memnode.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "compiler/compileLog.hpp"
28#include "memory/allocation.inline.hpp"
29#include "oops/objArrayKlass.hpp"
30#include "opto/addnode.hpp"
31#include "opto/cfgnode.hpp"
32#include "opto/compile.hpp"
33#include "opto/connode.hpp"
34#include "opto/loopnode.hpp"
35#include "opto/machnode.hpp"
36#include "opto/matcher.hpp"
37#include "opto/memnode.hpp"
38#include "opto/mulnode.hpp"
39#include "opto/phaseX.hpp"
40#include "opto/regmask.hpp"
41
42// Portions of code courtesy of Clifford Click
43
44// Optimization - Graph Style
45
46static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
47
48//=============================================================================
49uint MemNode::size_of() const { return sizeof(*this); }
50
51const TypePtr *MemNode::adr_type() const {
52  Node* adr = in(Address);
53  const TypePtr* cross_check = NULL;
54  DEBUG_ONLY(cross_check = _adr_type);
55  return calculate_adr_type(adr->bottom_type(), cross_check);
56}
57
58#ifndef PRODUCT
59void MemNode::dump_spec(outputStream *st) const {
60  if (in(Address) == NULL)  return; // node is dead
61#ifndef ASSERT
62  // fake the missing field
63  const TypePtr* _adr_type = NULL;
64  if (in(Address) != NULL)
65    _adr_type = in(Address)->bottom_type()->isa_ptr();
66#endif
67  dump_adr_type(this, _adr_type, st);
68
69  Compile* C = Compile::current();
70  if( C->alias_type(_adr_type)->is_volatile() )
71    st->print(" Volatile!");
72}
73
74void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
75  st->print(" @");
76  if (adr_type == NULL) {
77    st->print("NULL");
78  } else {
79    adr_type->dump_on(st);
80    Compile* C = Compile::current();
81    Compile::AliasType* atp = NULL;
82    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
83    if (atp == NULL)
84      st->print(", idx=?\?;");
85    else if (atp->index() == Compile::AliasIdxBot)
86      st->print(", idx=Bot;");
87    else if (atp->index() == Compile::AliasIdxTop)
88      st->print(", idx=Top;");
89    else if (atp->index() == Compile::AliasIdxRaw)
90      st->print(", idx=Raw;");
91    else {
92      ciField* field = atp->field();
93      if (field) {
94        st->print(", name=");
95        field->print_name_on(st);
96      }
97      st->print(", idx=%d;", atp->index());
98    }
99  }
100}
101
102extern void print_alias_types();
103
104#endif
105
106Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
107  const TypeOopPtr *tinst = t_adr->isa_oopptr();
108  if (tinst == NULL || !tinst->is_known_instance_field())
109    return mchain;  // don't try to optimize non-instance types
110  uint instance_id = tinst->instance_id();
111  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
112  Node *prev = NULL;
113  Node *result = mchain;
114  while (prev != result) {
115    prev = result;
116    if (result == start_mem)
117      break;  // hit one of our sentinels
118    // skip over a call which does not affect this memory slice
119    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
120      Node *proj_in = result->in(0);
121      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
122        break;  // hit one of our sentinels
123      } else if (proj_in->is_Call()) {
124        CallNode *call = proj_in->as_Call();
125        if (!call->may_modify(t_adr, phase)) {
126          result = call->in(TypeFunc::Memory);
127        }
128      } else if (proj_in->is_Initialize()) {
129        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
130        // Stop if this is the initialization for the object instance which
131        // which contains this memory slice, otherwise skip over it.
132        if (alloc != NULL && alloc->_idx != instance_id) {
133          result = proj_in->in(TypeFunc::Memory);
134        }
135      } else if (proj_in->is_MemBar()) {
136        result = proj_in->in(TypeFunc::Memory);
137      } else {
138        assert(false, "unexpected projection");
139      }
140    } else if (result->is_ClearArray()) {
141      if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
142        // Can not bypass initialization of the instance
143        // we are looking for.
144        break;
145      }
146      // Otherwise skip it (the call updated 'result' value).
147    } else if (result->is_MergeMem()) {
148      result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
149    }
150  }
151  return result;
152}
153
154Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
155  const TypeOopPtr *t_oop = t_adr->isa_oopptr();
156  bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
157  PhaseIterGVN *igvn = phase->is_IterGVN();
158  Node *result = mchain;
159  result = optimize_simple_memory_chain(result, t_adr, phase);
160  if (is_instance && igvn != NULL  && result->is_Phi()) {
161    PhiNode *mphi = result->as_Phi();
162    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
163    const TypePtr *t = mphi->adr_type();
164    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
165        t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
166        t->is_oopptr()->cast_to_exactness(true)
167         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
168         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
169      // clone the Phi with our address type
170      result = mphi->split_out_instance(t_adr, igvn);
171    } else {
172      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
173    }
174  }
175  return result;
176}
177
178static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
179  uint alias_idx = phase->C->get_alias_index(tp);
180  Node *mem = mmem;
181#ifdef ASSERT
182  {
183    // Check that current type is consistent with the alias index used during graph construction
184    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
185    bool consistent =  adr_check == NULL || adr_check->empty() ||
186                       phase->C->must_alias(adr_check, alias_idx );
187    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
188    if( !consistent && adr_check != NULL && !adr_check->empty() &&
189               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
190        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
191        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
192          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
193          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
194      // don't assert if it is dead code.
195      consistent = true;
196    }
197    if( !consistent ) {
198      st->print("alias_idx==%d, adr_check==", alias_idx);
199      if( adr_check == NULL ) {
200        st->print("NULL");
201      } else {
202        adr_check->dump();
203      }
204      st->cr();
205      print_alias_types();
206      assert(consistent, "adr_check must match alias idx");
207    }
208  }
209#endif
210  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
211  // means an array I have not precisely typed yet.  Do not do any
212  // alias stuff with it any time soon.
213  const TypeOopPtr *toop = tp->isa_oopptr();
214  if( tp->base() != Type::AnyPtr &&
215      !(toop &&
216        toop->klass() != NULL &&
217        toop->klass()->is_java_lang_Object() &&
218        toop->offset() == Type::OffsetBot) ) {
219    // compress paths and change unreachable cycles to TOP
220    // If not, we can update the input infinitely along a MergeMem cycle
221    // Equivalent code in PhiNode::Ideal
222    Node* m  = phase->transform(mmem);
223    // If transformed to a MergeMem, get the desired slice
224    // Otherwise the returned node represents memory for every slice
225    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
226    // Update input if it is progress over what we have now
227  }
228  return mem;
229}
230
231//--------------------------Ideal_common---------------------------------------
232// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
233// Unhook non-raw memories from complete (macro-expanded) initializations.
234Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
235  // If our control input is a dead region, kill all below the region
236  Node *ctl = in(MemNode::Control);
237  if (ctl && remove_dead_region(phase, can_reshape))
238    return this;
239  ctl = in(MemNode::Control);
240  // Don't bother trying to transform a dead node
241  if( ctl && ctl->is_top() )  return NodeSentinel;
242
243  PhaseIterGVN *igvn = phase->is_IterGVN();
244  // Wait if control on the worklist.
245  if (ctl && can_reshape && igvn != NULL) {
246    Node* bol = NULL;
247    Node* cmp = NULL;
248    if (ctl->in(0)->is_If()) {
249      assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
250      bol = ctl->in(0)->in(1);
251      if (bol->is_Bool())
252        cmp = ctl->in(0)->in(1)->in(1);
253    }
254    if (igvn->_worklist.member(ctl) ||
255        (bol != NULL && igvn->_worklist.member(bol)) ||
256        (cmp != NULL && igvn->_worklist.member(cmp)) ) {
257      // This control path may be dead.
258      // Delay this memory node transformation until the control is processed.
259      phase->is_IterGVN()->_worklist.push(this);
260      return NodeSentinel; // caller will return NULL
261    }
262  }
263  // Ignore if memory is dead, or self-loop
264  Node *mem = in(MemNode::Memory);
265  if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
266  assert( mem != this, "dead loop in MemNode::Ideal" );
267
268  if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
269    // This memory slice may be dead.
270    // Delay this mem node transformation until the memory is processed.
271    phase->is_IterGVN()->_worklist.push(this);
272    return NodeSentinel; // caller will return NULL
273  }
274
275  Node *address = in(MemNode::Address);
276  const Type *t_adr = phase->type( address );
277  if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
278
279  if( can_reshape && igvn != NULL &&
280      (igvn->_worklist.member(address) ||
281       igvn->_worklist.size() > 0 && (phase->type(address) != adr_type())) ) {
282    // The address's base and type may change when the address is processed.
283    // Delay this mem node transformation until the address is processed.
284    phase->is_IterGVN()->_worklist.push(this);
285    return NodeSentinel; // caller will return NULL
286  }
287
288  // Do NOT remove or optimize the next lines: ensure a new alias index
289  // is allocated for an oop pointer type before Escape Analysis.
290  // Note: C++ will not remove it since the call has side effect.
291  if ( t_adr->isa_oopptr() ) {
292    int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
293  }
294
295#ifdef ASSERT
296  Node* base = NULL;
297  if (address->is_AddP())
298    base = address->in(AddPNode::Base);
299  assert(base == NULL || t_adr->isa_rawptr() ||
300        !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
301#endif
302
303  // Avoid independent memory operations
304  Node* old_mem = mem;
305
306  // The code which unhooks non-raw memories from complete (macro-expanded)
307  // initializations was removed. After macro-expansion all stores catched
308  // by Initialize node became raw stores and there is no information
309  // which memory slices they modify. So it is unsafe to move any memory
310  // operation above these stores. Also in most cases hooked non-raw memories
311  // were already unhooked by using information from detect_ptr_independence()
312  // and find_previous_store().
313
314  if (mem->is_MergeMem()) {
315    MergeMemNode* mmem = mem->as_MergeMem();
316    const TypePtr *tp = t_adr->is_ptr();
317
318    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
319  }
320
321  if (mem != old_mem) {
322    set_req(MemNode::Memory, mem);
323    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
324    return this;
325  }
326
327  // let the subclass continue analyzing...
328  return NULL;
329}
330
331// Helper function for proving some simple control dominations.
332// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
333// Already assumes that 'dom' is available at 'sub', and that 'sub'
334// is not a constant (dominated by the method's StartNode).
335// Used by MemNode::find_previous_store to prove that the
336// control input of a memory operation predates (dominates)
337// an allocation it wants to look past.
338bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
339  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
340    return false; // Conservative answer for dead code
341
342  // Check 'dom'. Skip Proj and CatchProj nodes.
343  dom = dom->find_exact_control(dom);
344  if (dom == NULL || dom->is_top())
345    return false; // Conservative answer for dead code
346
347  if (dom == sub) {
348    // For the case when, for example, 'sub' is Initialize and the original
349    // 'dom' is Proj node of the 'sub'.
350    return false;
351  }
352
353  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
354    return true;
355
356  // 'dom' dominates 'sub' if its control edge and control edges
357  // of all its inputs dominate or equal to sub's control edge.
358
359  // Currently 'sub' is either Allocate, Initialize or Start nodes.
360  // Or Region for the check in LoadNode::Ideal();
361  // 'sub' should have sub->in(0) != NULL.
362  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
363         sub->is_Region(), "expecting only these nodes");
364
365  // Get control edge of 'sub'.
366  Node* orig_sub = sub;
367  sub = sub->find_exact_control(sub->in(0));
368  if (sub == NULL || sub->is_top())
369    return false; // Conservative answer for dead code
370
371  assert(sub->is_CFG(), "expecting control");
372
373  if (sub == dom)
374    return true;
375
376  if (sub->is_Start() || sub->is_Root())
377    return false;
378
379  {
380    // Check all control edges of 'dom'.
381
382    ResourceMark rm;
383    Arena* arena = Thread::current()->resource_area();
384    Node_List nlist(arena);
385    Unique_Node_List dom_list(arena);
386
387    dom_list.push(dom);
388    bool only_dominating_controls = false;
389
390    for (uint next = 0; next < dom_list.size(); next++) {
391      Node* n = dom_list.at(next);
392      if (n == orig_sub)
393        return false; // One of dom's inputs dominated by sub.
394      if (!n->is_CFG() && n->pinned()) {
395        // Check only own control edge for pinned non-control nodes.
396        n = n->find_exact_control(n->in(0));
397        if (n == NULL || n->is_top())
398          return false; // Conservative answer for dead code
399        assert(n->is_CFG(), "expecting control");
400        dom_list.push(n);
401      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
402        only_dominating_controls = true;
403      } else if (n->is_CFG()) {
404        if (n->dominates(sub, nlist))
405          only_dominating_controls = true;
406        else
407          return false;
408      } else {
409        // First, own control edge.
410        Node* m = n->find_exact_control(n->in(0));
411        if (m != NULL) {
412          if (m->is_top())
413            return false; // Conservative answer for dead code
414          dom_list.push(m);
415        }
416        // Now, the rest of edges.
417        uint cnt = n->req();
418        for (uint i = 1; i < cnt; i++) {
419          m = n->find_exact_control(n->in(i));
420          if (m == NULL || m->is_top())
421            continue;
422          dom_list.push(m);
423        }
424      }
425    }
426    return only_dominating_controls;
427  }
428}
429
430//---------------------detect_ptr_independence---------------------------------
431// Used by MemNode::find_previous_store to prove that two base
432// pointers are never equal.
433// The pointers are accompanied by their associated allocations,
434// if any, which have been previously discovered by the caller.
435bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
436                                      Node* p2, AllocateNode* a2,
437                                      PhaseTransform* phase) {
438  // Attempt to prove that these two pointers cannot be aliased.
439  // They may both manifestly be allocations, and they should differ.
440  // Or, if they are not both allocations, they can be distinct constants.
441  // Otherwise, one is an allocation and the other a pre-existing value.
442  if (a1 == NULL && a2 == NULL) {           // neither an allocation
443    return (p1 != p2) && p1->is_Con() && p2->is_Con();
444  } else if (a1 != NULL && a2 != NULL) {    // both allocations
445    return (a1 != a2);
446  } else if (a1 != NULL) {                  // one allocation a1
447    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
448    return all_controls_dominate(p2, a1);
449  } else { //(a2 != NULL)                   // one allocation a2
450    return all_controls_dominate(p1, a2);
451  }
452  return false;
453}
454
455
456// The logic for reordering loads and stores uses four steps:
457// (a) Walk carefully past stores and initializations which we
458//     can prove are independent of this load.
459// (b) Observe that the next memory state makes an exact match
460//     with self (load or store), and locate the relevant store.
461// (c) Ensure that, if we were to wire self directly to the store,
462//     the optimizer would fold it up somehow.
463// (d) Do the rewiring, and return, depending on some other part of
464//     the optimizer to fold up the load.
465// This routine handles steps (a) and (b).  Steps (c) and (d) are
466// specific to loads and stores, so they are handled by the callers.
467// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
468//
469Node* MemNode::find_previous_store(PhaseTransform* phase) {
470  Node*         ctrl   = in(MemNode::Control);
471  Node*         adr    = in(MemNode::Address);
472  intptr_t      offset = 0;
473  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
474  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
475
476  if (offset == Type::OffsetBot)
477    return NULL;            // cannot unalias unless there are precise offsets
478
479  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
480
481  intptr_t size_in_bytes = memory_size();
482
483  Node* mem = in(MemNode::Memory);   // start searching here...
484
485  int cnt = 50;             // Cycle limiter
486  for (;;) {                // While we can dance past unrelated stores...
487    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
488
489    if (mem->is_Store()) {
490      Node* st_adr = mem->in(MemNode::Address);
491      intptr_t st_offset = 0;
492      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
493      if (st_base == NULL)
494        break;              // inscrutable pointer
495      if (st_offset != offset && st_offset != Type::OffsetBot) {
496        const int MAX_STORE = BytesPerLong;
497        if (st_offset >= offset + size_in_bytes ||
498            st_offset <= offset - MAX_STORE ||
499            st_offset <= offset - mem->as_Store()->memory_size()) {
500          // Success:  The offsets are provably independent.
501          // (You may ask, why not just test st_offset != offset and be done?
502          // The answer is that stores of different sizes can co-exist
503          // in the same sequence of RawMem effects.  We sometimes initialize
504          // a whole 'tile' of array elements with a single jint or jlong.)
505          mem = mem->in(MemNode::Memory);
506          continue;           // (a) advance through independent store memory
507        }
508      }
509      if (st_base != base &&
510          detect_ptr_independence(base, alloc,
511                                  st_base,
512                                  AllocateNode::Ideal_allocation(st_base, phase),
513                                  phase)) {
514        // Success:  The bases are provably independent.
515        mem = mem->in(MemNode::Memory);
516        continue;           // (a) advance through independent store memory
517      }
518
519      // (b) At this point, if the bases or offsets do not agree, we lose,
520      // since we have not managed to prove 'this' and 'mem' independent.
521      if (st_base == base && st_offset == offset) {
522        return mem;         // let caller handle steps (c), (d)
523      }
524
525    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
526      InitializeNode* st_init = mem->in(0)->as_Initialize();
527      AllocateNode*  st_alloc = st_init->allocation();
528      if (st_alloc == NULL)
529        break;              // something degenerated
530      bool known_identical = false;
531      bool known_independent = false;
532      if (alloc == st_alloc)
533        known_identical = true;
534      else if (alloc != NULL)
535        known_independent = true;
536      else if (all_controls_dominate(this, st_alloc))
537        known_independent = true;
538
539      if (known_independent) {
540        // The bases are provably independent: Either they are
541        // manifestly distinct allocations, or else the control
542        // of this load dominates the store's allocation.
543        int alias_idx = phase->C->get_alias_index(adr_type());
544        if (alias_idx == Compile::AliasIdxRaw) {
545          mem = st_alloc->in(TypeFunc::Memory);
546        } else {
547          mem = st_init->memory(alias_idx);
548        }
549        continue;           // (a) advance through independent store memory
550      }
551
552      // (b) at this point, if we are not looking at a store initializing
553      // the same allocation we are loading from, we lose.
554      if (known_identical) {
555        // From caller, can_see_stored_value will consult find_captured_store.
556        return mem;         // let caller handle steps (c), (d)
557      }
558
559    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
560      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
561      if (mem->is_Proj() && mem->in(0)->is_Call()) {
562        CallNode *call = mem->in(0)->as_Call();
563        if (!call->may_modify(addr_t, phase)) {
564          mem = call->in(TypeFunc::Memory);
565          continue;         // (a) advance through independent call memory
566        }
567      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
568        mem = mem->in(0)->in(TypeFunc::Memory);
569        continue;           // (a) advance through independent MemBar memory
570      } else if (mem->is_ClearArray()) {
571        if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
572          // (the call updated 'mem' value)
573          continue;         // (a) advance through independent allocation memory
574        } else {
575          // Can not bypass initialization of the instance
576          // we are looking for.
577          return mem;
578        }
579      } else if (mem->is_MergeMem()) {
580        int alias_idx = phase->C->get_alias_index(adr_type());
581        mem = mem->as_MergeMem()->memory_at(alias_idx);
582        continue;           // (a) advance through independent MergeMem memory
583      }
584    }
585
586    // Unless there is an explicit 'continue', we must bail out here,
587    // because 'mem' is an inscrutable memory state (e.g., a call).
588    break;
589  }
590
591  return NULL;              // bail out
592}
593
594//----------------------calculate_adr_type-------------------------------------
595// Helper function.  Notices when the given type of address hits top or bottom.
596// Also, asserts a cross-check of the type against the expected address type.
597const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
598  if (t == Type::TOP)  return NULL; // does not touch memory any more?
599  #ifdef PRODUCT
600  cross_check = NULL;
601  #else
602  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
603  #endif
604  const TypePtr* tp = t->isa_ptr();
605  if (tp == NULL) {
606    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
607    return TypePtr::BOTTOM;           // touches lots of memory
608  } else {
609    #ifdef ASSERT
610    // %%%% [phh] We don't check the alias index if cross_check is
611    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
612    if (cross_check != NULL &&
613        cross_check != TypePtr::BOTTOM &&
614        cross_check != TypeRawPtr::BOTTOM) {
615      // Recheck the alias index, to see if it has changed (due to a bug).
616      Compile* C = Compile::current();
617      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
618             "must stay in the original alias category");
619      // The type of the address must be contained in the adr_type,
620      // disregarding "null"-ness.
621      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
622      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
623      assert(cross_check->meet(tp_notnull) == cross_check,
624             "real address must not escape from expected memory type");
625    }
626    #endif
627    return tp;
628  }
629}
630
631//------------------------adr_phi_is_loop_invariant----------------------------
632// A helper function for Ideal_DU_postCCP to check if a Phi in a counted
633// loop is loop invariant. Make a quick traversal of Phi and associated
634// CastPP nodes, looking to see if they are a closed group within the loop.
635bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
636  // The idea is that the phi-nest must boil down to only CastPP nodes
637  // with the same data. This implies that any path into the loop already
638  // includes such a CastPP, and so the original cast, whatever its input,
639  // must be covered by an equivalent cast, with an earlier control input.
640  ResourceMark rm;
641
642  // The loop entry input of the phi should be the unique dominating
643  // node for every Phi/CastPP in the loop.
644  Unique_Node_List closure;
645  closure.push(adr_phi->in(LoopNode::EntryControl));
646
647  // Add the phi node and the cast to the worklist.
648  Unique_Node_List worklist;
649  worklist.push(adr_phi);
650  if( cast != NULL ){
651    if( !cast->is_ConstraintCast() ) return false;
652    worklist.push(cast);
653  }
654
655  // Begin recursive walk of phi nodes.
656  while( worklist.size() ){
657    // Take a node off the worklist
658    Node *n = worklist.pop();
659    if( !closure.member(n) ){
660      // Add it to the closure.
661      closure.push(n);
662      // Make a sanity check to ensure we don't waste too much time here.
663      if( closure.size() > 20) return false;
664      // This node is OK if:
665      //  - it is a cast of an identical value
666      //  - or it is a phi node (then we add its inputs to the worklist)
667      // Otherwise, the node is not OK, and we presume the cast is not invariant
668      if( n->is_ConstraintCast() ){
669        worklist.push(n->in(1));
670      } else if( n->is_Phi() ) {
671        for( uint i = 1; i < n->req(); i++ ) {
672          worklist.push(n->in(i));
673        }
674      } else {
675        return false;
676      }
677    }
678  }
679
680  // Quit when the worklist is empty, and we've found no offending nodes.
681  return true;
682}
683
684//------------------------------Ideal_DU_postCCP-------------------------------
685// Find any cast-away of null-ness and keep its control.  Null cast-aways are
686// going away in this pass and we need to make this memory op depend on the
687// gating null check.
688Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
689  return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
690}
691
692// I tried to leave the CastPP's in.  This makes the graph more accurate in
693// some sense; we get to keep around the knowledge that an oop is not-null
694// after some test.  Alas, the CastPP's interfere with GVN (some values are
695// the regular oop, some are the CastPP of the oop, all merge at Phi's which
696// cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
697// some of the more trivial cases in the optimizer.  Removing more useless
698// Phi's started allowing Loads to illegally float above null checks.  I gave
699// up on this approach.  CNC 10/20/2000
700// This static method may be called not from MemNode (EncodePNode calls it).
701// Only the control edge of the node 'n' might be updated.
702Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
703  Node *skipped_cast = NULL;
704  // Need a null check?  Regular static accesses do not because they are
705  // from constant addresses.  Array ops are gated by the range check (which
706  // always includes a NULL check).  Just check field ops.
707  if( n->in(MemNode::Control) == NULL ) {
708    // Scan upwards for the highest location we can place this memory op.
709    while( true ) {
710      switch( adr->Opcode() ) {
711
712      case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
713        adr = adr->in(AddPNode::Base);
714        continue;
715
716      case Op_DecodeN:         // No change to NULL-ness, so peek thru
717        adr = adr->in(1);
718        continue;
719
720      case Op_EncodeP:
721        // EncodeP node's control edge could be set by this method
722        // when EncodeP node depends on CastPP node.
723        //
724        // Use its control edge for memory op because EncodeP may go away
725        // later when it is folded with following or preceding DecodeN node.
726        if (adr->in(0) == NULL) {
727          // Keep looking for cast nodes.
728          adr = adr->in(1);
729          continue;
730        }
731        ccp->hash_delete(n);
732        n->set_req(MemNode::Control, adr->in(0));
733        ccp->hash_insert(n);
734        return n;
735
736      case Op_CastPP:
737        // If the CastPP is useless, just peek on through it.
738        if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
739          // Remember the cast that we've peeked though. If we peek
740          // through more than one, then we end up remembering the highest
741          // one, that is, if in a loop, the one closest to the top.
742          skipped_cast = adr;
743          adr = adr->in(1);
744          continue;
745        }
746        // CastPP is going away in this pass!  We need this memory op to be
747        // control-dependent on the test that is guarding the CastPP.
748        ccp->hash_delete(n);
749        n->set_req(MemNode::Control, adr->in(0));
750        ccp->hash_insert(n);
751        return n;
752
753      case Op_Phi:
754        // Attempt to float above a Phi to some dominating point.
755        if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
756          // If we've already peeked through a Cast (which could have set the
757          // control), we can't float above a Phi, because the skipped Cast
758          // may not be loop invariant.
759          if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
760            adr = adr->in(1);
761            continue;
762          }
763        }
764
765        // Intentional fallthrough!
766
767        // No obvious dominating point.  The mem op is pinned below the Phi
768        // by the Phi itself.  If the Phi goes away (no true value is merged)
769        // then the mem op can float, but not indefinitely.  It must be pinned
770        // behind the controls leading to the Phi.
771      case Op_CheckCastPP:
772        // These usually stick around to change address type, however a
773        // useless one can be elided and we still need to pick up a control edge
774        if (adr->in(0) == NULL) {
775          // This CheckCastPP node has NO control and is likely useless. But we
776          // need check further up the ancestor chain for a control input to keep
777          // the node in place. 4959717.
778          skipped_cast = adr;
779          adr = adr->in(1);
780          continue;
781        }
782        ccp->hash_delete(n);
783        n->set_req(MemNode::Control, adr->in(0));
784        ccp->hash_insert(n);
785        return n;
786
787        // List of "safe" opcodes; those that implicitly block the memory
788        // op below any null check.
789      case Op_CastX2P:          // no null checks on native pointers
790      case Op_Parm:             // 'this' pointer is not null
791      case Op_LoadP:            // Loading from within a klass
792      case Op_LoadN:            // Loading from within a klass
793      case Op_LoadKlass:        // Loading from within a klass
794      case Op_LoadNKlass:       // Loading from within a klass
795      case Op_ConP:             // Loading from a klass
796      case Op_ConN:             // Loading from a klass
797      case Op_CreateEx:         // Sucking up the guts of an exception oop
798      case Op_Con:              // Reading from TLS
799      case Op_CMoveP:           // CMoveP is pinned
800      case Op_CMoveN:           // CMoveN is pinned
801        break;                  // No progress
802
803      case Op_Proj:             // Direct call to an allocation routine
804      case Op_SCMemProj:        // Memory state from store conditional ops
805#ifdef ASSERT
806        {
807          assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
808          const Node* call = adr->in(0);
809          if (call->is_CallJava()) {
810            const CallJavaNode* call_java = call->as_CallJava();
811            const TypeTuple *r = call_java->tf()->range();
812            assert(r->cnt() > TypeFunc::Parms, "must return value");
813            const Type* ret_type = r->field_at(TypeFunc::Parms);
814            assert(ret_type && ret_type->isa_ptr(), "must return pointer");
815            // We further presume that this is one of
816            // new_instance_Java, new_array_Java, or
817            // the like, but do not assert for this.
818          } else if (call->is_Allocate()) {
819            // similar case to new_instance_Java, etc.
820          } else if (!call->is_CallLeaf()) {
821            // Projections from fetch_oop (OSR) are allowed as well.
822            ShouldNotReachHere();
823          }
824        }
825#endif
826        break;
827      default:
828        ShouldNotReachHere();
829      }
830      break;
831    }
832  }
833
834  return  NULL;               // No progress
835}
836
837
838//=============================================================================
839uint LoadNode::size_of() const { return sizeof(*this); }
840uint LoadNode::cmp( const Node &n ) const
841{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
842const Type *LoadNode::bottom_type() const { return _type; }
843uint LoadNode::ideal_reg() const {
844  return _type->ideal_reg();
845}
846
847#ifndef PRODUCT
848void LoadNode::dump_spec(outputStream *st) const {
849  MemNode::dump_spec(st);
850  if( !Verbose && !WizardMode ) {
851    // standard dump does this in Verbose and WizardMode
852    st->print(" #"); _type->dump_on(st);
853  }
854}
855#endif
856
857#ifdef ASSERT
858//----------------------------is_immutable_value-------------------------------
859// Helper function to allow a raw load without control edge for some cases
860bool LoadNode::is_immutable_value(Node* adr) {
861  return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
862          adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
863          (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
864           in_bytes(JavaThread::osthread_offset())));
865}
866#endif
867
868//----------------------------LoadNode::make-----------------------------------
869// Polymorphic factory method:
870Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
871  Compile* C = gvn.C;
872
873  // sanity check the alias category against the created node type
874  assert(!(adr_type->isa_oopptr() &&
875           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
876         "use LoadKlassNode instead");
877  assert(!(adr_type->isa_aryptr() &&
878           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
879         "use LoadRangeNode instead");
880  // Check control edge of raw loads
881  assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
882          // oop will be recorded in oop map if load crosses safepoint
883          rt->isa_oopptr() || is_immutable_value(adr),
884          "raw memory operations should have control edge");
885  switch (bt) {
886  case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
887  case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
888  case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
889  case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
890  case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
891  case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
892  case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
893  case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
894  case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
895  case T_OBJECT:
896#ifdef _LP64
897    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
898      Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
899      return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
900    } else
901#endif
902    {
903      assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
904      return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
905    }
906  }
907  ShouldNotReachHere();
908  return (LoadNode*)NULL;
909}
910
911LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
912  bool require_atomic = true;
913  return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
914}
915
916
917
918
919//------------------------------hash-------------------------------------------
920uint LoadNode::hash() const {
921  // unroll addition of interesting fields
922  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
923}
924
925//---------------------------can_see_stored_value------------------------------
926// This routine exists to make sure this set of tests is done the same
927// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
928// will change the graph shape in a way which makes memory alive twice at the
929// same time (uses the Oracle model of aliasing), then some
930// LoadXNode::Identity will fold things back to the equivalence-class model
931// of aliasing.
932Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
933  Node* ld_adr = in(MemNode::Address);
934
935  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
936  Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
937  if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
938      atp->field() != NULL && !atp->field()->is_volatile()) {
939    uint alias_idx = atp->index();
940    bool final = atp->field()->is_final();
941    Node* result = NULL;
942    Node* current = st;
943    // Skip through chains of MemBarNodes checking the MergeMems for
944    // new states for the slice of this load.  Stop once any other
945    // kind of node is encountered.  Loads from final memory can skip
946    // through any kind of MemBar but normal loads shouldn't skip
947    // through MemBarAcquire since the could allow them to move out of
948    // a synchronized region.
949    while (current->is_Proj()) {
950      int opc = current->in(0)->Opcode();
951      if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
952          opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
953          opc == Op_MemBarReleaseLock) {
954        Node* mem = current->in(0)->in(TypeFunc::Memory);
955        if (mem->is_MergeMem()) {
956          MergeMemNode* merge = mem->as_MergeMem();
957          Node* new_st = merge->memory_at(alias_idx);
958          if (new_st == merge->base_memory()) {
959            // Keep searching
960            current = merge->base_memory();
961            continue;
962          }
963          // Save the new memory state for the slice and fall through
964          // to exit.
965          result = new_st;
966        }
967      }
968      break;
969    }
970    if (result != NULL) {
971      st = result;
972    }
973  }
974
975
976  // Loop around twice in the case Load -> Initialize -> Store.
977  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
978  for (int trip = 0; trip <= 1; trip++) {
979
980    if (st->is_Store()) {
981      Node* st_adr = st->in(MemNode::Address);
982      if (!phase->eqv(st_adr, ld_adr)) {
983        // Try harder before giving up...  Match raw and non-raw pointers.
984        intptr_t st_off = 0;
985        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
986        if (alloc == NULL)       return NULL;
987        intptr_t ld_off = 0;
988        AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
989        if (alloc != allo2)      return NULL;
990        if (ld_off != st_off)    return NULL;
991        // At this point we have proven something like this setup:
992        //  A = Allocate(...)
993        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
994        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
995        // (Actually, we haven't yet proven the Q's are the same.)
996        // In other words, we are loading from a casted version of
997        // the same pointer-and-offset that we stored to.
998        // Thus, we are able to replace L by V.
999      }
1000      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1001      if (store_Opcode() != st->Opcode())
1002        return NULL;
1003      return st->in(MemNode::ValueIn);
1004    }
1005
1006    intptr_t offset = 0;  // scratch
1007
1008    // A load from a freshly-created object always returns zero.
1009    // (This can happen after LoadNode::Ideal resets the load's memory input
1010    // to find_captured_store, which returned InitializeNode::zero_memory.)
1011    if (st->is_Proj() && st->in(0)->is_Allocate() &&
1012        st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
1013        offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
1014      // return a zero value for the load's basic type
1015      // (This is one of the few places where a generic PhaseTransform
1016      // can create new nodes.  Think of it as lazily manifesting
1017      // virtually pre-existing constants.)
1018      return phase->zerocon(memory_type());
1019    }
1020
1021    // A load from an initialization barrier can match a captured store.
1022    if (st->is_Proj() && st->in(0)->is_Initialize()) {
1023      InitializeNode* init = st->in(0)->as_Initialize();
1024      AllocateNode* alloc = init->allocation();
1025      if (alloc != NULL &&
1026          alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
1027        // examine a captured store value
1028        st = init->find_captured_store(offset, memory_size(), phase);
1029        if (st != NULL)
1030          continue;             // take one more trip around
1031      }
1032    }
1033
1034    break;
1035  }
1036
1037  return NULL;
1038}
1039
1040//----------------------is_instance_field_load_with_local_phi------------------
1041bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1042  if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
1043      in(MemNode::Address)->is_AddP() ) {
1044    const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
1045    // Only instances.
1046    if( t_oop != NULL && t_oop->is_known_instance_field() &&
1047        t_oop->offset() != Type::OffsetBot &&
1048        t_oop->offset() != Type::OffsetTop) {
1049      return true;
1050    }
1051  }
1052  return false;
1053}
1054
1055//------------------------------Identity---------------------------------------
1056// Loads are identity if previous store is to same address
1057Node *LoadNode::Identity( PhaseTransform *phase ) {
1058  // If the previous store-maker is the right kind of Store, and the store is
1059  // to the same address, then we are equal to the value stored.
1060  Node* mem = in(MemNode::Memory);
1061  Node* value = can_see_stored_value(mem, phase);
1062  if( value ) {
1063    // byte, short & char stores truncate naturally.
1064    // A load has to load the truncated value which requires
1065    // some sort of masking operation and that requires an
1066    // Ideal call instead of an Identity call.
1067    if (memory_size() < BytesPerInt) {
1068      // If the input to the store does not fit with the load's result type,
1069      // it must be truncated via an Ideal call.
1070      if (!phase->type(value)->higher_equal(phase->type(this)))
1071        return this;
1072    }
1073    // (This works even when value is a Con, but LoadNode::Value
1074    // usually runs first, producing the singleton type of the Con.)
1075    return value;
1076  }
1077
1078  // Search for an existing data phi which was generated before for the same
1079  // instance's field to avoid infinite generation of phis in a loop.
1080  Node *region = mem->in(0);
1081  if (is_instance_field_load_with_local_phi(region)) {
1082    const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
1083    int this_index  = phase->C->get_alias_index(addr_t);
1084    int this_offset = addr_t->offset();
1085    int this_id    = addr_t->is_oopptr()->instance_id();
1086    const Type* this_type = bottom_type();
1087    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1088      Node* phi = region->fast_out(i);
1089      if (phi->is_Phi() && phi != mem &&
1090          phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
1091        return phi;
1092      }
1093    }
1094  }
1095
1096  return this;
1097}
1098
1099
1100// Returns true if the AliasType refers to the field that holds the
1101// cached box array.  Currently only handles the IntegerCache case.
1102static bool is_autobox_cache(Compile::AliasType* atp) {
1103  if (atp != NULL && atp->field() != NULL) {
1104    ciField* field = atp->field();
1105    ciSymbol* klass = field->holder()->name();
1106    if (field->name() == ciSymbol::cache_field_name() &&
1107        field->holder()->uses_default_loader() &&
1108        klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1109      return true;
1110    }
1111  }
1112  return false;
1113}
1114
1115// Fetch the base value in the autobox array
1116static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1117  if (atp != NULL && atp->field() != NULL) {
1118    ciField* field = atp->field();
1119    ciSymbol* klass = field->holder()->name();
1120    if (field->name() == ciSymbol::cache_field_name() &&
1121        field->holder()->uses_default_loader() &&
1122        klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1123      assert(field->is_constant(), "what?");
1124      ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1125      // Fetch the box object at the base of the array and get its value
1126      ciInstance* box = array->obj_at(0)->as_instance();
1127      ciInstanceKlass* ik = box->klass()->as_instance_klass();
1128      if (ik->nof_nonstatic_fields() == 1) {
1129        // This should be true nonstatic_field_at requires calling
1130        // nof_nonstatic_fields so check it anyway
1131        ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1132        cache_offset = c.as_int();
1133      }
1134      return true;
1135    }
1136  }
1137  return false;
1138}
1139
1140// Returns true if the AliasType refers to the value field of an
1141// autobox object.  Currently only handles Integer.
1142static bool is_autobox_object(Compile::AliasType* atp) {
1143  if (atp != NULL && atp->field() != NULL) {
1144    ciField* field = atp->field();
1145    ciSymbol* klass = field->holder()->name();
1146    if (field->name() == ciSymbol::value_name() &&
1147        field->holder()->uses_default_loader() &&
1148        klass == ciSymbol::java_lang_Integer()) {
1149      return true;
1150    }
1151  }
1152  return false;
1153}
1154
1155
1156// We're loading from an object which has autobox behaviour.
1157// If this object is result of a valueOf call we'll have a phi
1158// merging a newly allocated object and a load from the cache.
1159// We want to replace this load with the original incoming
1160// argument to the valueOf call.
1161Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1162  Node* base = in(Address)->in(AddPNode::Base);
1163  if (base->is_Phi() && base->req() == 3) {
1164    AllocateNode* allocation = NULL;
1165    int allocation_index = -1;
1166    int load_index = -1;
1167    for (uint i = 1; i < base->req(); i++) {
1168      allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1169      if (allocation != NULL) {
1170        allocation_index = i;
1171        load_index = 3 - allocation_index;
1172        break;
1173      }
1174    }
1175    bool has_load = ( allocation != NULL &&
1176                      (base->in(load_index)->is_Load() ||
1177                       base->in(load_index)->is_DecodeN() &&
1178                       base->in(load_index)->in(1)->is_Load()) );
1179    if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1180      // Push the loads from the phi that comes from valueOf up
1181      // through it to allow elimination of the loads and the recovery
1182      // of the original value.
1183      Node* mem_phi = in(Memory);
1184      Node* offset = in(Address)->in(AddPNode::Offset);
1185      Node* region = base->in(0);
1186
1187      Node* in1 = clone();
1188      Node* in1_addr = in1->in(Address)->clone();
1189      in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1190      in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1191      in1_addr->set_req(AddPNode::Offset, offset);
1192      in1->set_req(0, region->in(allocation_index));
1193      in1->set_req(Address, in1_addr);
1194      in1->set_req(Memory, mem_phi->in(allocation_index));
1195
1196      Node* in2 = clone();
1197      Node* in2_addr = in2->in(Address)->clone();
1198      in2_addr->set_req(AddPNode::Base, base->in(load_index));
1199      in2_addr->set_req(AddPNode::Address, base->in(load_index));
1200      in2_addr->set_req(AddPNode::Offset, offset);
1201      in2->set_req(0, region->in(load_index));
1202      in2->set_req(Address, in2_addr);
1203      in2->set_req(Memory, mem_phi->in(load_index));
1204
1205      in1_addr = phase->transform(in1_addr);
1206      in1 =      phase->transform(in1);
1207      in2_addr = phase->transform(in2_addr);
1208      in2 =      phase->transform(in2);
1209
1210      PhiNode* result = PhiNode::make_blank(region, this);
1211      result->set_req(allocation_index, in1);
1212      result->set_req(load_index, in2);
1213      return result;
1214    }
1215  } else if (base->is_Load() ||
1216             base->is_DecodeN() && base->in(1)->is_Load()) {
1217    if (base->is_DecodeN()) {
1218      // Get LoadN node which loads cached Integer object
1219      base = base->in(1);
1220    }
1221    // Eliminate the load of Integer.value for integers from the cache
1222    // array by deriving the value from the index into the array.
1223    // Capture the offset of the load and then reverse the computation.
1224    Node* load_base = base->in(Address)->in(AddPNode::Base);
1225    if (load_base->is_DecodeN()) {
1226      // Get LoadN node which loads IntegerCache.cache field
1227      load_base = load_base->in(1);
1228    }
1229    if (load_base != NULL) {
1230      Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1231      intptr_t cache_offset;
1232      int shift = -1;
1233      Node* cache = NULL;
1234      if (is_autobox_cache(atp)) {
1235        shift  = exact_log2(type2aelembytes(T_OBJECT));
1236        cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1237      }
1238      if (cache != NULL && base->in(Address)->is_AddP()) {
1239        Node* elements[4];
1240        int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1241        int cache_low;
1242        if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1243          int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1244          // Add up all the offsets making of the address of the load
1245          Node* result = elements[0];
1246          for (int i = 1; i < count; i++) {
1247            result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1248          }
1249          // Remove the constant offset from the address and then
1250          // remove the scaling of the offset to recover the original index.
1251          result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1252          if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1253            // Peel the shift off directly but wrap it in a dummy node
1254            // since Ideal can't return existing nodes
1255            result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1256          } else {
1257            result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1258          }
1259#ifdef _LP64
1260          result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1261#endif
1262          return result;
1263        }
1264      }
1265    }
1266  }
1267  return NULL;
1268}
1269
1270//------------------------------split_through_phi------------------------------
1271// Split instance field load through Phi.
1272Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1273  Node* mem     = in(MemNode::Memory);
1274  Node* address = in(MemNode::Address);
1275  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1276  const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1277
1278  assert(mem->is_Phi() && (t_oop != NULL) &&
1279         t_oop->is_known_instance_field(), "invalide conditions");
1280
1281  Node *region = mem->in(0);
1282  if (region == NULL) {
1283    return NULL; // Wait stable graph
1284  }
1285  uint cnt = mem->req();
1286  for (uint i = 1; i < cnt; i++) {
1287    Node* rc = region->in(i);
1288    if (rc == NULL || phase->type(rc) == Type::TOP)
1289      return NULL; // Wait stable graph
1290    Node *in = mem->in(i);
1291    if (in == NULL) {
1292      return NULL; // Wait stable graph
1293    }
1294  }
1295  // Check for loop invariant.
1296  if (cnt == 3) {
1297    for (uint i = 1; i < cnt; i++) {
1298      Node *in = mem->in(i);
1299      Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1300      if (m == mem) {
1301        set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1302        return this;
1303      }
1304    }
1305  }
1306  // Split through Phi (see original code in loopopts.cpp).
1307  assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1308
1309  // Do nothing here if Identity will find a value
1310  // (to avoid infinite chain of value phis generation).
1311  if (!phase->eqv(this, this->Identity(phase)))
1312    return NULL;
1313
1314  // Skip the split if the region dominates some control edge of the address.
1315  if (!MemNode::all_controls_dominate(address, region))
1316    return NULL;
1317
1318  const Type* this_type = this->bottom_type();
1319  int this_index  = phase->C->get_alias_index(addr_t);
1320  int this_offset = addr_t->offset();
1321  int this_iid    = addr_t->is_oopptr()->instance_id();
1322  PhaseIterGVN *igvn = phase->is_IterGVN();
1323  Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1324  for (uint i = 1; i < region->req(); i++) {
1325    Node *x;
1326    Node* the_clone = NULL;
1327    if (region->in(i) == phase->C->top()) {
1328      x = phase->C->top();      // Dead path?  Use a dead data op
1329    } else {
1330      x = this->clone();        // Else clone up the data op
1331      the_clone = x;            // Remember for possible deletion.
1332      // Alter data node to use pre-phi inputs
1333      if (this->in(0) == region) {
1334        x->set_req(0, region->in(i));
1335      } else {
1336        x->set_req(0, NULL);
1337      }
1338      for (uint j = 1; j < this->req(); j++) {
1339        Node *in = this->in(j);
1340        if (in->is_Phi() && in->in(0) == region)
1341          x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
1342      }
1343    }
1344    // Check for a 'win' on some paths
1345    const Type *t = x->Value(igvn);
1346
1347    bool singleton = t->singleton();
1348
1349    // See comments in PhaseIdealLoop::split_thru_phi().
1350    if (singleton && t == Type::TOP) {
1351      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1352    }
1353
1354    if (singleton) {
1355      x = igvn->makecon(t);
1356    } else {
1357      // We now call Identity to try to simplify the cloned node.
1358      // Note that some Identity methods call phase->type(this).
1359      // Make sure that the type array is big enough for
1360      // our new node, even though we may throw the node away.
1361      // (This tweaking with igvn only works because x is a new node.)
1362      igvn->set_type(x, t);
1363      // If x is a TypeNode, capture any more-precise type permanently into Node
1364      // otherwise it will be not updated during igvn->transform since
1365      // igvn->type(x) is set to x->Value() already.
1366      x->raise_bottom_type(t);
1367      Node *y = x->Identity(igvn);
1368      if (y != x) {
1369        x = y;
1370      } else {
1371        y = igvn->hash_find(x);
1372        if (y) {
1373          x = y;
1374        } else {
1375          // Else x is a new node we are keeping
1376          // We do not need register_new_node_with_optimizer
1377          // because set_type has already been called.
1378          igvn->_worklist.push(x);
1379        }
1380      }
1381    }
1382    if (x != the_clone && the_clone != NULL)
1383      igvn->remove_dead_node(the_clone);
1384    phi->set_req(i, x);
1385  }
1386  // Record Phi
1387  igvn->register_new_node_with_optimizer(phi);
1388  return phi;
1389}
1390
1391//------------------------------Ideal------------------------------------------
1392// If the load is from Field memory and the pointer is non-null, we can
1393// zero out the control input.
1394// If the offset is constant and the base is an object allocation,
1395// try to hook me up to the exact initializing store.
1396Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1397  Node* p = MemNode::Ideal_common(phase, can_reshape);
1398  if (p)  return (p == NodeSentinel) ? NULL : p;
1399
1400  Node* ctrl    = in(MemNode::Control);
1401  Node* address = in(MemNode::Address);
1402
1403  // Skip up past a SafePoint control.  Cannot do this for Stores because
1404  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1405  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1406      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1407    ctrl = ctrl->in(0);
1408    set_req(MemNode::Control,ctrl);
1409  }
1410
1411  intptr_t ignore = 0;
1412  Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1413  if (base != NULL
1414      && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1415    // Check for useless control edge in some common special cases
1416    if (in(MemNode::Control) != NULL
1417        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1418        && all_controls_dominate(base, phase->C->start())) {
1419      // A method-invariant, non-null address (constant or 'this' argument).
1420      set_req(MemNode::Control, NULL);
1421    }
1422
1423    if (EliminateAutoBox && can_reshape) {
1424      assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
1425      Compile::AliasType* atp = phase->C->alias_type(adr_type());
1426      if (is_autobox_object(atp)) {
1427        Node* result = eliminate_autobox(phase);
1428        if (result != NULL) return result;
1429      }
1430    }
1431  }
1432
1433  Node* mem = in(MemNode::Memory);
1434  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1435
1436  if (addr_t != NULL) {
1437    // try to optimize our memory input
1438    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1439    if (opt_mem != mem) {
1440      set_req(MemNode::Memory, opt_mem);
1441      if (phase->type( opt_mem ) == Type::TOP) return NULL;
1442      return this;
1443    }
1444    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1445    if (can_reshape && opt_mem->is_Phi() &&
1446        (t_oop != NULL) && t_oop->is_known_instance_field()) {
1447      PhaseIterGVN *igvn = phase->is_IterGVN();
1448      if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1449        // Delay this transformation until memory Phi is processed.
1450        phase->is_IterGVN()->_worklist.push(this);
1451        return NULL;
1452      }
1453      // Split instance field load through Phi.
1454      Node* result = split_through_phi(phase);
1455      if (result != NULL) return result;
1456    }
1457  }
1458
1459  // Check for prior store with a different base or offset; make Load
1460  // independent.  Skip through any number of them.  Bail out if the stores
1461  // are in an endless dead cycle and report no progress.  This is a key
1462  // transform for Reflection.  However, if after skipping through the Stores
1463  // we can't then fold up against a prior store do NOT do the transform as
1464  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1465  // array memory alive twice: once for the hoisted Load and again after the
1466  // bypassed Store.  This situation only works if EVERYBODY who does
1467  // anti-dependence work knows how to bypass.  I.e. we need all
1468  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1469  // the alias index stuff.  So instead, peek through Stores and IFF we can
1470  // fold up, do so.
1471  Node* prev_mem = find_previous_store(phase);
1472  // Steps (a), (b):  Walk past independent stores to find an exact match.
1473  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1474    // (c) See if we can fold up on the spot, but don't fold up here.
1475    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1476    // just return a prior value, which is done by Identity calls.
1477    if (can_see_stored_value(prev_mem, phase)) {
1478      // Make ready for step (d):
1479      set_req(MemNode::Memory, prev_mem);
1480      return this;
1481    }
1482  }
1483
1484  return NULL;                  // No further progress
1485}
1486
1487// Helper to recognize certain Klass fields which are invariant across
1488// some group of array types (e.g., int[] or all T[] where T < Object).
1489const Type*
1490LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1491                                 ciKlass* klass) const {
1492  if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1493    // The field is Klass::_modifier_flags.  Return its (constant) value.
1494    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1495    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1496    return TypeInt::make(klass->modifier_flags());
1497  }
1498  if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1499    // The field is Klass::_access_flags.  Return its (constant) value.
1500    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1501    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1502    return TypeInt::make(klass->access_flags());
1503  }
1504  if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1505    // The field is Klass::_layout_helper.  Return its constant value if known.
1506    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1507    return TypeInt::make(klass->layout_helper());
1508  }
1509
1510  // No match.
1511  return NULL;
1512}
1513
1514//------------------------------Value-----------------------------------------
1515const Type *LoadNode::Value( PhaseTransform *phase ) const {
1516  // Either input is TOP ==> the result is TOP
1517  Node* mem = in(MemNode::Memory);
1518  const Type *t1 = phase->type(mem);
1519  if (t1 == Type::TOP)  return Type::TOP;
1520  Node* adr = in(MemNode::Address);
1521  const TypePtr* tp = phase->type(adr)->isa_ptr();
1522  if (tp == NULL || tp->empty())  return Type::TOP;
1523  int off = tp->offset();
1524  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1525  Compile* C = phase->C;
1526
1527  // Try to guess loaded type from pointer type
1528  if (tp->base() == Type::AryPtr) {
1529    const Type *t = tp->is_aryptr()->elem();
1530    // Don't do this for integer types. There is only potential profit if
1531    // the element type t is lower than _type; that is, for int types, if _type is
1532    // more restrictive than t.  This only happens here if one is short and the other
1533    // char (both 16 bits), and in those cases we've made an intentional decision
1534    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1535    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1536    //
1537    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1538    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1539    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1540    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1541    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1542    // In fact, that could have been the original type of p1, and p1 could have
1543    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1544    // expression (LShiftL quux 3) independently optimized to the constant 8.
1545    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1546        && (_type->isa_vect() == NULL)
1547        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1548      // t might actually be lower than _type, if _type is a unique
1549      // concrete subclass of abstract class t.
1550      // Make sure the reference is not into the header, by comparing
1551      // the offset against the offset of the start of the array's data.
1552      // Different array types begin at slightly different offsets (12 vs. 16).
1553      // We choose T_BYTE as an example base type that is least restrictive
1554      // as to alignment, which will therefore produce the smallest
1555      // possible base offset.
1556      const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1557      if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1558        const Type* jt = t->join(_type);
1559        // In any case, do not allow the join, per se, to empty out the type.
1560        if (jt->empty() && !t->empty()) {
1561          // This can happen if a interface-typed array narrows to a class type.
1562          jt = _type;
1563        }
1564
1565        if (EliminateAutoBox && adr->is_AddP()) {
1566          // The pointers in the autobox arrays are always non-null
1567          Node* base = adr->in(AddPNode::Base);
1568          if (base != NULL &&
1569              !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
1570            Compile::AliasType* atp = C->alias_type(base->adr_type());
1571            if (is_autobox_cache(atp)) {
1572              return jt->join(TypePtr::NOTNULL)->is_ptr();
1573            }
1574          }
1575        }
1576        return jt;
1577      }
1578    }
1579  } else if (tp->base() == Type::InstPtr) {
1580    ciEnv* env = C->env();
1581    const TypeInstPtr* tinst = tp->is_instptr();
1582    ciKlass* klass = tinst->klass();
1583    assert( off != Type::OffsetBot ||
1584            // arrays can be cast to Objects
1585            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1586            // unsafe field access may not have a constant offset
1587            C->has_unsafe_access(),
1588            "Field accesses must be precise" );
1589    // For oop loads, we expect the _type to be precise
1590    if (klass == env->String_klass() &&
1591        adr->is_AddP() && off != Type::OffsetBot) {
1592      // For constant Strings treat the final fields as compile time constants.
1593      Node* base = adr->in(AddPNode::Base);
1594      const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1595      if (t != NULL && t->singleton()) {
1596        ciField* field = env->String_klass()->get_field_by_offset(off, false);
1597        if (field != NULL && field->is_final()) {
1598          ciObject* string = t->const_oop();
1599          ciConstant constant = string->as_instance()->field_value(field);
1600          if (constant.basic_type() == T_INT) {
1601            return TypeInt::make(constant.as_int());
1602          } else if (constant.basic_type() == T_ARRAY) {
1603            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1604              return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1605            } else {
1606              return TypeOopPtr::make_from_constant(constant.as_object(), true);
1607            }
1608          }
1609        }
1610      }
1611    }
1612    // Optimizations for constant objects
1613    ciObject* const_oop = tinst->const_oop();
1614    if (const_oop != NULL) {
1615      // For constant CallSites treat the target field as a compile time constant.
1616      if (const_oop->is_call_site()) {
1617        ciCallSite* call_site = const_oop->as_call_site();
1618        ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1619        if (field != NULL && field->is_call_site_target()) {
1620          ciMethodHandle* target = call_site->get_target();
1621          if (target != NULL) {  // just in case
1622            ciConstant constant(T_OBJECT, target);
1623            const Type* t;
1624            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1625              t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1626            } else {
1627              t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1628            }
1629            // Add a dependence for invalidation of the optimization.
1630            if (!call_site->is_constant_call_site()) {
1631              C->dependencies()->assert_call_site_target_value(call_site, target);
1632            }
1633            return t;
1634          }
1635        }
1636      }
1637    }
1638  } else if (tp->base() == Type::KlassPtr) {
1639    assert( off != Type::OffsetBot ||
1640            // arrays can be cast to Objects
1641            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1642            // also allow array-loading from the primary supertype
1643            // array during subtype checks
1644            Opcode() == Op_LoadKlass,
1645            "Field accesses must be precise" );
1646    // For klass/static loads, we expect the _type to be precise
1647  }
1648
1649  const TypeKlassPtr *tkls = tp->isa_klassptr();
1650  if (tkls != NULL && !StressReflectiveCode) {
1651    ciKlass* klass = tkls->klass();
1652    if (klass->is_loaded() && tkls->klass_is_exact()) {
1653      // We are loading a field from a Klass metaobject whose identity
1654      // is known at compile time (the type is "exact" or "precise").
1655      // Check for fields we know are maintained as constants by the VM.
1656      if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1657        // The field is Klass::_super_check_offset.  Return its (constant) value.
1658        // (Folds up type checking code.)
1659        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1660        return TypeInt::make(klass->super_check_offset());
1661      }
1662      // Compute index into primary_supers array
1663      juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1664      // Check for overflowing; use unsigned compare to handle the negative case.
1665      if( depth < ciKlass::primary_super_limit() ) {
1666        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1667        // (Folds up type checking code.)
1668        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1669        ciKlass *ss = klass->super_of_depth(depth);
1670        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1671      }
1672      const Type* aift = load_array_final_field(tkls, klass);
1673      if (aift != NULL)  return aift;
1674      if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset())
1675          && klass->is_array_klass()) {
1676        // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1677        // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1678        assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1679        return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1680      }
1681      if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1682        // The field is Klass::_java_mirror.  Return its (constant) value.
1683        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1684        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1685        return TypeInstPtr::make(klass->java_mirror());
1686      }
1687    }
1688
1689    // We can still check if we are loading from the primary_supers array at a
1690    // shallow enough depth.  Even though the klass is not exact, entries less
1691    // than or equal to its super depth are correct.
1692    if (klass->is_loaded() ) {
1693      ciType *inner = klass;
1694      while( inner->is_obj_array_klass() )
1695        inner = inner->as_obj_array_klass()->base_element_type();
1696      if( inner->is_instance_klass() &&
1697          !inner->as_instance_klass()->flags().is_interface() ) {
1698        // Compute index into primary_supers array
1699        juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1700        // Check for overflowing; use unsigned compare to handle the negative case.
1701        if( depth < ciKlass::primary_super_limit() &&
1702            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1703          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1704          // (Folds up type checking code.)
1705          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1706          ciKlass *ss = klass->super_of_depth(depth);
1707          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1708        }
1709      }
1710    }
1711
1712    // If the type is enough to determine that the thing is not an array,
1713    // we can give the layout_helper a positive interval type.
1714    // This will help short-circuit some reflective code.
1715    if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1716        && !klass->is_array_klass() // not directly typed as an array
1717        && !klass->is_interface()  // specifically not Serializable & Cloneable
1718        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1719        ) {
1720      // Note:  When interfaces are reliable, we can narrow the interface
1721      // test to (klass != Serializable && klass != Cloneable).
1722      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1723      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1724      // The key property of this type is that it folds up tests
1725      // for array-ness, since it proves that the layout_helper is positive.
1726      // Thus, a generic value like the basic object layout helper works fine.
1727      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1728    }
1729  }
1730
1731  // If we are loading from a freshly-allocated object, produce a zero,
1732  // if the load is provably beyond the header of the object.
1733  // (Also allow a variable load from a fresh array to produce zero.)
1734  const TypeOopPtr *tinst = tp->isa_oopptr();
1735  bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1736  if (ReduceFieldZeroing || is_instance) {
1737    Node* value = can_see_stored_value(mem,phase);
1738    if (value != NULL && value->is_Con()) {
1739      assert(value->bottom_type()->higher_equal(_type),"sanity");
1740      return value->bottom_type();
1741    }
1742  }
1743
1744  if (is_instance) {
1745    // If we have an instance type and our memory input is the
1746    // programs's initial memory state, there is no matching store,
1747    // so just return a zero of the appropriate type
1748    Node *mem = in(MemNode::Memory);
1749    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1750      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1751      return Type::get_zero_type(_type->basic_type());
1752    }
1753  }
1754  return _type;
1755}
1756
1757//------------------------------match_edge-------------------------------------
1758// Do we Match on this edge index or not?  Match only the address.
1759uint LoadNode::match_edge(uint idx) const {
1760  return idx == MemNode::Address;
1761}
1762
1763//--------------------------LoadBNode::Ideal--------------------------------------
1764//
1765//  If the previous store is to the same address as this load,
1766//  and the value stored was larger than a byte, replace this load
1767//  with the value stored truncated to a byte.  If no truncation is
1768//  needed, the replacement is done in LoadNode::Identity().
1769//
1770Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1771  Node* mem = in(MemNode::Memory);
1772  Node* value = can_see_stored_value(mem,phase);
1773  if( value && !phase->type(value)->higher_equal( _type ) ) {
1774    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1775    return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1776  }
1777  // Identity call will handle the case where truncation is not needed.
1778  return LoadNode::Ideal(phase, can_reshape);
1779}
1780
1781const Type* LoadBNode::Value(PhaseTransform *phase) const {
1782  Node* mem = in(MemNode::Memory);
1783  Node* value = can_see_stored_value(mem,phase);
1784  if (value != NULL && value->is_Con() &&
1785      !value->bottom_type()->higher_equal(_type)) {
1786    // If the input to the store does not fit with the load's result type,
1787    // it must be truncated. We can't delay until Ideal call since
1788    // a singleton Value is needed for split_thru_phi optimization.
1789    int con = value->get_int();
1790    return TypeInt::make((con << 24) >> 24);
1791  }
1792  return LoadNode::Value(phase);
1793}
1794
1795//--------------------------LoadUBNode::Ideal-------------------------------------
1796//
1797//  If the previous store is to the same address as this load,
1798//  and the value stored was larger than a byte, replace this load
1799//  with the value stored truncated to a byte.  If no truncation is
1800//  needed, the replacement is done in LoadNode::Identity().
1801//
1802Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1803  Node* mem = in(MemNode::Memory);
1804  Node* value = can_see_stored_value(mem, phase);
1805  if (value && !phase->type(value)->higher_equal(_type))
1806    return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
1807  // Identity call will handle the case where truncation is not needed.
1808  return LoadNode::Ideal(phase, can_reshape);
1809}
1810
1811const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1812  Node* mem = in(MemNode::Memory);
1813  Node* value = can_see_stored_value(mem,phase);
1814  if (value != NULL && value->is_Con() &&
1815      !value->bottom_type()->higher_equal(_type)) {
1816    // If the input to the store does not fit with the load's result type,
1817    // it must be truncated. We can't delay until Ideal call since
1818    // a singleton Value is needed for split_thru_phi optimization.
1819    int con = value->get_int();
1820    return TypeInt::make(con & 0xFF);
1821  }
1822  return LoadNode::Value(phase);
1823}
1824
1825//--------------------------LoadUSNode::Ideal-------------------------------------
1826//
1827//  If the previous store is to the same address as this load,
1828//  and the value stored was larger than a char, replace this load
1829//  with the value stored truncated to a char.  If no truncation is
1830//  needed, the replacement is done in LoadNode::Identity().
1831//
1832Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1833  Node* mem = in(MemNode::Memory);
1834  Node* value = can_see_stored_value(mem,phase);
1835  if( value && !phase->type(value)->higher_equal( _type ) )
1836    return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1837  // Identity call will handle the case where truncation is not needed.
1838  return LoadNode::Ideal(phase, can_reshape);
1839}
1840
1841const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1842  Node* mem = in(MemNode::Memory);
1843  Node* value = can_see_stored_value(mem,phase);
1844  if (value != NULL && value->is_Con() &&
1845      !value->bottom_type()->higher_equal(_type)) {
1846    // If the input to the store does not fit with the load's result type,
1847    // it must be truncated. We can't delay until Ideal call since
1848    // a singleton Value is needed for split_thru_phi optimization.
1849    int con = value->get_int();
1850    return TypeInt::make(con & 0xFFFF);
1851  }
1852  return LoadNode::Value(phase);
1853}
1854
1855//--------------------------LoadSNode::Ideal--------------------------------------
1856//
1857//  If the previous store is to the same address as this load,
1858//  and the value stored was larger than a short, replace this load
1859//  with the value stored truncated to a short.  If no truncation is
1860//  needed, the replacement is done in LoadNode::Identity().
1861//
1862Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1863  Node* mem = in(MemNode::Memory);
1864  Node* value = can_see_stored_value(mem,phase);
1865  if( value && !phase->type(value)->higher_equal( _type ) ) {
1866    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1867    return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1868  }
1869  // Identity call will handle the case where truncation is not needed.
1870  return LoadNode::Ideal(phase, can_reshape);
1871}
1872
1873const Type* LoadSNode::Value(PhaseTransform *phase) const {
1874  Node* mem = in(MemNode::Memory);
1875  Node* value = can_see_stored_value(mem,phase);
1876  if (value != NULL && value->is_Con() &&
1877      !value->bottom_type()->higher_equal(_type)) {
1878    // If the input to the store does not fit with the load's result type,
1879    // it must be truncated. We can't delay until Ideal call since
1880    // a singleton Value is needed for split_thru_phi optimization.
1881    int con = value->get_int();
1882    return TypeInt::make((con << 16) >> 16);
1883  }
1884  return LoadNode::Value(phase);
1885}
1886
1887//=============================================================================
1888//----------------------------LoadKlassNode::make------------------------------
1889// Polymorphic factory method:
1890Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1891  Compile* C = gvn.C;
1892  Node *ctl = NULL;
1893  // sanity check the alias category against the created node type
1894  const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
1895  assert(adr_type != NULL, "expecting TypeKlassPtr");
1896#ifdef _LP64
1897  if (adr_type->is_ptr_to_narrowoop()) {
1898    assert(UseCompressedKlassPointers, "no compressed klasses");
1899    Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
1900    return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
1901  }
1902#endif
1903  assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1904  return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
1905}
1906
1907//------------------------------Value------------------------------------------
1908const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1909  return klass_value_common(phase);
1910}
1911
1912const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1913  // Either input is TOP ==> the result is TOP
1914  const Type *t1 = phase->type( in(MemNode::Memory) );
1915  if (t1 == Type::TOP)  return Type::TOP;
1916  Node *adr = in(MemNode::Address);
1917  const Type *t2 = phase->type( adr );
1918  if (t2 == Type::TOP)  return Type::TOP;
1919  const TypePtr *tp = t2->is_ptr();
1920  if (TypePtr::above_centerline(tp->ptr()) ||
1921      tp->ptr() == TypePtr::Null)  return Type::TOP;
1922
1923  // Return a more precise klass, if possible
1924  const TypeInstPtr *tinst = tp->isa_instptr();
1925  if (tinst != NULL) {
1926    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1927    int offset = tinst->offset();
1928    if (ik == phase->C->env()->Class_klass()
1929        && (offset == java_lang_Class::klass_offset_in_bytes() ||
1930            offset == java_lang_Class::array_klass_offset_in_bytes())) {
1931      // We are loading a special hidden field from a Class mirror object,
1932      // the field which points to the VM's Klass metaobject.
1933      ciType* t = tinst->java_mirror_type();
1934      // java_mirror_type returns non-null for compile-time Class constants.
1935      if (t != NULL) {
1936        // constant oop => constant klass
1937        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1938          return TypeKlassPtr::make(ciArrayKlass::make(t));
1939        }
1940        if (!t->is_klass()) {
1941          // a primitive Class (e.g., int.class) has NULL for a klass field
1942          return TypePtr::NULL_PTR;
1943        }
1944        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1945        return TypeKlassPtr::make(t->as_klass());
1946      }
1947      // non-constant mirror, so we can't tell what's going on
1948    }
1949    if( !ik->is_loaded() )
1950      return _type;             // Bail out if not loaded
1951    if (offset == oopDesc::klass_offset_in_bytes()) {
1952      if (tinst->klass_is_exact()) {
1953        return TypeKlassPtr::make(ik);
1954      }
1955      // See if we can become precise: no subklasses and no interface
1956      // (Note:  We need to support verified interfaces.)
1957      if (!ik->is_interface() && !ik->has_subklass()) {
1958        //assert(!UseExactTypes, "this code should be useless with exact types");
1959        // Add a dependence; if any subclass added we need to recompile
1960        if (!ik->is_final()) {
1961          // %%% should use stronger assert_unique_concrete_subtype instead
1962          phase->C->dependencies()->assert_leaf_type(ik);
1963        }
1964        // Return precise klass
1965        return TypeKlassPtr::make(ik);
1966      }
1967
1968      // Return root of possible klass
1969      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1970    }
1971  }
1972
1973  // Check for loading klass from an array
1974  const TypeAryPtr *tary = tp->isa_aryptr();
1975  if( tary != NULL ) {
1976    ciKlass *tary_klass = tary->klass();
1977    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1978        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1979      if (tary->klass_is_exact()) {
1980        return TypeKlassPtr::make(tary_klass);
1981      }
1982      ciArrayKlass *ak = tary->klass()->as_array_klass();
1983      // If the klass is an object array, we defer the question to the
1984      // array component klass.
1985      if( ak->is_obj_array_klass() ) {
1986        assert( ak->is_loaded(), "" );
1987        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1988        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1989          ciInstanceKlass* ik = base_k->as_instance_klass();
1990          // See if we can become precise: no subklasses and no interface
1991          if (!ik->is_interface() && !ik->has_subklass()) {
1992            //assert(!UseExactTypes, "this code should be useless with exact types");
1993            // Add a dependence; if any subclass added we need to recompile
1994            if (!ik->is_final()) {
1995              phase->C->dependencies()->assert_leaf_type(ik);
1996            }
1997            // Return precise array klass
1998            return TypeKlassPtr::make(ak);
1999          }
2000        }
2001        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2002      } else {                  // Found a type-array?
2003        //assert(!UseExactTypes, "this code should be useless with exact types");
2004        assert( ak->is_type_array_klass(), "" );
2005        return TypeKlassPtr::make(ak); // These are always precise
2006      }
2007    }
2008  }
2009
2010  // Check for loading klass from an array klass
2011  const TypeKlassPtr *tkls = tp->isa_klassptr();
2012  if (tkls != NULL && !StressReflectiveCode) {
2013    ciKlass* klass = tkls->klass();
2014    if( !klass->is_loaded() )
2015      return _type;             // Bail out if not loaded
2016    if( klass->is_obj_array_klass() &&
2017        tkls->offset() == in_bytes(objArrayKlass::element_klass_offset())) {
2018      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2019      // // Always returning precise element type is incorrect,
2020      // // e.g., element type could be object and array may contain strings
2021      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2022
2023      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2024      // according to the element type's subclassing.
2025      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2026    }
2027    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2028        tkls->offset() == in_bytes(Klass::super_offset())) {
2029      ciKlass* sup = klass->as_instance_klass()->super();
2030      // The field is Klass::_super.  Return its (constant) value.
2031      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2032      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2033    }
2034  }
2035
2036  // Bailout case
2037  return LoadNode::Value(phase);
2038}
2039
2040//------------------------------Identity---------------------------------------
2041// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2042// Also feed through the klass in Allocate(...klass...)._klass.
2043Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2044  return klass_identity_common(phase);
2045}
2046
2047Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2048  Node* x = LoadNode::Identity(phase);
2049  if (x != this)  return x;
2050
2051  // Take apart the address into an oop and and offset.
2052  // Return 'this' if we cannot.
2053  Node*    adr    = in(MemNode::Address);
2054  intptr_t offset = 0;
2055  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2056  if (base == NULL)     return this;
2057  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2058  if (toop == NULL)     return this;
2059
2060  // We can fetch the klass directly through an AllocateNode.
2061  // This works even if the klass is not constant (clone or newArray).
2062  if (offset == oopDesc::klass_offset_in_bytes()) {
2063    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2064    if (allocated_klass != NULL) {
2065      return allocated_klass;
2066    }
2067  }
2068
2069  // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2070  // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
2071  // See inline_native_Class_query for occurrences of these patterns.
2072  // Java Example:  x.getClass().isAssignableFrom(y)
2073  // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2074  //
2075  // This improves reflective code, often making the Class
2076  // mirror go completely dead.  (Current exception:  Class
2077  // mirrors may appear in debug info, but we could clean them out by
2078  // introducing a new debug info operator for Klass*.java_mirror).
2079  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2080      && (offset == java_lang_Class::klass_offset_in_bytes() ||
2081          offset == java_lang_Class::array_klass_offset_in_bytes())) {
2082    // We are loading a special hidden field from a Class mirror,
2083    // the field which points to its Klass or arrayKlass metaobject.
2084    if (base->is_Load()) {
2085      Node* adr2 = base->in(MemNode::Address);
2086      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2087      if (tkls != NULL && !tkls->empty()
2088          && (tkls->klass()->is_instance_klass() ||
2089              tkls->klass()->is_array_klass())
2090          && adr2->is_AddP()
2091          ) {
2092        int mirror_field = in_bytes(Klass::java_mirror_offset());
2093        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2094          mirror_field = in_bytes(arrayKlass::component_mirror_offset());
2095        }
2096        if (tkls->offset() == mirror_field) {
2097          return adr2->in(AddPNode::Base);
2098        }
2099      }
2100    }
2101  }
2102
2103  return this;
2104}
2105
2106
2107//------------------------------Value------------------------------------------
2108const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2109  const Type *t = klass_value_common(phase);
2110  if (t == Type::TOP)
2111    return t;
2112
2113  return t->make_narrowoop();
2114}
2115
2116//------------------------------Identity---------------------------------------
2117// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2118// Also feed through the klass in Allocate(...klass...)._klass.
2119Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2120  Node *x = klass_identity_common(phase);
2121
2122  const Type *t = phase->type( x );
2123  if( t == Type::TOP ) return x;
2124  if( t->isa_narrowoop()) return x;
2125
2126  return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
2127}
2128
2129//------------------------------Value-----------------------------------------
2130const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2131  // Either input is TOP ==> the result is TOP
2132  const Type *t1 = phase->type( in(MemNode::Memory) );
2133  if( t1 == Type::TOP ) return Type::TOP;
2134  Node *adr = in(MemNode::Address);
2135  const Type *t2 = phase->type( adr );
2136  if( t2 == Type::TOP ) return Type::TOP;
2137  const TypePtr *tp = t2->is_ptr();
2138  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2139  const TypeAryPtr *tap = tp->isa_aryptr();
2140  if( !tap ) return _type;
2141  return tap->size();
2142}
2143
2144//-------------------------------Ideal---------------------------------------
2145// Feed through the length in AllocateArray(...length...)._length.
2146Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2147  Node* p = MemNode::Ideal_common(phase, can_reshape);
2148  if (p)  return (p == NodeSentinel) ? NULL : p;
2149
2150  // Take apart the address into an oop and and offset.
2151  // Return 'this' if we cannot.
2152  Node*    adr    = in(MemNode::Address);
2153  intptr_t offset = 0;
2154  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2155  if (base == NULL)     return NULL;
2156  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2157  if (tary == NULL)     return NULL;
2158
2159  // We can fetch the length directly through an AllocateArrayNode.
2160  // This works even if the length is not constant (clone or newArray).
2161  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2162    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2163    if (alloc != NULL) {
2164      Node* allocated_length = alloc->Ideal_length();
2165      Node* len = alloc->make_ideal_length(tary, phase);
2166      if (allocated_length != len) {
2167        // New CastII improves on this.
2168        return len;
2169      }
2170    }
2171  }
2172
2173  return NULL;
2174}
2175
2176//------------------------------Identity---------------------------------------
2177// Feed through the length in AllocateArray(...length...)._length.
2178Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2179  Node* x = LoadINode::Identity(phase);
2180  if (x != this)  return x;
2181
2182  // Take apart the address into an oop and and offset.
2183  // Return 'this' if we cannot.
2184  Node*    adr    = in(MemNode::Address);
2185  intptr_t offset = 0;
2186  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2187  if (base == NULL)     return this;
2188  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2189  if (tary == NULL)     return this;
2190
2191  // We can fetch the length directly through an AllocateArrayNode.
2192  // This works even if the length is not constant (clone or newArray).
2193  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2194    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2195    if (alloc != NULL) {
2196      Node* allocated_length = alloc->Ideal_length();
2197      // Do not allow make_ideal_length to allocate a CastII node.
2198      Node* len = alloc->make_ideal_length(tary, phase, false);
2199      if (allocated_length == len) {
2200        // Return allocated_length only if it would not be improved by a CastII.
2201        return allocated_length;
2202      }
2203    }
2204  }
2205
2206  return this;
2207
2208}
2209
2210//=============================================================================
2211//---------------------------StoreNode::make-----------------------------------
2212// Polymorphic factory method:
2213StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2214  Compile* C = gvn.C;
2215  assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2216          ctl != NULL, "raw memory operations should have control edge");
2217
2218  switch (bt) {
2219  case T_BOOLEAN:
2220  case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
2221  case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
2222  case T_CHAR:
2223  case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
2224  case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
2225  case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
2226  case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
2227  case T_METADATA:
2228  case T_ADDRESS:
2229  case T_OBJECT:
2230#ifdef _LP64
2231    if (adr->bottom_type()->is_ptr_to_narrowoop() ||
2232        (UseCompressedKlassPointers && val->bottom_type()->isa_klassptr() &&
2233         adr->bottom_type()->isa_rawptr())) {
2234      val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2235      return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
2236    } else
2237#endif
2238    {
2239      return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
2240    }
2241  }
2242  ShouldNotReachHere();
2243  return (StoreNode*)NULL;
2244}
2245
2246StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2247  bool require_atomic = true;
2248  return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2249}
2250
2251
2252//--------------------------bottom_type----------------------------------------
2253const Type *StoreNode::bottom_type() const {
2254  return Type::MEMORY;
2255}
2256
2257//------------------------------hash-------------------------------------------
2258uint StoreNode::hash() const {
2259  // unroll addition of interesting fields
2260  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2261
2262  // Since they are not commoned, do not hash them:
2263  return NO_HASH;
2264}
2265
2266//------------------------------Ideal------------------------------------------
2267// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2268// When a store immediately follows a relevant allocation/initialization,
2269// try to capture it into the initialization, or hoist it above.
2270Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2271  Node* p = MemNode::Ideal_common(phase, can_reshape);
2272  if (p)  return (p == NodeSentinel) ? NULL : p;
2273
2274  Node* mem     = in(MemNode::Memory);
2275  Node* address = in(MemNode::Address);
2276
2277  // Back-to-back stores to same address?  Fold em up.  Generally
2278  // unsafe if I have intervening uses...  Also disallowed for StoreCM
2279  // since they must follow each StoreP operation.  Redundant StoreCMs
2280  // are eliminated just before matching in final_graph_reshape.
2281  if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2282      mem->Opcode() != Op_StoreCM) {
2283    // Looking at a dead closed cycle of memory?
2284    assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2285
2286    assert(Opcode() == mem->Opcode() ||
2287           phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2288           "no mismatched stores, except on raw memory");
2289
2290    if (mem->outcnt() == 1 &&           // check for intervening uses
2291        mem->as_Store()->memory_size() <= this->memory_size()) {
2292      // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2293      // For example, 'mem' might be the final state at a conditional return.
2294      // Or, 'mem' might be used by some node which is live at the same time
2295      // 'this' is live, which might be unschedulable.  So, require exactly
2296      // ONE user, the 'this' store, until such time as we clone 'mem' for
2297      // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2298      if (can_reshape) {  // (%%% is this an anachronism?)
2299        set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2300                  phase->is_IterGVN());
2301      } else {
2302        // It's OK to do this in the parser, since DU info is always accurate,
2303        // and the parser always refers to nodes via SafePointNode maps.
2304        set_req(MemNode::Memory, mem->in(MemNode::Memory));
2305      }
2306      return this;
2307    }
2308  }
2309
2310  // Capture an unaliased, unconditional, simple store into an initializer.
2311  // Or, if it is independent of the allocation, hoist it above the allocation.
2312  if (ReduceFieldZeroing && /*can_reshape &&*/
2313      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2314    InitializeNode* init = mem->in(0)->as_Initialize();
2315    intptr_t offset = init->can_capture_store(this, phase);
2316    if (offset > 0) {
2317      Node* moved = init->capture_store(this, offset, phase);
2318      // If the InitializeNode captured me, it made a raw copy of me,
2319      // and I need to disappear.
2320      if (moved != NULL) {
2321        // %%% hack to ensure that Ideal returns a new node:
2322        mem = MergeMemNode::make(phase->C, mem);
2323        return mem;             // fold me away
2324      }
2325    }
2326  }
2327
2328  return NULL;                  // No further progress
2329}
2330
2331//------------------------------Value-----------------------------------------
2332const Type *StoreNode::Value( PhaseTransform *phase ) const {
2333  // Either input is TOP ==> the result is TOP
2334  const Type *t1 = phase->type( in(MemNode::Memory) );
2335  if( t1 == Type::TOP ) return Type::TOP;
2336  const Type *t2 = phase->type( in(MemNode::Address) );
2337  if( t2 == Type::TOP ) return Type::TOP;
2338  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2339  if( t3 == Type::TOP ) return Type::TOP;
2340  return Type::MEMORY;
2341}
2342
2343//------------------------------Identity---------------------------------------
2344// Remove redundant stores:
2345//   Store(m, p, Load(m, p)) changes to m.
2346//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2347Node *StoreNode::Identity( PhaseTransform *phase ) {
2348  Node* mem = in(MemNode::Memory);
2349  Node* adr = in(MemNode::Address);
2350  Node* val = in(MemNode::ValueIn);
2351
2352  // Load then Store?  Then the Store is useless
2353  if (val->is_Load() &&
2354      val->in(MemNode::Address)->eqv_uncast(adr) &&
2355      val->in(MemNode::Memory )->eqv_uncast(mem) &&
2356      val->as_Load()->store_Opcode() == Opcode()) {
2357    return mem;
2358  }
2359
2360  // Two stores in a row of the same value?
2361  if (mem->is_Store() &&
2362      mem->in(MemNode::Address)->eqv_uncast(adr) &&
2363      mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2364      mem->Opcode() == Opcode()) {
2365    return mem;
2366  }
2367
2368  // Store of zero anywhere into a freshly-allocated object?
2369  // Then the store is useless.
2370  // (It must already have been captured by the InitializeNode.)
2371  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2372    // a newly allocated object is already all-zeroes everywhere
2373    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2374      return mem;
2375    }
2376
2377    // the store may also apply to zero-bits in an earlier object
2378    Node* prev_mem = find_previous_store(phase);
2379    // Steps (a), (b):  Walk past independent stores to find an exact match.
2380    if (prev_mem != NULL) {
2381      Node* prev_val = can_see_stored_value(prev_mem, phase);
2382      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2383        // prev_val and val might differ by a cast; it would be good
2384        // to keep the more informative of the two.
2385        return mem;
2386      }
2387    }
2388  }
2389
2390  return this;
2391}
2392
2393//------------------------------match_edge-------------------------------------
2394// Do we Match on this edge index or not?  Match only memory & value
2395uint StoreNode::match_edge(uint idx) const {
2396  return idx == MemNode::Address || idx == MemNode::ValueIn;
2397}
2398
2399//------------------------------cmp--------------------------------------------
2400// Do not common stores up together.  They generally have to be split
2401// back up anyways, so do not bother.
2402uint StoreNode::cmp( const Node &n ) const {
2403  return (&n == this);          // Always fail except on self
2404}
2405
2406//------------------------------Ideal_masked_input-----------------------------
2407// Check for a useless mask before a partial-word store
2408// (StoreB ... (AndI valIn conIa) )
2409// If (conIa & mask == mask) this simplifies to
2410// (StoreB ... (valIn) )
2411Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2412  Node *val = in(MemNode::ValueIn);
2413  if( val->Opcode() == Op_AndI ) {
2414    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2415    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2416      set_req(MemNode::ValueIn, val->in(1));
2417      return this;
2418    }
2419  }
2420  return NULL;
2421}
2422
2423
2424//------------------------------Ideal_sign_extended_input----------------------
2425// Check for useless sign-extension before a partial-word store
2426// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2427// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2428// (StoreB ... (valIn) )
2429Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2430  Node *val = in(MemNode::ValueIn);
2431  if( val->Opcode() == Op_RShiftI ) {
2432    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2433    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2434      Node *shl = val->in(1);
2435      if( shl->Opcode() == Op_LShiftI ) {
2436        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2437        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2438          set_req(MemNode::ValueIn, shl->in(1));
2439          return this;
2440        }
2441      }
2442    }
2443  }
2444  return NULL;
2445}
2446
2447//------------------------------value_never_loaded-----------------------------------
2448// Determine whether there are any possible loads of the value stored.
2449// For simplicity, we actually check if there are any loads from the
2450// address stored to, not just for loads of the value stored by this node.
2451//
2452bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2453  Node *adr = in(Address);
2454  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2455  if (adr_oop == NULL)
2456    return false;
2457  if (!adr_oop->is_known_instance_field())
2458    return false; // if not a distinct instance, there may be aliases of the address
2459  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2460    Node *use = adr->fast_out(i);
2461    int opc = use->Opcode();
2462    if (use->is_Load() || use->is_LoadStore()) {
2463      return false;
2464    }
2465  }
2466  return true;
2467}
2468
2469//=============================================================================
2470//------------------------------Ideal------------------------------------------
2471// If the store is from an AND mask that leaves the low bits untouched, then
2472// we can skip the AND operation.  If the store is from a sign-extension
2473// (a left shift, then right shift) we can skip both.
2474Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2475  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2476  if( progress != NULL ) return progress;
2477
2478  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2479  if( progress != NULL ) return progress;
2480
2481  // Finally check the default case
2482  return StoreNode::Ideal(phase, can_reshape);
2483}
2484
2485//=============================================================================
2486//------------------------------Ideal------------------------------------------
2487// If the store is from an AND mask that leaves the low bits untouched, then
2488// we can skip the AND operation
2489Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2490  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2491  if( progress != NULL ) return progress;
2492
2493  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2494  if( progress != NULL ) return progress;
2495
2496  // Finally check the default case
2497  return StoreNode::Ideal(phase, can_reshape);
2498}
2499
2500//=============================================================================
2501//------------------------------Identity---------------------------------------
2502Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2503  // No need to card mark when storing a null ptr
2504  Node* my_store = in(MemNode::OopStore);
2505  if (my_store->is_Store()) {
2506    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2507    if( t1 == TypePtr::NULL_PTR ) {
2508      return in(MemNode::Memory);
2509    }
2510  }
2511  return this;
2512}
2513
2514//=============================================================================
2515//------------------------------Ideal---------------------------------------
2516Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2517  Node* progress = StoreNode::Ideal(phase, can_reshape);
2518  if (progress != NULL) return progress;
2519
2520  Node* my_store = in(MemNode::OopStore);
2521  if (my_store->is_MergeMem()) {
2522    Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2523    set_req(MemNode::OopStore, mem);
2524    return this;
2525  }
2526
2527  return NULL;
2528}
2529
2530//------------------------------Value-----------------------------------------
2531const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2532  // Either input is TOP ==> the result is TOP
2533  const Type *t = phase->type( in(MemNode::Memory) );
2534  if( t == Type::TOP ) return Type::TOP;
2535  t = phase->type( in(MemNode::Address) );
2536  if( t == Type::TOP ) return Type::TOP;
2537  t = phase->type( in(MemNode::ValueIn) );
2538  if( t == Type::TOP ) return Type::TOP;
2539  // If extra input is TOP ==> the result is TOP
2540  t = phase->type( in(MemNode::OopStore) );
2541  if( t == Type::TOP ) return Type::TOP;
2542
2543  return StoreNode::Value( phase );
2544}
2545
2546
2547//=============================================================================
2548//----------------------------------SCMemProjNode------------------------------
2549const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2550{
2551  return bottom_type();
2552}
2553
2554//=============================================================================
2555LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2556  init_req(MemNode::Control, c  );
2557  init_req(MemNode::Memory , mem);
2558  init_req(MemNode::Address, adr);
2559  init_req(MemNode::ValueIn, val);
2560  init_req(         ExpectedIn, ex );
2561  init_class_id(Class_LoadStore);
2562
2563}
2564
2565//=============================================================================
2566//-------------------------------adr_type--------------------------------------
2567// Do we Match on this edge index or not?  Do not match memory
2568const TypePtr* ClearArrayNode::adr_type() const {
2569  Node *adr = in(3);
2570  return MemNode::calculate_adr_type(adr->bottom_type());
2571}
2572
2573//------------------------------match_edge-------------------------------------
2574// Do we Match on this edge index or not?  Do not match memory
2575uint ClearArrayNode::match_edge(uint idx) const {
2576  return idx > 1;
2577}
2578
2579//------------------------------Identity---------------------------------------
2580// Clearing a zero length array does nothing
2581Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2582  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2583}
2584
2585//------------------------------Idealize---------------------------------------
2586// Clearing a short array is faster with stores
2587Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2588  const int unit = BytesPerLong;
2589  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2590  if (!t)  return NULL;
2591  if (!t->is_con())  return NULL;
2592  intptr_t raw_count = t->get_con();
2593  intptr_t size = raw_count;
2594  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2595  // Clearing nothing uses the Identity call.
2596  // Negative clears are possible on dead ClearArrays
2597  // (see jck test stmt114.stmt11402.val).
2598  if (size <= 0 || size % unit != 0)  return NULL;
2599  intptr_t count = size / unit;
2600  // Length too long; use fast hardware clear
2601  if (size > Matcher::init_array_short_size)  return NULL;
2602  Node *mem = in(1);
2603  if( phase->type(mem)==Type::TOP ) return NULL;
2604  Node *adr = in(3);
2605  const Type* at = phase->type(adr);
2606  if( at==Type::TOP ) return NULL;
2607  const TypePtr* atp = at->isa_ptr();
2608  // adjust atp to be the correct array element address type
2609  if (atp == NULL)  atp = TypePtr::BOTTOM;
2610  else              atp = atp->add_offset(Type::OffsetBot);
2611  // Get base for derived pointer purposes
2612  if( adr->Opcode() != Op_AddP ) Unimplemented();
2613  Node *base = adr->in(1);
2614
2615  Node *zero = phase->makecon(TypeLong::ZERO);
2616  Node *off  = phase->MakeConX(BytesPerLong);
2617  mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2618  count--;
2619  while( count-- ) {
2620    mem = phase->transform(mem);
2621    adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2622    mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2623  }
2624  return mem;
2625}
2626
2627//----------------------------step_through----------------------------------
2628// Return allocation input memory edge if it is different instance
2629// or itself if it is the one we are looking for.
2630bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2631  Node* n = *np;
2632  assert(n->is_ClearArray(), "sanity");
2633  intptr_t offset;
2634  AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2635  // This method is called only before Allocate nodes are expanded during
2636  // macro nodes expansion. Before that ClearArray nodes are only generated
2637  // in LibraryCallKit::generate_arraycopy() which follows allocations.
2638  assert(alloc != NULL, "should have allocation");
2639  if (alloc->_idx == instance_id) {
2640    // Can not bypass initialization of the instance we are looking for.
2641    return false;
2642  }
2643  // Otherwise skip it.
2644  InitializeNode* init = alloc->initialization();
2645  if (init != NULL)
2646    *np = init->in(TypeFunc::Memory);
2647  else
2648    *np = alloc->in(TypeFunc::Memory);
2649  return true;
2650}
2651
2652//----------------------------clear_memory-------------------------------------
2653// Generate code to initialize object storage to zero.
2654Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2655                                   intptr_t start_offset,
2656                                   Node* end_offset,
2657                                   PhaseGVN* phase) {
2658  Compile* C = phase->C;
2659  intptr_t offset = start_offset;
2660
2661  int unit = BytesPerLong;
2662  if ((offset % unit) != 0) {
2663    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2664    adr = phase->transform(adr);
2665    const TypePtr* atp = TypeRawPtr::BOTTOM;
2666    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2667    mem = phase->transform(mem);
2668    offset += BytesPerInt;
2669  }
2670  assert((offset % unit) == 0, "");
2671
2672  // Initialize the remaining stuff, if any, with a ClearArray.
2673  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2674}
2675
2676Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2677                                   Node* start_offset,
2678                                   Node* end_offset,
2679                                   PhaseGVN* phase) {
2680  if (start_offset == end_offset) {
2681    // nothing to do
2682    return mem;
2683  }
2684
2685  Compile* C = phase->C;
2686  int unit = BytesPerLong;
2687  Node* zbase = start_offset;
2688  Node* zend  = end_offset;
2689
2690  // Scale to the unit required by the CPU:
2691  if (!Matcher::init_array_count_is_in_bytes) {
2692    Node* shift = phase->intcon(exact_log2(unit));
2693    zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2694    zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2695  }
2696
2697  Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2698  Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2699
2700  // Bulk clear double-words
2701  Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2702  mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2703  return phase->transform(mem);
2704}
2705
2706Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2707                                   intptr_t start_offset,
2708                                   intptr_t end_offset,
2709                                   PhaseGVN* phase) {
2710  if (start_offset == end_offset) {
2711    // nothing to do
2712    return mem;
2713  }
2714
2715  Compile* C = phase->C;
2716  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2717  intptr_t done_offset = end_offset;
2718  if ((done_offset % BytesPerLong) != 0) {
2719    done_offset -= BytesPerInt;
2720  }
2721  if (done_offset > start_offset) {
2722    mem = clear_memory(ctl, mem, dest,
2723                       start_offset, phase->MakeConX(done_offset), phase);
2724  }
2725  if (done_offset < end_offset) { // emit the final 32-bit store
2726    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2727    adr = phase->transform(adr);
2728    const TypePtr* atp = TypeRawPtr::BOTTOM;
2729    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2730    mem = phase->transform(mem);
2731    done_offset += BytesPerInt;
2732  }
2733  assert(done_offset == end_offset, "");
2734  return mem;
2735}
2736
2737//=============================================================================
2738// Do not match memory edge.
2739uint StrIntrinsicNode::match_edge(uint idx) const {
2740  return idx == 2 || idx == 3;
2741}
2742
2743//------------------------------Ideal------------------------------------------
2744// Return a node which is more "ideal" than the current node.  Strip out
2745// control copies
2746Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2747  if (remove_dead_region(phase, can_reshape)) return this;
2748  // Don't bother trying to transform a dead node
2749  if (in(0) && in(0)->is_top())  return NULL;
2750
2751  if (can_reshape) {
2752    Node* mem = phase->transform(in(MemNode::Memory));
2753    // If transformed to a MergeMem, get the desired slice
2754    uint alias_idx = phase->C->get_alias_index(adr_type());
2755    mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2756    if (mem != in(MemNode::Memory)) {
2757      set_req(MemNode::Memory, mem);
2758      return this;
2759    }
2760  }
2761  return NULL;
2762}
2763
2764//------------------------------Value------------------------------------------
2765const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2766  if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2767  return bottom_type();
2768}
2769
2770//=============================================================================
2771MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2772  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2773    _adr_type(C->get_adr_type(alias_idx))
2774{
2775  init_class_id(Class_MemBar);
2776  Node* top = C->top();
2777  init_req(TypeFunc::I_O,top);
2778  init_req(TypeFunc::FramePtr,top);
2779  init_req(TypeFunc::ReturnAdr,top);
2780  if (precedent != NULL)
2781    init_req(TypeFunc::Parms, precedent);
2782}
2783
2784//------------------------------cmp--------------------------------------------
2785uint MemBarNode::hash() const { return NO_HASH; }
2786uint MemBarNode::cmp( const Node &n ) const {
2787  return (&n == this);          // Always fail except on self
2788}
2789
2790//------------------------------make-------------------------------------------
2791MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2792  int len = Precedent + (pn == NULL? 0: 1);
2793  switch (opcode) {
2794  case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2795  case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2796  case Op_MemBarAcquireLock: return new(C, len) MemBarAcquireLockNode(C,  atp, pn);
2797  case Op_MemBarReleaseLock: return new(C, len) MemBarReleaseLockNode(C,  atp, pn);
2798  case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2799  case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2800  case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2801  case Op_MemBarStoreStore: return new(C, len) MemBarStoreStoreNode(C,  atp, pn);
2802  default:                 ShouldNotReachHere(); return NULL;
2803  }
2804}
2805
2806//------------------------------Ideal------------------------------------------
2807// Return a node which is more "ideal" than the current node.  Strip out
2808// control copies
2809Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2810  if (remove_dead_region(phase, can_reshape)) return this;
2811  // Don't bother trying to transform a dead node
2812  if (in(0) && in(0)->is_top())  return NULL;
2813
2814  // Eliminate volatile MemBars for scalar replaced objects.
2815  if (can_reshape && req() == (Precedent+1) &&
2816      (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
2817    // Volatile field loads and stores.
2818    Node* my_mem = in(MemBarNode::Precedent);
2819    if (my_mem != NULL && my_mem->is_Mem()) {
2820      const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2821      // Check for scalar replaced object reference.
2822      if( t_oop != NULL && t_oop->is_known_instance_field() &&
2823          t_oop->offset() != Type::OffsetBot &&
2824          t_oop->offset() != Type::OffsetTop) {
2825        // Replace MemBar projections by its inputs.
2826        PhaseIterGVN* igvn = phase->is_IterGVN();
2827        igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2828        igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2829        // Must return either the original node (now dead) or a new node
2830        // (Do not return a top here, since that would break the uniqueness of top.)
2831        return new (phase->C, 1) ConINode(TypeInt::ZERO);
2832      }
2833    }
2834  }
2835  return NULL;
2836}
2837
2838//------------------------------Value------------------------------------------
2839const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2840  if( !in(0) ) return Type::TOP;
2841  if( phase->type(in(0)) == Type::TOP )
2842    return Type::TOP;
2843  return TypeTuple::MEMBAR;
2844}
2845
2846//------------------------------match------------------------------------------
2847// Construct projections for memory.
2848Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2849  switch (proj->_con) {
2850  case TypeFunc::Control:
2851  case TypeFunc::Memory:
2852    return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2853  }
2854  ShouldNotReachHere();
2855  return NULL;
2856}
2857
2858//===========================InitializeNode====================================
2859// SUMMARY:
2860// This node acts as a memory barrier on raw memory, after some raw stores.
2861// The 'cooked' oop value feeds from the Initialize, not the Allocation.
2862// The Initialize can 'capture' suitably constrained stores as raw inits.
2863// It can coalesce related raw stores into larger units (called 'tiles').
2864// It can avoid zeroing new storage for memory units which have raw inits.
2865// At macro-expansion, it is marked 'complete', and does not optimize further.
2866//
2867// EXAMPLE:
2868// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2869//   ctl = incoming control; mem* = incoming memory
2870// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2871// First allocate uninitialized memory and fill in the header:
2872//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2873//   ctl := alloc.Control; mem* := alloc.Memory*
2874//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2875// Then initialize to zero the non-header parts of the raw memory block:
2876//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2877//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2878// After the initialize node executes, the object is ready for service:
2879//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2880// Suppose its body is immediately initialized as {1,2}:
2881//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2882//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2883//   mem.SLICE(#short[*]) := store2
2884//
2885// DETAILS:
2886// An InitializeNode collects and isolates object initialization after
2887// an AllocateNode and before the next possible safepoint.  As a
2888// memory barrier (MemBarNode), it keeps critical stores from drifting
2889// down past any safepoint or any publication of the allocation.
2890// Before this barrier, a newly-allocated object may have uninitialized bits.
2891// After this barrier, it may be treated as a real oop, and GC is allowed.
2892//
2893// The semantics of the InitializeNode include an implicit zeroing of
2894// the new object from object header to the end of the object.
2895// (The object header and end are determined by the AllocateNode.)
2896//
2897// Certain stores may be added as direct inputs to the InitializeNode.
2898// These stores must update raw memory, and they must be to addresses
2899// derived from the raw address produced by AllocateNode, and with
2900// a constant offset.  They must be ordered by increasing offset.
2901// The first one is at in(RawStores), the last at in(req()-1).
2902// Unlike most memory operations, they are not linked in a chain,
2903// but are displayed in parallel as users of the rawmem output of
2904// the allocation.
2905//
2906// (See comments in InitializeNode::capture_store, which continue
2907// the example given above.)
2908//
2909// When the associated Allocate is macro-expanded, the InitializeNode
2910// may be rewritten to optimize collected stores.  A ClearArrayNode
2911// may also be created at that point to represent any required zeroing.
2912// The InitializeNode is then marked 'complete', prohibiting further
2913// capturing of nearby memory operations.
2914//
2915// During macro-expansion, all captured initializations which store
2916// constant values of 32 bits or smaller are coalesced (if advantageous)
2917// into larger 'tiles' 32 or 64 bits.  This allows an object to be
2918// initialized in fewer memory operations.  Memory words which are
2919// covered by neither tiles nor non-constant stores are pre-zeroed
2920// by explicit stores of zero.  (The code shape happens to do all
2921// zeroing first, then all other stores, with both sequences occurring
2922// in order of ascending offsets.)
2923//
2924// Alternatively, code may be inserted between an AllocateNode and its
2925// InitializeNode, to perform arbitrary initialization of the new object.
2926// E.g., the object copying intrinsics insert complex data transfers here.
2927// The initialization must then be marked as 'complete' disable the
2928// built-in zeroing semantics and the collection of initializing stores.
2929//
2930// While an InitializeNode is incomplete, reads from the memory state
2931// produced by it are optimizable if they match the control edge and
2932// new oop address associated with the allocation/initialization.
2933// They return a stored value (if the offset matches) or else zero.
2934// A write to the memory state, if it matches control and address,
2935// and if it is to a constant offset, may be 'captured' by the
2936// InitializeNode.  It is cloned as a raw memory operation and rewired
2937// inside the initialization, to the raw oop produced by the allocation.
2938// Operations on addresses which are provably distinct (e.g., to
2939// other AllocateNodes) are allowed to bypass the initialization.
2940//
2941// The effect of all this is to consolidate object initialization
2942// (both arrays and non-arrays, both piecewise and bulk) into a
2943// single location, where it can be optimized as a unit.
2944//
2945// Only stores with an offset less than TrackedInitializationLimit words
2946// will be considered for capture by an InitializeNode.  This puts a
2947// reasonable limit on the complexity of optimized initializations.
2948
2949//---------------------------InitializeNode------------------------------------
2950InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2951  : _is_complete(Incomplete), _does_not_escape(false),
2952    MemBarNode(C, adr_type, rawoop)
2953{
2954  init_class_id(Class_Initialize);
2955
2956  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2957  assert(in(RawAddress) == rawoop, "proper init");
2958  // Note:  allocation() can be NULL, for secondary initialization barriers
2959}
2960
2961// Since this node is not matched, it will be processed by the
2962// register allocator.  Declare that there are no constraints
2963// on the allocation of the RawAddress edge.
2964const RegMask &InitializeNode::in_RegMask(uint idx) const {
2965  // This edge should be set to top, by the set_complete.  But be conservative.
2966  if (idx == InitializeNode::RawAddress)
2967    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2968  return RegMask::Empty;
2969}
2970
2971Node* InitializeNode::memory(uint alias_idx) {
2972  Node* mem = in(Memory);
2973  if (mem->is_MergeMem()) {
2974    return mem->as_MergeMem()->memory_at(alias_idx);
2975  } else {
2976    // incoming raw memory is not split
2977    return mem;
2978  }
2979}
2980
2981bool InitializeNode::is_non_zero() {
2982  if (is_complete())  return false;
2983  remove_extra_zeroes();
2984  return (req() > RawStores);
2985}
2986
2987void InitializeNode::set_complete(PhaseGVN* phase) {
2988  assert(!is_complete(), "caller responsibility");
2989  _is_complete = Complete;
2990
2991  // After this node is complete, it contains a bunch of
2992  // raw-memory initializations.  There is no need for
2993  // it to have anything to do with non-raw memory effects.
2994  // Therefore, tell all non-raw users to re-optimize themselves,
2995  // after skipping the memory effects of this initialization.
2996  PhaseIterGVN* igvn = phase->is_IterGVN();
2997  if (igvn)  igvn->add_users_to_worklist(this);
2998}
2999
3000// convenience function
3001// return false if the init contains any stores already
3002bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3003  InitializeNode* init = initialization();
3004  if (init == NULL || init->is_complete())  return false;
3005  init->remove_extra_zeroes();
3006  // for now, if this allocation has already collected any inits, bail:
3007  if (init->is_non_zero())  return false;
3008  init->set_complete(phase);
3009  return true;
3010}
3011
3012void InitializeNode::remove_extra_zeroes() {
3013  if (req() == RawStores)  return;
3014  Node* zmem = zero_memory();
3015  uint fill = RawStores;
3016  for (uint i = fill; i < req(); i++) {
3017    Node* n = in(i);
3018    if (n->is_top() || n == zmem)  continue;  // skip
3019    if (fill < i)  set_req(fill, n);          // compact
3020    ++fill;
3021  }
3022  // delete any empty spaces created:
3023  while (fill < req()) {
3024    del_req(fill);
3025  }
3026}
3027
3028// Helper for remembering which stores go with which offsets.
3029intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3030  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3031  intptr_t offset = -1;
3032  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3033                                               phase, offset);
3034  if (base == NULL)     return -1;  // something is dead,
3035  if (offset < 0)       return -1;  //        dead, dead
3036  return offset;
3037}
3038
3039// Helper for proving that an initialization expression is
3040// "simple enough" to be folded into an object initialization.
3041// Attempts to prove that a store's initial value 'n' can be captured
3042// within the initialization without creating a vicious cycle, such as:
3043//     { Foo p = new Foo(); p.next = p; }
3044// True for constants and parameters and small combinations thereof.
3045bool InitializeNode::detect_init_independence(Node* n,
3046                                              bool st_is_pinned,
3047                                              int& count) {
3048  if (n == NULL)      return true;   // (can this really happen?)
3049  if (n->is_Proj())   n = n->in(0);
3050  if (n == this)      return false;  // found a cycle
3051  if (n->is_Con())    return true;
3052  if (n->is_Start())  return true;   // params, etc., are OK
3053  if (n->is_Root())   return true;   // even better
3054
3055  Node* ctl = n->in(0);
3056  if (ctl != NULL && !ctl->is_top()) {
3057    if (ctl->is_Proj())  ctl = ctl->in(0);
3058    if (ctl == this)  return false;
3059
3060    // If we already know that the enclosing memory op is pinned right after
3061    // the init, then any control flow that the store has picked up
3062    // must have preceded the init, or else be equal to the init.
3063    // Even after loop optimizations (which might change control edges)
3064    // a store is never pinned *before* the availability of its inputs.
3065    if (!MemNode::all_controls_dominate(n, this))
3066      return false;                  // failed to prove a good control
3067
3068  }
3069
3070  // Check data edges for possible dependencies on 'this'.
3071  if ((count += 1) > 20)  return false;  // complexity limit
3072  for (uint i = 1; i < n->req(); i++) {
3073    Node* m = n->in(i);
3074    if (m == NULL || m == n || m->is_top())  continue;
3075    uint first_i = n->find_edge(m);
3076    if (i != first_i)  continue;  // process duplicate edge just once
3077    if (!detect_init_independence(m, st_is_pinned, count)) {
3078      return false;
3079    }
3080  }
3081
3082  return true;
3083}
3084
3085// Here are all the checks a Store must pass before it can be moved into
3086// an initialization.  Returns zero if a check fails.
3087// On success, returns the (constant) offset to which the store applies,
3088// within the initialized memory.
3089intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
3090  const int FAIL = 0;
3091  if (st->req() != MemNode::ValueIn + 1)
3092    return FAIL;                // an inscrutable StoreNode (card mark?)
3093  Node* ctl = st->in(MemNode::Control);
3094  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3095    return FAIL;                // must be unconditional after the initialization
3096  Node* mem = st->in(MemNode::Memory);
3097  if (!(mem->is_Proj() && mem->in(0) == this))
3098    return FAIL;                // must not be preceded by other stores
3099  Node* adr = st->in(MemNode::Address);
3100  intptr_t offset;
3101  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3102  if (alloc == NULL)
3103    return FAIL;                // inscrutable address
3104  if (alloc != allocation())
3105    return FAIL;                // wrong allocation!  (store needs to float up)
3106  Node* val = st->in(MemNode::ValueIn);
3107  int complexity_count = 0;
3108  if (!detect_init_independence(val, true, complexity_count))
3109    return FAIL;                // stored value must be 'simple enough'
3110
3111  return offset;                // success
3112}
3113
3114// Find the captured store in(i) which corresponds to the range
3115// [start..start+size) in the initialized object.
3116// If there is one, return its index i.  If there isn't, return the
3117// negative of the index where it should be inserted.
3118// Return 0 if the queried range overlaps an initialization boundary
3119// or if dead code is encountered.
3120// If size_in_bytes is zero, do not bother with overlap checks.
3121int InitializeNode::captured_store_insertion_point(intptr_t start,
3122                                                   int size_in_bytes,
3123                                                   PhaseTransform* phase) {
3124  const int FAIL = 0, MAX_STORE = BytesPerLong;
3125
3126  if (is_complete())
3127    return FAIL;                // arraycopy got here first; punt
3128
3129  assert(allocation() != NULL, "must be present");
3130
3131  // no negatives, no header fields:
3132  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3133
3134  // after a certain size, we bail out on tracking all the stores:
3135  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3136  if (start >= ti_limit)  return FAIL;
3137
3138  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3139    if (i >= limit)  return -(int)i; // not found; here is where to put it
3140
3141    Node*    st     = in(i);
3142    intptr_t st_off = get_store_offset(st, phase);
3143    if (st_off < 0) {
3144      if (st != zero_memory()) {
3145        return FAIL;            // bail out if there is dead garbage
3146      }
3147    } else if (st_off > start) {
3148      // ...we are done, since stores are ordered
3149      if (st_off < start + size_in_bytes) {
3150        return FAIL;            // the next store overlaps
3151      }
3152      return -(int)i;           // not found; here is where to put it
3153    } else if (st_off < start) {
3154      if (size_in_bytes != 0 &&
3155          start < st_off + MAX_STORE &&
3156          start < st_off + st->as_Store()->memory_size()) {
3157        return FAIL;            // the previous store overlaps
3158      }
3159    } else {
3160      if (size_in_bytes != 0 &&
3161          st->as_Store()->memory_size() != size_in_bytes) {
3162        return FAIL;            // mismatched store size
3163      }
3164      return i;
3165    }
3166
3167    ++i;
3168  }
3169}
3170
3171// Look for a captured store which initializes at the offset 'start'
3172// with the given size.  If there is no such store, and no other
3173// initialization interferes, then return zero_memory (the memory
3174// projection of the AllocateNode).
3175Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3176                                          PhaseTransform* phase) {
3177  assert(stores_are_sane(phase), "");
3178  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3179  if (i == 0) {
3180    return NULL;                // something is dead
3181  } else if (i < 0) {
3182    return zero_memory();       // just primordial zero bits here
3183  } else {
3184    Node* st = in(i);           // here is the store at this position
3185    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3186    return st;
3187  }
3188}
3189
3190// Create, as a raw pointer, an address within my new object at 'offset'.
3191Node* InitializeNode::make_raw_address(intptr_t offset,
3192                                       PhaseTransform* phase) {
3193  Node* addr = in(RawAddress);
3194  if (offset != 0) {
3195    Compile* C = phase->C;
3196    addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
3197                                                 phase->MakeConX(offset)) );
3198  }
3199  return addr;
3200}
3201
3202// Clone the given store, converting it into a raw store
3203// initializing a field or element of my new object.
3204// Caller is responsible for retiring the original store,
3205// with subsume_node or the like.
3206//
3207// From the example above InitializeNode::InitializeNode,
3208// here are the old stores to be captured:
3209//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3210//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3211//
3212// Here is the changed code; note the extra edges on init:
3213//   alloc = (Allocate ...)
3214//   rawoop = alloc.RawAddress
3215//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3216//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3217//   init = (Initialize alloc.Control alloc.Memory rawoop
3218//                      rawstore1 rawstore2)
3219//
3220Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3221                                    PhaseTransform* phase) {
3222  assert(stores_are_sane(phase), "");
3223
3224  if (start < 0)  return NULL;
3225  assert(can_capture_store(st, phase) == start, "sanity");
3226
3227  Compile* C = phase->C;
3228  int size_in_bytes = st->memory_size();
3229  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3230  if (i == 0)  return NULL;     // bail out
3231  Node* prev_mem = NULL;        // raw memory for the captured store
3232  if (i > 0) {
3233    prev_mem = in(i);           // there is a pre-existing store under this one
3234    set_req(i, C->top());       // temporarily disconnect it
3235    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3236  } else {
3237    i = -i;                     // no pre-existing store
3238    prev_mem = zero_memory();   // a slice of the newly allocated object
3239    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3240      set_req(--i, C->top());   // reuse this edge; it has been folded away
3241    else
3242      ins_req(i, C->top());     // build a new edge
3243  }
3244  Node* new_st = st->clone();
3245  new_st->set_req(MemNode::Control, in(Control));
3246  new_st->set_req(MemNode::Memory,  prev_mem);
3247  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3248  new_st = phase->transform(new_st);
3249
3250  // At this point, new_st might have swallowed a pre-existing store
3251  // at the same offset, or perhaps new_st might have disappeared,
3252  // if it redundantly stored the same value (or zero to fresh memory).
3253
3254  // In any case, wire it in:
3255  set_req(i, new_st);
3256
3257  // The caller may now kill the old guy.
3258  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3259  assert(check_st == new_st || check_st == NULL, "must be findable");
3260  assert(!is_complete(), "");
3261  return new_st;
3262}
3263
3264static bool store_constant(jlong* tiles, int num_tiles,
3265                           intptr_t st_off, int st_size,
3266                           jlong con) {
3267  if ((st_off & (st_size-1)) != 0)
3268    return false;               // strange store offset (assume size==2**N)
3269  address addr = (address)tiles + st_off;
3270  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3271  switch (st_size) {
3272  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3273  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3274  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3275  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3276  default: return false;        // strange store size (detect size!=2**N here)
3277  }
3278  return true;                  // return success to caller
3279}
3280
3281// Coalesce subword constants into int constants and possibly
3282// into long constants.  The goal, if the CPU permits,
3283// is to initialize the object with a small number of 64-bit tiles.
3284// Also, convert floating-point constants to bit patterns.
3285// Non-constants are not relevant to this pass.
3286//
3287// In terms of the running example on InitializeNode::InitializeNode
3288// and InitializeNode::capture_store, here is the transformation
3289// of rawstore1 and rawstore2 into rawstore12:
3290//   alloc = (Allocate ...)
3291//   rawoop = alloc.RawAddress
3292//   tile12 = 0x00010002
3293//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3294//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3295//
3296void
3297InitializeNode::coalesce_subword_stores(intptr_t header_size,
3298                                        Node* size_in_bytes,
3299                                        PhaseGVN* phase) {
3300  Compile* C = phase->C;
3301
3302  assert(stores_are_sane(phase), "");
3303  // Note:  After this pass, they are not completely sane,
3304  // since there may be some overlaps.
3305
3306  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3307
3308  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3309  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3310  size_limit = MIN2(size_limit, ti_limit);
3311  size_limit = align_size_up(size_limit, BytesPerLong);
3312  int num_tiles = size_limit / BytesPerLong;
3313
3314  // allocate space for the tile map:
3315  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3316  jlong  tiles_buf[small_len];
3317  Node*  nodes_buf[small_len];
3318  jlong  inits_buf[small_len];
3319  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3320                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3321  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3322                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3323  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3324                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3325  // tiles: exact bitwise model of all primitive constants
3326  // nodes: last constant-storing node subsumed into the tiles model
3327  // inits: which bytes (in each tile) are touched by any initializations
3328
3329  //// Pass A: Fill in the tile model with any relevant stores.
3330
3331  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3332  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3333  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3334  Node* zmem = zero_memory(); // initially zero memory state
3335  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3336    Node* st = in(i);
3337    intptr_t st_off = get_store_offset(st, phase);
3338
3339    // Figure out the store's offset and constant value:
3340    if (st_off < header_size)             continue; //skip (ignore header)
3341    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3342    int st_size = st->as_Store()->memory_size();
3343    if (st_off + st_size > size_limit)    break;
3344
3345    // Record which bytes are touched, whether by constant or not.
3346    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3347      continue;                 // skip (strange store size)
3348
3349    const Type* val = phase->type(st->in(MemNode::ValueIn));
3350    if (!val->singleton())                continue; //skip (non-con store)
3351    BasicType type = val->basic_type();
3352
3353    jlong con = 0;
3354    switch (type) {
3355    case T_INT:    con = val->is_int()->get_con();  break;
3356    case T_LONG:   con = val->is_long()->get_con(); break;
3357    case T_FLOAT:  con = jint_cast(val->getf());    break;
3358    case T_DOUBLE: con = jlong_cast(val->getd());   break;
3359    default:                              continue; //skip (odd store type)
3360    }
3361
3362    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3363        st->Opcode() == Op_StoreL) {
3364      continue;                 // This StoreL is already optimal.
3365    }
3366
3367    // Store down the constant.
3368    store_constant(tiles, num_tiles, st_off, st_size, con);
3369
3370    intptr_t j = st_off >> LogBytesPerLong;
3371
3372    if (type == T_INT && st_size == BytesPerInt
3373        && (st_off & BytesPerInt) == BytesPerInt) {
3374      jlong lcon = tiles[j];
3375      if (!Matcher::isSimpleConstant64(lcon) &&
3376          st->Opcode() == Op_StoreI) {
3377        // This StoreI is already optimal by itself.
3378        jint* intcon = (jint*) &tiles[j];
3379        intcon[1] = 0;  // undo the store_constant()
3380
3381        // If the previous store is also optimal by itself, back up and
3382        // undo the action of the previous loop iteration... if we can.
3383        // But if we can't, just let the previous half take care of itself.
3384        st = nodes[j];
3385        st_off -= BytesPerInt;
3386        con = intcon[0];
3387        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3388          assert(st_off >= header_size, "still ignoring header");
3389          assert(get_store_offset(st, phase) == st_off, "must be");
3390          assert(in(i-1) == zmem, "must be");
3391          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3392          assert(con == tcon->is_int()->get_con(), "must be");
3393          // Undo the effects of the previous loop trip, which swallowed st:
3394          intcon[0] = 0;        // undo store_constant()
3395          set_req(i-1, st);     // undo set_req(i, zmem)
3396          nodes[j] = NULL;      // undo nodes[j] = st
3397          --old_subword;        // undo ++old_subword
3398        }
3399        continue;               // This StoreI is already optimal.
3400      }
3401    }
3402
3403    // This store is not needed.
3404    set_req(i, zmem);
3405    nodes[j] = st;              // record for the moment
3406    if (st_size < BytesPerLong) // something has changed
3407          ++old_subword;        // includes int/float, but who's counting...
3408    else  ++old_long;
3409  }
3410
3411  if ((old_subword + old_long) == 0)
3412    return;                     // nothing more to do
3413
3414  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3415  // Be sure to insert them before overlapping non-constant stores.
3416  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3417  for (int j = 0; j < num_tiles; j++) {
3418    jlong con  = tiles[j];
3419    jlong init = inits[j];
3420    if (con == 0)  continue;
3421    jint con0,  con1;           // split the constant, address-wise
3422    jint init0, init1;          // split the init map, address-wise
3423    { union { jlong con; jint intcon[2]; } u;
3424      u.con = con;
3425      con0  = u.intcon[0];
3426      con1  = u.intcon[1];
3427      u.con = init;
3428      init0 = u.intcon[0];
3429      init1 = u.intcon[1];
3430    }
3431
3432    Node* old = nodes[j];
3433    assert(old != NULL, "need the prior store");
3434    intptr_t offset = (j * BytesPerLong);
3435
3436    bool split = !Matcher::isSimpleConstant64(con);
3437
3438    if (offset < header_size) {
3439      assert(offset + BytesPerInt >= header_size, "second int counts");
3440      assert(*(jint*)&tiles[j] == 0, "junk in header");
3441      split = true;             // only the second word counts
3442      // Example:  int a[] = { 42 ... }
3443    } else if (con0 == 0 && init0 == -1) {
3444      split = true;             // first word is covered by full inits
3445      // Example:  int a[] = { ... foo(), 42 ... }
3446    } else if (con1 == 0 && init1 == -1) {
3447      split = true;             // second word is covered by full inits
3448      // Example:  int a[] = { ... 42, foo() ... }
3449    }
3450
3451    // Here's a case where init0 is neither 0 nor -1:
3452    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3453    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3454    // In this case the tile is not split; it is (jlong)42.
3455    // The big tile is stored down, and then the foo() value is inserted.
3456    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3457
3458    Node* ctl = old->in(MemNode::Control);
3459    Node* adr = make_raw_address(offset, phase);
3460    const TypePtr* atp = TypeRawPtr::BOTTOM;
3461
3462    // One or two coalesced stores to plop down.
3463    Node*    st[2];
3464    intptr_t off[2];
3465    int  nst = 0;
3466    if (!split) {
3467      ++new_long;
3468      off[nst] = offset;
3469      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3470                                  phase->longcon(con), T_LONG);
3471    } else {
3472      // Omit either if it is a zero.
3473      if (con0 != 0) {
3474        ++new_int;
3475        off[nst]  = offset;
3476        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3477                                    phase->intcon(con0), T_INT);
3478      }
3479      if (con1 != 0) {
3480        ++new_int;
3481        offset += BytesPerInt;
3482        adr = make_raw_address(offset, phase);
3483        off[nst]  = offset;
3484        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3485                                    phase->intcon(con1), T_INT);
3486      }
3487    }
3488
3489    // Insert second store first, then the first before the second.
3490    // Insert each one just before any overlapping non-constant stores.
3491    while (nst > 0) {
3492      Node* st1 = st[--nst];
3493      C->copy_node_notes_to(st1, old);
3494      st1 = phase->transform(st1);
3495      offset = off[nst];
3496      assert(offset >= header_size, "do not smash header");
3497      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3498      guarantee(ins_idx != 0, "must re-insert constant store");
3499      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3500      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3501        set_req(--ins_idx, st1);
3502      else
3503        ins_req(ins_idx, st1);
3504    }
3505  }
3506
3507  if (PrintCompilation && WizardMode)
3508    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3509                  old_subword, old_long, new_int, new_long);
3510  if (C->log() != NULL)
3511    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3512                   old_subword, old_long, new_int, new_long);
3513
3514  // Clean up any remaining occurrences of zmem:
3515  remove_extra_zeroes();
3516}
3517
3518// Explore forward from in(start) to find the first fully initialized
3519// word, and return its offset.  Skip groups of subword stores which
3520// together initialize full words.  If in(start) is itself part of a
3521// fully initialized word, return the offset of in(start).  If there
3522// are no following full-word stores, or if something is fishy, return
3523// a negative value.
3524intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3525  int       int_map = 0;
3526  intptr_t  int_map_off = 0;
3527  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3528
3529  for (uint i = start, limit = req(); i < limit; i++) {
3530    Node* st = in(i);
3531
3532    intptr_t st_off = get_store_offset(st, phase);
3533    if (st_off < 0)  break;  // return conservative answer
3534
3535    int st_size = st->as_Store()->memory_size();
3536    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3537      return st_off;            // we found a complete word init
3538    }
3539
3540    // update the map:
3541
3542    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3543    if (this_int_off != int_map_off) {
3544      // reset the map:
3545      int_map = 0;
3546      int_map_off = this_int_off;
3547    }
3548
3549    int subword_off = st_off - this_int_off;
3550    int_map |= right_n_bits(st_size) << subword_off;
3551    if ((int_map & FULL_MAP) == FULL_MAP) {
3552      return this_int_off;      // we found a complete word init
3553    }
3554
3555    // Did this store hit or cross the word boundary?
3556    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3557    if (next_int_off == this_int_off + BytesPerInt) {
3558      // We passed the current int, without fully initializing it.
3559      int_map_off = next_int_off;
3560      int_map >>= BytesPerInt;
3561    } else if (next_int_off > this_int_off + BytesPerInt) {
3562      // We passed the current and next int.
3563      return this_int_off + BytesPerInt;
3564    }
3565  }
3566
3567  return -1;
3568}
3569
3570
3571// Called when the associated AllocateNode is expanded into CFG.
3572// At this point, we may perform additional optimizations.
3573// Linearize the stores by ascending offset, to make memory
3574// activity as coherent as possible.
3575Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3576                                      intptr_t header_size,
3577                                      Node* size_in_bytes,
3578                                      PhaseGVN* phase) {
3579  assert(!is_complete(), "not already complete");
3580  assert(stores_are_sane(phase), "");
3581  assert(allocation() != NULL, "must be present");
3582
3583  remove_extra_zeroes();
3584
3585  if (ReduceFieldZeroing || ReduceBulkZeroing)
3586    // reduce instruction count for common initialization patterns
3587    coalesce_subword_stores(header_size, size_in_bytes, phase);
3588
3589  Node* zmem = zero_memory();   // initially zero memory state
3590  Node* inits = zmem;           // accumulating a linearized chain of inits
3591  #ifdef ASSERT
3592  intptr_t first_offset = allocation()->minimum_header_size();
3593  intptr_t last_init_off = first_offset;  // previous init offset
3594  intptr_t last_init_end = first_offset;  // previous init offset+size
3595  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3596  #endif
3597  intptr_t zeroes_done = header_size;
3598
3599  bool do_zeroing = true;       // we might give up if inits are very sparse
3600  int  big_init_gaps = 0;       // how many large gaps have we seen?
3601
3602  if (ZeroTLAB)  do_zeroing = false;
3603  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3604
3605  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3606    Node* st = in(i);
3607    intptr_t st_off = get_store_offset(st, phase);
3608    if (st_off < 0)
3609      break;                    // unknown junk in the inits
3610    if (st->in(MemNode::Memory) != zmem)
3611      break;                    // complicated store chains somehow in list
3612
3613    int st_size = st->as_Store()->memory_size();
3614    intptr_t next_init_off = st_off + st_size;
3615
3616    if (do_zeroing && zeroes_done < next_init_off) {
3617      // See if this store needs a zero before it or under it.
3618      intptr_t zeroes_needed = st_off;
3619
3620      if (st_size < BytesPerInt) {
3621        // Look for subword stores which only partially initialize words.
3622        // If we find some, we must lay down some word-level zeroes first,
3623        // underneath the subword stores.
3624        //
3625        // Examples:
3626        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3627        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3628        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3629        //
3630        // Note:  coalesce_subword_stores may have already done this,
3631        // if it was prompted by constant non-zero subword initializers.
3632        // But this case can still arise with non-constant stores.
3633
3634        intptr_t next_full_store = find_next_fullword_store(i, phase);
3635
3636        // In the examples above:
3637        //   in(i)          p   q   r   s     x   y     z
3638        //   st_off        12  13  14  15    12  13    14
3639        //   st_size        1   1   1   1     1   1     1
3640        //   next_full_s.  12  16  16  16    16  16    16
3641        //   z's_done      12  16  16  16    12  16    12
3642        //   z's_needed    12  16  16  16    16  16    16
3643        //   zsize          0   0   0   0     4   0     4
3644        if (next_full_store < 0) {
3645          // Conservative tack:  Zero to end of current word.
3646          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3647        } else {
3648          // Zero to beginning of next fully initialized word.
3649          // Or, don't zero at all, if we are already in that word.
3650          assert(next_full_store >= zeroes_needed, "must go forward");
3651          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3652          zeroes_needed = next_full_store;
3653        }
3654      }
3655
3656      if (zeroes_needed > zeroes_done) {
3657        intptr_t zsize = zeroes_needed - zeroes_done;
3658        // Do some incremental zeroing on rawmem, in parallel with inits.
3659        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3660        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3661                                              zeroes_done, zeroes_needed,
3662                                              phase);
3663        zeroes_done = zeroes_needed;
3664        if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3665          do_zeroing = false;   // leave the hole, next time
3666      }
3667    }
3668
3669    // Collect the store and move on:
3670    st->set_req(MemNode::Memory, inits);
3671    inits = st;                 // put it on the linearized chain
3672    set_req(i, zmem);           // unhook from previous position
3673
3674    if (zeroes_done == st_off)
3675      zeroes_done = next_init_off;
3676
3677    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3678
3679    #ifdef ASSERT
3680    // Various order invariants.  Weaker than stores_are_sane because
3681    // a large constant tile can be filled in by smaller non-constant stores.
3682    assert(st_off >= last_init_off, "inits do not reverse");
3683    last_init_off = st_off;
3684    const Type* val = NULL;
3685    if (st_size >= BytesPerInt &&
3686        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3687        (int)val->basic_type() < (int)T_OBJECT) {
3688      assert(st_off >= last_tile_end, "tiles do not overlap");
3689      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3690      last_tile_end = MAX2(last_tile_end, next_init_off);
3691    } else {
3692      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3693      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3694      assert(st_off      >= last_init_end, "inits do not overlap");
3695      last_init_end = next_init_off;  // it's a non-tile
3696    }
3697    #endif //ASSERT
3698  }
3699
3700  remove_extra_zeroes();        // clear out all the zmems left over
3701  add_req(inits);
3702
3703  if (!ZeroTLAB) {
3704    // If anything remains to be zeroed, zero it all now.
3705    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3706    // if it is the last unused 4 bytes of an instance, forget about it
3707    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3708    if (zeroes_done + BytesPerLong >= size_limit) {
3709      assert(allocation() != NULL, "");
3710      if (allocation()->Opcode() == Op_Allocate) {
3711        Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3712        ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3713        if (zeroes_done == k->layout_helper())
3714          zeroes_done = size_limit;
3715      }
3716    }
3717    if (zeroes_done < size_limit) {
3718      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3719                                            zeroes_done, size_in_bytes, phase);
3720    }
3721  }
3722
3723  set_complete(phase);
3724  return rawmem;
3725}
3726
3727
3728#ifdef ASSERT
3729bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3730  if (is_complete())
3731    return true;                // stores could be anything at this point
3732  assert(allocation() != NULL, "must be present");
3733  intptr_t last_off = allocation()->minimum_header_size();
3734  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3735    Node* st = in(i);
3736    intptr_t st_off = get_store_offset(st, phase);
3737    if (st_off < 0)  continue;  // ignore dead garbage
3738    if (last_off > st_off) {
3739      tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3740      this->dump(2);
3741      assert(false, "ascending store offsets");
3742      return false;
3743    }
3744    last_off = st_off + st->as_Store()->memory_size();
3745  }
3746  return true;
3747}
3748#endif //ASSERT
3749
3750
3751
3752
3753//============================MergeMemNode=====================================
3754//
3755// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3756// contributing store or call operations.  Each contributor provides the memory
3757// state for a particular "alias type" (see Compile::alias_type).  For example,
3758// if a MergeMem has an input X for alias category #6, then any memory reference
3759// to alias category #6 may use X as its memory state input, as an exact equivalent
3760// to using the MergeMem as a whole.
3761//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3762//
3763// (Here, the <N> notation gives the index of the relevant adr_type.)
3764//
3765// In one special case (and more cases in the future), alias categories overlap.
3766// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3767// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3768// it is exactly equivalent to that state W:
3769//   MergeMem(<Bot>: W) <==> W
3770//
3771// Usually, the merge has more than one input.  In that case, where inputs
3772// overlap (i.e., one is Bot), the narrower alias type determines the memory
3773// state for that type, and the wider alias type (Bot) fills in everywhere else:
3774//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3775//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3776//
3777// A merge can take a "wide" memory state as one of its narrow inputs.
3778// This simply means that the merge observes out only the relevant parts of
3779// the wide input.  That is, wide memory states arriving at narrow merge inputs
3780// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3781//
3782// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3783// and that memory slices "leak through":
3784//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3785//
3786// But, in such a cascade, repeated memory slices can "block the leak":
3787//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3788//
3789// In the last example, Y is not part of the combined memory state of the
3790// outermost MergeMem.  The system must, of course, prevent unschedulable
3791// memory states from arising, so you can be sure that the state Y is somehow
3792// a precursor to state Y'.
3793//
3794//
3795// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3796// of each MergeMemNode array are exactly the numerical alias indexes, including
3797// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3798// Compile::alias_type (and kin) produce and manage these indexes.
3799//
3800// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3801// (Note that this provides quick access to the top node inside MergeMem methods,
3802// without the need to reach out via TLS to Compile::current.)
3803//
3804// As a consequence of what was just described, a MergeMem that represents a full
3805// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3806// containing all alias categories.
3807//
3808// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3809//
3810// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3811// a memory state for the alias type <N>, or else the top node, meaning that
3812// there is no particular input for that alias type.  Note that the length of
3813// a MergeMem is variable, and may be extended at any time to accommodate new
3814// memory states at larger alias indexes.  When merges grow, they are of course
3815// filled with "top" in the unused in() positions.
3816//
3817// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3818// (Top was chosen because it works smoothly with passes like GCM.)
3819//
3820// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3821// the type of random VM bits like TLS references.)  Since it is always the
3822// first non-Bot memory slice, some low-level loops use it to initialize an
3823// index variable:  for (i = AliasIdxRaw; i < req(); i++).
3824//
3825//
3826// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3827// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3828// the memory state for alias type <N>, or (if there is no particular slice at <N>,
3829// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3830// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3831// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3832//
3833// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3834// really that different from the other memory inputs.  An abbreviation called
3835// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3836//
3837//
3838// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3839// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3840// that "emerges though" the base memory will be marked as excluding the alias types
3841// of the other (narrow-memory) copies which "emerged through" the narrow edges:
3842//
3843//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3844//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3845//
3846// This strange "subtraction" effect is necessary to ensure IGVN convergence.
3847// (It is currently unimplemented.)  As you can see, the resulting merge is
3848// actually a disjoint union of memory states, rather than an overlay.
3849//
3850
3851//------------------------------MergeMemNode-----------------------------------
3852Node* MergeMemNode::make_empty_memory() {
3853  Node* empty_memory = (Node*) Compile::current()->top();
3854  assert(empty_memory->is_top(), "correct sentinel identity");
3855  return empty_memory;
3856}
3857
3858MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3859  init_class_id(Class_MergeMem);
3860  // all inputs are nullified in Node::Node(int)
3861  // set_input(0, NULL);  // no control input
3862
3863  // Initialize the edges uniformly to top, for starters.
3864  Node* empty_mem = make_empty_memory();
3865  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3866    init_req(i,empty_mem);
3867  }
3868  assert(empty_memory() == empty_mem, "");
3869
3870  if( new_base != NULL && new_base->is_MergeMem() ) {
3871    MergeMemNode* mdef = new_base->as_MergeMem();
3872    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3873    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3874      mms.set_memory(mms.memory2());
3875    }
3876    assert(base_memory() == mdef->base_memory(), "");
3877  } else {
3878    set_base_memory(new_base);
3879  }
3880}
3881
3882// Make a new, untransformed MergeMem with the same base as 'mem'.
3883// If mem is itself a MergeMem, populate the result with the same edges.
3884MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3885  return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3886}
3887
3888//------------------------------cmp--------------------------------------------
3889uint MergeMemNode::hash() const { return NO_HASH; }
3890uint MergeMemNode::cmp( const Node &n ) const {
3891  return (&n == this);          // Always fail except on self
3892}
3893
3894//------------------------------Identity---------------------------------------
3895Node* MergeMemNode::Identity(PhaseTransform *phase) {
3896  // Identity if this merge point does not record any interesting memory
3897  // disambiguations.
3898  Node* base_mem = base_memory();
3899  Node* empty_mem = empty_memory();
3900  if (base_mem != empty_mem) {  // Memory path is not dead?
3901    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3902      Node* mem = in(i);
3903      if (mem != empty_mem && mem != base_mem) {
3904        return this;            // Many memory splits; no change
3905      }
3906    }
3907  }
3908  return base_mem;              // No memory splits; ID on the one true input
3909}
3910
3911//------------------------------Ideal------------------------------------------
3912// This method is invoked recursively on chains of MergeMem nodes
3913Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3914  // Remove chain'd MergeMems
3915  //
3916  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3917  // relative to the "in(Bot)".  Since we are patching both at the same time,
3918  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3919  // but rewrite each "in(i)" relative to the new "in(Bot)".
3920  Node *progress = NULL;
3921
3922
3923  Node* old_base = base_memory();
3924  Node* empty_mem = empty_memory();
3925  if (old_base == empty_mem)
3926    return NULL; // Dead memory path.
3927
3928  MergeMemNode* old_mbase;
3929  if (old_base != NULL && old_base->is_MergeMem())
3930    old_mbase = old_base->as_MergeMem();
3931  else
3932    old_mbase = NULL;
3933  Node* new_base = old_base;
3934
3935  // simplify stacked MergeMems in base memory
3936  if (old_mbase)  new_base = old_mbase->base_memory();
3937
3938  // the base memory might contribute new slices beyond my req()
3939  if (old_mbase)  grow_to_match(old_mbase);
3940
3941  // Look carefully at the base node if it is a phi.
3942  PhiNode* phi_base;
3943  if (new_base != NULL && new_base->is_Phi())
3944    phi_base = new_base->as_Phi();
3945  else
3946    phi_base = NULL;
3947
3948  Node*    phi_reg = NULL;
3949  uint     phi_len = (uint)-1;
3950  if (phi_base != NULL && !phi_base->is_copy()) {
3951    // do not examine phi if degraded to a copy
3952    phi_reg = phi_base->region();
3953    phi_len = phi_base->req();
3954    // see if the phi is unfinished
3955    for (uint i = 1; i < phi_len; i++) {
3956      if (phi_base->in(i) == NULL) {
3957        // incomplete phi; do not look at it yet!
3958        phi_reg = NULL;
3959        phi_len = (uint)-1;
3960        break;
3961      }
3962    }
3963  }
3964
3965  // Note:  We do not call verify_sparse on entry, because inputs
3966  // can normalize to the base_memory via subsume_node or similar
3967  // mechanisms.  This method repairs that damage.
3968
3969  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3970
3971  // Look at each slice.
3972  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3973    Node* old_in = in(i);
3974    // calculate the old memory value
3975    Node* old_mem = old_in;
3976    if (old_mem == empty_mem)  old_mem = old_base;
3977    assert(old_mem == memory_at(i), "");
3978
3979    // maybe update (reslice) the old memory value
3980
3981    // simplify stacked MergeMems
3982    Node* new_mem = old_mem;
3983    MergeMemNode* old_mmem;
3984    if (old_mem != NULL && old_mem->is_MergeMem())
3985      old_mmem = old_mem->as_MergeMem();
3986    else
3987      old_mmem = NULL;
3988    if (old_mmem == this) {
3989      // This can happen if loops break up and safepoints disappear.
3990      // A merge of BotPtr (default) with a RawPtr memory derived from a
3991      // safepoint can be rewritten to a merge of the same BotPtr with
3992      // the BotPtr phi coming into the loop.  If that phi disappears
3993      // also, we can end up with a self-loop of the mergemem.
3994      // In general, if loops degenerate and memory effects disappear,
3995      // a mergemem can be left looking at itself.  This simply means
3996      // that the mergemem's default should be used, since there is
3997      // no longer any apparent effect on this slice.
3998      // Note: If a memory slice is a MergeMem cycle, it is unreachable
3999      //       from start.  Update the input to TOP.
4000      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4001    }
4002    else if (old_mmem != NULL) {
4003      new_mem = old_mmem->memory_at(i);
4004    }
4005    // else preceding memory was not a MergeMem
4006
4007    // replace equivalent phis (unfortunately, they do not GVN together)
4008    if (new_mem != NULL && new_mem != new_base &&
4009        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4010      if (new_mem->is_Phi()) {
4011        PhiNode* phi_mem = new_mem->as_Phi();
4012        for (uint i = 1; i < phi_len; i++) {
4013          if (phi_base->in(i) != phi_mem->in(i)) {
4014            phi_mem = NULL;
4015            break;
4016          }
4017        }
4018        if (phi_mem != NULL) {
4019          // equivalent phi nodes; revert to the def
4020          new_mem = new_base;
4021        }
4022      }
4023    }
4024
4025    // maybe store down a new value
4026    Node* new_in = new_mem;
4027    if (new_in == new_base)  new_in = empty_mem;
4028
4029    if (new_in != old_in) {
4030      // Warning:  Do not combine this "if" with the previous "if"
4031      // A memory slice might have be be rewritten even if it is semantically
4032      // unchanged, if the base_memory value has changed.
4033      set_req(i, new_in);
4034      progress = this;          // Report progress
4035    }
4036  }
4037
4038  if (new_base != old_base) {
4039    set_req(Compile::AliasIdxBot, new_base);
4040    // Don't use set_base_memory(new_base), because we need to update du.
4041    assert(base_memory() == new_base, "");
4042    progress = this;
4043  }
4044
4045  if( base_memory() == this ) {
4046    // a self cycle indicates this memory path is dead
4047    set_req(Compile::AliasIdxBot, empty_mem);
4048  }
4049
4050  // Resolve external cycles by calling Ideal on a MergeMem base_memory
4051  // Recursion must occur after the self cycle check above
4052  if( base_memory()->is_MergeMem() ) {
4053    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4054    Node *m = phase->transform(new_mbase);  // Rollup any cycles
4055    if( m != NULL && (m->is_top() ||
4056        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4057      // propagate rollup of dead cycle to self
4058      set_req(Compile::AliasIdxBot, empty_mem);
4059    }
4060  }
4061
4062  if( base_memory() == empty_mem ) {
4063    progress = this;
4064    // Cut inputs during Parse phase only.
4065    // During Optimize phase a dead MergeMem node will be subsumed by Top.
4066    if( !can_reshape ) {
4067      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4068        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4069      }
4070    }
4071  }
4072
4073  if( !progress && base_memory()->is_Phi() && can_reshape ) {
4074    // Check if PhiNode::Ideal's "Split phis through memory merges"
4075    // transform should be attempted. Look for this->phi->this cycle.
4076    uint merge_width = req();
4077    if (merge_width > Compile::AliasIdxRaw) {
4078      PhiNode* phi = base_memory()->as_Phi();
4079      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4080        if (phi->in(i) == this) {
4081          phase->is_IterGVN()->_worklist.push(phi);
4082          break;
4083        }
4084      }
4085    }
4086  }
4087
4088  assert(progress || verify_sparse(), "please, no dups of base");
4089  return progress;
4090}
4091
4092//-------------------------set_base_memory-------------------------------------
4093void MergeMemNode::set_base_memory(Node *new_base) {
4094  Node* empty_mem = empty_memory();
4095  set_req(Compile::AliasIdxBot, new_base);
4096  assert(memory_at(req()) == new_base, "must set default memory");
4097  // Clear out other occurrences of new_base:
4098  if (new_base != empty_mem) {
4099    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4100      if (in(i) == new_base)  set_req(i, empty_mem);
4101    }
4102  }
4103}
4104
4105//------------------------------out_RegMask------------------------------------
4106const RegMask &MergeMemNode::out_RegMask() const {
4107  return RegMask::Empty;
4108}
4109
4110//------------------------------dump_spec--------------------------------------
4111#ifndef PRODUCT
4112void MergeMemNode::dump_spec(outputStream *st) const {
4113  st->print(" {");
4114  Node* base_mem = base_memory();
4115  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4116    Node* mem = memory_at(i);
4117    if (mem == base_mem) { st->print(" -"); continue; }
4118    st->print( " N%d:", mem->_idx );
4119    Compile::current()->get_adr_type(i)->dump_on(st);
4120  }
4121  st->print(" }");
4122}
4123#endif // !PRODUCT
4124
4125
4126#ifdef ASSERT
4127static bool might_be_same(Node* a, Node* b) {
4128  if (a == b)  return true;
4129  if (!(a->is_Phi() || b->is_Phi()))  return false;
4130  // phis shift around during optimization
4131  return true;  // pretty stupid...
4132}
4133
4134// verify a narrow slice (either incoming or outgoing)
4135static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4136  if (!VerifyAliases)       return;  // don't bother to verify unless requested
4137  if (is_error_reported())  return;  // muzzle asserts when debugging an error
4138  if (Node::in_dump())      return;  // muzzle asserts when printing
4139  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4140  assert(n != NULL, "");
4141  // Elide intervening MergeMem's
4142  while (n->is_MergeMem()) {
4143    n = n->as_MergeMem()->memory_at(alias_idx);
4144  }
4145  Compile* C = Compile::current();
4146  const TypePtr* n_adr_type = n->adr_type();
4147  if (n == m->empty_memory()) {
4148    // Implicit copy of base_memory()
4149  } else if (n_adr_type != TypePtr::BOTTOM) {
4150    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4151    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4152  } else {
4153    // A few places like make_runtime_call "know" that VM calls are narrow,
4154    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4155    bool expected_wide_mem = false;
4156    if (n == m->base_memory()) {
4157      expected_wide_mem = true;
4158    } else if (alias_idx == Compile::AliasIdxRaw ||
4159               n == m->memory_at(Compile::AliasIdxRaw)) {
4160      expected_wide_mem = true;
4161    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4162      // memory can "leak through" calls on channels that
4163      // are write-once.  Allow this also.
4164      expected_wide_mem = true;
4165    }
4166    assert(expected_wide_mem, "expected narrow slice replacement");
4167  }
4168}
4169#else // !ASSERT
4170#define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
4171#endif
4172
4173
4174//-----------------------------memory_at---------------------------------------
4175Node* MergeMemNode::memory_at(uint alias_idx) const {
4176  assert(alias_idx >= Compile::AliasIdxRaw ||
4177         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4178         "must avoid base_memory and AliasIdxTop");
4179
4180  // Otherwise, it is a narrow slice.
4181  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4182  Compile *C = Compile::current();
4183  if (is_empty_memory(n)) {
4184    // the array is sparse; empty slots are the "top" node
4185    n = base_memory();
4186    assert(Node::in_dump()
4187           || n == NULL || n->bottom_type() == Type::TOP
4188           || n->adr_type() == NULL // address is TOP
4189           || n->adr_type() == TypePtr::BOTTOM
4190           || n->adr_type() == TypeRawPtr::BOTTOM
4191           || Compile::current()->AliasLevel() == 0,
4192           "must be a wide memory");
4193    // AliasLevel == 0 if we are organizing the memory states manually.
4194    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4195  } else {
4196    // make sure the stored slice is sane
4197    #ifdef ASSERT
4198    if (is_error_reported() || Node::in_dump()) {
4199    } else if (might_be_same(n, base_memory())) {
4200      // Give it a pass:  It is a mostly harmless repetition of the base.
4201      // This can arise normally from node subsumption during optimization.
4202    } else {
4203      verify_memory_slice(this, alias_idx, n);
4204    }
4205    #endif
4206  }
4207  return n;
4208}
4209
4210//---------------------------set_memory_at-------------------------------------
4211void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4212  verify_memory_slice(this, alias_idx, n);
4213  Node* empty_mem = empty_memory();
4214  if (n == base_memory())  n = empty_mem;  // collapse default
4215  uint need_req = alias_idx+1;
4216  if (req() < need_req) {
4217    if (n == empty_mem)  return;  // already the default, so do not grow me
4218    // grow the sparse array
4219    do {
4220      add_req(empty_mem);
4221    } while (req() < need_req);
4222  }
4223  set_req( alias_idx, n );
4224}
4225
4226
4227
4228//--------------------------iteration_setup------------------------------------
4229void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4230  if (other != NULL) {
4231    grow_to_match(other);
4232    // invariant:  the finite support of mm2 is within mm->req()
4233    #ifdef ASSERT
4234    for (uint i = req(); i < other->req(); i++) {
4235      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4236    }
4237    #endif
4238  }
4239  // Replace spurious copies of base_memory by top.
4240  Node* base_mem = base_memory();
4241  if (base_mem != NULL && !base_mem->is_top()) {
4242    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4243      if (in(i) == base_mem)
4244        set_req(i, empty_memory());
4245    }
4246  }
4247}
4248
4249//---------------------------grow_to_match-------------------------------------
4250void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4251  Node* empty_mem = empty_memory();
4252  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4253  // look for the finite support of the other memory
4254  for (uint i = other->req(); --i >= req(); ) {
4255    if (other->in(i) != empty_mem) {
4256      uint new_len = i+1;
4257      while (req() < new_len)  add_req(empty_mem);
4258      break;
4259    }
4260  }
4261}
4262
4263//---------------------------verify_sparse-------------------------------------
4264#ifndef PRODUCT
4265bool MergeMemNode::verify_sparse() const {
4266  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4267  Node* base_mem = base_memory();
4268  // The following can happen in degenerate cases, since empty==top.
4269  if (is_empty_memory(base_mem))  return true;
4270  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4271    assert(in(i) != NULL, "sane slice");
4272    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4273  }
4274  return true;
4275}
4276
4277bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4278  Node* n;
4279  n = mm->in(idx);
4280  if (mem == n)  return true;  // might be empty_memory()
4281  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4282  if (mem == n)  return true;
4283  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4284    if (mem == n)  return true;
4285    if (n == NULL)  break;
4286  }
4287  return false;
4288}
4289#endif // !PRODUCT
4290