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
968    bool is_stable_ary = FoldStableValues &&
969                         (tp != NULL) && (tp->isa_aryptr() != NULL) &&
970                         tp->isa_aryptr()->is_stable();
971
972    return (eliminate_boxing && non_volatile) || is_stable_ary;
973  }
974
975  return false;
976}
977
978//---------------------------can_see_stored_value------------------------------
979// This routine exists to make sure this set of tests is done the same
980// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
981// will change the graph shape in a way which makes memory alive twice at the
982// same time (uses the Oracle model of aliasing), then some
983// LoadXNode::Identity will fold things back to the equivalence-class model
984// of aliasing.
985Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
986  Node* ld_adr = in(MemNode::Address);
987  intptr_t ld_off = 0;
988  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
989  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
990  Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
991  // This is more general than load from boxing objects.
992  if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
993    uint alias_idx = atp->index();
994    bool final = !atp->is_rewritable();
995    Node* result = NULL;
996    Node* current = st;
997    // Skip through chains of MemBarNodes checking the MergeMems for
998    // new states for the slice of this load.  Stop once any other
999    // kind of node is encountered.  Loads from final memory can skip
1000    // through any kind of MemBar but normal loads shouldn't skip
1001    // through MemBarAcquire since the could allow them to move out of
1002    // a synchronized region.
1003    while (current->is_Proj()) {
1004      int opc = current->in(0)->Opcode();
1005      if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
1006          opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
1007          opc == Op_MemBarReleaseLock) {
1008        Node* mem = current->in(0)->in(TypeFunc::Memory);
1009        if (mem->is_MergeMem()) {
1010          MergeMemNode* merge = mem->as_MergeMem();
1011          Node* new_st = merge->memory_at(alias_idx);
1012          if (new_st == merge->base_memory()) {
1013            // Keep searching
1014            current = new_st;
1015            continue;
1016          }
1017          // Save the new memory state for the slice and fall through
1018          // to exit.
1019          result = new_st;
1020        }
1021      }
1022      break;
1023    }
1024    if (result != NULL) {
1025      st = result;
1026    }
1027  }
1028
1029  // Loop around twice in the case Load -> Initialize -> Store.
1030  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1031  for (int trip = 0; trip <= 1; trip++) {
1032
1033    if (st->is_Store()) {
1034      Node* st_adr = st->in(MemNode::Address);
1035      if (!phase->eqv(st_adr, ld_adr)) {
1036        // Try harder before giving up...  Match raw and non-raw pointers.
1037        intptr_t st_off = 0;
1038        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1039        if (alloc == NULL)       return NULL;
1040        if (alloc != ld_alloc)   return NULL;
1041        if (ld_off != st_off)    return NULL;
1042        // At this point we have proven something like this setup:
1043        //  A = Allocate(...)
1044        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1045        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1046        // (Actually, we haven't yet proven the Q's are the same.)
1047        // In other words, we are loading from a casted version of
1048        // the same pointer-and-offset that we stored to.
1049        // Thus, we are able to replace L by V.
1050      }
1051      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1052      if (store_Opcode() != st->Opcode())
1053        return NULL;
1054      return st->in(MemNode::ValueIn);
1055    }
1056
1057    // A load from a freshly-created object always returns zero.
1058    // (This can happen after LoadNode::Ideal resets the load's memory input
1059    // to find_captured_store, which returned InitializeNode::zero_memory.)
1060    if (st->is_Proj() && st->in(0)->is_Allocate() &&
1061        (st->in(0) == ld_alloc) &&
1062        (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1063      // return a zero value for the load's basic type
1064      // (This is one of the few places where a generic PhaseTransform
1065      // can create new nodes.  Think of it as lazily manifesting
1066      // virtually pre-existing constants.)
1067      return phase->zerocon(memory_type());
1068    }
1069
1070    // A load from an initialization barrier can match a captured store.
1071    if (st->is_Proj() && st->in(0)->is_Initialize()) {
1072      InitializeNode* init = st->in(0)->as_Initialize();
1073      AllocateNode* alloc = init->allocation();
1074      if ((alloc != NULL) && (alloc == ld_alloc)) {
1075        // examine a captured store value
1076        st = init->find_captured_store(ld_off, memory_size(), phase);
1077        if (st != NULL)
1078          continue;             // take one more trip around
1079      }
1080    }
1081
1082    // Load boxed value from result of valueOf() call is input parameter.
1083    if (this->is_Load() && ld_adr->is_AddP() &&
1084        (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1085      intptr_t ignore = 0;
1086      Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1087      if (base != NULL && base->is_Proj() &&
1088          base->as_Proj()->_con == TypeFunc::Parms &&
1089          base->in(0)->is_CallStaticJava() &&
1090          base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1091        return base->in(0)->in(TypeFunc::Parms);
1092      }
1093    }
1094
1095    break;
1096  }
1097
1098  return NULL;
1099}
1100
1101//----------------------is_instance_field_load_with_local_phi------------------
1102bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1103  if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1104      in(Address)->is_AddP() ) {
1105    const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1106    // Only instances and boxed values.
1107    if( t_oop != NULL &&
1108        (t_oop->is_ptr_to_boxed_value() ||
1109         t_oop->is_known_instance_field()) &&
1110        t_oop->offset() != Type::OffsetBot &&
1111        t_oop->offset() != Type::OffsetTop) {
1112      return true;
1113    }
1114  }
1115  return false;
1116}
1117
1118//------------------------------Identity---------------------------------------
1119// Loads are identity if previous store is to same address
1120Node *LoadNode::Identity( PhaseTransform *phase ) {
1121  // If the previous store-maker is the right kind of Store, and the store is
1122  // to the same address, then we are equal to the value stored.
1123  Node* mem = in(Memory);
1124  Node* value = can_see_stored_value(mem, phase);
1125  if( value ) {
1126    // byte, short & char stores truncate naturally.
1127    // A load has to load the truncated value which requires
1128    // some sort of masking operation and that requires an
1129    // Ideal call instead of an Identity call.
1130    if (memory_size() < BytesPerInt) {
1131      // If the input to the store does not fit with the load's result type,
1132      // it must be truncated via an Ideal call.
1133      if (!phase->type(value)->higher_equal(phase->type(this)))
1134        return this;
1135    }
1136    // (This works even when value is a Con, but LoadNode::Value
1137    // usually runs first, producing the singleton type of the Con.)
1138    return value;
1139  }
1140
1141  // Search for an existing data phi which was generated before for the same
1142  // instance's field to avoid infinite generation of phis in a loop.
1143  Node *region = mem->in(0);
1144  if (is_instance_field_load_with_local_phi(region)) {
1145    const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1146    int this_index  = phase->C->get_alias_index(addr_t);
1147    int this_offset = addr_t->offset();
1148    int this_iid    = addr_t->instance_id();
1149    if (!addr_t->is_known_instance() &&
1150         addr_t->is_ptr_to_boxed_value()) {
1151      // Use _idx of address base (could be Phi node) for boxed values.
1152      intptr_t   ignore = 0;
1153      Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1154      this_iid = base->_idx;
1155    }
1156    const Type* this_type = bottom_type();
1157    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1158      Node* phi = region->fast_out(i);
1159      if (phi->is_Phi() && phi != mem &&
1160          phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1161        return phi;
1162      }
1163    }
1164  }
1165
1166  return this;
1167}
1168
1169// We're loading from an object which has autobox behaviour.
1170// If this object is result of a valueOf call we'll have a phi
1171// merging a newly allocated object and a load from the cache.
1172// We want to replace this load with the original incoming
1173// argument to the valueOf call.
1174Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1175  assert(phase->C->eliminate_boxing(), "sanity");
1176  intptr_t ignore = 0;
1177  Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1178  if ((base == NULL) || base->is_Phi()) {
1179    // Push the loads from the phi that comes from valueOf up
1180    // through it to allow elimination of the loads and the recovery
1181    // of the original value. It is done in split_through_phi().
1182    return NULL;
1183  } else if (base->is_Load() ||
1184             base->is_DecodeN() && base->in(1)->is_Load()) {
1185    // Eliminate the load of boxed value for integer types from the cache
1186    // array by deriving the value from the index into the array.
1187    // Capture the offset of the load and then reverse the computation.
1188
1189    // Get LoadN node which loads a boxing object from 'cache' array.
1190    if (base->is_DecodeN()) {
1191      base = base->in(1);
1192    }
1193    if (!base->in(Address)->is_AddP()) {
1194      return NULL; // Complex address
1195    }
1196    AddPNode* address = base->in(Address)->as_AddP();
1197    Node* cache_base = address->in(AddPNode::Base);
1198    if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1199      // Get ConP node which is static 'cache' field.
1200      cache_base = cache_base->in(1);
1201    }
1202    if ((cache_base != NULL) && cache_base->is_Con()) {
1203      const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1204      if ((base_type != NULL) && base_type->is_autobox_cache()) {
1205        Node* elements[4];
1206        int shift = exact_log2(type2aelembytes(T_OBJECT));
1207        int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1208        if ((count >  0) && elements[0]->is_Con() &&
1209            ((count == 1) ||
1210             (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1211                             elements[1]->in(2) == phase->intcon(shift))) {
1212          ciObjArray* array = base_type->const_oop()->as_obj_array();
1213          // Fetch the box object cache[0] at the base of the array and get its value
1214          ciInstance* box = array->obj_at(0)->as_instance();
1215          ciInstanceKlass* ik = box->klass()->as_instance_klass();
1216          assert(ik->is_box_klass(), "sanity");
1217          assert(ik->nof_nonstatic_fields() == 1, "change following code");
1218          if (ik->nof_nonstatic_fields() == 1) {
1219            // This should be true nonstatic_field_at requires calling
1220            // nof_nonstatic_fields so check it anyway
1221            ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1222            BasicType bt = c.basic_type();
1223            // Only integer types have boxing cache.
1224            assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1225                   bt == T_BYTE    || bt == T_SHORT ||
1226                   bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1227            jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1228            if (cache_low != (int)cache_low) {
1229              return NULL; // should not happen since cache is array indexed by value
1230            }
1231            jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1232            if (offset != (int)offset) {
1233              return NULL; // should not happen since cache is array indexed by value
1234            }
1235           // Add up all the offsets making of the address of the load
1236            Node* result = elements[0];
1237            for (int i = 1; i < count; i++) {
1238              result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1239            }
1240            // Remove the constant offset from the address and then
1241            result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1242            // remove the scaling of the offset to recover the original index.
1243            if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1244              // Peel the shift off directly but wrap it in a dummy node
1245              // since Ideal can't return existing nodes
1246              result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1247            } else if (result->is_Add() && result->in(2)->is_Con() &&
1248                       result->in(1)->Opcode() == Op_LShiftX &&
1249                       result->in(1)->in(2) == phase->intcon(shift)) {
1250              // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1251              // but for boxing cache access we know that X<<Z will not overflow
1252              // (there is range check) so we do this optimizatrion by hand here.
1253              Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1254              result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1255            } else {
1256              result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1257            }
1258#ifdef _LP64
1259            if (bt != T_LONG) {
1260              result = new (phase->C) ConvL2INode(phase->transform(result));
1261            }
1262#else
1263            if (bt == T_LONG) {
1264              result = new (phase->C) ConvI2LNode(phase->transform(result));
1265            }
1266#endif
1267            return result;
1268          }
1269        }
1270      }
1271    }
1272  }
1273  return NULL;
1274}
1275
1276static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1277  Node* region = phi->in(0);
1278  if (region == NULL) {
1279    return false; // Wait stable graph
1280  }
1281  uint cnt = phi->req();
1282  for (uint i = 1; i < cnt; i++) {
1283    Node* rc = region->in(i);
1284    if (rc == NULL || phase->type(rc) == Type::TOP)
1285      return false; // Wait stable graph
1286    Node* in = phi->in(i);
1287    if (in == NULL || phase->type(in) == Type::TOP)
1288      return false; // Wait stable graph
1289  }
1290  return true;
1291}
1292//------------------------------split_through_phi------------------------------
1293// Split instance or boxed field load through Phi.
1294Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1295  Node* mem     = in(Memory);
1296  Node* address = in(Address);
1297  const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1298
1299  assert((t_oop != NULL) &&
1300         (t_oop->is_known_instance_field() ||
1301          t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1302
1303  Compile* C = phase->C;
1304  intptr_t ignore = 0;
1305  Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1306  bool base_is_phi = (base != NULL) && base->is_Phi();
1307  bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1308                           (base != NULL) && (base == address->in(AddPNode::Base)) &&
1309                           phase->type(base)->higher_equal(TypePtr::NOTNULL);
1310
1311  if (!((mem->is_Phi() || base_is_phi) &&
1312        (load_boxed_values || t_oop->is_known_instance_field()))) {
1313    return NULL; // memory is not Phi
1314  }
1315
1316  if (mem->is_Phi()) {
1317    if (!stable_phi(mem->as_Phi(), phase)) {
1318      return NULL; // Wait stable graph
1319    }
1320    uint cnt = mem->req();
1321    // Check for loop invariant memory.
1322    if (cnt == 3) {
1323      for (uint i = 1; i < cnt; i++) {
1324        Node* in = mem->in(i);
1325        Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1326        if (m == mem) {
1327          set_req(Memory, mem->in(cnt - i));
1328          return this; // made change
1329        }
1330      }
1331    }
1332  }
1333  if (base_is_phi) {
1334    if (!stable_phi(base->as_Phi(), phase)) {
1335      return NULL; // Wait stable graph
1336    }
1337    uint cnt = base->req();
1338    // Check for loop invariant memory.
1339    if (cnt == 3) {
1340      for (uint i = 1; i < cnt; i++) {
1341        if (base->in(i) == base) {
1342          return NULL; // Wait stable graph
1343        }
1344      }
1345    }
1346  }
1347
1348  bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1349
1350  // Split through Phi (see original code in loopopts.cpp).
1351  assert(C->have_alias_type(t_oop), "instance should have alias type");
1352
1353  // Do nothing here if Identity will find a value
1354  // (to avoid infinite chain of value phis generation).
1355  if (!phase->eqv(this, this->Identity(phase)))
1356    return NULL;
1357
1358  // Select Region to split through.
1359  Node* region;
1360  if (!base_is_phi) {
1361    assert(mem->is_Phi(), "sanity");
1362    region = mem->in(0);
1363    // Skip if the region dominates some control edge of the address.
1364    if (!MemNode::all_controls_dominate(address, region))
1365      return NULL;
1366  } else if (!mem->is_Phi()) {
1367    assert(base_is_phi, "sanity");
1368    region = base->in(0);
1369    // Skip if the region dominates some control edge of the memory.
1370    if (!MemNode::all_controls_dominate(mem, region))
1371      return NULL;
1372  } else if (base->in(0) != mem->in(0)) {
1373    assert(base_is_phi && mem->is_Phi(), "sanity");
1374    if (MemNode::all_controls_dominate(mem, base->in(0))) {
1375      region = base->in(0);
1376    } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1377      region = mem->in(0);
1378    } else {
1379      return NULL; // complex graph
1380    }
1381  } else {
1382    assert(base->in(0) == mem->in(0), "sanity");
1383    region = mem->in(0);
1384  }
1385
1386  const Type* this_type = this->bottom_type();
1387  int this_index  = C->get_alias_index(t_oop);
1388  int this_offset = t_oop->offset();
1389  int this_iid    = t_oop->instance_id();
1390  if (!t_oop->is_known_instance() && load_boxed_values) {
1391    // Use _idx of address base for boxed values.
1392    this_iid = base->_idx;
1393  }
1394  PhaseIterGVN* igvn = phase->is_IterGVN();
1395  Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1396  for (uint i = 1; i < region->req(); i++) {
1397    Node* x;
1398    Node* the_clone = NULL;
1399    if (region->in(i) == C->top()) {
1400      x = C->top();      // Dead path?  Use a dead data op
1401    } else {
1402      x = this->clone();        // Else clone up the data op
1403      the_clone = x;            // Remember for possible deletion.
1404      // Alter data node to use pre-phi inputs
1405      if (this->in(0) == region) {
1406        x->set_req(0, region->in(i));
1407      } else {
1408        x->set_req(0, NULL);
1409      }
1410      if (mem->is_Phi() && (mem->in(0) == region)) {
1411        x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1412      }
1413      if (address->is_Phi() && address->in(0) == region) {
1414        x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1415      }
1416      if (base_is_phi && (base->in(0) == region)) {
1417        Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1418        Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1419        x->set_req(Address, adr_x);
1420      }
1421    }
1422    // Check for a 'win' on some paths
1423    const Type *t = x->Value(igvn);
1424
1425    bool singleton = t->singleton();
1426
1427    // See comments in PhaseIdealLoop::split_thru_phi().
1428    if (singleton && t == Type::TOP) {
1429      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1430    }
1431
1432    if (singleton) {
1433      x = igvn->makecon(t);
1434    } else {
1435      // We now call Identity to try to simplify the cloned node.
1436      // Note that some Identity methods call phase->type(this).
1437      // Make sure that the type array is big enough for
1438      // our new node, even though we may throw the node away.
1439      // (This tweaking with igvn only works because x is a new node.)
1440      igvn->set_type(x, t);
1441      // If x is a TypeNode, capture any more-precise type permanently into Node
1442      // otherwise it will be not updated during igvn->transform since
1443      // igvn->type(x) is set to x->Value() already.
1444      x->raise_bottom_type(t);
1445      Node *y = x->Identity(igvn);
1446      if (y != x) {
1447        x = y;
1448      } else {
1449        y = igvn->hash_find_insert(x);
1450        if (y) {
1451          x = y;
1452        } else {
1453          // Else x is a new node we are keeping
1454          // We do not need register_new_node_with_optimizer
1455          // because set_type has already been called.
1456          igvn->_worklist.push(x);
1457        }
1458      }
1459    }
1460    if (x != the_clone && the_clone != NULL) {
1461      igvn->remove_dead_node(the_clone);
1462    }
1463    phi->set_req(i, x);
1464  }
1465  // Record Phi
1466  igvn->register_new_node_with_optimizer(phi);
1467  return phi;
1468}
1469
1470//------------------------------Ideal------------------------------------------
1471// If the load is from Field memory and the pointer is non-null, we can
1472// zero out the control input.
1473// If the offset is constant and the base is an object allocation,
1474// try to hook me up to the exact initializing store.
1475Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1476  Node* p = MemNode::Ideal_common(phase, can_reshape);
1477  if (p)  return (p == NodeSentinel) ? NULL : p;
1478
1479  Node* ctrl    = in(MemNode::Control);
1480  Node* address = in(MemNode::Address);
1481
1482  // Skip up past a SafePoint control.  Cannot do this for Stores because
1483  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1484  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1485      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1486    ctrl = ctrl->in(0);
1487    set_req(MemNode::Control,ctrl);
1488  }
1489
1490  intptr_t ignore = 0;
1491  Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1492  if (base != NULL
1493      && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1494    // Check for useless control edge in some common special cases
1495    if (in(MemNode::Control) != NULL
1496        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1497        && all_controls_dominate(base, phase->C->start())) {
1498      // A method-invariant, non-null address (constant or 'this' argument).
1499      set_req(MemNode::Control, NULL);
1500    }
1501  }
1502
1503  Node* mem = in(MemNode::Memory);
1504  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1505
1506  if (can_reshape && (addr_t != NULL)) {
1507    // try to optimize our memory input
1508    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1509    if (opt_mem != mem) {
1510      set_req(MemNode::Memory, opt_mem);
1511      if (phase->type( opt_mem ) == Type::TOP) return NULL;
1512      return this;
1513    }
1514    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1515    if ((t_oop != NULL) &&
1516        (t_oop->is_known_instance_field() ||
1517         t_oop->is_ptr_to_boxed_value())) {
1518      PhaseIterGVN *igvn = phase->is_IterGVN();
1519      if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1520        // Delay this transformation until memory Phi is processed.
1521        phase->is_IterGVN()->_worklist.push(this);
1522        return NULL;
1523      }
1524      // Split instance field load through Phi.
1525      Node* result = split_through_phi(phase);
1526      if (result != NULL) return result;
1527
1528      if (t_oop->is_ptr_to_boxed_value()) {
1529        Node* result = eliminate_autobox(phase);
1530        if (result != NULL) return result;
1531      }
1532    }
1533  }
1534
1535  // Check for prior store with a different base or offset; make Load
1536  // independent.  Skip through any number of them.  Bail out if the stores
1537  // are in an endless dead cycle and report no progress.  This is a key
1538  // transform for Reflection.  However, if after skipping through the Stores
1539  // we can't then fold up against a prior store do NOT do the transform as
1540  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1541  // array memory alive twice: once for the hoisted Load and again after the
1542  // bypassed Store.  This situation only works if EVERYBODY who does
1543  // anti-dependence work knows how to bypass.  I.e. we need all
1544  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1545  // the alias index stuff.  So instead, peek through Stores and IFF we can
1546  // fold up, do so.
1547  Node* prev_mem = find_previous_store(phase);
1548  // Steps (a), (b):  Walk past independent stores to find an exact match.
1549  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1550    // (c) See if we can fold up on the spot, but don't fold up here.
1551    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1552    // just return a prior value, which is done by Identity calls.
1553    if (can_see_stored_value(prev_mem, phase)) {
1554      // Make ready for step (d):
1555      set_req(MemNode::Memory, prev_mem);
1556      return this;
1557    }
1558  }
1559
1560  return NULL;                  // No further progress
1561}
1562
1563// Helper to recognize certain Klass fields which are invariant across
1564// some group of array types (e.g., int[] or all T[] where T < Object).
1565const Type*
1566LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1567                                 ciKlass* klass) const {
1568  if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1569    // The field is Klass::_modifier_flags.  Return its (constant) value.
1570    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1571    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1572    return TypeInt::make(klass->modifier_flags());
1573  }
1574  if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1575    // The field is Klass::_access_flags.  Return its (constant) value.
1576    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1577    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1578    return TypeInt::make(klass->access_flags());
1579  }
1580  if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1581    // The field is Klass::_layout_helper.  Return its constant value if known.
1582    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1583    return TypeInt::make(klass->layout_helper());
1584  }
1585
1586  // No match.
1587  return NULL;
1588}
1589
1590// Try to constant-fold a stable array element.
1591static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1592  assert(ary->is_stable(), "array should be stable");
1593
1594  if (ary->const_oop() != NULL) {
1595    // Decode the results of GraphKit::array_element_address.
1596    ciArray* aobj = ary->const_oop()->as_array();
1597    ciConstant con = aobj->element_value_by_offset(off);
1598
1599    if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1600      const Type* con_type = Type::make_from_constant(con);
1601      if (con_type != NULL) {
1602        if (con_type->isa_aryptr()) {
1603          // Join with the array element type, in case it is also stable.
1604          int dim = ary->stable_dimension();
1605          con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1606        }
1607        if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1608          con_type = con_type->make_narrowoop();
1609        }
1610#ifndef PRODUCT
1611        if (TraceIterativeGVN) {
1612          tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1613          con_type->dump(); tty->cr();
1614        }
1615#endif //PRODUCT
1616        return con_type;
1617      }
1618    }
1619  }
1620
1621  return NULL;
1622}
1623
1624//------------------------------Value-----------------------------------------
1625const Type *LoadNode::Value( PhaseTransform *phase ) const {
1626  // Either input is TOP ==> the result is TOP
1627  Node* mem = in(MemNode::Memory);
1628  const Type *t1 = phase->type(mem);
1629  if (t1 == Type::TOP)  return Type::TOP;
1630  Node* adr = in(MemNode::Address);
1631  const TypePtr* tp = phase->type(adr)->isa_ptr();
1632  if (tp == NULL || tp->empty())  return Type::TOP;
1633  int off = tp->offset();
1634  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1635  Compile* C = phase->C;
1636
1637  // Try to guess loaded type from pointer type
1638  if (tp->isa_aryptr()) {
1639    const TypeAryPtr* ary = tp->is_aryptr();
1640    const Type *t = ary->elem();
1641
1642    // Determine whether the reference is beyond the header or not, by comparing
1643    // the offset against the offset of the start of the array's data.
1644    // Different array types begin at slightly different offsets (12 vs. 16).
1645    // We choose T_BYTE as an example base type that is least restrictive
1646    // as to alignment, which will therefore produce the smallest
1647    // possible base offset.
1648    const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1649    const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1650
1651    // Try to constant-fold a stable array element.
1652    if (FoldStableValues && ary->is_stable()) {
1653      // Make sure the reference is not into the header
1654      if (off_beyond_header && off != Type::OffsetBot) {
1655        assert(adr->is_AddP() && adr->in(AddPNode::Offset)->is_Con(), "offset is a constant");
1656        const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1657        if (con_type != NULL) {
1658          return con_type;
1659        }
1660      }
1661    }
1662
1663    // Don't do this for integer types. There is only potential profit if
1664    // the element type t is lower than _type; that is, for int types, if _type is
1665    // more restrictive than t.  This only happens here if one is short and the other
1666    // char (both 16 bits), and in those cases we've made an intentional decision
1667    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1668    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1669    //
1670    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1671    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1672    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1673    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1674    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1675    // In fact, that could have been the original type of p1, and p1 could have
1676    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1677    // expression (LShiftL quux 3) independently optimized to the constant 8.
1678    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1679        && (_type->isa_vect() == NULL)
1680        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1681      // t might actually be lower than _type, if _type is a unique
1682      // concrete subclass of abstract class t.
1683      if (off_beyond_header) {  // is the offset beyond the header?
1684        const Type* jt = t->join(_type);
1685        // In any case, do not allow the join, per se, to empty out the type.
1686        if (jt->empty() && !t->empty()) {
1687          // This can happen if a interface-typed array narrows to a class type.
1688          jt = _type;
1689        }
1690#ifdef ASSERT
1691        if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1692          // The pointers in the autobox arrays are always non-null
1693          Node* base = adr->in(AddPNode::Base);
1694          if ((base != NULL) && base->is_DecodeN()) {
1695            // Get LoadN node which loads IntegerCache.cache field
1696            base = base->in(1);
1697          }
1698          if ((base != NULL) && base->is_Con()) {
1699            const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1700            if ((base_type != NULL) && base_type->is_autobox_cache()) {
1701              // It could be narrow oop
1702              assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1703            }
1704          }
1705        }
1706#endif
1707        return jt;
1708      }
1709    }
1710  } else if (tp->base() == Type::InstPtr) {
1711    ciEnv* env = C->env();
1712    const TypeInstPtr* tinst = tp->is_instptr();
1713    ciKlass* klass = tinst->klass();
1714    assert( off != Type::OffsetBot ||
1715            // arrays can be cast to Objects
1716            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1717            // unsafe field access may not have a constant offset
1718            C->has_unsafe_access(),
1719            "Field accesses must be precise" );
1720    // For oop loads, we expect the _type to be precise
1721    if (klass == env->String_klass() &&
1722        adr->is_AddP() && off != Type::OffsetBot) {
1723      // For constant Strings treat the final fields as compile time constants.
1724      Node* base = adr->in(AddPNode::Base);
1725      const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1726      if (t != NULL && t->singleton()) {
1727        ciField* field = env->String_klass()->get_field_by_offset(off, false);
1728        if (field != NULL && field->is_final()) {
1729          ciObject* string = t->const_oop();
1730          ciConstant constant = string->as_instance()->field_value(field);
1731          if (constant.basic_type() == T_INT) {
1732            return TypeInt::make(constant.as_int());
1733          } else if (constant.basic_type() == T_ARRAY) {
1734            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1735              return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1736            } else {
1737              return TypeOopPtr::make_from_constant(constant.as_object(), true);
1738            }
1739          }
1740        }
1741      }
1742    }
1743    // Optimizations for constant objects
1744    ciObject* const_oop = tinst->const_oop();
1745    if (const_oop != NULL) {
1746      // For constant Boxed value treat the target field as a compile time constant.
1747      if (tinst->is_ptr_to_boxed_value()) {
1748        return tinst->get_const_boxed_value();
1749      } else
1750      // For constant CallSites treat the target field as a compile time constant.
1751      if (const_oop->is_call_site()) {
1752        ciCallSite* call_site = const_oop->as_call_site();
1753        ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1754        if (field != NULL && field->is_call_site_target()) {
1755          ciMethodHandle* target = call_site->get_target();
1756          if (target != NULL) {  // just in case
1757            ciConstant constant(T_OBJECT, target);
1758            const Type* t;
1759            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1760              t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1761            } else {
1762              t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1763            }
1764            // Add a dependence for invalidation of the optimization.
1765            if (!call_site->is_constant_call_site()) {
1766              C->dependencies()->assert_call_site_target_value(call_site, target);
1767            }
1768            return t;
1769          }
1770        }
1771      }
1772    }
1773  } else if (tp->base() == Type::KlassPtr) {
1774    assert( off != Type::OffsetBot ||
1775            // arrays can be cast to Objects
1776            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1777            // also allow array-loading from the primary supertype
1778            // array during subtype checks
1779            Opcode() == Op_LoadKlass,
1780            "Field accesses must be precise" );
1781    // For klass/static loads, we expect the _type to be precise
1782  }
1783
1784  const TypeKlassPtr *tkls = tp->isa_klassptr();
1785  if (tkls != NULL && !StressReflectiveCode) {
1786    ciKlass* klass = tkls->klass();
1787    if (klass->is_loaded() && tkls->klass_is_exact()) {
1788      // We are loading a field from a Klass metaobject whose identity
1789      // is known at compile time (the type is "exact" or "precise").
1790      // Check for fields we know are maintained as constants by the VM.
1791      if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1792        // The field is Klass::_super_check_offset.  Return its (constant) value.
1793        // (Folds up type checking code.)
1794        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1795        return TypeInt::make(klass->super_check_offset());
1796      }
1797      // Compute index into primary_supers array
1798      juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1799      // Check for overflowing; use unsigned compare to handle the negative case.
1800      if( depth < ciKlass::primary_super_limit() ) {
1801        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1802        // (Folds up type checking code.)
1803        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1804        ciKlass *ss = klass->super_of_depth(depth);
1805        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1806      }
1807      const Type* aift = load_array_final_field(tkls, klass);
1808      if (aift != NULL)  return aift;
1809      if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1810          && klass->is_array_klass()) {
1811        // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1812        // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1813        assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1814        return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1815      }
1816      if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1817        // The field is Klass::_java_mirror.  Return its (constant) value.
1818        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1819        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1820        return TypeInstPtr::make(klass->java_mirror());
1821      }
1822    }
1823
1824    // We can still check if we are loading from the primary_supers array at a
1825    // shallow enough depth.  Even though the klass is not exact, entries less
1826    // than or equal to its super depth are correct.
1827    if (klass->is_loaded() ) {
1828      ciType *inner = klass;
1829      while( inner->is_obj_array_klass() )
1830        inner = inner->as_obj_array_klass()->base_element_type();
1831      if( inner->is_instance_klass() &&
1832          !inner->as_instance_klass()->flags().is_interface() ) {
1833        // Compute index into primary_supers array
1834        juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1835        // Check for overflowing; use unsigned compare to handle the negative case.
1836        if( depth < ciKlass::primary_super_limit() &&
1837            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1838          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1839          // (Folds up type checking code.)
1840          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1841          ciKlass *ss = klass->super_of_depth(depth);
1842          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1843        }
1844      }
1845    }
1846
1847    // If the type is enough to determine that the thing is not an array,
1848    // we can give the layout_helper a positive interval type.
1849    // This will help short-circuit some reflective code.
1850    if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1851        && !klass->is_array_klass() // not directly typed as an array
1852        && !klass->is_interface()  // specifically not Serializable & Cloneable
1853        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1854        ) {
1855      // Note:  When interfaces are reliable, we can narrow the interface
1856      // test to (klass != Serializable && klass != Cloneable).
1857      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1858      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1859      // The key property of this type is that it folds up tests
1860      // for array-ness, since it proves that the layout_helper is positive.
1861      // Thus, a generic value like the basic object layout helper works fine.
1862      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1863    }
1864  }
1865
1866  // If we are loading from a freshly-allocated object, produce a zero,
1867  // if the load is provably beyond the header of the object.
1868  // (Also allow a variable load from a fresh array to produce zero.)
1869  const TypeOopPtr *tinst = tp->isa_oopptr();
1870  bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1871  bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1872  if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1873    Node* value = can_see_stored_value(mem,phase);
1874    if (value != NULL && value->is_Con()) {
1875      assert(value->bottom_type()->higher_equal(_type),"sanity");
1876      return value->bottom_type();
1877    }
1878  }
1879
1880  if (is_instance) {
1881    // If we have an instance type and our memory input is the
1882    // programs's initial memory state, there is no matching store,
1883    // so just return a zero of the appropriate type
1884    Node *mem = in(MemNode::Memory);
1885    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1886      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1887      return Type::get_zero_type(_type->basic_type());
1888    }
1889  }
1890  return _type;
1891}
1892
1893//------------------------------match_edge-------------------------------------
1894// Do we Match on this edge index or not?  Match only the address.
1895uint LoadNode::match_edge(uint idx) const {
1896  return idx == MemNode::Address;
1897}
1898
1899//--------------------------LoadBNode::Ideal--------------------------------------
1900//
1901//  If the previous store is to the same address as this load,
1902//  and the value stored was larger than a byte, replace this load
1903//  with the value stored truncated to a byte.  If no truncation is
1904//  needed, the replacement is done in LoadNode::Identity().
1905//
1906Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1907  Node* mem = in(MemNode::Memory);
1908  Node* value = can_see_stored_value(mem,phase);
1909  if( value && !phase->type(value)->higher_equal( _type ) ) {
1910    Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1911    return new (phase->C) RShiftINode(result, phase->intcon(24));
1912  }
1913  // Identity call will handle the case where truncation is not needed.
1914  return LoadNode::Ideal(phase, can_reshape);
1915}
1916
1917const Type* LoadBNode::Value(PhaseTransform *phase) const {
1918  Node* mem = in(MemNode::Memory);
1919  Node* value = can_see_stored_value(mem,phase);
1920  if (value != NULL && value->is_Con() &&
1921      !value->bottom_type()->higher_equal(_type)) {
1922    // If the input to the store does not fit with the load's result type,
1923    // it must be truncated. We can't delay until Ideal call since
1924    // a singleton Value is needed for split_thru_phi optimization.
1925    int con = value->get_int();
1926    return TypeInt::make((con << 24) >> 24);
1927  }
1928  return LoadNode::Value(phase);
1929}
1930
1931//--------------------------LoadUBNode::Ideal-------------------------------------
1932//
1933//  If the previous store is to the same address as this load,
1934//  and the value stored was larger than a byte, replace this load
1935//  with the value stored truncated to a byte.  If no truncation is
1936//  needed, the replacement is done in LoadNode::Identity().
1937//
1938Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1939  Node* mem = in(MemNode::Memory);
1940  Node* value = can_see_stored_value(mem, phase);
1941  if (value && !phase->type(value)->higher_equal(_type))
1942    return new (phase->C) AndINode(value, phase->intcon(0xFF));
1943  // Identity call will handle the case where truncation is not needed.
1944  return LoadNode::Ideal(phase, can_reshape);
1945}
1946
1947const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1948  Node* mem = in(MemNode::Memory);
1949  Node* value = can_see_stored_value(mem,phase);
1950  if (value != NULL && value->is_Con() &&
1951      !value->bottom_type()->higher_equal(_type)) {
1952    // If the input to the store does not fit with the load's result type,
1953    // it must be truncated. We can't delay until Ideal call since
1954    // a singleton Value is needed for split_thru_phi optimization.
1955    int con = value->get_int();
1956    return TypeInt::make(con & 0xFF);
1957  }
1958  return LoadNode::Value(phase);
1959}
1960
1961//--------------------------LoadUSNode::Ideal-------------------------------------
1962//
1963//  If the previous store is to the same address as this load,
1964//  and the value stored was larger than a char, replace this load
1965//  with the value stored truncated to a char.  If no truncation is
1966//  needed, the replacement is done in LoadNode::Identity().
1967//
1968Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1969  Node* mem = in(MemNode::Memory);
1970  Node* value = can_see_stored_value(mem,phase);
1971  if( value && !phase->type(value)->higher_equal( _type ) )
1972    return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1973  // Identity call will handle the case where truncation is not needed.
1974  return LoadNode::Ideal(phase, can_reshape);
1975}
1976
1977const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1978  Node* mem = in(MemNode::Memory);
1979  Node* value = can_see_stored_value(mem,phase);
1980  if (value != NULL && value->is_Con() &&
1981      !value->bottom_type()->higher_equal(_type)) {
1982    // If the input to the store does not fit with the load's result type,
1983    // it must be truncated. We can't delay until Ideal call since
1984    // a singleton Value is needed for split_thru_phi optimization.
1985    int con = value->get_int();
1986    return TypeInt::make(con & 0xFFFF);
1987  }
1988  return LoadNode::Value(phase);
1989}
1990
1991//--------------------------LoadSNode::Ideal--------------------------------------
1992//
1993//  If the previous store is to the same address as this load,
1994//  and the value stored was larger than a short, replace this load
1995//  with the value stored truncated to a short.  If no truncation is
1996//  needed, the replacement is done in LoadNode::Identity().
1997//
1998Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1999  Node* mem = in(MemNode::Memory);
2000  Node* value = can_see_stored_value(mem,phase);
2001  if( value && !phase->type(value)->higher_equal( _type ) ) {
2002    Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
2003    return new (phase->C) RShiftINode(result, phase->intcon(16));
2004  }
2005  // Identity call will handle the case where truncation is not needed.
2006  return LoadNode::Ideal(phase, can_reshape);
2007}
2008
2009const Type* LoadSNode::Value(PhaseTransform *phase) const {
2010  Node* mem = in(MemNode::Memory);
2011  Node* value = can_see_stored_value(mem,phase);
2012  if (value != NULL && value->is_Con() &&
2013      !value->bottom_type()->higher_equal(_type)) {
2014    // If the input to the store does not fit with the load's result type,
2015    // it must be truncated. We can't delay until Ideal call since
2016    // a singleton Value is needed for split_thru_phi optimization.
2017    int con = value->get_int();
2018    return TypeInt::make((con << 16) >> 16);
2019  }
2020  return LoadNode::Value(phase);
2021}
2022
2023//=============================================================================
2024//----------------------------LoadKlassNode::make------------------------------
2025// Polymorphic factory method:
2026Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
2027  Compile* C = gvn.C;
2028  Node *ctl = NULL;
2029  // sanity check the alias category against the created node type
2030  const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2031  assert(adr_type != NULL, "expecting TypeKlassPtr");
2032#ifdef _LP64
2033  if (adr_type->is_ptr_to_narrowklass()) {
2034    assert(UseCompressedClassPointers, "no compressed klasses");
2035    Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
2036    return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2037  }
2038#endif
2039  assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2040  return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
2041}
2042
2043//------------------------------Value------------------------------------------
2044const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2045  return klass_value_common(phase);
2046}
2047
2048const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2049  // Either input is TOP ==> the result is TOP
2050  const Type *t1 = phase->type( in(MemNode::Memory) );
2051  if (t1 == Type::TOP)  return Type::TOP;
2052  Node *adr = in(MemNode::Address);
2053  const Type *t2 = phase->type( adr );
2054  if (t2 == Type::TOP)  return Type::TOP;
2055  const TypePtr *tp = t2->is_ptr();
2056  if (TypePtr::above_centerline(tp->ptr()) ||
2057      tp->ptr() == TypePtr::Null)  return Type::TOP;
2058
2059  // Return a more precise klass, if possible
2060  const TypeInstPtr *tinst = tp->isa_instptr();
2061  if (tinst != NULL) {
2062    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2063    int offset = tinst->offset();
2064    if (ik == phase->C->env()->Class_klass()
2065        && (offset == java_lang_Class::klass_offset_in_bytes() ||
2066            offset == java_lang_Class::array_klass_offset_in_bytes())) {
2067      // We are loading a special hidden field from a Class mirror object,
2068      // the field which points to the VM's Klass metaobject.
2069      ciType* t = tinst->java_mirror_type();
2070      // java_mirror_type returns non-null for compile-time Class constants.
2071      if (t != NULL) {
2072        // constant oop => constant klass
2073        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2074          if (t->is_void()) {
2075            // We cannot create a void array.  Since void is a primitive type return null
2076            // klass.  Users of this result need to do a null check on the returned klass.
2077            return TypePtr::NULL_PTR;
2078          }
2079          return TypeKlassPtr::make(ciArrayKlass::make(t));
2080        }
2081        if (!t->is_klass()) {
2082          // a primitive Class (e.g., int.class) has NULL for a klass field
2083          return TypePtr::NULL_PTR;
2084        }
2085        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2086        return TypeKlassPtr::make(t->as_klass());
2087      }
2088      // non-constant mirror, so we can't tell what's going on
2089    }
2090    if( !ik->is_loaded() )
2091      return _type;             // Bail out if not loaded
2092    if (offset == oopDesc::klass_offset_in_bytes()) {
2093      if (tinst->klass_is_exact()) {
2094        return TypeKlassPtr::make(ik);
2095      }
2096      // See if we can become precise: no subklasses and no interface
2097      // (Note:  We need to support verified interfaces.)
2098      if (!ik->is_interface() && !ik->has_subklass()) {
2099        //assert(!UseExactTypes, "this code should be useless with exact types");
2100        // Add a dependence; if any subclass added we need to recompile
2101        if (!ik->is_final()) {
2102          // %%% should use stronger assert_unique_concrete_subtype instead
2103          phase->C->dependencies()->assert_leaf_type(ik);
2104        }
2105        // Return precise klass
2106        return TypeKlassPtr::make(ik);
2107      }
2108
2109      // Return root of possible klass
2110      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2111    }
2112  }
2113
2114  // Check for loading klass from an array
2115  const TypeAryPtr *tary = tp->isa_aryptr();
2116  if( tary != NULL ) {
2117    ciKlass *tary_klass = tary->klass();
2118    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2119        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2120      if (tary->klass_is_exact()) {
2121        return TypeKlassPtr::make(tary_klass);
2122      }
2123      ciArrayKlass *ak = tary->klass()->as_array_klass();
2124      // If the klass is an object array, we defer the question to the
2125      // array component klass.
2126      if( ak->is_obj_array_klass() ) {
2127        assert( ak->is_loaded(), "" );
2128        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2129        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2130          ciInstanceKlass* ik = base_k->as_instance_klass();
2131          // See if we can become precise: no subklasses and no interface
2132          if (!ik->is_interface() && !ik->has_subklass()) {
2133            //assert(!UseExactTypes, "this code should be useless with exact types");
2134            // Add a dependence; if any subclass added we need to recompile
2135            if (!ik->is_final()) {
2136              phase->C->dependencies()->assert_leaf_type(ik);
2137            }
2138            // Return precise array klass
2139            return TypeKlassPtr::make(ak);
2140          }
2141        }
2142        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2143      } else {                  // Found a type-array?
2144        //assert(!UseExactTypes, "this code should be useless with exact types");
2145        assert( ak->is_type_array_klass(), "" );
2146        return TypeKlassPtr::make(ak); // These are always precise
2147      }
2148    }
2149  }
2150
2151  // Check for loading klass from an array klass
2152  const TypeKlassPtr *tkls = tp->isa_klassptr();
2153  if (tkls != NULL && !StressReflectiveCode) {
2154    ciKlass* klass = tkls->klass();
2155    if( !klass->is_loaded() )
2156      return _type;             // Bail out if not loaded
2157    if( klass->is_obj_array_klass() &&
2158        tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2159      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2160      // // Always returning precise element type is incorrect,
2161      // // e.g., element type could be object and array may contain strings
2162      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2163
2164      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2165      // according to the element type's subclassing.
2166      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2167    }
2168    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2169        tkls->offset() == in_bytes(Klass::super_offset())) {
2170      ciKlass* sup = klass->as_instance_klass()->super();
2171      // The field is Klass::_super.  Return its (constant) value.
2172      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2173      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2174    }
2175  }
2176
2177  // Bailout case
2178  return LoadNode::Value(phase);
2179}
2180
2181//------------------------------Identity---------------------------------------
2182// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2183// Also feed through the klass in Allocate(...klass...)._klass.
2184Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2185  return klass_identity_common(phase);
2186}
2187
2188Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2189  Node* x = LoadNode::Identity(phase);
2190  if (x != this)  return x;
2191
2192  // Take apart the address into an oop and and offset.
2193  // Return 'this' if we cannot.
2194  Node*    adr    = in(MemNode::Address);
2195  intptr_t offset = 0;
2196  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2197  if (base == NULL)     return this;
2198  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2199  if (toop == NULL)     return this;
2200
2201  // We can fetch the klass directly through an AllocateNode.
2202  // This works even if the klass is not constant (clone or newArray).
2203  if (offset == oopDesc::klass_offset_in_bytes()) {
2204    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2205    if (allocated_klass != NULL) {
2206      return allocated_klass;
2207    }
2208  }
2209
2210  // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2211  // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2212  // See inline_native_Class_query for occurrences of these patterns.
2213  // Java Example:  x.getClass().isAssignableFrom(y)
2214  // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2215  //
2216  // This improves reflective code, often making the Class
2217  // mirror go completely dead.  (Current exception:  Class
2218  // mirrors may appear in debug info, but we could clean them out by
2219  // introducing a new debug info operator for Klass*.java_mirror).
2220  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2221      && (offset == java_lang_Class::klass_offset_in_bytes() ||
2222          offset == java_lang_Class::array_klass_offset_in_bytes())) {
2223    // We are loading a special hidden field from a Class mirror,
2224    // the field which points to its Klass or ArrayKlass metaobject.
2225    if (base->is_Load()) {
2226      Node* adr2 = base->in(MemNode::Address);
2227      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2228      if (tkls != NULL && !tkls->empty()
2229          && (tkls->klass()->is_instance_klass() ||
2230              tkls->klass()->is_array_klass())
2231          && adr2->is_AddP()
2232          ) {
2233        int mirror_field = in_bytes(Klass::java_mirror_offset());
2234        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2235          mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2236        }
2237        if (tkls->offset() == mirror_field) {
2238          return adr2->in(AddPNode::Base);
2239        }
2240      }
2241    }
2242  }
2243
2244  return this;
2245}
2246
2247
2248//------------------------------Value------------------------------------------
2249const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2250  const Type *t = klass_value_common(phase);
2251  if (t == Type::TOP)
2252    return t;
2253
2254  return t->make_narrowklass();
2255}
2256
2257//------------------------------Identity---------------------------------------
2258// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2259// Also feed through the klass in Allocate(...klass...)._klass.
2260Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2261  Node *x = klass_identity_common(phase);
2262
2263  const Type *t = phase->type( x );
2264  if( t == Type::TOP ) return x;
2265  if( t->isa_narrowklass()) return x;
2266  assert (!t->isa_narrowoop(), "no narrow oop here");
2267
2268  return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2269}
2270
2271//------------------------------Value-----------------------------------------
2272const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2273  // Either input is TOP ==> the result is TOP
2274  const Type *t1 = phase->type( in(MemNode::Memory) );
2275  if( t1 == Type::TOP ) return Type::TOP;
2276  Node *adr = in(MemNode::Address);
2277  const Type *t2 = phase->type( adr );
2278  if( t2 == Type::TOP ) return Type::TOP;
2279  const TypePtr *tp = t2->is_ptr();
2280  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2281  const TypeAryPtr *tap = tp->isa_aryptr();
2282  if( !tap ) return _type;
2283  return tap->size();
2284}
2285
2286//-------------------------------Ideal---------------------------------------
2287// Feed through the length in AllocateArray(...length...)._length.
2288Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2289  Node* p = MemNode::Ideal_common(phase, can_reshape);
2290  if (p)  return (p == NodeSentinel) ? NULL : p;
2291
2292  // Take apart the address into an oop and and offset.
2293  // Return 'this' if we cannot.
2294  Node*    adr    = in(MemNode::Address);
2295  intptr_t offset = 0;
2296  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2297  if (base == NULL)     return NULL;
2298  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2299  if (tary == NULL)     return NULL;
2300
2301  // We can fetch the length directly through an AllocateArrayNode.
2302  // This works even if the length is not constant (clone or newArray).
2303  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2304    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2305    if (alloc != NULL) {
2306      Node* allocated_length = alloc->Ideal_length();
2307      Node* len = alloc->make_ideal_length(tary, phase);
2308      if (allocated_length != len) {
2309        // New CastII improves on this.
2310        return len;
2311      }
2312    }
2313  }
2314
2315  return NULL;
2316}
2317
2318//------------------------------Identity---------------------------------------
2319// Feed through the length in AllocateArray(...length...)._length.
2320Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2321  Node* x = LoadINode::Identity(phase);
2322  if (x != this)  return x;
2323
2324  // Take apart the address into an oop and and offset.
2325  // Return 'this' if we cannot.
2326  Node*    adr    = in(MemNode::Address);
2327  intptr_t offset = 0;
2328  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2329  if (base == NULL)     return this;
2330  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2331  if (tary == NULL)     return this;
2332
2333  // We can fetch the length directly through an AllocateArrayNode.
2334  // This works even if the length is not constant (clone or newArray).
2335  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2336    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2337    if (alloc != NULL) {
2338      Node* allocated_length = alloc->Ideal_length();
2339      // Do not allow make_ideal_length to allocate a CastII node.
2340      Node* len = alloc->make_ideal_length(tary, phase, false);
2341      if (allocated_length == len) {
2342        // Return allocated_length only if it would not be improved by a CastII.
2343        return allocated_length;
2344      }
2345    }
2346  }
2347
2348  return this;
2349
2350}
2351
2352//=============================================================================
2353//---------------------------StoreNode::make-----------------------------------
2354// Polymorphic factory method:
2355StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2356  Compile* C = gvn.C;
2357  assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2358          ctl != NULL, "raw memory operations should have control edge");
2359
2360  switch (bt) {
2361  case T_BOOLEAN:
2362  case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
2363  case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val);
2364  case T_CHAR:
2365  case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
2366  case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
2367  case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
2368  case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
2369  case T_METADATA:
2370  case T_ADDRESS:
2371  case T_OBJECT:
2372#ifdef _LP64
2373    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2374      val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2375      return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
2376    } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2377               (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2378                adr->bottom_type()->isa_rawptr())) {
2379      val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2380      return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
2381    }
2382#endif
2383    {
2384      return new (C) StorePNode(ctl, mem, adr, adr_type, val);
2385    }
2386  }
2387  ShouldNotReachHere();
2388  return (StoreNode*)NULL;
2389}
2390
2391StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2392  bool require_atomic = true;
2393  return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2394}
2395
2396
2397//--------------------------bottom_type----------------------------------------
2398const Type *StoreNode::bottom_type() const {
2399  return Type::MEMORY;
2400}
2401
2402//------------------------------hash-------------------------------------------
2403uint StoreNode::hash() const {
2404  // unroll addition of interesting fields
2405  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2406
2407  // Since they are not commoned, do not hash them:
2408  return NO_HASH;
2409}
2410
2411//------------------------------Ideal------------------------------------------
2412// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2413// When a store immediately follows a relevant allocation/initialization,
2414// try to capture it into the initialization, or hoist it above.
2415Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2416  Node* p = MemNode::Ideal_common(phase, can_reshape);
2417  if (p)  return (p == NodeSentinel) ? NULL : p;
2418
2419  Node* mem     = in(MemNode::Memory);
2420  Node* address = in(MemNode::Address);
2421
2422  // Back-to-back stores to same address?  Fold em up.  Generally
2423  // unsafe if I have intervening uses...  Also disallowed for StoreCM
2424  // since they must follow each StoreP operation.  Redundant StoreCMs
2425  // are eliminated just before matching in final_graph_reshape.
2426  if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2427      mem->Opcode() != Op_StoreCM) {
2428    // Looking at a dead closed cycle of memory?
2429    assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2430
2431    assert(Opcode() == mem->Opcode() ||
2432           phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2433           "no mismatched stores, except on raw memory");
2434
2435    if (mem->outcnt() == 1 &&           // check for intervening uses
2436        mem->as_Store()->memory_size() <= this->memory_size()) {
2437      // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2438      // For example, 'mem' might be the final state at a conditional return.
2439      // Or, 'mem' might be used by some node which is live at the same time
2440      // 'this' is live, which might be unschedulable.  So, require exactly
2441      // ONE user, the 'this' store, until such time as we clone 'mem' for
2442      // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2443      if (can_reshape) {  // (%%% is this an anachronism?)
2444        set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2445                  phase->is_IterGVN());
2446      } else {
2447        // It's OK to do this in the parser, since DU info is always accurate,
2448        // and the parser always refers to nodes via SafePointNode maps.
2449        set_req(MemNode::Memory, mem->in(MemNode::Memory));
2450      }
2451      return this;
2452    }
2453  }
2454
2455  // Capture an unaliased, unconditional, simple store into an initializer.
2456  // Or, if it is independent of the allocation, hoist it above the allocation.
2457  if (ReduceFieldZeroing && /*can_reshape &&*/
2458      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2459    InitializeNode* init = mem->in(0)->as_Initialize();
2460    intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2461    if (offset > 0) {
2462      Node* moved = init->capture_store(this, offset, phase, can_reshape);
2463      // If the InitializeNode captured me, it made a raw copy of me,
2464      // and I need to disappear.
2465      if (moved != NULL) {
2466        // %%% hack to ensure that Ideal returns a new node:
2467        mem = MergeMemNode::make(phase->C, mem);
2468        return mem;             // fold me away
2469      }
2470    }
2471  }
2472
2473  return NULL;                  // No further progress
2474}
2475
2476//------------------------------Value-----------------------------------------
2477const Type *StoreNode::Value( PhaseTransform *phase ) const {
2478  // Either input is TOP ==> the result is TOP
2479  const Type *t1 = phase->type( in(MemNode::Memory) );
2480  if( t1 == Type::TOP ) return Type::TOP;
2481  const Type *t2 = phase->type( in(MemNode::Address) );
2482  if( t2 == Type::TOP ) return Type::TOP;
2483  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2484  if( t3 == Type::TOP ) return Type::TOP;
2485  return Type::MEMORY;
2486}
2487
2488//------------------------------Identity---------------------------------------
2489// Remove redundant stores:
2490//   Store(m, p, Load(m, p)) changes to m.
2491//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2492Node *StoreNode::Identity( PhaseTransform *phase ) {
2493  Node* mem = in(MemNode::Memory);
2494  Node* adr = in(MemNode::Address);
2495  Node* val = in(MemNode::ValueIn);
2496
2497  // Load then Store?  Then the Store is useless
2498  if (val->is_Load() &&
2499      val->in(MemNode::Address)->eqv_uncast(adr) &&
2500      val->in(MemNode::Memory )->eqv_uncast(mem) &&
2501      val->as_Load()->store_Opcode() == Opcode()) {
2502    return mem;
2503  }
2504
2505  // Two stores in a row of the same value?
2506  if (mem->is_Store() &&
2507      mem->in(MemNode::Address)->eqv_uncast(adr) &&
2508      mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2509      mem->Opcode() == Opcode()) {
2510    return mem;
2511  }
2512
2513  // Store of zero anywhere into a freshly-allocated object?
2514  // Then the store is useless.
2515  // (It must already have been captured by the InitializeNode.)
2516  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2517    // a newly allocated object is already all-zeroes everywhere
2518    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2519      return mem;
2520    }
2521
2522    // the store may also apply to zero-bits in an earlier object
2523    Node* prev_mem = find_previous_store(phase);
2524    // Steps (a), (b):  Walk past independent stores to find an exact match.
2525    if (prev_mem != NULL) {
2526      Node* prev_val = can_see_stored_value(prev_mem, phase);
2527      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2528        // prev_val and val might differ by a cast; it would be good
2529        // to keep the more informative of the two.
2530        return mem;
2531      }
2532    }
2533  }
2534
2535  return this;
2536}
2537
2538//------------------------------match_edge-------------------------------------
2539// Do we Match on this edge index or not?  Match only memory & value
2540uint StoreNode::match_edge(uint idx) const {
2541  return idx == MemNode::Address || idx == MemNode::ValueIn;
2542}
2543
2544//------------------------------cmp--------------------------------------------
2545// Do not common stores up together.  They generally have to be split
2546// back up anyways, so do not bother.
2547uint StoreNode::cmp( const Node &n ) const {
2548  return (&n == this);          // Always fail except on self
2549}
2550
2551//------------------------------Ideal_masked_input-----------------------------
2552// Check for a useless mask before a partial-word store
2553// (StoreB ... (AndI valIn conIa) )
2554// If (conIa & mask == mask) this simplifies to
2555// (StoreB ... (valIn) )
2556Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2557  Node *val = in(MemNode::ValueIn);
2558  if( val->Opcode() == Op_AndI ) {
2559    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2560    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2561      set_req(MemNode::ValueIn, val->in(1));
2562      return this;
2563    }
2564  }
2565  return NULL;
2566}
2567
2568
2569//------------------------------Ideal_sign_extended_input----------------------
2570// Check for useless sign-extension before a partial-word store
2571// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2572// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2573// (StoreB ... (valIn) )
2574Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2575  Node *val = in(MemNode::ValueIn);
2576  if( val->Opcode() == Op_RShiftI ) {
2577    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2578    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2579      Node *shl = val->in(1);
2580      if( shl->Opcode() == Op_LShiftI ) {
2581        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2582        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2583          set_req(MemNode::ValueIn, shl->in(1));
2584          return this;
2585        }
2586      }
2587    }
2588  }
2589  return NULL;
2590}
2591
2592//------------------------------value_never_loaded-----------------------------------
2593// Determine whether there are any possible loads of the value stored.
2594// For simplicity, we actually check if there are any loads from the
2595// address stored to, not just for loads of the value stored by this node.
2596//
2597bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2598  Node *adr = in(Address);
2599  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2600  if (adr_oop == NULL)
2601    return false;
2602  if (!adr_oop->is_known_instance_field())
2603    return false; // if not a distinct instance, there may be aliases of the address
2604  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2605    Node *use = adr->fast_out(i);
2606    int opc = use->Opcode();
2607    if (use->is_Load() || use->is_LoadStore()) {
2608      return false;
2609    }
2610  }
2611  return true;
2612}
2613
2614//=============================================================================
2615//------------------------------Ideal------------------------------------------
2616// If the store is from an AND mask that leaves the low bits untouched, then
2617// we can skip the AND operation.  If the store is from a sign-extension
2618// (a left shift, then right shift) we can skip both.
2619Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2620  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2621  if( progress != NULL ) return progress;
2622
2623  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2624  if( progress != NULL ) return progress;
2625
2626  // Finally check the default case
2627  return StoreNode::Ideal(phase, can_reshape);
2628}
2629
2630//=============================================================================
2631//------------------------------Ideal------------------------------------------
2632// If the store is from an AND mask that leaves the low bits untouched, then
2633// we can skip the AND operation
2634Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2635  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2636  if( progress != NULL ) return progress;
2637
2638  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2639  if( progress != NULL ) return progress;
2640
2641  // Finally check the default case
2642  return StoreNode::Ideal(phase, can_reshape);
2643}
2644
2645//=============================================================================
2646//------------------------------Identity---------------------------------------
2647Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2648  // No need to card mark when storing a null ptr
2649  Node* my_store = in(MemNode::OopStore);
2650  if (my_store->is_Store()) {
2651    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2652    if( t1 == TypePtr::NULL_PTR ) {
2653      return in(MemNode::Memory);
2654    }
2655  }
2656  return this;
2657}
2658
2659//=============================================================================
2660//------------------------------Ideal---------------------------------------
2661Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2662  Node* progress = StoreNode::Ideal(phase, can_reshape);
2663  if (progress != NULL) return progress;
2664
2665  Node* my_store = in(MemNode::OopStore);
2666  if (my_store->is_MergeMem()) {
2667    Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2668    set_req(MemNode::OopStore, mem);
2669    return this;
2670  }
2671
2672  return NULL;
2673}
2674
2675//------------------------------Value-----------------------------------------
2676const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2677  // Either input is TOP ==> the result is TOP
2678  const Type *t = phase->type( in(MemNode::Memory) );
2679  if( t == Type::TOP ) return Type::TOP;
2680  t = phase->type( in(MemNode::Address) );
2681  if( t == Type::TOP ) return Type::TOP;
2682  t = phase->type( in(MemNode::ValueIn) );
2683  if( t == Type::TOP ) return Type::TOP;
2684  // If extra input is TOP ==> the result is TOP
2685  t = phase->type( in(MemNode::OopStore) );
2686  if( t == Type::TOP ) return Type::TOP;
2687
2688  return StoreNode::Value( phase );
2689}
2690
2691
2692//=============================================================================
2693//----------------------------------SCMemProjNode------------------------------
2694const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2695{
2696  return bottom_type();
2697}
2698
2699//=============================================================================
2700//----------------------------------LoadStoreNode------------------------------
2701LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2702  : Node(required),
2703    _type(rt),
2704    _adr_type(at)
2705{
2706  init_req(MemNode::Control, c  );
2707  init_req(MemNode::Memory , mem);
2708  init_req(MemNode::Address, adr);
2709  init_req(MemNode::ValueIn, val);
2710  init_class_id(Class_LoadStore);
2711}
2712
2713uint LoadStoreNode::ideal_reg() const {
2714  return _type->ideal_reg();
2715}
2716
2717bool LoadStoreNode::result_not_used() const {
2718  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2719    Node *x = fast_out(i);
2720    if (x->Opcode() == Op_SCMemProj) continue;
2721    return false;
2722  }
2723  return true;
2724}
2725
2726uint LoadStoreNode::size_of() const { return sizeof(*this); }
2727
2728//=============================================================================
2729//----------------------------------LoadStoreConditionalNode--------------------
2730LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2731  init_req(ExpectedIn, ex );
2732}
2733
2734//=============================================================================
2735//-------------------------------adr_type--------------------------------------
2736// Do we Match on this edge index or not?  Do not match memory
2737const TypePtr* ClearArrayNode::adr_type() const {
2738  Node *adr = in(3);
2739  return MemNode::calculate_adr_type(adr->bottom_type());
2740}
2741
2742//------------------------------match_edge-------------------------------------
2743// Do we Match on this edge index or not?  Do not match memory
2744uint ClearArrayNode::match_edge(uint idx) const {
2745  return idx > 1;
2746}
2747
2748//------------------------------Identity---------------------------------------
2749// Clearing a zero length array does nothing
2750Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2751  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2752}
2753
2754//------------------------------Idealize---------------------------------------
2755// Clearing a short array is faster with stores
2756Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2757  const int unit = BytesPerLong;
2758  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2759  if (!t)  return NULL;
2760  if (!t->is_con())  return NULL;
2761  intptr_t raw_count = t->get_con();
2762  intptr_t size = raw_count;
2763  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2764  // Clearing nothing uses the Identity call.
2765  // Negative clears are possible on dead ClearArrays
2766  // (see jck test stmt114.stmt11402.val).
2767  if (size <= 0 || size % unit != 0)  return NULL;
2768  intptr_t count = size / unit;
2769  // Length too long; use fast hardware clear
2770  if (size > Matcher::init_array_short_size)  return NULL;
2771  Node *mem = in(1);
2772  if( phase->type(mem)==Type::TOP ) return NULL;
2773  Node *adr = in(3);
2774  const Type* at = phase->type(adr);
2775  if( at==Type::TOP ) return NULL;
2776  const TypePtr* atp = at->isa_ptr();
2777  // adjust atp to be the correct array element address type
2778  if (atp == NULL)  atp = TypePtr::BOTTOM;
2779  else              atp = atp->add_offset(Type::OffsetBot);
2780  // Get base for derived pointer purposes
2781  if( adr->Opcode() != Op_AddP ) Unimplemented();
2782  Node *base = adr->in(1);
2783
2784  Node *zero = phase->makecon(TypeLong::ZERO);
2785  Node *off  = phase->MakeConX(BytesPerLong);
2786  mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2787  count--;
2788  while( count-- ) {
2789    mem = phase->transform(mem);
2790    adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2791    mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2792  }
2793  return mem;
2794}
2795
2796//----------------------------step_through----------------------------------
2797// Return allocation input memory edge if it is different instance
2798// or itself if it is the one we are looking for.
2799bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2800  Node* n = *np;
2801  assert(n->is_ClearArray(), "sanity");
2802  intptr_t offset;
2803  AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2804  // This method is called only before Allocate nodes are expanded during
2805  // macro nodes expansion. Before that ClearArray nodes are only generated
2806  // in LibraryCallKit::generate_arraycopy() which follows allocations.
2807  assert(alloc != NULL, "should have allocation");
2808  if (alloc->_idx == instance_id) {
2809    // Can not bypass initialization of the instance we are looking for.
2810    return false;
2811  }
2812  // Otherwise skip it.
2813  InitializeNode* init = alloc->initialization();
2814  if (init != NULL)
2815    *np = init->in(TypeFunc::Memory);
2816  else
2817    *np = alloc->in(TypeFunc::Memory);
2818  return true;
2819}
2820
2821//----------------------------clear_memory-------------------------------------
2822// Generate code to initialize object storage to zero.
2823Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2824                                   intptr_t start_offset,
2825                                   Node* end_offset,
2826                                   PhaseGVN* phase) {
2827  Compile* C = phase->C;
2828  intptr_t offset = start_offset;
2829
2830  int unit = BytesPerLong;
2831  if ((offset % unit) != 0) {
2832    Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2833    adr = phase->transform(adr);
2834    const TypePtr* atp = TypeRawPtr::BOTTOM;
2835    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2836    mem = phase->transform(mem);
2837    offset += BytesPerInt;
2838  }
2839  assert((offset % unit) == 0, "");
2840
2841  // Initialize the remaining stuff, if any, with a ClearArray.
2842  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2843}
2844
2845Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2846                                   Node* start_offset,
2847                                   Node* end_offset,
2848                                   PhaseGVN* phase) {
2849  if (start_offset == end_offset) {
2850    // nothing to do
2851    return mem;
2852  }
2853
2854  Compile* C = phase->C;
2855  int unit = BytesPerLong;
2856  Node* zbase = start_offset;
2857  Node* zend  = end_offset;
2858
2859  // Scale to the unit required by the CPU:
2860  if (!Matcher::init_array_count_is_in_bytes) {
2861    Node* shift = phase->intcon(exact_log2(unit));
2862    zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2863    zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2864  }
2865
2866  // Bulk clear double-words
2867  Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2868  Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2869  mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2870  return phase->transform(mem);
2871}
2872
2873Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2874                                   intptr_t start_offset,
2875                                   intptr_t end_offset,
2876                                   PhaseGVN* phase) {
2877  if (start_offset == end_offset) {
2878    // nothing to do
2879    return mem;
2880  }
2881
2882  Compile* C = phase->C;
2883  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2884  intptr_t done_offset = end_offset;
2885  if ((done_offset % BytesPerLong) != 0) {
2886    done_offset -= BytesPerInt;
2887  }
2888  if (done_offset > start_offset) {
2889    mem = clear_memory(ctl, mem, dest,
2890                       start_offset, phase->MakeConX(done_offset), phase);
2891  }
2892  if (done_offset < end_offset) { // emit the final 32-bit store
2893    Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2894    adr = phase->transform(adr);
2895    const TypePtr* atp = TypeRawPtr::BOTTOM;
2896    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2897    mem = phase->transform(mem);
2898    done_offset += BytesPerInt;
2899  }
2900  assert(done_offset == end_offset, "");
2901  return mem;
2902}
2903
2904//=============================================================================
2905// Do not match memory edge.
2906uint StrIntrinsicNode::match_edge(uint idx) const {
2907  return idx == 2 || idx == 3;
2908}
2909
2910//------------------------------Ideal------------------------------------------
2911// Return a node which is more "ideal" than the current node.  Strip out
2912// control copies
2913Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2914  if (remove_dead_region(phase, can_reshape)) return this;
2915  // Don't bother trying to transform a dead node
2916  if (in(0) && in(0)->is_top())  return NULL;
2917
2918  if (can_reshape) {
2919    Node* mem = phase->transform(in(MemNode::Memory));
2920    // If transformed to a MergeMem, get the desired slice
2921    uint alias_idx = phase->C->get_alias_index(adr_type());
2922    mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2923    if (mem != in(MemNode::Memory)) {
2924      set_req(MemNode::Memory, mem);
2925      return this;
2926    }
2927  }
2928  return NULL;
2929}
2930
2931//------------------------------Value------------------------------------------
2932const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2933  if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2934  return bottom_type();
2935}
2936
2937//=============================================================================
2938//------------------------------match_edge-------------------------------------
2939// Do not match memory edge
2940uint EncodeISOArrayNode::match_edge(uint idx) const {
2941  return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
2942}
2943
2944//------------------------------Ideal------------------------------------------
2945// Return a node which is more "ideal" than the current node.  Strip out
2946// control copies
2947Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2948  return remove_dead_region(phase, can_reshape) ? this : NULL;
2949}
2950
2951//------------------------------Value------------------------------------------
2952const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
2953  if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2954  return bottom_type();
2955}
2956
2957//=============================================================================
2958MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2959  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2960    _adr_type(C->get_adr_type(alias_idx))
2961{
2962  init_class_id(Class_MemBar);
2963  Node* top = C->top();
2964  init_req(TypeFunc::I_O,top);
2965  init_req(TypeFunc::FramePtr,top);
2966  init_req(TypeFunc::ReturnAdr,top);
2967  if (precedent != NULL)
2968    init_req(TypeFunc::Parms, precedent);
2969}
2970
2971//------------------------------cmp--------------------------------------------
2972uint MemBarNode::hash() const { return NO_HASH; }
2973uint MemBarNode::cmp( const Node &n ) const {
2974  return (&n == this);          // Always fail except on self
2975}
2976
2977//------------------------------make-------------------------------------------
2978MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2979  switch (opcode) {
2980  case Op_MemBarAcquire:   return new(C) MemBarAcquireNode(C,  atp, pn);
2981  case Op_MemBarRelease:   return new(C) MemBarReleaseNode(C,  atp, pn);
2982  case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C,  atp, pn);
2983  case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C,  atp, pn);
2984  case Op_MemBarVolatile:  return new(C) MemBarVolatileNode(C, atp, pn);
2985  case Op_MemBarCPUOrder:  return new(C) MemBarCPUOrderNode(C, atp, pn);
2986  case Op_Initialize:      return new(C) InitializeNode(C,     atp, pn);
2987  case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C,  atp, pn);
2988  default:                 ShouldNotReachHere(); return NULL;
2989  }
2990}
2991
2992//------------------------------Ideal------------------------------------------
2993// Return a node which is more "ideal" than the current node.  Strip out
2994// control copies
2995Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2996  if (remove_dead_region(phase, can_reshape)) return this;
2997  // Don't bother trying to transform a dead node
2998  if (in(0) && in(0)->is_top()) {
2999    return NULL;
3000  }
3001
3002  // Eliminate volatile MemBars for scalar replaced objects.
3003  if (can_reshape && req() == (Precedent+1)) {
3004    bool eliminate = false;
3005    int opc = Opcode();
3006    if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3007      // Volatile field loads and stores.
3008      Node* my_mem = in(MemBarNode::Precedent);
3009      // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3010      if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3011        // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3012        // replace this Precedent (decodeN) with the Load instead.
3013        if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3014          Node* load_node = my_mem->in(1);
3015          set_req(MemBarNode::Precedent, load_node);
3016          phase->is_IterGVN()->_worklist.push(my_mem);
3017          my_mem = load_node;
3018        } else {
3019          assert(my_mem->unique_out() == this, "sanity");
3020          del_req(Precedent);
3021          phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3022          my_mem = NULL;
3023        }
3024      }
3025      if (my_mem != NULL && my_mem->is_Mem()) {
3026        const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3027        // Check for scalar replaced object reference.
3028        if( t_oop != NULL && t_oop->is_known_instance_field() &&
3029            t_oop->offset() != Type::OffsetBot &&
3030            t_oop->offset() != Type::OffsetTop) {
3031          eliminate = true;
3032        }
3033      }
3034    } else if (opc == Op_MemBarRelease) {
3035      // Final field stores.
3036      Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3037      if ((alloc != NULL) && alloc->is_Allocate() &&
3038          alloc->as_Allocate()->_is_non_escaping) {
3039        // The allocated object does not escape.
3040        eliminate = true;
3041      }
3042    }
3043    if (eliminate) {
3044      // Replace MemBar projections by its inputs.
3045      PhaseIterGVN* igvn = phase->is_IterGVN();
3046      igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3047      igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3048      // Must return either the original node (now dead) or a new node
3049      // (Do not return a top here, since that would break the uniqueness of top.)
3050      return new (phase->C) ConINode(TypeInt::ZERO);
3051    }
3052  }
3053  return NULL;
3054}
3055
3056//------------------------------Value------------------------------------------
3057const Type *MemBarNode::Value( PhaseTransform *phase ) const {
3058  if( !in(0) ) return Type::TOP;
3059  if( phase->type(in(0)) == Type::TOP )
3060    return Type::TOP;
3061  return TypeTuple::MEMBAR;
3062}
3063
3064//------------------------------match------------------------------------------
3065// Construct projections for memory.
3066Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3067  switch (proj->_con) {
3068  case TypeFunc::Control:
3069  case TypeFunc::Memory:
3070    return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3071  }
3072  ShouldNotReachHere();
3073  return NULL;
3074}
3075
3076//===========================InitializeNode====================================
3077// SUMMARY:
3078// This node acts as a memory barrier on raw memory, after some raw stores.
3079// The 'cooked' oop value feeds from the Initialize, not the Allocation.
3080// The Initialize can 'capture' suitably constrained stores as raw inits.
3081// It can coalesce related raw stores into larger units (called 'tiles').
3082// It can avoid zeroing new storage for memory units which have raw inits.
3083// At macro-expansion, it is marked 'complete', and does not optimize further.
3084//
3085// EXAMPLE:
3086// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3087//   ctl = incoming control; mem* = incoming memory
3088// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3089// First allocate uninitialized memory and fill in the header:
3090//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3091//   ctl := alloc.Control; mem* := alloc.Memory*
3092//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3093// Then initialize to zero the non-header parts of the raw memory block:
3094//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3095//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3096// After the initialize node executes, the object is ready for service:
3097//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3098// Suppose its body is immediately initialized as {1,2}:
3099//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3100//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3101//   mem.SLICE(#short[*]) := store2
3102//
3103// DETAILS:
3104// An InitializeNode collects and isolates object initialization after
3105// an AllocateNode and before the next possible safepoint.  As a
3106// memory barrier (MemBarNode), it keeps critical stores from drifting
3107// down past any safepoint or any publication of the allocation.
3108// Before this barrier, a newly-allocated object may have uninitialized bits.
3109// After this barrier, it may be treated as a real oop, and GC is allowed.
3110//
3111// The semantics of the InitializeNode include an implicit zeroing of
3112// the new object from object header to the end of the object.
3113// (The object header and end are determined by the AllocateNode.)
3114//
3115// Certain stores may be added as direct inputs to the InitializeNode.
3116// These stores must update raw memory, and they must be to addresses
3117// derived from the raw address produced by AllocateNode, and with
3118// a constant offset.  They must be ordered by increasing offset.
3119// The first one is at in(RawStores), the last at in(req()-1).
3120// Unlike most memory operations, they are not linked in a chain,
3121// but are displayed in parallel as users of the rawmem output of
3122// the allocation.
3123//
3124// (See comments in InitializeNode::capture_store, which continue
3125// the example given above.)
3126//
3127// When the associated Allocate is macro-expanded, the InitializeNode
3128// may be rewritten to optimize collected stores.  A ClearArrayNode
3129// may also be created at that point to represent any required zeroing.
3130// The InitializeNode is then marked 'complete', prohibiting further
3131// capturing of nearby memory operations.
3132//
3133// During macro-expansion, all captured initializations which store
3134// constant values of 32 bits or smaller are coalesced (if advantageous)
3135// into larger 'tiles' 32 or 64 bits.  This allows an object to be
3136// initialized in fewer memory operations.  Memory words which are
3137// covered by neither tiles nor non-constant stores are pre-zeroed
3138// by explicit stores of zero.  (The code shape happens to do all
3139// zeroing first, then all other stores, with both sequences occurring
3140// in order of ascending offsets.)
3141//
3142// Alternatively, code may be inserted between an AllocateNode and its
3143// InitializeNode, to perform arbitrary initialization of the new object.
3144// E.g., the object copying intrinsics insert complex data transfers here.
3145// The initialization must then be marked as 'complete' disable the
3146// built-in zeroing semantics and the collection of initializing stores.
3147//
3148// While an InitializeNode is incomplete, reads from the memory state
3149// produced by it are optimizable if they match the control edge and
3150// new oop address associated with the allocation/initialization.
3151// They return a stored value (if the offset matches) or else zero.
3152// A write to the memory state, if it matches control and address,
3153// and if it is to a constant offset, may be 'captured' by the
3154// InitializeNode.  It is cloned as a raw memory operation and rewired
3155// inside the initialization, to the raw oop produced by the allocation.
3156// Operations on addresses which are provably distinct (e.g., to
3157// other AllocateNodes) are allowed to bypass the initialization.
3158//
3159// The effect of all this is to consolidate object initialization
3160// (both arrays and non-arrays, both piecewise and bulk) into a
3161// single location, where it can be optimized as a unit.
3162//
3163// Only stores with an offset less than TrackedInitializationLimit words
3164// will be considered for capture by an InitializeNode.  This puts a
3165// reasonable limit on the complexity of optimized initializations.
3166
3167//---------------------------InitializeNode------------------------------------
3168InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3169  : _is_complete(Incomplete), _does_not_escape(false),
3170    MemBarNode(C, adr_type, rawoop)
3171{
3172  init_class_id(Class_Initialize);
3173
3174  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3175  assert(in(RawAddress) == rawoop, "proper init");
3176  // Note:  allocation() can be NULL, for secondary initialization barriers
3177}
3178
3179// Since this node is not matched, it will be processed by the
3180// register allocator.  Declare that there are no constraints
3181// on the allocation of the RawAddress edge.
3182const RegMask &InitializeNode::in_RegMask(uint idx) const {
3183  // This edge should be set to top, by the set_complete.  But be conservative.
3184  if (idx == InitializeNode::RawAddress)
3185    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3186  return RegMask::Empty;
3187}
3188
3189Node* InitializeNode::memory(uint alias_idx) {
3190  Node* mem = in(Memory);
3191  if (mem->is_MergeMem()) {
3192    return mem->as_MergeMem()->memory_at(alias_idx);
3193  } else {
3194    // incoming raw memory is not split
3195    return mem;
3196  }
3197}
3198
3199bool InitializeNode::is_non_zero() {
3200  if (is_complete())  return false;
3201  remove_extra_zeroes();
3202  return (req() > RawStores);
3203}
3204
3205void InitializeNode::set_complete(PhaseGVN* phase) {
3206  assert(!is_complete(), "caller responsibility");
3207  _is_complete = Complete;
3208
3209  // After this node is complete, it contains a bunch of
3210  // raw-memory initializations.  There is no need for
3211  // it to have anything to do with non-raw memory effects.
3212  // Therefore, tell all non-raw users to re-optimize themselves,
3213  // after skipping the memory effects of this initialization.
3214  PhaseIterGVN* igvn = phase->is_IterGVN();
3215  if (igvn)  igvn->add_users_to_worklist(this);
3216}
3217
3218// convenience function
3219// return false if the init contains any stores already
3220bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3221  InitializeNode* init = initialization();
3222  if (init == NULL || init->is_complete())  return false;
3223  init->remove_extra_zeroes();
3224  // for now, if this allocation has already collected any inits, bail:
3225  if (init->is_non_zero())  return false;
3226  init->set_complete(phase);
3227  return true;
3228}
3229
3230void InitializeNode::remove_extra_zeroes() {
3231  if (req() == RawStores)  return;
3232  Node* zmem = zero_memory();
3233  uint fill = RawStores;
3234  for (uint i = fill; i < req(); i++) {
3235    Node* n = in(i);
3236    if (n->is_top() || n == zmem)  continue;  // skip
3237    if (fill < i)  set_req(fill, n);          // compact
3238    ++fill;
3239  }
3240  // delete any empty spaces created:
3241  while (fill < req()) {
3242    del_req(fill);
3243  }
3244}
3245
3246// Helper for remembering which stores go with which offsets.
3247intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3248  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3249  intptr_t offset = -1;
3250  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3251                                               phase, offset);
3252  if (base == NULL)     return -1;  // something is dead,
3253  if (offset < 0)       return -1;  //        dead, dead
3254  return offset;
3255}
3256
3257// Helper for proving that an initialization expression is
3258// "simple enough" to be folded into an object initialization.
3259// Attempts to prove that a store's initial value 'n' can be captured
3260// within the initialization without creating a vicious cycle, such as:
3261//     { Foo p = new Foo(); p.next = p; }
3262// True for constants and parameters and small combinations thereof.
3263bool InitializeNode::detect_init_independence(Node* n, int& count) {
3264  if (n == NULL)      return true;   // (can this really happen?)
3265  if (n->is_Proj())   n = n->in(0);
3266  if (n == this)      return false;  // found a cycle
3267  if (n->is_Con())    return true;
3268  if (n->is_Start())  return true;   // params, etc., are OK
3269  if (n->is_Root())   return true;   // even better
3270
3271  Node* ctl = n->in(0);
3272  if (ctl != NULL && !ctl->is_top()) {
3273    if (ctl->is_Proj())  ctl = ctl->in(0);
3274    if (ctl == this)  return false;
3275
3276    // If we already know that the enclosing memory op is pinned right after
3277    // the init, then any control flow that the store has picked up
3278    // must have preceded the init, or else be equal to the init.
3279    // Even after loop optimizations (which might change control edges)
3280    // a store is never pinned *before* the availability of its inputs.
3281    if (!MemNode::all_controls_dominate(n, this))
3282      return false;                  // failed to prove a good control
3283  }
3284
3285  // Check data edges for possible dependencies on 'this'.
3286  if ((count += 1) > 20)  return false;  // complexity limit
3287  for (uint i = 1; i < n->req(); i++) {
3288    Node* m = n->in(i);
3289    if (m == NULL || m == n || m->is_top())  continue;
3290    uint first_i = n->find_edge(m);
3291    if (i != first_i)  continue;  // process duplicate edge just once
3292    if (!detect_init_independence(m, count)) {
3293      return false;
3294    }
3295  }
3296
3297  return true;
3298}
3299
3300// Here are all the checks a Store must pass before it can be moved into
3301// an initialization.  Returns zero if a check fails.
3302// On success, returns the (constant) offset to which the store applies,
3303// within the initialized memory.
3304intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3305  const int FAIL = 0;
3306  if (st->req() != MemNode::ValueIn + 1)
3307    return FAIL;                // an inscrutable StoreNode (card mark?)
3308  Node* ctl = st->in(MemNode::Control);
3309  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3310    return FAIL;                // must be unconditional after the initialization
3311  Node* mem = st->in(MemNode::Memory);
3312  if (!(mem->is_Proj() && mem->in(0) == this))
3313    return FAIL;                // must not be preceded by other stores
3314  Node* adr = st->in(MemNode::Address);
3315  intptr_t offset;
3316  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3317  if (alloc == NULL)
3318    return FAIL;                // inscrutable address
3319  if (alloc != allocation())
3320    return FAIL;                // wrong allocation!  (store needs to float up)
3321  Node* val = st->in(MemNode::ValueIn);
3322  int complexity_count = 0;
3323  if (!detect_init_independence(val, complexity_count))
3324    return FAIL;                // stored value must be 'simple enough'
3325
3326  // The Store can be captured only if nothing after the allocation
3327  // and before the Store is using the memory location that the store
3328  // overwrites.
3329  bool failed = false;
3330  // If is_complete_with_arraycopy() is true the shape of the graph is
3331  // well defined and is safe so no need for extra checks.
3332  if (!is_complete_with_arraycopy()) {
3333    // We are going to look at each use of the memory state following
3334    // the allocation to make sure nothing reads the memory that the
3335    // Store writes.
3336    const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3337    int alias_idx = phase->C->get_alias_index(t_adr);
3338    ResourceMark rm;
3339    Unique_Node_List mems;
3340    mems.push(mem);
3341    Node* unique_merge = NULL;
3342    for (uint next = 0; next < mems.size(); ++next) {
3343      Node *m  = mems.at(next);
3344      for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3345        Node *n = m->fast_out(j);
3346        if (n->outcnt() == 0) {
3347          continue;
3348        }
3349        if (n == st) {
3350          continue;
3351        } else if (n->in(0) != NULL && n->in(0) != ctl) {
3352          // If the control of this use is different from the control
3353          // of the Store which is right after the InitializeNode then
3354          // this node cannot be between the InitializeNode and the
3355          // Store.
3356          continue;
3357        } else if (n->is_MergeMem()) {
3358          if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3359            // We can hit a MergeMemNode (that will likely go away
3360            // later) that is a direct use of the memory state
3361            // following the InitializeNode on the same slice as the
3362            // store node that we'd like to capture. We need to check
3363            // the uses of the MergeMemNode.
3364            mems.push(n);
3365          }
3366        } else if (n->is_Mem()) {
3367          Node* other_adr = n->in(MemNode::Address);
3368          if (other_adr == adr) {
3369            failed = true;
3370            break;
3371          } else {
3372            const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3373            if (other_t_adr != NULL) {
3374              int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3375              if (other_alias_idx == alias_idx) {
3376                // A load from the same memory slice as the store right
3377                // after the InitializeNode. We check the control of the
3378                // object/array that is loaded from. If it's the same as
3379                // the store control then we cannot capture the store.
3380                assert(!n->is_Store(), "2 stores to same slice on same control?");
3381                Node* base = other_adr;
3382                assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3383                base = base->in(AddPNode::Base);
3384                if (base != NULL) {
3385                  base = base->uncast();
3386                  if (base->is_Proj() && base->in(0) == alloc) {
3387                    failed = true;
3388                    break;
3389                  }
3390                }
3391              }
3392            }
3393          }
3394        } else {
3395          failed = true;
3396          break;
3397        }
3398      }
3399    }
3400  }
3401  if (failed) {
3402    if (!can_reshape) {
3403      // We decided we couldn't capture the store during parsing. We
3404      // should try again during the next IGVN once the graph is
3405      // cleaner.
3406      phase->C->record_for_igvn(st);
3407    }
3408    return FAIL;
3409  }
3410
3411  return offset;                // success
3412}
3413
3414// Find the captured store in(i) which corresponds to the range
3415// [start..start+size) in the initialized object.
3416// If there is one, return its index i.  If there isn't, return the
3417// negative of the index where it should be inserted.
3418// Return 0 if the queried range overlaps an initialization boundary
3419// or if dead code is encountered.
3420// If size_in_bytes is zero, do not bother with overlap checks.
3421int InitializeNode::captured_store_insertion_point(intptr_t start,
3422                                                   int size_in_bytes,
3423                                                   PhaseTransform* phase) {
3424  const int FAIL = 0, MAX_STORE = BytesPerLong;
3425
3426  if (is_complete())
3427    return FAIL;                // arraycopy got here first; punt
3428
3429  assert(allocation() != NULL, "must be present");
3430
3431  // no negatives, no header fields:
3432  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3433
3434  // after a certain size, we bail out on tracking all the stores:
3435  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3436  if (start >= ti_limit)  return FAIL;
3437
3438  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3439    if (i >= limit)  return -(int)i; // not found; here is where to put it
3440
3441    Node*    st     = in(i);
3442    intptr_t st_off = get_store_offset(st, phase);
3443    if (st_off < 0) {
3444      if (st != zero_memory()) {
3445        return FAIL;            // bail out if there is dead garbage
3446      }
3447    } else if (st_off > start) {
3448      // ...we are done, since stores are ordered
3449      if (st_off < start + size_in_bytes) {
3450        return FAIL;            // the next store overlaps
3451      }
3452      return -(int)i;           // not found; here is where to put it
3453    } else if (st_off < start) {
3454      if (size_in_bytes != 0 &&
3455          start < st_off + MAX_STORE &&
3456          start < st_off + st->as_Store()->memory_size()) {
3457        return FAIL;            // the previous store overlaps
3458      }
3459    } else {
3460      if (size_in_bytes != 0 &&
3461          st->as_Store()->memory_size() != size_in_bytes) {
3462        return FAIL;            // mismatched store size
3463      }
3464      return i;
3465    }
3466
3467    ++i;
3468  }
3469}
3470
3471// Look for a captured store which initializes at the offset 'start'
3472// with the given size.  If there is no such store, and no other
3473// initialization interferes, then return zero_memory (the memory
3474// projection of the AllocateNode).
3475Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3476                                          PhaseTransform* phase) {
3477  assert(stores_are_sane(phase), "");
3478  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3479  if (i == 0) {
3480    return NULL;                // something is dead
3481  } else if (i < 0) {
3482    return zero_memory();       // just primordial zero bits here
3483  } else {
3484    Node* st = in(i);           // here is the store at this position
3485    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3486    return st;
3487  }
3488}
3489
3490// Create, as a raw pointer, an address within my new object at 'offset'.
3491Node* InitializeNode::make_raw_address(intptr_t offset,
3492                                       PhaseTransform* phase) {
3493  Node* addr = in(RawAddress);
3494  if (offset != 0) {
3495    Compile* C = phase->C;
3496    addr = phase->transform( new (C) AddPNode(C->top(), addr,
3497                                                 phase->MakeConX(offset)) );
3498  }
3499  return addr;
3500}
3501
3502// Clone the given store, converting it into a raw store
3503// initializing a field or element of my new object.
3504// Caller is responsible for retiring the original store,
3505// with subsume_node or the like.
3506//
3507// From the example above InitializeNode::InitializeNode,
3508// here are the old stores to be captured:
3509//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3510//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3511//
3512// Here is the changed code; note the extra edges on init:
3513//   alloc = (Allocate ...)
3514//   rawoop = alloc.RawAddress
3515//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3516//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3517//   init = (Initialize alloc.Control alloc.Memory rawoop
3518//                      rawstore1 rawstore2)
3519//
3520Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3521                                    PhaseTransform* phase, bool can_reshape) {
3522  assert(stores_are_sane(phase), "");
3523
3524  if (start < 0)  return NULL;
3525  assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3526
3527  Compile* C = phase->C;
3528  int size_in_bytes = st->memory_size();
3529  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3530  if (i == 0)  return NULL;     // bail out
3531  Node* prev_mem = NULL;        // raw memory for the captured store
3532  if (i > 0) {
3533    prev_mem = in(i);           // there is a pre-existing store under this one
3534    set_req(i, C->top());       // temporarily disconnect it
3535    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3536  } else {
3537    i = -i;                     // no pre-existing store
3538    prev_mem = zero_memory();   // a slice of the newly allocated object
3539    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3540      set_req(--i, C->top());   // reuse this edge; it has been folded away
3541    else
3542      ins_req(i, C->top());     // build a new edge
3543  }
3544  Node* new_st = st->clone();
3545  new_st->set_req(MemNode::Control, in(Control));
3546  new_st->set_req(MemNode::Memory,  prev_mem);
3547  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3548  new_st = phase->transform(new_st);
3549
3550  // At this point, new_st might have swallowed a pre-existing store
3551  // at the same offset, or perhaps new_st might have disappeared,
3552  // if it redundantly stored the same value (or zero to fresh memory).
3553
3554  // In any case, wire it in:
3555  set_req(i, new_st);
3556
3557  // The caller may now kill the old guy.
3558  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3559  assert(check_st == new_st || check_st == NULL, "must be findable");
3560  assert(!is_complete(), "");
3561  return new_st;
3562}
3563
3564static bool store_constant(jlong* tiles, int num_tiles,
3565                           intptr_t st_off, int st_size,
3566                           jlong con) {
3567  if ((st_off & (st_size-1)) != 0)
3568    return false;               // strange store offset (assume size==2**N)
3569  address addr = (address)tiles + st_off;
3570  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3571  switch (st_size) {
3572  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3573  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3574  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3575  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3576  default: return false;        // strange store size (detect size!=2**N here)
3577  }
3578  return true;                  // return success to caller
3579}
3580
3581// Coalesce subword constants into int constants and possibly
3582// into long constants.  The goal, if the CPU permits,
3583// is to initialize the object with a small number of 64-bit tiles.
3584// Also, convert floating-point constants to bit patterns.
3585// Non-constants are not relevant to this pass.
3586//
3587// In terms of the running example on InitializeNode::InitializeNode
3588// and InitializeNode::capture_store, here is the transformation
3589// of rawstore1 and rawstore2 into rawstore12:
3590//   alloc = (Allocate ...)
3591//   rawoop = alloc.RawAddress
3592//   tile12 = 0x00010002
3593//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3594//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3595//
3596void
3597InitializeNode::coalesce_subword_stores(intptr_t header_size,
3598                                        Node* size_in_bytes,
3599                                        PhaseGVN* phase) {
3600  Compile* C = phase->C;
3601
3602  assert(stores_are_sane(phase), "");
3603  // Note:  After this pass, they are not completely sane,
3604  // since there may be some overlaps.
3605
3606  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3607
3608  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3609  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3610  size_limit = MIN2(size_limit, ti_limit);
3611  size_limit = align_size_up(size_limit, BytesPerLong);
3612  int num_tiles = size_limit / BytesPerLong;
3613
3614  // allocate space for the tile map:
3615  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3616  jlong  tiles_buf[small_len];
3617  Node*  nodes_buf[small_len];
3618  jlong  inits_buf[small_len];
3619  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3620                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3621  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3622                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3623  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3624                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3625  // tiles: exact bitwise model of all primitive constants
3626  // nodes: last constant-storing node subsumed into the tiles model
3627  // inits: which bytes (in each tile) are touched by any initializations
3628
3629  //// Pass A: Fill in the tile model with any relevant stores.
3630
3631  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3632  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3633  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3634  Node* zmem = zero_memory(); // initially zero memory state
3635  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3636    Node* st = in(i);
3637    intptr_t st_off = get_store_offset(st, phase);
3638
3639    // Figure out the store's offset and constant value:
3640    if (st_off < header_size)             continue; //skip (ignore header)
3641    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3642    int st_size = st->as_Store()->memory_size();
3643    if (st_off + st_size > size_limit)    break;
3644
3645    // Record which bytes are touched, whether by constant or not.
3646    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3647      continue;                 // skip (strange store size)
3648
3649    const Type* val = phase->type(st->in(MemNode::ValueIn));
3650    if (!val->singleton())                continue; //skip (non-con store)
3651    BasicType type = val->basic_type();
3652
3653    jlong con = 0;
3654    switch (type) {
3655    case T_INT:    con = val->is_int()->get_con();  break;
3656    case T_LONG:   con = val->is_long()->get_con(); break;
3657    case T_FLOAT:  con = jint_cast(val->getf());    break;
3658    case T_DOUBLE: con = jlong_cast(val->getd());   break;
3659    default:                              continue; //skip (odd store type)
3660    }
3661
3662    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3663        st->Opcode() == Op_StoreL) {
3664      continue;                 // This StoreL is already optimal.
3665    }
3666
3667    // Store down the constant.
3668    store_constant(tiles, num_tiles, st_off, st_size, con);
3669
3670    intptr_t j = st_off >> LogBytesPerLong;
3671
3672    if (type == T_INT && st_size == BytesPerInt
3673        && (st_off & BytesPerInt) == BytesPerInt) {
3674      jlong lcon = tiles[j];
3675      if (!Matcher::isSimpleConstant64(lcon) &&
3676          st->Opcode() == Op_StoreI) {
3677        // This StoreI is already optimal by itself.
3678        jint* intcon = (jint*) &tiles[j];
3679        intcon[1] = 0;  // undo the store_constant()
3680
3681        // If the previous store is also optimal by itself, back up and
3682        // undo the action of the previous loop iteration... if we can.
3683        // But if we can't, just let the previous half take care of itself.
3684        st = nodes[j];
3685        st_off -= BytesPerInt;
3686        con = intcon[0];
3687        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3688          assert(st_off >= header_size, "still ignoring header");
3689          assert(get_store_offset(st, phase) == st_off, "must be");
3690          assert(in(i-1) == zmem, "must be");
3691          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3692          assert(con == tcon->is_int()->get_con(), "must be");
3693          // Undo the effects of the previous loop trip, which swallowed st:
3694          intcon[0] = 0;        // undo store_constant()
3695          set_req(i-1, st);     // undo set_req(i, zmem)
3696          nodes[j] = NULL;      // undo nodes[j] = st
3697          --old_subword;        // undo ++old_subword
3698        }
3699        continue;               // This StoreI is already optimal.
3700      }
3701    }
3702
3703    // This store is not needed.
3704    set_req(i, zmem);
3705    nodes[j] = st;              // record for the moment
3706    if (st_size < BytesPerLong) // something has changed
3707          ++old_subword;        // includes int/float, but who's counting...
3708    else  ++old_long;
3709  }
3710
3711  if ((old_subword + old_long) == 0)
3712    return;                     // nothing more to do
3713
3714  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3715  // Be sure to insert them before overlapping non-constant stores.
3716  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3717  for (int j = 0; j < num_tiles; j++) {
3718    jlong con  = tiles[j];
3719    jlong init = inits[j];
3720    if (con == 0)  continue;
3721    jint con0,  con1;           // split the constant, address-wise
3722    jint init0, init1;          // split the init map, address-wise
3723    { union { jlong con; jint intcon[2]; } u;
3724      u.con = con;
3725      con0  = u.intcon[0];
3726      con1  = u.intcon[1];
3727      u.con = init;
3728      init0 = u.intcon[0];
3729      init1 = u.intcon[1];
3730    }
3731
3732    Node* old = nodes[j];
3733    assert(old != NULL, "need the prior store");
3734    intptr_t offset = (j * BytesPerLong);
3735
3736    bool split = !Matcher::isSimpleConstant64(con);
3737
3738    if (offset < header_size) {
3739      assert(offset + BytesPerInt >= header_size, "second int counts");
3740      assert(*(jint*)&tiles[j] == 0, "junk in header");
3741      split = true;             // only the second word counts
3742      // Example:  int a[] = { 42 ... }
3743    } else if (con0 == 0 && init0 == -1) {
3744      split = true;             // first word is covered by full inits
3745      // Example:  int a[] = { ... foo(), 42 ... }
3746    } else if (con1 == 0 && init1 == -1) {
3747      split = true;             // second word is covered by full inits
3748      // Example:  int a[] = { ... 42, foo() ... }
3749    }
3750
3751    // Here's a case where init0 is neither 0 nor -1:
3752    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3753    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3754    // In this case the tile is not split; it is (jlong)42.
3755    // The big tile is stored down, and then the foo() value is inserted.
3756    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3757
3758    Node* ctl = old->in(MemNode::Control);
3759    Node* adr = make_raw_address(offset, phase);
3760    const TypePtr* atp = TypeRawPtr::BOTTOM;
3761
3762    // One or two coalesced stores to plop down.
3763    Node*    st[2];
3764    intptr_t off[2];
3765    int  nst = 0;
3766    if (!split) {
3767      ++new_long;
3768      off[nst] = offset;
3769      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3770                                  phase->longcon(con), T_LONG);
3771    } else {
3772      // Omit either if it is a zero.
3773      if (con0 != 0) {
3774        ++new_int;
3775        off[nst]  = offset;
3776        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3777                                    phase->intcon(con0), T_INT);
3778      }
3779      if (con1 != 0) {
3780        ++new_int;
3781        offset += BytesPerInt;
3782        adr = make_raw_address(offset, phase);
3783        off[nst]  = offset;
3784        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3785                                    phase->intcon(con1), T_INT);
3786      }
3787    }
3788
3789    // Insert second store first, then the first before the second.
3790    // Insert each one just before any overlapping non-constant stores.
3791    while (nst > 0) {
3792      Node* st1 = st[--nst];
3793      C->copy_node_notes_to(st1, old);
3794      st1 = phase->transform(st1);
3795      offset = off[nst];
3796      assert(offset >= header_size, "do not smash header");
3797      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3798      guarantee(ins_idx != 0, "must re-insert constant store");
3799      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3800      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3801        set_req(--ins_idx, st1);
3802      else
3803        ins_req(ins_idx, st1);
3804    }
3805  }
3806
3807  if (PrintCompilation && WizardMode)
3808    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3809                  old_subword, old_long, new_int, new_long);
3810  if (C->log() != NULL)
3811    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3812                   old_subword, old_long, new_int, new_long);
3813
3814  // Clean up any remaining occurrences of zmem:
3815  remove_extra_zeroes();
3816}
3817
3818// Explore forward from in(start) to find the first fully initialized
3819// word, and return its offset.  Skip groups of subword stores which
3820// together initialize full words.  If in(start) is itself part of a
3821// fully initialized word, return the offset of in(start).  If there
3822// are no following full-word stores, or if something is fishy, return
3823// a negative value.
3824intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3825  int       int_map = 0;
3826  intptr_t  int_map_off = 0;
3827  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3828
3829  for (uint i = start, limit = req(); i < limit; i++) {
3830    Node* st = in(i);
3831
3832    intptr_t st_off = get_store_offset(st, phase);
3833    if (st_off < 0)  break;  // return conservative answer
3834
3835    int st_size = st->as_Store()->memory_size();
3836    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3837      return st_off;            // we found a complete word init
3838    }
3839
3840    // update the map:
3841
3842    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3843    if (this_int_off != int_map_off) {
3844      // reset the map:
3845      int_map = 0;
3846      int_map_off = this_int_off;
3847    }
3848
3849    int subword_off = st_off - this_int_off;
3850    int_map |= right_n_bits(st_size) << subword_off;
3851    if ((int_map & FULL_MAP) == FULL_MAP) {
3852      return this_int_off;      // we found a complete word init
3853    }
3854
3855    // Did this store hit or cross the word boundary?
3856    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3857    if (next_int_off == this_int_off + BytesPerInt) {
3858      // We passed the current int, without fully initializing it.
3859      int_map_off = next_int_off;
3860      int_map >>= BytesPerInt;
3861    } else if (next_int_off > this_int_off + BytesPerInt) {
3862      // We passed the current and next int.
3863      return this_int_off + BytesPerInt;
3864    }
3865  }
3866
3867  return -1;
3868}
3869
3870
3871// Called when the associated AllocateNode is expanded into CFG.
3872// At this point, we may perform additional optimizations.
3873// Linearize the stores by ascending offset, to make memory
3874// activity as coherent as possible.
3875Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3876                                      intptr_t header_size,
3877                                      Node* size_in_bytes,
3878                                      PhaseGVN* phase) {
3879  assert(!is_complete(), "not already complete");
3880  assert(stores_are_sane(phase), "");
3881  assert(allocation() != NULL, "must be present");
3882
3883  remove_extra_zeroes();
3884
3885  if (ReduceFieldZeroing || ReduceBulkZeroing)
3886    // reduce instruction count for common initialization patterns
3887    coalesce_subword_stores(header_size, size_in_bytes, phase);
3888
3889  Node* zmem = zero_memory();   // initially zero memory state
3890  Node* inits = zmem;           // accumulating a linearized chain of inits
3891  #ifdef ASSERT
3892  intptr_t first_offset = allocation()->minimum_header_size();
3893  intptr_t last_init_off = first_offset;  // previous init offset
3894  intptr_t last_init_end = first_offset;  // previous init offset+size
3895  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3896  #endif
3897  intptr_t zeroes_done = header_size;
3898
3899  bool do_zeroing = true;       // we might give up if inits are very sparse
3900  int  big_init_gaps = 0;       // how many large gaps have we seen?
3901
3902  if (ZeroTLAB)  do_zeroing = false;
3903  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3904
3905  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3906    Node* st = in(i);
3907    intptr_t st_off = get_store_offset(st, phase);
3908    if (st_off < 0)
3909      break;                    // unknown junk in the inits
3910    if (st->in(MemNode::Memory) != zmem)
3911      break;                    // complicated store chains somehow in list
3912
3913    int st_size = st->as_Store()->memory_size();
3914    intptr_t next_init_off = st_off + st_size;
3915
3916    if (do_zeroing && zeroes_done < next_init_off) {
3917      // See if this store needs a zero before it or under it.
3918      intptr_t zeroes_needed = st_off;
3919
3920      if (st_size < BytesPerInt) {
3921        // Look for subword stores which only partially initialize words.
3922        // If we find some, we must lay down some word-level zeroes first,
3923        // underneath the subword stores.
3924        //
3925        // Examples:
3926        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3927        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3928        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3929        //
3930        // Note:  coalesce_subword_stores may have already done this,
3931        // if it was prompted by constant non-zero subword initializers.
3932        // But this case can still arise with non-constant stores.
3933
3934        intptr_t next_full_store = find_next_fullword_store(i, phase);
3935
3936        // In the examples above:
3937        //   in(i)          p   q   r   s     x   y     z
3938        //   st_off        12  13  14  15    12  13    14
3939        //   st_size        1   1   1   1     1   1     1
3940        //   next_full_s.  12  16  16  16    16  16    16
3941        //   z's_done      12  16  16  16    12  16    12
3942        //   z's_needed    12  16  16  16    16  16    16
3943        //   zsize          0   0   0   0     4   0     4
3944        if (next_full_store < 0) {
3945          // Conservative tack:  Zero to end of current word.
3946          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3947        } else {
3948          // Zero to beginning of next fully initialized word.
3949          // Or, don't zero at all, if we are already in that word.
3950          assert(next_full_store >= zeroes_needed, "must go forward");
3951          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3952          zeroes_needed = next_full_store;
3953        }
3954      }
3955
3956      if (zeroes_needed > zeroes_done) {
3957        intptr_t zsize = zeroes_needed - zeroes_done;
3958        // Do some incremental zeroing on rawmem, in parallel with inits.
3959        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3960        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3961                                              zeroes_done, zeroes_needed,
3962                                              phase);
3963        zeroes_done = zeroes_needed;
3964        if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3965          do_zeroing = false;   // leave the hole, next time
3966      }
3967    }
3968
3969    // Collect the store and move on:
3970    st->set_req(MemNode::Memory, inits);
3971    inits = st;                 // put it on the linearized chain
3972    set_req(i, zmem);           // unhook from previous position
3973
3974    if (zeroes_done == st_off)
3975      zeroes_done = next_init_off;
3976
3977    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3978
3979    #ifdef ASSERT
3980    // Various order invariants.  Weaker than stores_are_sane because
3981    // a large constant tile can be filled in by smaller non-constant stores.
3982    assert(st_off >= last_init_off, "inits do not reverse");
3983    last_init_off = st_off;
3984    const Type* val = NULL;
3985    if (st_size >= BytesPerInt &&
3986        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3987        (int)val->basic_type() < (int)T_OBJECT) {
3988      assert(st_off >= last_tile_end, "tiles do not overlap");
3989      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3990      last_tile_end = MAX2(last_tile_end, next_init_off);
3991    } else {
3992      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3993      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3994      assert(st_off      >= last_init_end, "inits do not overlap");
3995      last_init_end = next_init_off;  // it's a non-tile
3996    }
3997    #endif //ASSERT
3998  }
3999
4000  remove_extra_zeroes();        // clear out all the zmems left over
4001  add_req(inits);
4002
4003  if (!ZeroTLAB) {
4004    // If anything remains to be zeroed, zero it all now.
4005    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
4006    // if it is the last unused 4 bytes of an instance, forget about it
4007    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4008    if (zeroes_done + BytesPerLong >= size_limit) {
4009      assert(allocation() != NULL, "");
4010      if (allocation()->Opcode() == Op_Allocate) {
4011        Node* klass_node = allocation()->in(AllocateNode::KlassNode);
4012        ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4013        if (zeroes_done == k->layout_helper())
4014          zeroes_done = size_limit;
4015      }
4016    }
4017    if (zeroes_done < size_limit) {
4018      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4019                                            zeroes_done, size_in_bytes, phase);
4020    }
4021  }
4022
4023  set_complete(phase);
4024  return rawmem;
4025}
4026
4027
4028#ifdef ASSERT
4029bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4030  if (is_complete())
4031    return true;                // stores could be anything at this point
4032  assert(allocation() != NULL, "must be present");
4033  intptr_t last_off = allocation()->minimum_header_size();
4034  for (uint i = InitializeNode::RawStores; i < req(); i++) {
4035    Node* st = in(i);
4036    intptr_t st_off = get_store_offset(st, phase);
4037    if (st_off < 0)  continue;  // ignore dead garbage
4038    if (last_off > st_off) {
4039      tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
4040      this->dump(2);
4041      assert(false, "ascending store offsets");
4042      return false;
4043    }
4044    last_off = st_off + st->as_Store()->memory_size();
4045  }
4046  return true;
4047}
4048#endif //ASSERT
4049
4050
4051
4052
4053//============================MergeMemNode=====================================
4054//
4055// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4056// contributing store or call operations.  Each contributor provides the memory
4057// state for a particular "alias type" (see Compile::alias_type).  For example,
4058// if a MergeMem has an input X for alias category #6, then any memory reference
4059// to alias category #6 may use X as its memory state input, as an exact equivalent
4060// to using the MergeMem as a whole.
4061//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4062//
4063// (Here, the <N> notation gives the index of the relevant adr_type.)
4064//
4065// In one special case (and more cases in the future), alias categories overlap.
4066// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4067// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4068// it is exactly equivalent to that state W:
4069//   MergeMem(<Bot>: W) <==> W
4070//
4071// Usually, the merge has more than one input.  In that case, where inputs
4072// overlap (i.e., one is Bot), the narrower alias type determines the memory
4073// state for that type, and the wider alias type (Bot) fills in everywhere else:
4074//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4075//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4076//
4077// A merge can take a "wide" memory state as one of its narrow inputs.
4078// This simply means that the merge observes out only the relevant parts of
4079// the wide input.  That is, wide memory states arriving at narrow merge inputs
4080// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4081//
4082// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4083// and that memory slices "leak through":
4084//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4085//
4086// But, in such a cascade, repeated memory slices can "block the leak":
4087//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4088//
4089// In the last example, Y is not part of the combined memory state of the
4090// outermost MergeMem.  The system must, of course, prevent unschedulable
4091// memory states from arising, so you can be sure that the state Y is somehow
4092// a precursor to state Y'.
4093//
4094//
4095// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4096// of each MergeMemNode array are exactly the numerical alias indexes, including
4097// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4098// Compile::alias_type (and kin) produce and manage these indexes.
4099//
4100// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4101// (Note that this provides quick access to the top node inside MergeMem methods,
4102// without the need to reach out via TLS to Compile::current.)
4103//
4104// As a consequence of what was just described, a MergeMem that represents a full
4105// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4106// containing all alias categories.
4107//
4108// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4109//
4110// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4111// a memory state for the alias type <N>, or else the top node, meaning that
4112// there is no particular input for that alias type.  Note that the length of
4113// a MergeMem is variable, and may be extended at any time to accommodate new
4114// memory states at larger alias indexes.  When merges grow, they are of course
4115// filled with "top" in the unused in() positions.
4116//
4117// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4118// (Top was chosen because it works smoothly with passes like GCM.)
4119//
4120// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4121// the type of random VM bits like TLS references.)  Since it is always the
4122// first non-Bot memory slice, some low-level loops use it to initialize an
4123// index variable:  for (i = AliasIdxRaw; i < req(); i++).
4124//
4125//
4126// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4127// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4128// the memory state for alias type <N>, or (if there is no particular slice at <N>,
4129// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4130// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4131// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4132//
4133// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4134// really that different from the other memory inputs.  An abbreviation called
4135// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4136//
4137//
4138// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4139// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4140// that "emerges though" the base memory will be marked as excluding the alias types
4141// of the other (narrow-memory) copies which "emerged through" the narrow edges:
4142//
4143//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4144//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4145//
4146// This strange "subtraction" effect is necessary to ensure IGVN convergence.
4147// (It is currently unimplemented.)  As you can see, the resulting merge is
4148// actually a disjoint union of memory states, rather than an overlay.
4149//
4150
4151//------------------------------MergeMemNode-----------------------------------
4152Node* MergeMemNode::make_empty_memory() {
4153  Node* empty_memory = (Node*) Compile::current()->top();
4154  assert(empty_memory->is_top(), "correct sentinel identity");
4155  return empty_memory;
4156}
4157
4158MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4159  init_class_id(Class_MergeMem);
4160  // all inputs are nullified in Node::Node(int)
4161  // set_input(0, NULL);  // no control input
4162
4163  // Initialize the edges uniformly to top, for starters.
4164  Node* empty_mem = make_empty_memory();
4165  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4166    init_req(i,empty_mem);
4167  }
4168  assert(empty_memory() == empty_mem, "");
4169
4170  if( new_base != NULL && new_base->is_MergeMem() ) {
4171    MergeMemNode* mdef = new_base->as_MergeMem();
4172    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4173    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4174      mms.set_memory(mms.memory2());
4175    }
4176    assert(base_memory() == mdef->base_memory(), "");
4177  } else {
4178    set_base_memory(new_base);
4179  }
4180}
4181
4182// Make a new, untransformed MergeMem with the same base as 'mem'.
4183// If mem is itself a MergeMem, populate the result with the same edges.
4184MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4185  return new(C) MergeMemNode(mem);
4186}
4187
4188//------------------------------cmp--------------------------------------------
4189uint MergeMemNode::hash() const { return NO_HASH; }
4190uint MergeMemNode::cmp( const Node &n ) const {
4191  return (&n == this);          // Always fail except on self
4192}
4193
4194//------------------------------Identity---------------------------------------
4195Node* MergeMemNode::Identity(PhaseTransform *phase) {
4196  // Identity if this merge point does not record any interesting memory
4197  // disambiguations.
4198  Node* base_mem = base_memory();
4199  Node* empty_mem = empty_memory();
4200  if (base_mem != empty_mem) {  // Memory path is not dead?
4201    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4202      Node* mem = in(i);
4203      if (mem != empty_mem && mem != base_mem) {
4204        return this;            // Many memory splits; no change
4205      }
4206    }
4207  }
4208  return base_mem;              // No memory splits; ID on the one true input
4209}
4210
4211//------------------------------Ideal------------------------------------------
4212// This method is invoked recursively on chains of MergeMem nodes
4213Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4214  // Remove chain'd MergeMems
4215  //
4216  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4217  // relative to the "in(Bot)".  Since we are patching both at the same time,
4218  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4219  // but rewrite each "in(i)" relative to the new "in(Bot)".
4220  Node *progress = NULL;
4221
4222
4223  Node* old_base = base_memory();
4224  Node* empty_mem = empty_memory();
4225  if (old_base == empty_mem)
4226    return NULL; // Dead memory path.
4227
4228  MergeMemNode* old_mbase;
4229  if (old_base != NULL && old_base->is_MergeMem())
4230    old_mbase = old_base->as_MergeMem();
4231  else
4232    old_mbase = NULL;
4233  Node* new_base = old_base;
4234
4235  // simplify stacked MergeMems in base memory
4236  if (old_mbase)  new_base = old_mbase->base_memory();
4237
4238  // the base memory might contribute new slices beyond my req()
4239  if (old_mbase)  grow_to_match(old_mbase);
4240
4241  // Look carefully at the base node if it is a phi.
4242  PhiNode* phi_base;
4243  if (new_base != NULL && new_base->is_Phi())
4244    phi_base = new_base->as_Phi();
4245  else
4246    phi_base = NULL;
4247
4248  Node*    phi_reg = NULL;
4249  uint     phi_len = (uint)-1;
4250  if (phi_base != NULL && !phi_base->is_copy()) {
4251    // do not examine phi if degraded to a copy
4252    phi_reg = phi_base->region();
4253    phi_len = phi_base->req();
4254    // see if the phi is unfinished
4255    for (uint i = 1; i < phi_len; i++) {
4256      if (phi_base->in(i) == NULL) {
4257        // incomplete phi; do not look at it yet!
4258        phi_reg = NULL;
4259        phi_len = (uint)-1;
4260        break;
4261      }
4262    }
4263  }
4264
4265  // Note:  We do not call verify_sparse on entry, because inputs
4266  // can normalize to the base_memory via subsume_node or similar
4267  // mechanisms.  This method repairs that damage.
4268
4269  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4270
4271  // Look at each slice.
4272  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4273    Node* old_in = in(i);
4274    // calculate the old memory value
4275    Node* old_mem = old_in;
4276    if (old_mem == empty_mem)  old_mem = old_base;
4277    assert(old_mem == memory_at(i), "");
4278
4279    // maybe update (reslice) the old memory value
4280
4281    // simplify stacked MergeMems
4282    Node* new_mem = old_mem;
4283    MergeMemNode* old_mmem;
4284    if (old_mem != NULL && old_mem->is_MergeMem())
4285      old_mmem = old_mem->as_MergeMem();
4286    else
4287      old_mmem = NULL;
4288    if (old_mmem == this) {
4289      // This can happen if loops break up and safepoints disappear.
4290      // A merge of BotPtr (default) with a RawPtr memory derived from a
4291      // safepoint can be rewritten to a merge of the same BotPtr with
4292      // the BotPtr phi coming into the loop.  If that phi disappears
4293      // also, we can end up with a self-loop of the mergemem.
4294      // In general, if loops degenerate and memory effects disappear,
4295      // a mergemem can be left looking at itself.  This simply means
4296      // that the mergemem's default should be used, since there is
4297      // no longer any apparent effect on this slice.
4298      // Note: If a memory slice is a MergeMem cycle, it is unreachable
4299      //       from start.  Update the input to TOP.
4300      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4301    }
4302    else if (old_mmem != NULL) {
4303      new_mem = old_mmem->memory_at(i);
4304    }
4305    // else preceding memory was not a MergeMem
4306
4307    // replace equivalent phis (unfortunately, they do not GVN together)
4308    if (new_mem != NULL && new_mem != new_base &&
4309        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4310      if (new_mem->is_Phi()) {
4311        PhiNode* phi_mem = new_mem->as_Phi();
4312        for (uint i = 1; i < phi_len; i++) {
4313          if (phi_base->in(i) != phi_mem->in(i)) {
4314            phi_mem = NULL;
4315            break;
4316          }
4317        }
4318        if (phi_mem != NULL) {
4319          // equivalent phi nodes; revert to the def
4320          new_mem = new_base;
4321        }
4322      }
4323    }
4324
4325    // maybe store down a new value
4326    Node* new_in = new_mem;
4327    if (new_in == new_base)  new_in = empty_mem;
4328
4329    if (new_in != old_in) {
4330      // Warning:  Do not combine this "if" with the previous "if"
4331      // A memory slice might have be be rewritten even if it is semantically
4332      // unchanged, if the base_memory value has changed.
4333      set_req(i, new_in);
4334      progress = this;          // Report progress
4335    }
4336  }
4337
4338  if (new_base != old_base) {
4339    set_req(Compile::AliasIdxBot, new_base);
4340    // Don't use set_base_memory(new_base), because we need to update du.
4341    assert(base_memory() == new_base, "");
4342    progress = this;
4343  }
4344
4345  if( base_memory() == this ) {
4346    // a self cycle indicates this memory path is dead
4347    set_req(Compile::AliasIdxBot, empty_mem);
4348  }
4349
4350  // Resolve external cycles by calling Ideal on a MergeMem base_memory
4351  // Recursion must occur after the self cycle check above
4352  if( base_memory()->is_MergeMem() ) {
4353    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4354    Node *m = phase->transform(new_mbase);  // Rollup any cycles
4355    if( m != NULL && (m->is_top() ||
4356        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4357      // propagate rollup of dead cycle to self
4358      set_req(Compile::AliasIdxBot, empty_mem);
4359    }
4360  }
4361
4362  if( base_memory() == empty_mem ) {
4363    progress = this;
4364    // Cut inputs during Parse phase only.
4365    // During Optimize phase a dead MergeMem node will be subsumed by Top.
4366    if( !can_reshape ) {
4367      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4368        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4369      }
4370    }
4371  }
4372
4373  if( !progress && base_memory()->is_Phi() && can_reshape ) {
4374    // Check if PhiNode::Ideal's "Split phis through memory merges"
4375    // transform should be attempted. Look for this->phi->this cycle.
4376    uint merge_width = req();
4377    if (merge_width > Compile::AliasIdxRaw) {
4378      PhiNode* phi = base_memory()->as_Phi();
4379      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4380        if (phi->in(i) == this) {
4381          phase->is_IterGVN()->_worklist.push(phi);
4382          break;
4383        }
4384      }
4385    }
4386  }
4387
4388  assert(progress || verify_sparse(), "please, no dups of base");
4389  return progress;
4390}
4391
4392//-------------------------set_base_memory-------------------------------------
4393void MergeMemNode::set_base_memory(Node *new_base) {
4394  Node* empty_mem = empty_memory();
4395  set_req(Compile::AliasIdxBot, new_base);
4396  assert(memory_at(req()) == new_base, "must set default memory");
4397  // Clear out other occurrences of new_base:
4398  if (new_base != empty_mem) {
4399    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4400      if (in(i) == new_base)  set_req(i, empty_mem);
4401    }
4402  }
4403}
4404
4405//------------------------------out_RegMask------------------------------------
4406const RegMask &MergeMemNode::out_RegMask() const {
4407  return RegMask::Empty;
4408}
4409
4410//------------------------------dump_spec--------------------------------------
4411#ifndef PRODUCT
4412void MergeMemNode::dump_spec(outputStream *st) const {
4413  st->print(" {");
4414  Node* base_mem = base_memory();
4415  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4416    Node* mem = memory_at(i);
4417    if (mem == base_mem) { st->print(" -"); continue; }
4418    st->print( " N%d:", mem->_idx );
4419    Compile::current()->get_adr_type(i)->dump_on(st);
4420  }
4421  st->print(" }");
4422}
4423#endif // !PRODUCT
4424
4425
4426#ifdef ASSERT
4427static bool might_be_same(Node* a, Node* b) {
4428  if (a == b)  return true;
4429  if (!(a->is_Phi() || b->is_Phi()))  return false;
4430  // phis shift around during optimization
4431  return true;  // pretty stupid...
4432}
4433
4434// verify a narrow slice (either incoming or outgoing)
4435static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4436  if (!VerifyAliases)       return;  // don't bother to verify unless requested
4437  if (is_error_reported())  return;  // muzzle asserts when debugging an error
4438  if (Node::in_dump())      return;  // muzzle asserts when printing
4439  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4440  assert(n != NULL, "");
4441  // Elide intervening MergeMem's
4442  while (n->is_MergeMem()) {
4443    n = n->as_MergeMem()->memory_at(alias_idx);
4444  }
4445  Compile* C = Compile::current();
4446  const TypePtr* n_adr_type = n->adr_type();
4447  if (n == m->empty_memory()) {
4448    // Implicit copy of base_memory()
4449  } else if (n_adr_type != TypePtr::BOTTOM) {
4450    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4451    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4452  } else {
4453    // A few places like make_runtime_call "know" that VM calls are narrow,
4454    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4455    bool expected_wide_mem = false;
4456    if (n == m->base_memory()) {
4457      expected_wide_mem = true;
4458    } else if (alias_idx == Compile::AliasIdxRaw ||
4459               n == m->memory_at(Compile::AliasIdxRaw)) {
4460      expected_wide_mem = true;
4461    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4462      // memory can "leak through" calls on channels that
4463      // are write-once.  Allow this also.
4464      expected_wide_mem = true;
4465    }
4466    assert(expected_wide_mem, "expected narrow slice replacement");
4467  }
4468}
4469#else // !ASSERT
4470#define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4471#endif
4472
4473
4474//-----------------------------memory_at---------------------------------------
4475Node* MergeMemNode::memory_at(uint alias_idx) const {
4476  assert(alias_idx >= Compile::AliasIdxRaw ||
4477         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4478         "must avoid base_memory and AliasIdxTop");
4479
4480  // Otherwise, it is a narrow slice.
4481  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4482  Compile *C = Compile::current();
4483  if (is_empty_memory(n)) {
4484    // the array is sparse; empty slots are the "top" node
4485    n = base_memory();
4486    assert(Node::in_dump()
4487           || n == NULL || n->bottom_type() == Type::TOP
4488           || n->adr_type() == NULL // address is TOP
4489           || n->adr_type() == TypePtr::BOTTOM
4490           || n->adr_type() == TypeRawPtr::BOTTOM
4491           || Compile::current()->AliasLevel() == 0,
4492           "must be a wide memory");
4493    // AliasLevel == 0 if we are organizing the memory states manually.
4494    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4495  } else {
4496    // make sure the stored slice is sane
4497    #ifdef ASSERT
4498    if (is_error_reported() || Node::in_dump()) {
4499    } else if (might_be_same(n, base_memory())) {
4500      // Give it a pass:  It is a mostly harmless repetition of the base.
4501      // This can arise normally from node subsumption during optimization.
4502    } else {
4503      verify_memory_slice(this, alias_idx, n);
4504    }
4505    #endif
4506  }
4507  return n;
4508}
4509
4510//---------------------------set_memory_at-------------------------------------
4511void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4512  verify_memory_slice(this, alias_idx, n);
4513  Node* empty_mem = empty_memory();
4514  if (n == base_memory())  n = empty_mem;  // collapse default
4515  uint need_req = alias_idx+1;
4516  if (req() < need_req) {
4517    if (n == empty_mem)  return;  // already the default, so do not grow me
4518    // grow the sparse array
4519    do {
4520      add_req(empty_mem);
4521    } while (req() < need_req);
4522  }
4523  set_req( alias_idx, n );
4524}
4525
4526
4527
4528//--------------------------iteration_setup------------------------------------
4529void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4530  if (other != NULL) {
4531    grow_to_match(other);
4532    // invariant:  the finite support of mm2 is within mm->req()
4533    #ifdef ASSERT
4534    for (uint i = req(); i < other->req(); i++) {
4535      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4536    }
4537    #endif
4538  }
4539  // Replace spurious copies of base_memory by top.
4540  Node* base_mem = base_memory();
4541  if (base_mem != NULL && !base_mem->is_top()) {
4542    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4543      if (in(i) == base_mem)
4544        set_req(i, empty_memory());
4545    }
4546  }
4547}
4548
4549//---------------------------grow_to_match-------------------------------------
4550void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4551  Node* empty_mem = empty_memory();
4552  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4553  // look for the finite support of the other memory
4554  for (uint i = other->req(); --i >= req(); ) {
4555    if (other->in(i) != empty_mem) {
4556      uint new_len = i+1;
4557      while (req() < new_len)  add_req(empty_mem);
4558      break;
4559    }
4560  }
4561}
4562
4563//---------------------------verify_sparse-------------------------------------
4564#ifndef PRODUCT
4565bool MergeMemNode::verify_sparse() const {
4566  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4567  Node* base_mem = base_memory();
4568  // The following can happen in degenerate cases, since empty==top.
4569  if (is_empty_memory(base_mem))  return true;
4570  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4571    assert(in(i) != NULL, "sane slice");
4572    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4573  }
4574  return true;
4575}
4576
4577bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4578  Node* n;
4579  n = mm->in(idx);
4580  if (mem == n)  return true;  // might be empty_memory()
4581  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4582  if (mem == n)  return true;
4583  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4584    if (mem == n)  return true;
4585    if (n == NULL)  break;
4586  }
4587  return false;
4588}
4589#endif // !PRODUCT
4590