memnode.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_memnode.cpp.incl"
31
32static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
33
34//=============================================================================
35uint MemNode::size_of() const { return sizeof(*this); }
36
37const TypePtr *MemNode::adr_type() const {
38  Node* adr = in(Address);
39  const TypePtr* cross_check = NULL;
40  DEBUG_ONLY(cross_check = _adr_type);
41  return calculate_adr_type(adr->bottom_type(), cross_check);
42}
43
44#ifndef PRODUCT
45void MemNode::dump_spec(outputStream *st) const {
46  if (in(Address) == NULL)  return; // node is dead
47#ifndef ASSERT
48  // fake the missing field
49  const TypePtr* _adr_type = NULL;
50  if (in(Address) != NULL)
51    _adr_type = in(Address)->bottom_type()->isa_ptr();
52#endif
53  dump_adr_type(this, _adr_type, st);
54
55  Compile* C = Compile::current();
56  if( C->alias_type(_adr_type)->is_volatile() )
57    st->print(" Volatile!");
58}
59
60void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
61  st->print(" @");
62  if (adr_type == NULL) {
63    st->print("NULL");
64  } else {
65    adr_type->dump_on(st);
66    Compile* C = Compile::current();
67    Compile::AliasType* atp = NULL;
68    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
69    if (atp == NULL)
70      st->print(", idx=?\?;");
71    else if (atp->index() == Compile::AliasIdxBot)
72      st->print(", idx=Bot;");
73    else if (atp->index() == Compile::AliasIdxTop)
74      st->print(", idx=Top;");
75    else if (atp->index() == Compile::AliasIdxRaw)
76      st->print(", idx=Raw;");
77    else {
78      ciField* field = atp->field();
79      if (field) {
80        st->print(", name=");
81        field->print_name_on(st);
82      }
83      st->print(", idx=%d;", atp->index());
84    }
85  }
86}
87
88extern void print_alias_types();
89
90#endif
91
92Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
93  const TypeOopPtr *tinst = t_adr->isa_oopptr();
94  if (tinst == NULL || !tinst->is_instance_field())
95    return mchain;  // don't try to optimize non-instance types
96  uint instance_id = tinst->instance_id();
97  Node *prev = NULL;
98  Node *result = mchain;
99  while (prev != result) {
100    prev = result;
101    // skip over a call which does not affect this memory slice
102    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
103      Node *proj_in = result->in(0);
104      if (proj_in->is_Call()) {
105        CallNode *call = proj_in->as_Call();
106        if (!call->may_modify(t_adr, phase)) {
107          result = call->in(TypeFunc::Memory);
108        }
109      } else if (proj_in->is_Initialize()) {
110        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
111        // Stop if this is the initialization for the object instance which
112        // which contains this memory slice, otherwise skip over it.
113        if (alloc != NULL && alloc->_idx != instance_id) {
114          result = proj_in->in(TypeFunc::Memory);
115        }
116      } else if (proj_in->is_MemBar()) {
117        result = proj_in->in(TypeFunc::Memory);
118      }
119    } else if (result->is_MergeMem()) {
120      result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
121    }
122  }
123  return result;
124}
125
126Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
127  const TypeOopPtr *t_oop = t_adr->isa_oopptr();
128  bool is_instance = (t_oop != NULL) && t_oop->is_instance_field();
129  PhaseIterGVN *igvn = phase->is_IterGVN();
130  Node *result = mchain;
131  result = optimize_simple_memory_chain(result, t_adr, phase);
132  if (is_instance && igvn != NULL  && result->is_Phi()) {
133    PhiNode *mphi = result->as_Phi();
134    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
135    const TypePtr *t = mphi->adr_type();
136    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
137        t->isa_oopptr() && !t->is_oopptr()->is_instance() &&
138        t->is_oopptr()->cast_to_instance(t_oop->instance_id()) == t_oop) {
139      // clone the Phi with our address type
140      result = mphi->split_out_instance(t_adr, igvn);
141    } else {
142      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
143    }
144  }
145  return result;
146}
147
148static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
149  uint alias_idx = phase->C->get_alias_index(tp);
150  Node *mem = mmem;
151#ifdef ASSERT
152  {
153    // Check that current type is consistent with the alias index used during graph construction
154    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
155    bool consistent =  adr_check == NULL || adr_check->empty() ||
156                       phase->C->must_alias(adr_check, alias_idx );
157    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
158    if( !consistent && adr_check != NULL && !adr_check->empty() &&
159               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
160        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
161        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
162          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
163          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
164      // don't assert if it is dead code.
165      consistent = true;
166    }
167    if( !consistent ) {
168      st->print("alias_idx==%d, adr_check==", alias_idx);
169      if( adr_check == NULL ) {
170        st->print("NULL");
171      } else {
172        adr_check->dump();
173      }
174      st->cr();
175      print_alias_types();
176      assert(consistent, "adr_check must match alias idx");
177    }
178  }
179#endif
180  // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
181  // means an array I have not precisely typed yet.  Do not do any
182  // alias stuff with it any time soon.
183  const TypeOopPtr *tinst = tp->isa_oopptr();
184  if( tp->base() != Type::AnyPtr &&
185      !(tinst &&
186        tinst->klass()->is_java_lang_Object() &&
187        tinst->offset() == Type::OffsetBot) ) {
188    // compress paths and change unreachable cycles to TOP
189    // If not, we can update the input infinitely along a MergeMem cycle
190    // Equivalent code in PhiNode::Ideal
191    Node* m  = phase->transform(mmem);
192    // If tranformed to a MergeMem, get the desired slice
193    // Otherwise the returned node represents memory for every slice
194    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
195    // Update input if it is progress over what we have now
196  }
197  return mem;
198}
199
200//--------------------------Ideal_common---------------------------------------
201// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
202// Unhook non-raw memories from complete (macro-expanded) initializations.
203Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
204  // If our control input is a dead region, kill all below the region
205  Node *ctl = in(MemNode::Control);
206  if (ctl && remove_dead_region(phase, can_reshape))
207    return this;
208
209  // Ignore if memory is dead, or self-loop
210  Node *mem = in(MemNode::Memory);
211  if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
212  assert( mem != this, "dead loop in MemNode::Ideal" );
213
214  Node *address = in(MemNode::Address);
215  const Type *t_adr = phase->type( address );
216  if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
217
218  // Avoid independent memory operations
219  Node* old_mem = mem;
220
221  // The code which unhooks non-raw memories from complete (macro-expanded)
222  // initializations was removed. After macro-expansion all stores catched
223  // by Initialize node became raw stores and there is no information
224  // which memory slices they modify. So it is unsafe to move any memory
225  // operation above these stores. Also in most cases hooked non-raw memories
226  // were already unhooked by using information from detect_ptr_independence()
227  // and find_previous_store().
228
229  if (mem->is_MergeMem()) {
230    MergeMemNode* mmem = mem->as_MergeMem();
231    const TypePtr *tp = t_adr->is_ptr();
232
233    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
234  }
235
236  if (mem != old_mem) {
237    set_req(MemNode::Memory, mem);
238    return this;
239  }
240
241  // let the subclass continue analyzing...
242  return NULL;
243}
244
245// Helper function for proving some simple control dominations.
246// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
247// Already assumes that 'dom' is available at 'sub', and that 'sub'
248// is not a constant (dominated by the method's StartNode).
249// Used by MemNode::find_previous_store to prove that the
250// control input of a memory operation predates (dominates)
251// an allocation it wants to look past.
252bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
253  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
254    return false; // Conservative answer for dead code
255
256  // Check 'dom'. Skip Proj and CatchProj nodes.
257  dom = dom->find_exact_control(dom);
258  if (dom == NULL || dom->is_top())
259    return false; // Conservative answer for dead code
260
261  if (dom == sub) {
262    // For the case when, for example, 'sub' is Initialize and the original
263    // 'dom' is Proj node of the 'sub'.
264    return false;
265  }
266
267  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
268    return true;
269
270  // 'dom' dominates 'sub' if its control edge and control edges
271  // of all its inputs dominate or equal to sub's control edge.
272
273  // Currently 'sub' is either Allocate, Initialize or Start nodes.
274  // Or Region for the check in LoadNode::Ideal();
275  // 'sub' should have sub->in(0) != NULL.
276  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
277         sub->is_Region(), "expecting only these nodes");
278
279  // Get control edge of 'sub'.
280  Node* orig_sub = sub;
281  sub = sub->find_exact_control(sub->in(0));
282  if (sub == NULL || sub->is_top())
283    return false; // Conservative answer for dead code
284
285  assert(sub->is_CFG(), "expecting control");
286
287  if (sub == dom)
288    return true;
289
290  if (sub->is_Start() || sub->is_Root())
291    return false;
292
293  {
294    // Check all control edges of 'dom'.
295
296    ResourceMark rm;
297    Arena* arena = Thread::current()->resource_area();
298    Node_List nlist(arena);
299    Unique_Node_List dom_list(arena);
300
301    dom_list.push(dom);
302    bool only_dominating_controls = false;
303
304    for (uint next = 0; next < dom_list.size(); next++) {
305      Node* n = dom_list.at(next);
306      if (n == orig_sub)
307        return false; // One of dom's inputs dominated by sub.
308      if (!n->is_CFG() && n->pinned()) {
309        // Check only own control edge for pinned non-control nodes.
310        n = n->find_exact_control(n->in(0));
311        if (n == NULL || n->is_top())
312          return false; // Conservative answer for dead code
313        assert(n->is_CFG(), "expecting control");
314        dom_list.push(n);
315      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
316        only_dominating_controls = true;
317      } else if (n->is_CFG()) {
318        if (n->dominates(sub, nlist))
319          only_dominating_controls = true;
320        else
321          return false;
322      } else {
323        // First, own control edge.
324        Node* m = n->find_exact_control(n->in(0));
325        if (m != NULL) {
326          if (m->is_top())
327            return false; // Conservative answer for dead code
328          dom_list.push(m);
329        }
330        // Now, the rest of edges.
331        uint cnt = n->req();
332        for (uint i = 1; i < cnt; i++) {
333          m = n->find_exact_control(n->in(i));
334          if (m == NULL || m->is_top())
335            continue;
336          dom_list.push(m);
337        }
338      }
339    }
340    return only_dominating_controls;
341  }
342}
343
344//---------------------detect_ptr_independence---------------------------------
345// Used by MemNode::find_previous_store to prove that two base
346// pointers are never equal.
347// The pointers are accompanied by their associated allocations,
348// if any, which have been previously discovered by the caller.
349bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
350                                      Node* p2, AllocateNode* a2,
351                                      PhaseTransform* phase) {
352  // Attempt to prove that these two pointers cannot be aliased.
353  // They may both manifestly be allocations, and they should differ.
354  // Or, if they are not both allocations, they can be distinct constants.
355  // Otherwise, one is an allocation and the other a pre-existing value.
356  if (a1 == NULL && a2 == NULL) {           // neither an allocation
357    return (p1 != p2) && p1->is_Con() && p2->is_Con();
358  } else if (a1 != NULL && a2 != NULL) {    // both allocations
359    return (a1 != a2);
360  } else if (a1 != NULL) {                  // one allocation a1
361    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
362    return all_controls_dominate(p2, a1);
363  } else { //(a2 != NULL)                   // one allocation a2
364    return all_controls_dominate(p1, a2);
365  }
366  return false;
367}
368
369
370// The logic for reordering loads and stores uses four steps:
371// (a) Walk carefully past stores and initializations which we
372//     can prove are independent of this load.
373// (b) Observe that the next memory state makes an exact match
374//     with self (load or store), and locate the relevant store.
375// (c) Ensure that, if we were to wire self directly to the store,
376//     the optimizer would fold it up somehow.
377// (d) Do the rewiring, and return, depending on some other part of
378//     the optimizer to fold up the load.
379// This routine handles steps (a) and (b).  Steps (c) and (d) are
380// specific to loads and stores, so they are handled by the callers.
381// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
382//
383Node* MemNode::find_previous_store(PhaseTransform* phase) {
384  Node*         ctrl   = in(MemNode::Control);
385  Node*         adr    = in(MemNode::Address);
386  intptr_t      offset = 0;
387  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
388  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
389
390  if (offset == Type::OffsetBot)
391    return NULL;            // cannot unalias unless there are precise offsets
392
393  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
394
395  intptr_t size_in_bytes = memory_size();
396
397  Node* mem = in(MemNode::Memory);   // start searching here...
398
399  int cnt = 50;             // Cycle limiter
400  for (;;) {                // While we can dance past unrelated stores...
401    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
402
403    if (mem->is_Store()) {
404      Node* st_adr = mem->in(MemNode::Address);
405      intptr_t st_offset = 0;
406      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
407      if (st_base == NULL)
408        break;              // inscrutable pointer
409      if (st_offset != offset && st_offset != Type::OffsetBot) {
410        const int MAX_STORE = BytesPerLong;
411        if (st_offset >= offset + size_in_bytes ||
412            st_offset <= offset - MAX_STORE ||
413            st_offset <= offset - mem->as_Store()->memory_size()) {
414          // Success:  The offsets are provably independent.
415          // (You may ask, why not just test st_offset != offset and be done?
416          // The answer is that stores of different sizes can co-exist
417          // in the same sequence of RawMem effects.  We sometimes initialize
418          // a whole 'tile' of array elements with a single jint or jlong.)
419          mem = mem->in(MemNode::Memory);
420          continue;           // (a) advance through independent store memory
421        }
422      }
423      if (st_base != base &&
424          detect_ptr_independence(base, alloc,
425                                  st_base,
426                                  AllocateNode::Ideal_allocation(st_base, phase),
427                                  phase)) {
428        // Success:  The bases are provably independent.
429        mem = mem->in(MemNode::Memory);
430        continue;           // (a) advance through independent store memory
431      }
432
433      // (b) At this point, if the bases or offsets do not agree, we lose,
434      // since we have not managed to prove 'this' and 'mem' independent.
435      if (st_base == base && st_offset == offset) {
436        return mem;         // let caller handle steps (c), (d)
437      }
438
439    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
440      InitializeNode* st_init = mem->in(0)->as_Initialize();
441      AllocateNode*  st_alloc = st_init->allocation();
442      if (st_alloc == NULL)
443        break;              // something degenerated
444      bool known_identical = false;
445      bool known_independent = false;
446      if (alloc == st_alloc)
447        known_identical = true;
448      else if (alloc != NULL)
449        known_independent = true;
450      else if (all_controls_dominate(this, st_alloc))
451        known_independent = true;
452
453      if (known_independent) {
454        // The bases are provably independent: Either they are
455        // manifestly distinct allocations, or else the control
456        // of this load dominates the store's allocation.
457        int alias_idx = phase->C->get_alias_index(adr_type());
458        if (alias_idx == Compile::AliasIdxRaw) {
459          mem = st_alloc->in(TypeFunc::Memory);
460        } else {
461          mem = st_init->memory(alias_idx);
462        }
463        continue;           // (a) advance through independent store memory
464      }
465
466      // (b) at this point, if we are not looking at a store initializing
467      // the same allocation we are loading from, we lose.
468      if (known_identical) {
469        // From caller, can_see_stored_value will consult find_captured_store.
470        return mem;         // let caller handle steps (c), (d)
471      }
472
473    } else if (addr_t != NULL && addr_t->is_instance_field()) {
474      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
475      if (mem->is_Proj() && mem->in(0)->is_Call()) {
476        CallNode *call = mem->in(0)->as_Call();
477        if (!call->may_modify(addr_t, phase)) {
478          mem = call->in(TypeFunc::Memory);
479          continue;         // (a) advance through independent call memory
480        }
481      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
482        mem = mem->in(0)->in(TypeFunc::Memory);
483        continue;           // (a) advance through independent MemBar memory
484      } else if (mem->is_MergeMem()) {
485        int alias_idx = phase->C->get_alias_index(adr_type());
486        mem = mem->as_MergeMem()->memory_at(alias_idx);
487        continue;           // (a) advance through independent MergeMem memory
488      }
489    }
490
491    // Unless there is an explicit 'continue', we must bail out here,
492    // because 'mem' is an inscrutable memory state (e.g., a call).
493    break;
494  }
495
496  return NULL;              // bail out
497}
498
499//----------------------calculate_adr_type-------------------------------------
500// Helper function.  Notices when the given type of address hits top or bottom.
501// Also, asserts a cross-check of the type against the expected address type.
502const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
503  if (t == Type::TOP)  return NULL; // does not touch memory any more?
504  #ifdef PRODUCT
505  cross_check = NULL;
506  #else
507  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
508  #endif
509  const TypePtr* tp = t->isa_ptr();
510  if (tp == NULL) {
511    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
512    return TypePtr::BOTTOM;           // touches lots of memory
513  } else {
514    #ifdef ASSERT
515    // %%%% [phh] We don't check the alias index if cross_check is
516    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
517    if (cross_check != NULL &&
518        cross_check != TypePtr::BOTTOM &&
519        cross_check != TypeRawPtr::BOTTOM) {
520      // Recheck the alias index, to see if it has changed (due to a bug).
521      Compile* C = Compile::current();
522      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
523             "must stay in the original alias category");
524      // The type of the address must be contained in the adr_type,
525      // disregarding "null"-ness.
526      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
527      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
528      assert(cross_check->meet(tp_notnull) == cross_check,
529             "real address must not escape from expected memory type");
530    }
531    #endif
532    return tp;
533  }
534}
535
536//------------------------adr_phi_is_loop_invariant----------------------------
537// A helper function for Ideal_DU_postCCP to check if a Phi in a counted
538// loop is loop invariant. Make a quick traversal of Phi and associated
539// CastPP nodes, looking to see if they are a closed group within the loop.
540bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
541  // The idea is that the phi-nest must boil down to only CastPP nodes
542  // with the same data. This implies that any path into the loop already
543  // includes such a CastPP, and so the original cast, whatever its input,
544  // must be covered by an equivalent cast, with an earlier control input.
545  ResourceMark rm;
546
547  // The loop entry input of the phi should be the unique dominating
548  // node for every Phi/CastPP in the loop.
549  Unique_Node_List closure;
550  closure.push(adr_phi->in(LoopNode::EntryControl));
551
552  // Add the phi node and the cast to the worklist.
553  Unique_Node_List worklist;
554  worklist.push(adr_phi);
555  if( cast != NULL ){
556    if( !cast->is_ConstraintCast() ) return false;
557    worklist.push(cast);
558  }
559
560  // Begin recursive walk of phi nodes.
561  while( worklist.size() ){
562    // Take a node off the worklist
563    Node *n = worklist.pop();
564    if( !closure.member(n) ){
565      // Add it to the closure.
566      closure.push(n);
567      // Make a sanity check to ensure we don't waste too much time here.
568      if( closure.size() > 20) return false;
569      // This node is OK if:
570      //  - it is a cast of an identical value
571      //  - or it is a phi node (then we add its inputs to the worklist)
572      // Otherwise, the node is not OK, and we presume the cast is not invariant
573      if( n->is_ConstraintCast() ){
574        worklist.push(n->in(1));
575      } else if( n->is_Phi() ) {
576        for( uint i = 1; i < n->req(); i++ ) {
577          worklist.push(n->in(i));
578        }
579      } else {
580        return false;
581      }
582    }
583  }
584
585  // Quit when the worklist is empty, and we've found no offending nodes.
586  return true;
587}
588
589//------------------------------Ideal_DU_postCCP-------------------------------
590// Find any cast-away of null-ness and keep its control.  Null cast-aways are
591// going away in this pass and we need to make this memory op depend on the
592// gating null check.
593Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
594  return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
595}
596
597// I tried to leave the CastPP's in.  This makes the graph more accurate in
598// some sense; we get to keep around the knowledge that an oop is not-null
599// after some test.  Alas, the CastPP's interfere with GVN (some values are
600// the regular oop, some are the CastPP of the oop, all merge at Phi's which
601// cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
602// some of the more trivial cases in the optimizer.  Removing more useless
603// Phi's started allowing Loads to illegally float above null checks.  I gave
604// up on this approach.  CNC 10/20/2000
605// This static method may be called not from MemNode (EncodePNode calls it).
606// Only the control edge of the node 'n' might be updated.
607Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
608  Node *skipped_cast = NULL;
609  // Need a null check?  Regular static accesses do not because they are
610  // from constant addresses.  Array ops are gated by the range check (which
611  // always includes a NULL check).  Just check field ops.
612  if( n->in(MemNode::Control) == NULL ) {
613    // Scan upwards for the highest location we can place this memory op.
614    while( true ) {
615      switch( adr->Opcode() ) {
616
617      case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
618        adr = adr->in(AddPNode::Base);
619        continue;
620
621      case Op_DecodeN:         // No change to NULL-ness, so peek thru
622        adr = adr->in(1);
623        continue;
624
625      case Op_CastPP:
626        // If the CastPP is useless, just peek on through it.
627        if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
628          // Remember the cast that we've peeked though. If we peek
629          // through more than one, then we end up remembering the highest
630          // one, that is, if in a loop, the one closest to the top.
631          skipped_cast = adr;
632          adr = adr->in(1);
633          continue;
634        }
635        // CastPP is going away in this pass!  We need this memory op to be
636        // control-dependent on the test that is guarding the CastPP.
637        ccp->hash_delete(n);
638        n->set_req(MemNode::Control, adr->in(0));
639        ccp->hash_insert(n);
640        return n;
641
642      case Op_Phi:
643        // Attempt to float above a Phi to some dominating point.
644        if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
645          // If we've already peeked through a Cast (which could have set the
646          // control), we can't float above a Phi, because the skipped Cast
647          // may not be loop invariant.
648          if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
649            adr = adr->in(1);
650            continue;
651          }
652        }
653
654        // Intentional fallthrough!
655
656        // No obvious dominating point.  The mem op is pinned below the Phi
657        // by the Phi itself.  If the Phi goes away (no true value is merged)
658        // then the mem op can float, but not indefinitely.  It must be pinned
659        // behind the controls leading to the Phi.
660      case Op_CheckCastPP:
661        // These usually stick around to change address type, however a
662        // useless one can be elided and we still need to pick up a control edge
663        if (adr->in(0) == NULL) {
664          // This CheckCastPP node has NO control and is likely useless. But we
665          // need check further up the ancestor chain for a control input to keep
666          // the node in place. 4959717.
667          skipped_cast = adr;
668          adr = adr->in(1);
669          continue;
670        }
671        ccp->hash_delete(n);
672        n->set_req(MemNode::Control, adr->in(0));
673        ccp->hash_insert(n);
674        return n;
675
676        // List of "safe" opcodes; those that implicitly block the memory
677        // op below any null check.
678      case Op_CastX2P:          // no null checks on native pointers
679      case Op_Parm:             // 'this' pointer is not null
680      case Op_LoadP:            // Loading from within a klass
681      case Op_LoadN:            // Loading from within a klass
682      case Op_LoadKlass:        // Loading from within a klass
683      case Op_LoadNKlass:       // Loading from within a klass
684      case Op_ConP:             // Loading from a klass
685      case Op_ConN:             // Loading from a klass
686      case Op_CreateEx:         // Sucking up the guts of an exception oop
687      case Op_Con:              // Reading from TLS
688      case Op_CMoveP:           // CMoveP is pinned
689      case Op_CMoveN:           // CMoveN is pinned
690        break;                  // No progress
691
692      case Op_Proj:             // Direct call to an allocation routine
693      case Op_SCMemProj:        // Memory state from store conditional ops
694#ifdef ASSERT
695        {
696          assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
697          const Node* call = adr->in(0);
698          if (call->is_CallJava()) {
699            const CallJavaNode* call_java = call->as_CallJava();
700            const TypeTuple *r = call_java->tf()->range();
701            assert(r->cnt() > TypeFunc::Parms, "must return value");
702            const Type* ret_type = r->field_at(TypeFunc::Parms);
703            assert(ret_type && ret_type->isa_ptr(), "must return pointer");
704            // We further presume that this is one of
705            // new_instance_Java, new_array_Java, or
706            // the like, but do not assert for this.
707          } else if (call->is_Allocate()) {
708            // similar case to new_instance_Java, etc.
709          } else if (!call->is_CallLeaf()) {
710            // Projections from fetch_oop (OSR) are allowed as well.
711            ShouldNotReachHere();
712          }
713        }
714#endif
715        break;
716      default:
717        ShouldNotReachHere();
718      }
719      break;
720    }
721  }
722
723  return  NULL;               // No progress
724}
725
726
727//=============================================================================
728uint LoadNode::size_of() const { return sizeof(*this); }
729uint LoadNode::cmp( const Node &n ) const
730{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
731const Type *LoadNode::bottom_type() const { return _type; }
732uint LoadNode::ideal_reg() const {
733  return Matcher::base2reg[_type->base()];
734}
735
736#ifndef PRODUCT
737void LoadNode::dump_spec(outputStream *st) const {
738  MemNode::dump_spec(st);
739  if( !Verbose && !WizardMode ) {
740    // standard dump does this in Verbose and WizardMode
741    st->print(" #"); _type->dump_on(st);
742  }
743}
744#endif
745
746
747//----------------------------LoadNode::make-----------------------------------
748// Polymorphic factory method:
749Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
750  Compile* C = gvn.C;
751
752  // sanity check the alias category against the created node type
753  assert(!(adr_type->isa_oopptr() &&
754           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
755         "use LoadKlassNode instead");
756  assert(!(adr_type->isa_aryptr() &&
757           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
758         "use LoadRangeNode instead");
759  switch (bt) {
760  case T_BOOLEAN:
761  case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
762  case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
763  case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
764  case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
765  case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
766  case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
767  case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
768  case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
769  case T_OBJECT:
770#ifdef _LP64
771    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
772      const TypeNarrowOop* narrowtype;
773      if (rt->isa_narrowoop()) {
774        narrowtype = rt->is_narrowoop();
775      } else {
776        narrowtype = rt->is_oopptr()->make_narrowoop();
777      }
778      Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, narrowtype));
779
780      return DecodeNNode::decode(&gvn, load);
781    } else
782#endif
783    {
784      assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
785      return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
786    }
787  }
788  ShouldNotReachHere();
789  return (LoadNode*)NULL;
790}
791
792LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
793  bool require_atomic = true;
794  return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
795}
796
797
798
799
800//------------------------------hash-------------------------------------------
801uint LoadNode::hash() const {
802  // unroll addition of interesting fields
803  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
804}
805
806//---------------------------can_see_stored_value------------------------------
807// This routine exists to make sure this set of tests is done the same
808// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
809// will change the graph shape in a way which makes memory alive twice at the
810// same time (uses the Oracle model of aliasing), then some
811// LoadXNode::Identity will fold things back to the equivalence-class model
812// of aliasing.
813Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
814  Node* ld_adr = in(MemNode::Address);
815
816  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
817  Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
818  if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
819      atp->field() != NULL && !atp->field()->is_volatile()) {
820    uint alias_idx = atp->index();
821    bool final = atp->field()->is_final();
822    Node* result = NULL;
823    Node* current = st;
824    // Skip through chains of MemBarNodes checking the MergeMems for
825    // new states for the slice of this load.  Stop once any other
826    // kind of node is encountered.  Loads from final memory can skip
827    // through any kind of MemBar but normal loads shouldn't skip
828    // through MemBarAcquire since the could allow them to move out of
829    // a synchronized region.
830    while (current->is_Proj()) {
831      int opc = current->in(0)->Opcode();
832      if ((final && opc == Op_MemBarAcquire) ||
833          opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
834        Node* mem = current->in(0)->in(TypeFunc::Memory);
835        if (mem->is_MergeMem()) {
836          MergeMemNode* merge = mem->as_MergeMem();
837          Node* new_st = merge->memory_at(alias_idx);
838          if (new_st == merge->base_memory()) {
839            // Keep searching
840            current = merge->base_memory();
841            continue;
842          }
843          // Save the new memory state for the slice and fall through
844          // to exit.
845          result = new_st;
846        }
847      }
848      break;
849    }
850    if (result != NULL) {
851      st = result;
852    }
853  }
854
855
856  // Loop around twice in the case Load -> Initialize -> Store.
857  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
858  for (int trip = 0; trip <= 1; trip++) {
859
860    if (st->is_Store()) {
861      Node* st_adr = st->in(MemNode::Address);
862      if (!phase->eqv(st_adr, ld_adr)) {
863        // Try harder before giving up...  Match raw and non-raw pointers.
864        intptr_t st_off = 0;
865        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
866        if (alloc == NULL)       return NULL;
867        intptr_t ld_off = 0;
868        AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
869        if (alloc != allo2)      return NULL;
870        if (ld_off != st_off)    return NULL;
871        // At this point we have proven something like this setup:
872        //  A = Allocate(...)
873        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
874        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
875        // (Actually, we haven't yet proven the Q's are the same.)
876        // In other words, we are loading from a casted version of
877        // the same pointer-and-offset that we stored to.
878        // Thus, we are able to replace L by V.
879      }
880      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
881      if (store_Opcode() != st->Opcode())
882        return NULL;
883      return st->in(MemNode::ValueIn);
884    }
885
886    intptr_t offset = 0;  // scratch
887
888    // A load from a freshly-created object always returns zero.
889    // (This can happen after LoadNode::Ideal resets the load's memory input
890    // to find_captured_store, which returned InitializeNode::zero_memory.)
891    if (st->is_Proj() && st->in(0)->is_Allocate() &&
892        st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
893        offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
894      // return a zero value for the load's basic type
895      // (This is one of the few places where a generic PhaseTransform
896      // can create new nodes.  Think of it as lazily manifesting
897      // virtually pre-existing constants.)
898      return phase->zerocon(memory_type());
899    }
900
901    // A load from an initialization barrier can match a captured store.
902    if (st->is_Proj() && st->in(0)->is_Initialize()) {
903      InitializeNode* init = st->in(0)->as_Initialize();
904      AllocateNode* alloc = init->allocation();
905      if (alloc != NULL &&
906          alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
907        // examine a captured store value
908        st = init->find_captured_store(offset, memory_size(), phase);
909        if (st != NULL)
910          continue;             // take one more trip around
911      }
912    }
913
914    break;
915  }
916
917  return NULL;
918}
919
920//----------------------is_instance_field_load_with_local_phi------------------
921bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
922  if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
923      in(MemNode::Address)->is_AddP() ) {
924    const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
925    // Only instances.
926    if( t_oop != NULL && t_oop->is_instance_field() &&
927        t_oop->offset() != Type::OffsetBot &&
928        t_oop->offset() != Type::OffsetTop) {
929      return true;
930    }
931  }
932  return false;
933}
934
935//------------------------------Identity---------------------------------------
936// Loads are identity if previous store is to same address
937Node *LoadNode::Identity( PhaseTransform *phase ) {
938  // If the previous store-maker is the right kind of Store, and the store is
939  // to the same address, then we are equal to the value stored.
940  Node* mem = in(MemNode::Memory);
941  Node* value = can_see_stored_value(mem, phase);
942  if( value ) {
943    // byte, short & char stores truncate naturally.
944    // A load has to load the truncated value which requires
945    // some sort of masking operation and that requires an
946    // Ideal call instead of an Identity call.
947    if (memory_size() < BytesPerInt) {
948      // If the input to the store does not fit with the load's result type,
949      // it must be truncated via an Ideal call.
950      if (!phase->type(value)->higher_equal(phase->type(this)))
951        return this;
952    }
953    // (This works even when value is a Con, but LoadNode::Value
954    // usually runs first, producing the singleton type of the Con.)
955    return value;
956  }
957
958  // Search for an existing data phi which was generated before for the same
959  // instance's field to avoid infinite genertion of phis in a loop.
960  Node *region = mem->in(0);
961  if (is_instance_field_load_with_local_phi(region)) {
962    const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
963    int this_index  = phase->C->get_alias_index(addr_t);
964    int this_offset = addr_t->offset();
965    int this_id    = addr_t->is_oopptr()->instance_id();
966    const Type* this_type = bottom_type();
967    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
968      Node* phi = region->fast_out(i);
969      if (phi->is_Phi() && phi != mem &&
970          phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
971        return phi;
972      }
973    }
974  }
975
976  return this;
977}
978
979
980// Returns true if the AliasType refers to the field that holds the
981// cached box array.  Currently only handles the IntegerCache case.
982static bool is_autobox_cache(Compile::AliasType* atp) {
983  if (atp != NULL && atp->field() != NULL) {
984    ciField* field = atp->field();
985    ciSymbol* klass = field->holder()->name();
986    if (field->name() == ciSymbol::cache_field_name() &&
987        field->holder()->uses_default_loader() &&
988        klass == ciSymbol::java_lang_Integer_IntegerCache()) {
989      return true;
990    }
991  }
992  return false;
993}
994
995// Fetch the base value in the autobox array
996static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
997  if (atp != NULL && atp->field() != NULL) {
998    ciField* field = atp->field();
999    ciSymbol* klass = field->holder()->name();
1000    if (field->name() == ciSymbol::cache_field_name() &&
1001        field->holder()->uses_default_loader() &&
1002        klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1003      assert(field->is_constant(), "what?");
1004      ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1005      // Fetch the box object at the base of the array and get its value
1006      ciInstance* box = array->obj_at(0)->as_instance();
1007      ciInstanceKlass* ik = box->klass()->as_instance_klass();
1008      if (ik->nof_nonstatic_fields() == 1) {
1009        // This should be true nonstatic_field_at requires calling
1010        // nof_nonstatic_fields so check it anyway
1011        ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1012        cache_offset = c.as_int();
1013      }
1014      return true;
1015    }
1016  }
1017  return false;
1018}
1019
1020// Returns true if the AliasType refers to the value field of an
1021// autobox object.  Currently only handles Integer.
1022static bool is_autobox_object(Compile::AliasType* atp) {
1023  if (atp != NULL && atp->field() != NULL) {
1024    ciField* field = atp->field();
1025    ciSymbol* klass = field->holder()->name();
1026    if (field->name() == ciSymbol::value_name() &&
1027        field->holder()->uses_default_loader() &&
1028        klass == ciSymbol::java_lang_Integer()) {
1029      return true;
1030    }
1031  }
1032  return false;
1033}
1034
1035
1036// We're loading from an object which has autobox behaviour.
1037// If this object is result of a valueOf call we'll have a phi
1038// merging a newly allocated object and a load from the cache.
1039// We want to replace this load with the original incoming
1040// argument to the valueOf call.
1041Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1042  Node* base = in(Address)->in(AddPNode::Base);
1043  if (base->is_Phi() && base->req() == 3) {
1044    AllocateNode* allocation = NULL;
1045    int allocation_index = -1;
1046    int load_index = -1;
1047    for (uint i = 1; i < base->req(); i++) {
1048      allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1049      if (allocation != NULL) {
1050        allocation_index = i;
1051        load_index = 3 - allocation_index;
1052        break;
1053      }
1054    }
1055    LoadNode* load = NULL;
1056    if (allocation != NULL && base->in(load_index)->is_Load()) {
1057      load = base->in(load_index)->as_Load();
1058    }
1059    if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1060      // Push the loads from the phi that comes from valueOf up
1061      // through it to allow elimination of the loads and the recovery
1062      // of the original value.
1063      Node* mem_phi = in(Memory);
1064      Node* offset = in(Address)->in(AddPNode::Offset);
1065
1066      Node* in1 = clone();
1067      Node* in1_addr = in1->in(Address)->clone();
1068      in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1069      in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1070      in1_addr->set_req(AddPNode::Offset, offset);
1071      in1->set_req(0, base->in(allocation_index));
1072      in1->set_req(Address, in1_addr);
1073      in1->set_req(Memory, mem_phi->in(allocation_index));
1074
1075      Node* in2 = clone();
1076      Node* in2_addr = in2->in(Address)->clone();
1077      in2_addr->set_req(AddPNode::Base, base->in(load_index));
1078      in2_addr->set_req(AddPNode::Address, base->in(load_index));
1079      in2_addr->set_req(AddPNode::Offset, offset);
1080      in2->set_req(0, base->in(load_index));
1081      in2->set_req(Address, in2_addr);
1082      in2->set_req(Memory, mem_phi->in(load_index));
1083
1084      in1_addr = phase->transform(in1_addr);
1085      in1 =      phase->transform(in1);
1086      in2_addr = phase->transform(in2_addr);
1087      in2 =      phase->transform(in2);
1088
1089      PhiNode* result = PhiNode::make_blank(base->in(0), this);
1090      result->set_req(allocation_index, in1);
1091      result->set_req(load_index, in2);
1092      return result;
1093    }
1094  } else if (base->is_Load()) {
1095    // Eliminate the load of Integer.value for integers from the cache
1096    // array by deriving the value from the index into the array.
1097    // Capture the offset of the load and then reverse the computation.
1098    Node* load_base = base->in(Address)->in(AddPNode::Base);
1099    if (load_base != NULL) {
1100      Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1101      intptr_t cache_offset;
1102      int shift = -1;
1103      Node* cache = NULL;
1104      if (is_autobox_cache(atp)) {
1105        shift  = exact_log2(type2aelembytes(T_OBJECT));
1106        cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1107      }
1108      if (cache != NULL && base->in(Address)->is_AddP()) {
1109        Node* elements[4];
1110        int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1111        int cache_low;
1112        if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1113          int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1114          // Add up all the offsets making of the address of the load
1115          Node* result = elements[0];
1116          for (int i = 1; i < count; i++) {
1117            result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1118          }
1119          // Remove the constant offset from the address and then
1120          // remove the scaling of the offset to recover the original index.
1121          result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1122          if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1123            // Peel the shift off directly but wrap it in a dummy node
1124            // since Ideal can't return existing nodes
1125            result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1126          } else {
1127            result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1128          }
1129#ifdef _LP64
1130          result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1131#endif
1132          return result;
1133        }
1134      }
1135    }
1136  }
1137  return NULL;
1138}
1139
1140//------------------------------split_through_phi------------------------------
1141// Split instance field load through Phi.
1142Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1143  Node* mem     = in(MemNode::Memory);
1144  Node* address = in(MemNode::Address);
1145  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1146  const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1147
1148  assert(mem->is_Phi() && (t_oop != NULL) &&
1149         t_oop->is_instance_field(), "invalide conditions");
1150
1151  Node *region = mem->in(0);
1152  if (region == NULL) {
1153    return NULL; // Wait stable graph
1154  }
1155  uint cnt = mem->req();
1156  for( uint i = 1; i < cnt; i++ ) {
1157    Node *in = mem->in(i);
1158    if( in == NULL ) {
1159      return NULL; // Wait stable graph
1160    }
1161  }
1162  // Check for loop invariant.
1163  if (cnt == 3) {
1164    for( uint i = 1; i < cnt; i++ ) {
1165      Node *in = mem->in(i);
1166      Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1167      if (m == mem) {
1168        set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1169        return this;
1170      }
1171    }
1172  }
1173  // Split through Phi (see original code in loopopts.cpp).
1174  assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1175
1176  // Do nothing here if Identity will find a value
1177  // (to avoid infinite chain of value phis generation).
1178  if ( !phase->eqv(this, this->Identity(phase)) )
1179    return NULL;
1180
1181  // Skip the split if the region dominates some control edge of the address.
1182  if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
1183    return NULL;
1184
1185  const Type* this_type = this->bottom_type();
1186  int this_index  = phase->C->get_alias_index(addr_t);
1187  int this_offset = addr_t->offset();
1188  int this_iid    = addr_t->is_oopptr()->instance_id();
1189  int wins = 0;
1190  PhaseIterGVN *igvn = phase->is_IterGVN();
1191  Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1192  for( uint i = 1; i < region->req(); i++ ) {
1193    Node *x;
1194    Node* the_clone = NULL;
1195    if( region->in(i) == phase->C->top() ) {
1196      x = phase->C->top();      // Dead path?  Use a dead data op
1197    } else {
1198      x = this->clone();        // Else clone up the data op
1199      the_clone = x;            // Remember for possible deletion.
1200      // Alter data node to use pre-phi inputs
1201      if( this->in(0) == region ) {
1202        x->set_req( 0, region->in(i) );
1203      } else {
1204        x->set_req( 0, NULL );
1205      }
1206      for( uint j = 1; j < this->req(); j++ ) {
1207        Node *in = this->in(j);
1208        if( in->is_Phi() && in->in(0) == region )
1209          x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
1210      }
1211    }
1212    // Check for a 'win' on some paths
1213    const Type *t = x->Value(igvn);
1214
1215    bool singleton = t->singleton();
1216
1217    // See comments in PhaseIdealLoop::split_thru_phi().
1218    if( singleton && t == Type::TOP ) {
1219      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1220    }
1221
1222    if( singleton ) {
1223      wins++;
1224      x = igvn->makecon(t);
1225    } else {
1226      // We now call Identity to try to simplify the cloned node.
1227      // Note that some Identity methods call phase->type(this).
1228      // Make sure that the type array is big enough for
1229      // our new node, even though we may throw the node away.
1230      // (This tweaking with igvn only works because x is a new node.)
1231      igvn->set_type(x, t);
1232      Node *y = x->Identity(igvn);
1233      if( y != x ) {
1234        wins++;
1235        x = y;
1236      } else {
1237        y = igvn->hash_find(x);
1238        if( y ) {
1239          wins++;
1240          x = y;
1241        } else {
1242          // Else x is a new node we are keeping
1243          // We do not need register_new_node_with_optimizer
1244          // because set_type has already been called.
1245          igvn->_worklist.push(x);
1246        }
1247      }
1248    }
1249    if (x != the_clone && the_clone != NULL)
1250      igvn->remove_dead_node(the_clone);
1251    phi->set_req(i, x);
1252  }
1253  if( wins > 0 ) {
1254    // Record Phi
1255    igvn->register_new_node_with_optimizer(phi);
1256    return phi;
1257  }
1258  igvn->remove_dead_node(phi);
1259  return NULL;
1260}
1261
1262//------------------------------Ideal------------------------------------------
1263// If the load is from Field memory and the pointer is non-null, we can
1264// zero out the control input.
1265// If the offset is constant and the base is an object allocation,
1266// try to hook me up to the exact initializing store.
1267Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1268  Node* p = MemNode::Ideal_common(phase, can_reshape);
1269  if (p)  return (p == NodeSentinel) ? NULL : p;
1270
1271  Node* ctrl    = in(MemNode::Control);
1272  Node* address = in(MemNode::Address);
1273
1274  // Skip up past a SafePoint control.  Cannot do this for Stores because
1275  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1276  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1277      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1278    ctrl = ctrl->in(0);
1279    set_req(MemNode::Control,ctrl);
1280  }
1281
1282  // Check for useless control edge in some common special cases
1283  if (in(MemNode::Control) != NULL) {
1284    intptr_t ignore = 0;
1285    Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1286    if (base != NULL
1287        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1288        && all_controls_dominate(base, phase->C->start())) {
1289      // A method-invariant, non-null address (constant or 'this' argument).
1290      set_req(MemNode::Control, NULL);
1291    }
1292  }
1293
1294  if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
1295    Node* base = in(Address)->in(AddPNode::Base);
1296    if (base != NULL) {
1297      Compile::AliasType* atp = phase->C->alias_type(adr_type());
1298      if (is_autobox_object(atp)) {
1299        Node* result = eliminate_autobox(phase);
1300        if (result != NULL) return result;
1301      }
1302    }
1303  }
1304
1305  Node* mem = in(MemNode::Memory);
1306  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1307
1308  if (addr_t != NULL) {
1309    // try to optimize our memory input
1310    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1311    if (opt_mem != mem) {
1312      set_req(MemNode::Memory, opt_mem);
1313      return this;
1314    }
1315    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1316    if (can_reshape && opt_mem->is_Phi() &&
1317        (t_oop != NULL) && t_oop->is_instance_field()) {
1318      // Split instance field load through Phi.
1319      Node* result = split_through_phi(phase);
1320      if (result != NULL) return result;
1321    }
1322  }
1323
1324  // Check for prior store with a different base or offset; make Load
1325  // independent.  Skip through any number of them.  Bail out if the stores
1326  // are in an endless dead cycle and report no progress.  This is a key
1327  // transform for Reflection.  However, if after skipping through the Stores
1328  // we can't then fold up against a prior store do NOT do the transform as
1329  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1330  // array memory alive twice: once for the hoisted Load and again after the
1331  // bypassed Store.  This situation only works if EVERYBODY who does
1332  // anti-dependence work knows how to bypass.  I.e. we need all
1333  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1334  // the alias index stuff.  So instead, peek through Stores and IFF we can
1335  // fold up, do so.
1336  Node* prev_mem = find_previous_store(phase);
1337  // Steps (a), (b):  Walk past independent stores to find an exact match.
1338  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1339    // (c) See if we can fold up on the spot, but don't fold up here.
1340    // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
1341    // just return a prior value, which is done by Identity calls.
1342    if (can_see_stored_value(prev_mem, phase)) {
1343      // Make ready for step (d):
1344      set_req(MemNode::Memory, prev_mem);
1345      return this;
1346    }
1347  }
1348
1349  return NULL;                  // No further progress
1350}
1351
1352// Helper to recognize certain Klass fields which are invariant across
1353// some group of array types (e.g., int[] or all T[] where T < Object).
1354const Type*
1355LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1356                                 ciKlass* klass) const {
1357  if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1358    // The field is Klass::_modifier_flags.  Return its (constant) value.
1359    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1360    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1361    return TypeInt::make(klass->modifier_flags());
1362  }
1363  if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1364    // The field is Klass::_access_flags.  Return its (constant) value.
1365    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1366    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1367    return TypeInt::make(klass->access_flags());
1368  }
1369  if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
1370    // The field is Klass::_layout_helper.  Return its constant value if known.
1371    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1372    return TypeInt::make(klass->layout_helper());
1373  }
1374
1375  // No match.
1376  return NULL;
1377}
1378
1379//------------------------------Value-----------------------------------------
1380const Type *LoadNode::Value( PhaseTransform *phase ) const {
1381  // Either input is TOP ==> the result is TOP
1382  Node* mem = in(MemNode::Memory);
1383  const Type *t1 = phase->type(mem);
1384  if (t1 == Type::TOP)  return Type::TOP;
1385  Node* adr = in(MemNode::Address);
1386  const TypePtr* tp = phase->type(adr)->isa_ptr();
1387  if (tp == NULL || tp->empty())  return Type::TOP;
1388  int off = tp->offset();
1389  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1390
1391  // Try to guess loaded type from pointer type
1392  if (tp->base() == Type::AryPtr) {
1393    const Type *t = tp->is_aryptr()->elem();
1394    // Don't do this for integer types. There is only potential profit if
1395    // the element type t is lower than _type; that is, for int types, if _type is
1396    // more restrictive than t.  This only happens here if one is short and the other
1397    // char (both 16 bits), and in those cases we've made an intentional decision
1398    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1399    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1400    //
1401    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1402    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1403    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1404    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1405    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1406    // In fact, that could have been the original type of p1, and p1 could have
1407    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1408    // expression (LShiftL quux 3) independently optimized to the constant 8.
1409    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1410        && Opcode() != Op_LoadKlass) {
1411      // t might actually be lower than _type, if _type is a unique
1412      // concrete subclass of abstract class t.
1413      // Make sure the reference is not into the header, by comparing
1414      // the offset against the offset of the start of the array's data.
1415      // Different array types begin at slightly different offsets (12 vs. 16).
1416      // We choose T_BYTE as an example base type that is least restrictive
1417      // as to alignment, which will therefore produce the smallest
1418      // possible base offset.
1419      const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1420      if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1421        const Type* jt = t->join(_type);
1422        // In any case, do not allow the join, per se, to empty out the type.
1423        if (jt->empty() && !t->empty()) {
1424          // This can happen if a interface-typed array narrows to a class type.
1425          jt = _type;
1426        }
1427
1428        if (EliminateAutoBox) {
1429          // The pointers in the autobox arrays are always non-null
1430          Node* base = in(Address)->in(AddPNode::Base);
1431          if (base != NULL) {
1432            Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
1433            if (is_autobox_cache(atp)) {
1434              return jt->join(TypePtr::NOTNULL)->is_ptr();
1435            }
1436          }
1437        }
1438        return jt;
1439      }
1440    }
1441  } else if (tp->base() == Type::InstPtr) {
1442    assert( off != Type::OffsetBot ||
1443            // arrays can be cast to Objects
1444            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1445            // unsafe field access may not have a constant offset
1446            phase->C->has_unsafe_access(),
1447            "Field accesses must be precise" );
1448    // For oop loads, we expect the _type to be precise
1449  } else if (tp->base() == Type::KlassPtr) {
1450    assert( off != Type::OffsetBot ||
1451            // arrays can be cast to Objects
1452            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1453            // also allow array-loading from the primary supertype
1454            // array during subtype checks
1455            Opcode() == Op_LoadKlass,
1456            "Field accesses must be precise" );
1457    // For klass/static loads, we expect the _type to be precise
1458  }
1459
1460  const TypeKlassPtr *tkls = tp->isa_klassptr();
1461  if (tkls != NULL && !StressReflectiveCode) {
1462    ciKlass* klass = tkls->klass();
1463    if (klass->is_loaded() && tkls->klass_is_exact()) {
1464      // We are loading a field from a Klass metaobject whose identity
1465      // is known at compile time (the type is "exact" or "precise").
1466      // Check for fields we know are maintained as constants by the VM.
1467      if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
1468        // The field is Klass::_super_check_offset.  Return its (constant) value.
1469        // (Folds up type checking code.)
1470        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1471        return TypeInt::make(klass->super_check_offset());
1472      }
1473      // Compute index into primary_supers array
1474      juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1475      // Check for overflowing; use unsigned compare to handle the negative case.
1476      if( depth < ciKlass::primary_super_limit() ) {
1477        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1478        // (Folds up type checking code.)
1479        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1480        ciKlass *ss = klass->super_of_depth(depth);
1481        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1482      }
1483      const Type* aift = load_array_final_field(tkls, klass);
1484      if (aift != NULL)  return aift;
1485      if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
1486          && klass->is_array_klass()) {
1487        // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1488        // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1489        assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1490        return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1491      }
1492      if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
1493        // The field is Klass::_java_mirror.  Return its (constant) value.
1494        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1495        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1496        return TypeInstPtr::make(klass->java_mirror());
1497      }
1498    }
1499
1500    // We can still check if we are loading from the primary_supers array at a
1501    // shallow enough depth.  Even though the klass is not exact, entries less
1502    // than or equal to its super depth are correct.
1503    if (klass->is_loaded() ) {
1504      ciType *inner = klass->klass();
1505      while( inner->is_obj_array_klass() )
1506        inner = inner->as_obj_array_klass()->base_element_type();
1507      if( inner->is_instance_klass() &&
1508          !inner->as_instance_klass()->flags().is_interface() ) {
1509        // Compute index into primary_supers array
1510        juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1511        // Check for overflowing; use unsigned compare to handle the negative case.
1512        if( depth < ciKlass::primary_super_limit() &&
1513            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1514          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1515          // (Folds up type checking code.)
1516          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1517          ciKlass *ss = klass->super_of_depth(depth);
1518          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1519        }
1520      }
1521    }
1522
1523    // If the type is enough to determine that the thing is not an array,
1524    // we can give the layout_helper a positive interval type.
1525    // This will help short-circuit some reflective code.
1526    if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
1527        && !klass->is_array_klass() // not directly typed as an array
1528        && !klass->is_interface()  // specifically not Serializable & Cloneable
1529        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1530        ) {
1531      // Note:  When interfaces are reliable, we can narrow the interface
1532      // test to (klass != Serializable && klass != Cloneable).
1533      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1534      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1535      // The key property of this type is that it folds up tests
1536      // for array-ness, since it proves that the layout_helper is positive.
1537      // Thus, a generic value like the basic object layout helper works fine.
1538      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1539    }
1540  }
1541
1542  // If we are loading from a freshly-allocated object, produce a zero,
1543  // if the load is provably beyond the header of the object.
1544  // (Also allow a variable load from a fresh array to produce zero.)
1545  if (ReduceFieldZeroing) {
1546    Node* value = can_see_stored_value(mem,phase);
1547    if (value != NULL && value->is_Con())
1548      return value->bottom_type();
1549  }
1550
1551  const TypeOopPtr *tinst = tp->isa_oopptr();
1552  if (tinst != NULL && tinst->is_instance_field()) {
1553    // If we have an instance type and our memory input is the
1554    // programs's initial memory state, there is no matching store,
1555    // so just return a zero of the appropriate type
1556    Node *mem = in(MemNode::Memory);
1557    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1558      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1559      return Type::get_zero_type(_type->basic_type());
1560    }
1561  }
1562  return _type;
1563}
1564
1565//------------------------------match_edge-------------------------------------
1566// Do we Match on this edge index or not?  Match only the address.
1567uint LoadNode::match_edge(uint idx) const {
1568  return idx == MemNode::Address;
1569}
1570
1571//--------------------------LoadBNode::Ideal--------------------------------------
1572//
1573//  If the previous store is to the same address as this load,
1574//  and the value stored was larger than a byte, replace this load
1575//  with the value stored truncated to a byte.  If no truncation is
1576//  needed, the replacement is done in LoadNode::Identity().
1577//
1578Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1579  Node* mem = in(MemNode::Memory);
1580  Node* value = can_see_stored_value(mem,phase);
1581  if( value && !phase->type(value)->higher_equal( _type ) ) {
1582    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1583    return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1584  }
1585  // Identity call will handle the case where truncation is not needed.
1586  return LoadNode::Ideal(phase, can_reshape);
1587}
1588
1589//--------------------------LoadCNode::Ideal--------------------------------------
1590//
1591//  If the previous store is to the same address as this load,
1592//  and the value stored was larger than a char, replace this load
1593//  with the value stored truncated to a char.  If no truncation is
1594//  needed, the replacement is done in LoadNode::Identity().
1595//
1596Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1597  Node* mem = in(MemNode::Memory);
1598  Node* value = can_see_stored_value(mem,phase);
1599  if( value && !phase->type(value)->higher_equal( _type ) )
1600    return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1601  // Identity call will handle the case where truncation is not needed.
1602  return LoadNode::Ideal(phase, can_reshape);
1603}
1604
1605//--------------------------LoadSNode::Ideal--------------------------------------
1606//
1607//  If the previous store is to the same address as this load,
1608//  and the value stored was larger than a short, replace this load
1609//  with the value stored truncated to a short.  If no truncation is
1610//  needed, the replacement is done in LoadNode::Identity().
1611//
1612Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1613  Node* mem = in(MemNode::Memory);
1614  Node* value = can_see_stored_value(mem,phase);
1615  if( value && !phase->type(value)->higher_equal( _type ) ) {
1616    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1617    return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1618  }
1619  // Identity call will handle the case where truncation is not needed.
1620  return LoadNode::Ideal(phase, can_reshape);
1621}
1622
1623//=============================================================================
1624//----------------------------LoadKlassNode::make------------------------------
1625// Polymorphic factory method:
1626Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1627  Compile* C = gvn.C;
1628  Node *ctl = NULL;
1629  // sanity check the alias category against the created node type
1630  const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
1631  assert(adr_type != NULL, "expecting TypeOopPtr");
1632#ifdef _LP64
1633  if (adr_type->is_ptr_to_narrowoop()) {
1634    const TypeNarrowOop* narrowtype = tk->is_oopptr()->make_narrowoop();
1635    Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, narrowtype));
1636    return DecodeNNode::decode(&gvn, load_klass);
1637  }
1638#endif
1639  assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1640  return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
1641}
1642
1643//------------------------------Value------------------------------------------
1644const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1645  return klass_value_common(phase);
1646}
1647
1648const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1649  // Either input is TOP ==> the result is TOP
1650  const Type *t1 = phase->type( in(MemNode::Memory) );
1651  if (t1 == Type::TOP)  return Type::TOP;
1652  Node *adr = in(MemNode::Address);
1653  const Type *t2 = phase->type( adr );
1654  if (t2 == Type::TOP)  return Type::TOP;
1655  const TypePtr *tp = t2->is_ptr();
1656  if (TypePtr::above_centerline(tp->ptr()) ||
1657      tp->ptr() == TypePtr::Null)  return Type::TOP;
1658
1659  // Return a more precise klass, if possible
1660  const TypeInstPtr *tinst = tp->isa_instptr();
1661  if (tinst != NULL) {
1662    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1663    int offset = tinst->offset();
1664    if (ik == phase->C->env()->Class_klass()
1665        && (offset == java_lang_Class::klass_offset_in_bytes() ||
1666            offset == java_lang_Class::array_klass_offset_in_bytes())) {
1667      // We are loading a special hidden field from a Class mirror object,
1668      // the field which points to the VM's Klass metaobject.
1669      ciType* t = tinst->java_mirror_type();
1670      // java_mirror_type returns non-null for compile-time Class constants.
1671      if (t != NULL) {
1672        // constant oop => constant klass
1673        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1674          return TypeKlassPtr::make(ciArrayKlass::make(t));
1675        }
1676        if (!t->is_klass()) {
1677          // a primitive Class (e.g., int.class) has NULL for a klass field
1678          return TypePtr::NULL_PTR;
1679        }
1680        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1681        return TypeKlassPtr::make(t->as_klass());
1682      }
1683      // non-constant mirror, so we can't tell what's going on
1684    }
1685    if( !ik->is_loaded() )
1686      return _type;             // Bail out if not loaded
1687    if (offset == oopDesc::klass_offset_in_bytes()) {
1688      if (tinst->klass_is_exact()) {
1689        return TypeKlassPtr::make(ik);
1690      }
1691      // See if we can become precise: no subklasses and no interface
1692      // (Note:  We need to support verified interfaces.)
1693      if (!ik->is_interface() && !ik->has_subklass()) {
1694        //assert(!UseExactTypes, "this code should be useless with exact types");
1695        // Add a dependence; if any subclass added we need to recompile
1696        if (!ik->is_final()) {
1697          // %%% should use stronger assert_unique_concrete_subtype instead
1698          phase->C->dependencies()->assert_leaf_type(ik);
1699        }
1700        // Return precise klass
1701        return TypeKlassPtr::make(ik);
1702      }
1703
1704      // Return root of possible klass
1705      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1706    }
1707  }
1708
1709  // Check for loading klass from an array
1710  const TypeAryPtr *tary = tp->isa_aryptr();
1711  if( tary != NULL ) {
1712    ciKlass *tary_klass = tary->klass();
1713    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1714        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1715      if (tary->klass_is_exact()) {
1716        return TypeKlassPtr::make(tary_klass);
1717      }
1718      ciArrayKlass *ak = tary->klass()->as_array_klass();
1719      // If the klass is an object array, we defer the question to the
1720      // array component klass.
1721      if( ak->is_obj_array_klass() ) {
1722        assert( ak->is_loaded(), "" );
1723        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1724        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1725          ciInstanceKlass* ik = base_k->as_instance_klass();
1726          // See if we can become precise: no subklasses and no interface
1727          if (!ik->is_interface() && !ik->has_subklass()) {
1728            //assert(!UseExactTypes, "this code should be useless with exact types");
1729            // Add a dependence; if any subclass added we need to recompile
1730            if (!ik->is_final()) {
1731              phase->C->dependencies()->assert_leaf_type(ik);
1732            }
1733            // Return precise array klass
1734            return TypeKlassPtr::make(ak);
1735          }
1736        }
1737        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1738      } else {                  // Found a type-array?
1739        //assert(!UseExactTypes, "this code should be useless with exact types");
1740        assert( ak->is_type_array_klass(), "" );
1741        return TypeKlassPtr::make(ak); // These are always precise
1742      }
1743    }
1744  }
1745
1746  // Check for loading klass from an array klass
1747  const TypeKlassPtr *tkls = tp->isa_klassptr();
1748  if (tkls != NULL && !StressReflectiveCode) {
1749    ciKlass* klass = tkls->klass();
1750    if( !klass->is_loaded() )
1751      return _type;             // Bail out if not loaded
1752    if( klass->is_obj_array_klass() &&
1753        (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1754      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1755      // // Always returning precise element type is incorrect,
1756      // // e.g., element type could be object and array may contain strings
1757      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1758
1759      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1760      // according to the element type's subclassing.
1761      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1762    }
1763    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1764        (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1765      ciKlass* sup = klass->as_instance_klass()->super();
1766      // The field is Klass::_super.  Return its (constant) value.
1767      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1768      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1769    }
1770  }
1771
1772  // Bailout case
1773  return LoadNode::Value(phase);
1774}
1775
1776//------------------------------Identity---------------------------------------
1777// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1778// Also feed through the klass in Allocate(...klass...)._klass.
1779Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1780  return klass_identity_common(phase);
1781}
1782
1783Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
1784  Node* x = LoadNode::Identity(phase);
1785  if (x != this)  return x;
1786
1787  // Take apart the address into an oop and and offset.
1788  // Return 'this' if we cannot.
1789  Node*    adr    = in(MemNode::Address);
1790  intptr_t offset = 0;
1791  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1792  if (base == NULL)     return this;
1793  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1794  if (toop == NULL)     return this;
1795
1796  // We can fetch the klass directly through an AllocateNode.
1797  // This works even if the klass is not constant (clone or newArray).
1798  if (offset == oopDesc::klass_offset_in_bytes()) {
1799    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1800    if (allocated_klass != NULL) {
1801      return allocated_klass;
1802    }
1803  }
1804
1805  // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1806  // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1807  // See inline_native_Class_query for occurrences of these patterns.
1808  // Java Example:  x.getClass().isAssignableFrom(y)
1809  // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
1810  //
1811  // This improves reflective code, often making the Class
1812  // mirror go completely dead.  (Current exception:  Class
1813  // mirrors may appear in debug info, but we could clean them out by
1814  // introducing a new debug info operator for klassOop.java_mirror).
1815  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1816      && (offset == java_lang_Class::klass_offset_in_bytes() ||
1817          offset == java_lang_Class::array_klass_offset_in_bytes())) {
1818    // We are loading a special hidden field from a Class mirror,
1819    // the field which points to its Klass or arrayKlass metaobject.
1820    if (base->is_Load()) {
1821      Node* adr2 = base->in(MemNode::Address);
1822      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1823      if (tkls != NULL && !tkls->empty()
1824          && (tkls->klass()->is_instance_klass() ||
1825              tkls->klass()->is_array_klass())
1826          && adr2->is_AddP()
1827          ) {
1828        int mirror_field = Klass::java_mirror_offset_in_bytes();
1829        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1830          mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1831        }
1832        if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1833          return adr2->in(AddPNode::Base);
1834        }
1835      }
1836    }
1837  }
1838
1839  return this;
1840}
1841
1842
1843//------------------------------Value------------------------------------------
1844const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
1845  const Type *t = klass_value_common(phase);
1846
1847  if (t == TypePtr::NULL_PTR) {
1848    return TypeNarrowOop::NULL_PTR;
1849  }
1850  if (t != Type::TOP && !t->isa_narrowoop()) {
1851    assert(t->is_oopptr(), "sanity");
1852    t = t->is_oopptr()->make_narrowoop();
1853  }
1854  return t;
1855}
1856
1857//------------------------------Identity---------------------------------------
1858// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
1859// Also feed through the klass in Allocate(...klass...)._klass.
1860Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
1861  Node *x = klass_identity_common(phase);
1862
1863  const Type *t = phase->type( x );
1864  if( t == Type::TOP ) return x;
1865  if( t->isa_narrowoop()) return x;
1866
1867  return EncodePNode::encode(phase, x);
1868}
1869
1870//------------------------------Value-----------------------------------------
1871const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
1872  // Either input is TOP ==> the result is TOP
1873  const Type *t1 = phase->type( in(MemNode::Memory) );
1874  if( t1 == Type::TOP ) return Type::TOP;
1875  Node *adr = in(MemNode::Address);
1876  const Type *t2 = phase->type( adr );
1877  if( t2 == Type::TOP ) return Type::TOP;
1878  const TypePtr *tp = t2->is_ptr();
1879  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
1880  const TypeAryPtr *tap = tp->isa_aryptr();
1881  if( !tap ) return _type;
1882  return tap->size();
1883}
1884
1885//------------------------------Identity---------------------------------------
1886// Feed through the length in AllocateArray(...length...)._length.
1887Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
1888  Node* x = LoadINode::Identity(phase);
1889  if (x != this)  return x;
1890
1891  // Take apart the address into an oop and and offset.
1892  // Return 'this' if we cannot.
1893  Node*    adr    = in(MemNode::Address);
1894  intptr_t offset = 0;
1895  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1896  if (base == NULL)     return this;
1897  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1898  if (tary == NULL)     return this;
1899
1900  // We can fetch the length directly through an AllocateArrayNode.
1901  // This works even if the length is not constant (clone or newArray).
1902  if (offset == arrayOopDesc::length_offset_in_bytes()) {
1903    Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
1904    if (allocated_length != NULL) {
1905      return allocated_length;
1906    }
1907  }
1908
1909  return this;
1910
1911}
1912//=============================================================================
1913//---------------------------StoreNode::make-----------------------------------
1914// Polymorphic factory method:
1915StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
1916  Compile* C = gvn.C;
1917
1918  switch (bt) {
1919  case T_BOOLEAN:
1920  case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
1921  case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
1922  case T_CHAR:
1923  case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
1924  case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
1925  case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
1926  case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
1927  case T_ADDRESS:
1928  case T_OBJECT:
1929#ifdef _LP64
1930    if (adr->bottom_type()->is_ptr_to_narrowoop() ||
1931        (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
1932         adr->bottom_type()->isa_rawptr())) {
1933      const TypePtr* type = val->bottom_type()->is_ptr();
1934      Node* cp = EncodePNode::encode(&gvn, val);
1935      return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, cp);
1936    } else
1937#endif
1938      {
1939        return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
1940      }
1941  }
1942  ShouldNotReachHere();
1943  return (StoreNode*)NULL;
1944}
1945
1946StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
1947  bool require_atomic = true;
1948  return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
1949}
1950
1951
1952//--------------------------bottom_type----------------------------------------
1953const Type *StoreNode::bottom_type() const {
1954  return Type::MEMORY;
1955}
1956
1957//------------------------------hash-------------------------------------------
1958uint StoreNode::hash() const {
1959  // unroll addition of interesting fields
1960  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
1961
1962  // Since they are not commoned, do not hash them:
1963  return NO_HASH;
1964}
1965
1966//------------------------------Ideal------------------------------------------
1967// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
1968// When a store immediately follows a relevant allocation/initialization,
1969// try to capture it into the initialization, or hoist it above.
1970Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1971  Node* p = MemNode::Ideal_common(phase, can_reshape);
1972  if (p)  return (p == NodeSentinel) ? NULL : p;
1973
1974  Node* mem     = in(MemNode::Memory);
1975  Node* address = in(MemNode::Address);
1976
1977  // Back-to-back stores to same address?  Fold em up.
1978  // Generally unsafe if I have intervening uses...
1979  if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
1980    // Looking at a dead closed cycle of memory?
1981    assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
1982
1983    assert(Opcode() == mem->Opcode() ||
1984           phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
1985           "no mismatched stores, except on raw memory");
1986
1987    if (mem->outcnt() == 1 &&           // check for intervening uses
1988        mem->as_Store()->memory_size() <= this->memory_size()) {
1989      // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
1990      // For example, 'mem' might be the final state at a conditional return.
1991      // Or, 'mem' might be used by some node which is live at the same time
1992      // 'this' is live, which might be unschedulable.  So, require exactly
1993      // ONE user, the 'this' store, until such time as we clone 'mem' for
1994      // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
1995      if (can_reshape) {  // (%%% is this an anachronism?)
1996        set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
1997                  phase->is_IterGVN());
1998      } else {
1999        // It's OK to do this in the parser, since DU info is always accurate,
2000        // and the parser always refers to nodes via SafePointNode maps.
2001        set_req(MemNode::Memory, mem->in(MemNode::Memory));
2002      }
2003      return this;
2004    }
2005  }
2006
2007  // Capture an unaliased, unconditional, simple store into an initializer.
2008  // Or, if it is independent of the allocation, hoist it above the allocation.
2009  if (ReduceFieldZeroing && /*can_reshape &&*/
2010      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2011    InitializeNode* init = mem->in(0)->as_Initialize();
2012    intptr_t offset = init->can_capture_store(this, phase);
2013    if (offset > 0) {
2014      Node* moved = init->capture_store(this, offset, phase);
2015      // If the InitializeNode captured me, it made a raw copy of me,
2016      // and I need to disappear.
2017      if (moved != NULL) {
2018        // %%% hack to ensure that Ideal returns a new node:
2019        mem = MergeMemNode::make(phase->C, mem);
2020        return mem;             // fold me away
2021      }
2022    }
2023  }
2024
2025  return NULL;                  // No further progress
2026}
2027
2028//------------------------------Value-----------------------------------------
2029const Type *StoreNode::Value( PhaseTransform *phase ) const {
2030  // Either input is TOP ==> the result is TOP
2031  const Type *t1 = phase->type( in(MemNode::Memory) );
2032  if( t1 == Type::TOP ) return Type::TOP;
2033  const Type *t2 = phase->type( in(MemNode::Address) );
2034  if( t2 == Type::TOP ) return Type::TOP;
2035  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2036  if( t3 == Type::TOP ) return Type::TOP;
2037  return Type::MEMORY;
2038}
2039
2040//------------------------------Identity---------------------------------------
2041// Remove redundant stores:
2042//   Store(m, p, Load(m, p)) changes to m.
2043//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2044Node *StoreNode::Identity( PhaseTransform *phase ) {
2045  Node* mem = in(MemNode::Memory);
2046  Node* adr = in(MemNode::Address);
2047  Node* val = in(MemNode::ValueIn);
2048
2049  // Load then Store?  Then the Store is useless
2050  if (val->is_Load() &&
2051      phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
2052      phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
2053      val->as_Load()->store_Opcode() == Opcode()) {
2054    return mem;
2055  }
2056
2057  // Two stores in a row of the same value?
2058  if (mem->is_Store() &&
2059      phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
2060      phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
2061      mem->Opcode() == Opcode()) {
2062    return mem;
2063  }
2064
2065  // Store of zero anywhere into a freshly-allocated object?
2066  // Then the store is useless.
2067  // (It must already have been captured by the InitializeNode.)
2068  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2069    // a newly allocated object is already all-zeroes everywhere
2070    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2071      return mem;
2072    }
2073
2074    // the store may also apply to zero-bits in an earlier object
2075    Node* prev_mem = find_previous_store(phase);
2076    // Steps (a), (b):  Walk past independent stores to find an exact match.
2077    if (prev_mem != NULL) {
2078      Node* prev_val = can_see_stored_value(prev_mem, phase);
2079      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2080        // prev_val and val might differ by a cast; it would be good
2081        // to keep the more informative of the two.
2082        return mem;
2083      }
2084    }
2085  }
2086
2087  return this;
2088}
2089
2090//------------------------------match_edge-------------------------------------
2091// Do we Match on this edge index or not?  Match only memory & value
2092uint StoreNode::match_edge(uint idx) const {
2093  return idx == MemNode::Address || idx == MemNode::ValueIn;
2094}
2095
2096//------------------------------cmp--------------------------------------------
2097// Do not common stores up together.  They generally have to be split
2098// back up anyways, so do not bother.
2099uint StoreNode::cmp( const Node &n ) const {
2100  return (&n == this);          // Always fail except on self
2101}
2102
2103//------------------------------Ideal_masked_input-----------------------------
2104// Check for a useless mask before a partial-word store
2105// (StoreB ... (AndI valIn conIa) )
2106// If (conIa & mask == mask) this simplifies to
2107// (StoreB ... (valIn) )
2108Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2109  Node *val = in(MemNode::ValueIn);
2110  if( val->Opcode() == Op_AndI ) {
2111    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2112    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2113      set_req(MemNode::ValueIn, val->in(1));
2114      return this;
2115    }
2116  }
2117  return NULL;
2118}
2119
2120
2121//------------------------------Ideal_sign_extended_input----------------------
2122// Check for useless sign-extension before a partial-word store
2123// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2124// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2125// (StoreB ... (valIn) )
2126Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2127  Node *val = in(MemNode::ValueIn);
2128  if( val->Opcode() == Op_RShiftI ) {
2129    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2130    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2131      Node *shl = val->in(1);
2132      if( shl->Opcode() == Op_LShiftI ) {
2133        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2134        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2135          set_req(MemNode::ValueIn, shl->in(1));
2136          return this;
2137        }
2138      }
2139    }
2140  }
2141  return NULL;
2142}
2143
2144//------------------------------value_never_loaded-----------------------------------
2145// Determine whether there are any possible loads of the value stored.
2146// For simplicity, we actually check if there are any loads from the
2147// address stored to, not just for loads of the value stored by this node.
2148//
2149bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2150  Node *adr = in(Address);
2151  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2152  if (adr_oop == NULL)
2153    return false;
2154  if (!adr_oop->is_instance_field())
2155    return false; // if not a distinct instance, there may be aliases of the address
2156  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2157    Node *use = adr->fast_out(i);
2158    int opc = use->Opcode();
2159    if (use->is_Load() || use->is_LoadStore()) {
2160      return false;
2161    }
2162  }
2163  return true;
2164}
2165
2166//=============================================================================
2167//------------------------------Ideal------------------------------------------
2168// If the store is from an AND mask that leaves the low bits untouched, then
2169// we can skip the AND operation.  If the store is from a sign-extension
2170// (a left shift, then right shift) we can skip both.
2171Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2172  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2173  if( progress != NULL ) return progress;
2174
2175  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2176  if( progress != NULL ) return progress;
2177
2178  // Finally check the default case
2179  return StoreNode::Ideal(phase, can_reshape);
2180}
2181
2182//=============================================================================
2183//------------------------------Ideal------------------------------------------
2184// If the store is from an AND mask that leaves the low bits untouched, then
2185// we can skip the AND operation
2186Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2187  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2188  if( progress != NULL ) return progress;
2189
2190  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2191  if( progress != NULL ) return progress;
2192
2193  // Finally check the default case
2194  return StoreNode::Ideal(phase, can_reshape);
2195}
2196
2197//=============================================================================
2198//------------------------------Identity---------------------------------------
2199Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2200  // No need to card mark when storing a null ptr
2201  Node* my_store = in(MemNode::OopStore);
2202  if (my_store->is_Store()) {
2203    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2204    if( t1 == TypePtr::NULL_PTR ) {
2205      return in(MemNode::Memory);
2206    }
2207  }
2208  return this;
2209}
2210
2211//------------------------------Value-----------------------------------------
2212const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2213  // Either input is TOP ==> the result is TOP
2214  const Type *t = phase->type( in(MemNode::Memory) );
2215  if( t == Type::TOP ) return Type::TOP;
2216  t = phase->type( in(MemNode::Address) );
2217  if( t == Type::TOP ) return Type::TOP;
2218  t = phase->type( in(MemNode::ValueIn) );
2219  if( t == Type::TOP ) return Type::TOP;
2220  // If extra input is TOP ==> the result is TOP
2221  t = phase->type( in(MemNode::OopStore) );
2222  if( t == Type::TOP ) return Type::TOP;
2223
2224  return StoreNode::Value( phase );
2225}
2226
2227
2228//=============================================================================
2229//----------------------------------SCMemProjNode------------------------------
2230const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2231{
2232  return bottom_type();
2233}
2234
2235//=============================================================================
2236LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2237  init_req(MemNode::Control, c  );
2238  init_req(MemNode::Memory , mem);
2239  init_req(MemNode::Address, adr);
2240  init_req(MemNode::ValueIn, val);
2241  init_req(         ExpectedIn, ex );
2242  init_class_id(Class_LoadStore);
2243
2244}
2245
2246//=============================================================================
2247//-------------------------------adr_type--------------------------------------
2248// Do we Match on this edge index or not?  Do not match memory
2249const TypePtr* ClearArrayNode::adr_type() const {
2250  Node *adr = in(3);
2251  return MemNode::calculate_adr_type(adr->bottom_type());
2252}
2253
2254//------------------------------match_edge-------------------------------------
2255// Do we Match on this edge index or not?  Do not match memory
2256uint ClearArrayNode::match_edge(uint idx) const {
2257  return idx > 1;
2258}
2259
2260//------------------------------Identity---------------------------------------
2261// Clearing a zero length array does nothing
2262Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2263  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2264}
2265
2266//------------------------------Idealize---------------------------------------
2267// Clearing a short array is faster with stores
2268Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2269  const int unit = BytesPerLong;
2270  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2271  if (!t)  return NULL;
2272  if (!t->is_con())  return NULL;
2273  intptr_t raw_count = t->get_con();
2274  intptr_t size = raw_count;
2275  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2276  // Clearing nothing uses the Identity call.
2277  // Negative clears are possible on dead ClearArrays
2278  // (see jck test stmt114.stmt11402.val).
2279  if (size <= 0 || size % unit != 0)  return NULL;
2280  intptr_t count = size / unit;
2281  // Length too long; use fast hardware clear
2282  if (size > Matcher::init_array_short_size)  return NULL;
2283  Node *mem = in(1);
2284  if( phase->type(mem)==Type::TOP ) return NULL;
2285  Node *adr = in(3);
2286  const Type* at = phase->type(adr);
2287  if( at==Type::TOP ) return NULL;
2288  const TypePtr* atp = at->isa_ptr();
2289  // adjust atp to be the correct array element address type
2290  if (atp == NULL)  atp = TypePtr::BOTTOM;
2291  else              atp = atp->add_offset(Type::OffsetBot);
2292  // Get base for derived pointer purposes
2293  if( adr->Opcode() != Op_AddP ) Unimplemented();
2294  Node *base = adr->in(1);
2295
2296  Node *zero = phase->makecon(TypeLong::ZERO);
2297  Node *off  = phase->MakeConX(BytesPerLong);
2298  mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2299  count--;
2300  while( count-- ) {
2301    mem = phase->transform(mem);
2302    adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2303    mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2304  }
2305  return mem;
2306}
2307
2308//----------------------------clear_memory-------------------------------------
2309// Generate code to initialize object storage to zero.
2310Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2311                                   intptr_t start_offset,
2312                                   Node* end_offset,
2313                                   PhaseGVN* phase) {
2314  Compile* C = phase->C;
2315  intptr_t offset = start_offset;
2316
2317  int unit = BytesPerLong;
2318  if ((offset % unit) != 0) {
2319    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2320    adr = phase->transform(adr);
2321    const TypePtr* atp = TypeRawPtr::BOTTOM;
2322    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2323    mem = phase->transform(mem);
2324    offset += BytesPerInt;
2325  }
2326  assert((offset % unit) == 0, "");
2327
2328  // Initialize the remaining stuff, if any, with a ClearArray.
2329  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2330}
2331
2332Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2333                                   Node* start_offset,
2334                                   Node* end_offset,
2335                                   PhaseGVN* phase) {
2336  if (start_offset == end_offset) {
2337    // nothing to do
2338    return mem;
2339  }
2340
2341  Compile* C = phase->C;
2342  int unit = BytesPerLong;
2343  Node* zbase = start_offset;
2344  Node* zend  = end_offset;
2345
2346  // Scale to the unit required by the CPU:
2347  if (!Matcher::init_array_count_is_in_bytes) {
2348    Node* shift = phase->intcon(exact_log2(unit));
2349    zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2350    zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2351  }
2352
2353  Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2354  Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2355
2356  // Bulk clear double-words
2357  Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2358  mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2359  return phase->transform(mem);
2360}
2361
2362Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2363                                   intptr_t start_offset,
2364                                   intptr_t end_offset,
2365                                   PhaseGVN* phase) {
2366  if (start_offset == end_offset) {
2367    // nothing to do
2368    return mem;
2369  }
2370
2371  Compile* C = phase->C;
2372  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2373  intptr_t done_offset = end_offset;
2374  if ((done_offset % BytesPerLong) != 0) {
2375    done_offset -= BytesPerInt;
2376  }
2377  if (done_offset > start_offset) {
2378    mem = clear_memory(ctl, mem, dest,
2379                       start_offset, phase->MakeConX(done_offset), phase);
2380  }
2381  if (done_offset < end_offset) { // emit the final 32-bit store
2382    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2383    adr = phase->transform(adr);
2384    const TypePtr* atp = TypeRawPtr::BOTTOM;
2385    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2386    mem = phase->transform(mem);
2387    done_offset += BytesPerInt;
2388  }
2389  assert(done_offset == end_offset, "");
2390  return mem;
2391}
2392
2393//=============================================================================
2394// Do we match on this edge? No memory edges
2395uint StrCompNode::match_edge(uint idx) const {
2396  return idx == 5 || idx == 6;
2397}
2398
2399//------------------------------Ideal------------------------------------------
2400// Return a node which is more "ideal" than the current node.  Strip out
2401// control copies
2402Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
2403  return remove_dead_region(phase, can_reshape) ? this : NULL;
2404}
2405
2406//------------------------------Ideal------------------------------------------
2407// Return a node which is more "ideal" than the current node.  Strip out
2408// control copies
2409Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
2410  return remove_dead_region(phase, can_reshape) ? this : NULL;
2411}
2412
2413
2414//=============================================================================
2415MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2416  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2417    _adr_type(C->get_adr_type(alias_idx))
2418{
2419  init_class_id(Class_MemBar);
2420  Node* top = C->top();
2421  init_req(TypeFunc::I_O,top);
2422  init_req(TypeFunc::FramePtr,top);
2423  init_req(TypeFunc::ReturnAdr,top);
2424  if (precedent != NULL)
2425    init_req(TypeFunc::Parms, precedent);
2426}
2427
2428//------------------------------cmp--------------------------------------------
2429uint MemBarNode::hash() const { return NO_HASH; }
2430uint MemBarNode::cmp( const Node &n ) const {
2431  return (&n == this);          // Always fail except on self
2432}
2433
2434//------------------------------make-------------------------------------------
2435MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2436  int len = Precedent + (pn == NULL? 0: 1);
2437  switch (opcode) {
2438  case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2439  case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2440  case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2441  case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2442  case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2443  default:                 ShouldNotReachHere(); return NULL;
2444  }
2445}
2446
2447//------------------------------Ideal------------------------------------------
2448// Return a node which is more "ideal" than the current node.  Strip out
2449// control copies
2450Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2451  if (remove_dead_region(phase, can_reshape))  return this;
2452  return NULL;
2453}
2454
2455//------------------------------Value------------------------------------------
2456const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2457  if( !in(0) ) return Type::TOP;
2458  if( phase->type(in(0)) == Type::TOP )
2459    return Type::TOP;
2460  return TypeTuple::MEMBAR;
2461}
2462
2463//------------------------------match------------------------------------------
2464// Construct projections for memory.
2465Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2466  switch (proj->_con) {
2467  case TypeFunc::Control:
2468  case TypeFunc::Memory:
2469    return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2470  }
2471  ShouldNotReachHere();
2472  return NULL;
2473}
2474
2475//===========================InitializeNode====================================
2476// SUMMARY:
2477// This node acts as a memory barrier on raw memory, after some raw stores.
2478// The 'cooked' oop value feeds from the Initialize, not the Allocation.
2479// The Initialize can 'capture' suitably constrained stores as raw inits.
2480// It can coalesce related raw stores into larger units (called 'tiles').
2481// It can avoid zeroing new storage for memory units which have raw inits.
2482// At macro-expansion, it is marked 'complete', and does not optimize further.
2483//
2484// EXAMPLE:
2485// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2486//   ctl = incoming control; mem* = incoming memory
2487// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2488// First allocate uninitialized memory and fill in the header:
2489//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2490//   ctl := alloc.Control; mem* := alloc.Memory*
2491//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2492// Then initialize to zero the non-header parts of the raw memory block:
2493//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2494//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2495// After the initialize node executes, the object is ready for service:
2496//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2497// Suppose its body is immediately initialized as {1,2}:
2498//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2499//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2500//   mem.SLICE(#short[*]) := store2
2501//
2502// DETAILS:
2503// An InitializeNode collects and isolates object initialization after
2504// an AllocateNode and before the next possible safepoint.  As a
2505// memory barrier (MemBarNode), it keeps critical stores from drifting
2506// down past any safepoint or any publication of the allocation.
2507// Before this barrier, a newly-allocated object may have uninitialized bits.
2508// After this barrier, it may be treated as a real oop, and GC is allowed.
2509//
2510// The semantics of the InitializeNode include an implicit zeroing of
2511// the new object from object header to the end of the object.
2512// (The object header and end are determined by the AllocateNode.)
2513//
2514// Certain stores may be added as direct inputs to the InitializeNode.
2515// These stores must update raw memory, and they must be to addresses
2516// derived from the raw address produced by AllocateNode, and with
2517// a constant offset.  They must be ordered by increasing offset.
2518// The first one is at in(RawStores), the last at in(req()-1).
2519// Unlike most memory operations, they are not linked in a chain,
2520// but are displayed in parallel as users of the rawmem output of
2521// the allocation.
2522//
2523// (See comments in InitializeNode::capture_store, which continue
2524// the example given above.)
2525//
2526// When the associated Allocate is macro-expanded, the InitializeNode
2527// may be rewritten to optimize collected stores.  A ClearArrayNode
2528// may also be created at that point to represent any required zeroing.
2529// The InitializeNode is then marked 'complete', prohibiting further
2530// capturing of nearby memory operations.
2531//
2532// During macro-expansion, all captured initializations which store
2533// constant values of 32 bits or smaller are coalesced (if advantagous)
2534// into larger 'tiles' 32 or 64 bits.  This allows an object to be
2535// initialized in fewer memory operations.  Memory words which are
2536// covered by neither tiles nor non-constant stores are pre-zeroed
2537// by explicit stores of zero.  (The code shape happens to do all
2538// zeroing first, then all other stores, with both sequences occurring
2539// in order of ascending offsets.)
2540//
2541// Alternatively, code may be inserted between an AllocateNode and its
2542// InitializeNode, to perform arbitrary initialization of the new object.
2543// E.g., the object copying intrinsics insert complex data transfers here.
2544// The initialization must then be marked as 'complete' disable the
2545// built-in zeroing semantics and the collection of initializing stores.
2546//
2547// While an InitializeNode is incomplete, reads from the memory state
2548// produced by it are optimizable if they match the control edge and
2549// new oop address associated with the allocation/initialization.
2550// They return a stored value (if the offset matches) or else zero.
2551// A write to the memory state, if it matches control and address,
2552// and if it is to a constant offset, may be 'captured' by the
2553// InitializeNode.  It is cloned as a raw memory operation and rewired
2554// inside the initialization, to the raw oop produced by the allocation.
2555// Operations on addresses which are provably distinct (e.g., to
2556// other AllocateNodes) are allowed to bypass the initialization.
2557//
2558// The effect of all this is to consolidate object initialization
2559// (both arrays and non-arrays, both piecewise and bulk) into a
2560// single location, where it can be optimized as a unit.
2561//
2562// Only stores with an offset less than TrackedInitializationLimit words
2563// will be considered for capture by an InitializeNode.  This puts a
2564// reasonable limit on the complexity of optimized initializations.
2565
2566//---------------------------InitializeNode------------------------------------
2567InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2568  : _is_complete(false),
2569    MemBarNode(C, adr_type, rawoop)
2570{
2571  init_class_id(Class_Initialize);
2572
2573  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2574  assert(in(RawAddress) == rawoop, "proper init");
2575  // Note:  allocation() can be NULL, for secondary initialization barriers
2576}
2577
2578// Since this node is not matched, it will be processed by the
2579// register allocator.  Declare that there are no constraints
2580// on the allocation of the RawAddress edge.
2581const RegMask &InitializeNode::in_RegMask(uint idx) const {
2582  // This edge should be set to top, by the set_complete.  But be conservative.
2583  if (idx == InitializeNode::RawAddress)
2584    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2585  return RegMask::Empty;
2586}
2587
2588Node* InitializeNode::memory(uint alias_idx) {
2589  Node* mem = in(Memory);
2590  if (mem->is_MergeMem()) {
2591    return mem->as_MergeMem()->memory_at(alias_idx);
2592  } else {
2593    // incoming raw memory is not split
2594    return mem;
2595  }
2596}
2597
2598bool InitializeNode::is_non_zero() {
2599  if (is_complete())  return false;
2600  remove_extra_zeroes();
2601  return (req() > RawStores);
2602}
2603
2604void InitializeNode::set_complete(PhaseGVN* phase) {
2605  assert(!is_complete(), "caller responsibility");
2606  _is_complete = true;
2607
2608  // After this node is complete, it contains a bunch of
2609  // raw-memory initializations.  There is no need for
2610  // it to have anything to do with non-raw memory effects.
2611  // Therefore, tell all non-raw users to re-optimize themselves,
2612  // after skipping the memory effects of this initialization.
2613  PhaseIterGVN* igvn = phase->is_IterGVN();
2614  if (igvn)  igvn->add_users_to_worklist(this);
2615}
2616
2617// convenience function
2618// return false if the init contains any stores already
2619bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2620  InitializeNode* init = initialization();
2621  if (init == NULL || init->is_complete())  return false;
2622  init->remove_extra_zeroes();
2623  // for now, if this allocation has already collected any inits, bail:
2624  if (init->is_non_zero())  return false;
2625  init->set_complete(phase);
2626  return true;
2627}
2628
2629void InitializeNode::remove_extra_zeroes() {
2630  if (req() == RawStores)  return;
2631  Node* zmem = zero_memory();
2632  uint fill = RawStores;
2633  for (uint i = fill; i < req(); i++) {
2634    Node* n = in(i);
2635    if (n->is_top() || n == zmem)  continue;  // skip
2636    if (fill < i)  set_req(fill, n);          // compact
2637    ++fill;
2638  }
2639  // delete any empty spaces created:
2640  while (fill < req()) {
2641    del_req(fill);
2642  }
2643}
2644
2645// Helper for remembering which stores go with which offsets.
2646intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
2647  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
2648  intptr_t offset = -1;
2649  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
2650                                               phase, offset);
2651  if (base == NULL)     return -1;  // something is dead,
2652  if (offset < 0)       return -1;  //        dead, dead
2653  return offset;
2654}
2655
2656// Helper for proving that an initialization expression is
2657// "simple enough" to be folded into an object initialization.
2658// Attempts to prove that a store's initial value 'n' can be captured
2659// within the initialization without creating a vicious cycle, such as:
2660//     { Foo p = new Foo(); p.next = p; }
2661// True for constants and parameters and small combinations thereof.
2662bool InitializeNode::detect_init_independence(Node* n,
2663                                              bool st_is_pinned,
2664                                              int& count) {
2665  if (n == NULL)      return true;   // (can this really happen?)
2666  if (n->is_Proj())   n = n->in(0);
2667  if (n == this)      return false;  // found a cycle
2668  if (n->is_Con())    return true;
2669  if (n->is_Start())  return true;   // params, etc., are OK
2670  if (n->is_Root())   return true;   // even better
2671
2672  Node* ctl = n->in(0);
2673  if (ctl != NULL && !ctl->is_top()) {
2674    if (ctl->is_Proj())  ctl = ctl->in(0);
2675    if (ctl == this)  return false;
2676
2677    // If we already know that the enclosing memory op is pinned right after
2678    // the init, then any control flow that the store has picked up
2679    // must have preceded the init, or else be equal to the init.
2680    // Even after loop optimizations (which might change control edges)
2681    // a store is never pinned *before* the availability of its inputs.
2682    if (!MemNode::all_controls_dominate(n, this))
2683      return false;                  // failed to prove a good control
2684
2685  }
2686
2687  // Check data edges for possible dependencies on 'this'.
2688  if ((count += 1) > 20)  return false;  // complexity limit
2689  for (uint i = 1; i < n->req(); i++) {
2690    Node* m = n->in(i);
2691    if (m == NULL || m == n || m->is_top())  continue;
2692    uint first_i = n->find_edge(m);
2693    if (i != first_i)  continue;  // process duplicate edge just once
2694    if (!detect_init_independence(m, st_is_pinned, count)) {
2695      return false;
2696    }
2697  }
2698
2699  return true;
2700}
2701
2702// Here are all the checks a Store must pass before it can be moved into
2703// an initialization.  Returns zero if a check fails.
2704// On success, returns the (constant) offset to which the store applies,
2705// within the initialized memory.
2706intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2707  const int FAIL = 0;
2708  if (st->req() != MemNode::ValueIn + 1)
2709    return FAIL;                // an inscrutable StoreNode (card mark?)
2710  Node* ctl = st->in(MemNode::Control);
2711  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2712    return FAIL;                // must be unconditional after the initialization
2713  Node* mem = st->in(MemNode::Memory);
2714  if (!(mem->is_Proj() && mem->in(0) == this))
2715    return FAIL;                // must not be preceded by other stores
2716  Node* adr = st->in(MemNode::Address);
2717  intptr_t offset;
2718  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2719  if (alloc == NULL)
2720    return FAIL;                // inscrutable address
2721  if (alloc != allocation())
2722    return FAIL;                // wrong allocation!  (store needs to float up)
2723  Node* val = st->in(MemNode::ValueIn);
2724  int complexity_count = 0;
2725  if (!detect_init_independence(val, true, complexity_count))
2726    return FAIL;                // stored value must be 'simple enough'
2727
2728  return offset;                // success
2729}
2730
2731// Find the captured store in(i) which corresponds to the range
2732// [start..start+size) in the initialized object.
2733// If there is one, return its index i.  If there isn't, return the
2734// negative of the index where it should be inserted.
2735// Return 0 if the queried range overlaps an initialization boundary
2736// or if dead code is encountered.
2737// If size_in_bytes is zero, do not bother with overlap checks.
2738int InitializeNode::captured_store_insertion_point(intptr_t start,
2739                                                   int size_in_bytes,
2740                                                   PhaseTransform* phase) {
2741  const int FAIL = 0, MAX_STORE = BytesPerLong;
2742
2743  if (is_complete())
2744    return FAIL;                // arraycopy got here first; punt
2745
2746  assert(allocation() != NULL, "must be present");
2747
2748  // no negatives, no header fields:
2749  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
2750
2751  // after a certain size, we bail out on tracking all the stores:
2752  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2753  if (start >= ti_limit)  return FAIL;
2754
2755  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
2756    if (i >= limit)  return -(int)i; // not found; here is where to put it
2757
2758    Node*    st     = in(i);
2759    intptr_t st_off = get_store_offset(st, phase);
2760    if (st_off < 0) {
2761      if (st != zero_memory()) {
2762        return FAIL;            // bail out if there is dead garbage
2763      }
2764    } else if (st_off > start) {
2765      // ...we are done, since stores are ordered
2766      if (st_off < start + size_in_bytes) {
2767        return FAIL;            // the next store overlaps
2768      }
2769      return -(int)i;           // not found; here is where to put it
2770    } else if (st_off < start) {
2771      if (size_in_bytes != 0 &&
2772          start < st_off + MAX_STORE &&
2773          start < st_off + st->as_Store()->memory_size()) {
2774        return FAIL;            // the previous store overlaps
2775      }
2776    } else {
2777      if (size_in_bytes != 0 &&
2778          st->as_Store()->memory_size() != size_in_bytes) {
2779        return FAIL;            // mismatched store size
2780      }
2781      return i;
2782    }
2783
2784    ++i;
2785  }
2786}
2787
2788// Look for a captured store which initializes at the offset 'start'
2789// with the given size.  If there is no such store, and no other
2790// initialization interferes, then return zero_memory (the memory
2791// projection of the AllocateNode).
2792Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
2793                                          PhaseTransform* phase) {
2794  assert(stores_are_sane(phase), "");
2795  int i = captured_store_insertion_point(start, size_in_bytes, phase);
2796  if (i == 0) {
2797    return NULL;                // something is dead
2798  } else if (i < 0) {
2799    return zero_memory();       // just primordial zero bits here
2800  } else {
2801    Node* st = in(i);           // here is the store at this position
2802    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
2803    return st;
2804  }
2805}
2806
2807// Create, as a raw pointer, an address within my new object at 'offset'.
2808Node* InitializeNode::make_raw_address(intptr_t offset,
2809                                       PhaseTransform* phase) {
2810  Node* addr = in(RawAddress);
2811  if (offset != 0) {
2812    Compile* C = phase->C;
2813    addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
2814                                                 phase->MakeConX(offset)) );
2815  }
2816  return addr;
2817}
2818
2819// Clone the given store, converting it into a raw store
2820// initializing a field or element of my new object.
2821// Caller is responsible for retiring the original store,
2822// with subsume_node or the like.
2823//
2824// From the example above InitializeNode::InitializeNode,
2825// here are the old stores to be captured:
2826//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2827//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2828//
2829// Here is the changed code; note the extra edges on init:
2830//   alloc = (Allocate ...)
2831//   rawoop = alloc.RawAddress
2832//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
2833//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
2834//   init = (Initialize alloc.Control alloc.Memory rawoop
2835//                      rawstore1 rawstore2)
2836//
2837Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
2838                                    PhaseTransform* phase) {
2839  assert(stores_are_sane(phase), "");
2840
2841  if (start < 0)  return NULL;
2842  assert(can_capture_store(st, phase) == start, "sanity");
2843
2844  Compile* C = phase->C;
2845  int size_in_bytes = st->memory_size();
2846  int i = captured_store_insertion_point(start, size_in_bytes, phase);
2847  if (i == 0)  return NULL;     // bail out
2848  Node* prev_mem = NULL;        // raw memory for the captured store
2849  if (i > 0) {
2850    prev_mem = in(i);           // there is a pre-existing store under this one
2851    set_req(i, C->top());       // temporarily disconnect it
2852    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
2853  } else {
2854    i = -i;                     // no pre-existing store
2855    prev_mem = zero_memory();   // a slice of the newly allocated object
2856    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
2857      set_req(--i, C->top());   // reuse this edge; it has been folded away
2858    else
2859      ins_req(i, C->top());     // build a new edge
2860  }
2861  Node* new_st = st->clone();
2862  new_st->set_req(MemNode::Control, in(Control));
2863  new_st->set_req(MemNode::Memory,  prev_mem);
2864  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
2865  new_st = phase->transform(new_st);
2866
2867  // At this point, new_st might have swallowed a pre-existing store
2868  // at the same offset, or perhaps new_st might have disappeared,
2869  // if it redundantly stored the same value (or zero to fresh memory).
2870
2871  // In any case, wire it in:
2872  set_req(i, new_st);
2873
2874  // The caller may now kill the old guy.
2875  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
2876  assert(check_st == new_st || check_st == NULL, "must be findable");
2877  assert(!is_complete(), "");
2878  return new_st;
2879}
2880
2881static bool store_constant(jlong* tiles, int num_tiles,
2882                           intptr_t st_off, int st_size,
2883                           jlong con) {
2884  if ((st_off & (st_size-1)) != 0)
2885    return false;               // strange store offset (assume size==2**N)
2886  address addr = (address)tiles + st_off;
2887  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
2888  switch (st_size) {
2889  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
2890  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
2891  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
2892  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
2893  default: return false;        // strange store size (detect size!=2**N here)
2894  }
2895  return true;                  // return success to caller
2896}
2897
2898// Coalesce subword constants into int constants and possibly
2899// into long constants.  The goal, if the CPU permits,
2900// is to initialize the object with a small number of 64-bit tiles.
2901// Also, convert floating-point constants to bit patterns.
2902// Non-constants are not relevant to this pass.
2903//
2904// In terms of the running example on InitializeNode::InitializeNode
2905// and InitializeNode::capture_store, here is the transformation
2906// of rawstore1 and rawstore2 into rawstore12:
2907//   alloc = (Allocate ...)
2908//   rawoop = alloc.RawAddress
2909//   tile12 = 0x00010002
2910//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
2911//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
2912//
2913void
2914InitializeNode::coalesce_subword_stores(intptr_t header_size,
2915                                        Node* size_in_bytes,
2916                                        PhaseGVN* phase) {
2917  Compile* C = phase->C;
2918
2919  assert(stores_are_sane(phase), "");
2920  // Note:  After this pass, they are not completely sane,
2921  // since there may be some overlaps.
2922
2923  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
2924
2925  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2926  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
2927  size_limit = MIN2(size_limit, ti_limit);
2928  size_limit = align_size_up(size_limit, BytesPerLong);
2929  int num_tiles = size_limit / BytesPerLong;
2930
2931  // allocate space for the tile map:
2932  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
2933  jlong  tiles_buf[small_len];
2934  Node*  nodes_buf[small_len];
2935  jlong  inits_buf[small_len];
2936  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
2937                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
2938  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
2939                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
2940  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
2941                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
2942  // tiles: exact bitwise model of all primitive constants
2943  // nodes: last constant-storing node subsumed into the tiles model
2944  // inits: which bytes (in each tile) are touched by any initializations
2945
2946  //// Pass A: Fill in the tile model with any relevant stores.
2947
2948  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
2949  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
2950  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
2951  Node* zmem = zero_memory(); // initially zero memory state
2952  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
2953    Node* st = in(i);
2954    intptr_t st_off = get_store_offset(st, phase);
2955
2956    // Figure out the store's offset and constant value:
2957    if (st_off < header_size)             continue; //skip (ignore header)
2958    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
2959    int st_size = st->as_Store()->memory_size();
2960    if (st_off + st_size > size_limit)    break;
2961
2962    // Record which bytes are touched, whether by constant or not.
2963    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
2964      continue;                 // skip (strange store size)
2965
2966    const Type* val = phase->type(st->in(MemNode::ValueIn));
2967    if (!val->singleton())                continue; //skip (non-con store)
2968    BasicType type = val->basic_type();
2969
2970    jlong con = 0;
2971    switch (type) {
2972    case T_INT:    con = val->is_int()->get_con();  break;
2973    case T_LONG:   con = val->is_long()->get_con(); break;
2974    case T_FLOAT:  con = jint_cast(val->getf());    break;
2975    case T_DOUBLE: con = jlong_cast(val->getd());   break;
2976    default:                              continue; //skip (odd store type)
2977    }
2978
2979    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
2980        st->Opcode() == Op_StoreL) {
2981      continue;                 // This StoreL is already optimal.
2982    }
2983
2984    // Store down the constant.
2985    store_constant(tiles, num_tiles, st_off, st_size, con);
2986
2987    intptr_t j = st_off >> LogBytesPerLong;
2988
2989    if (type == T_INT && st_size == BytesPerInt
2990        && (st_off & BytesPerInt) == BytesPerInt) {
2991      jlong lcon = tiles[j];
2992      if (!Matcher::isSimpleConstant64(lcon) &&
2993          st->Opcode() == Op_StoreI) {
2994        // This StoreI is already optimal by itself.
2995        jint* intcon = (jint*) &tiles[j];
2996        intcon[1] = 0;  // undo the store_constant()
2997
2998        // If the previous store is also optimal by itself, back up and
2999        // undo the action of the previous loop iteration... if we can.
3000        // But if we can't, just let the previous half take care of itself.
3001        st = nodes[j];
3002        st_off -= BytesPerInt;
3003        con = intcon[0];
3004        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3005          assert(st_off >= header_size, "still ignoring header");
3006          assert(get_store_offset(st, phase) == st_off, "must be");
3007          assert(in(i-1) == zmem, "must be");
3008          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3009          assert(con == tcon->is_int()->get_con(), "must be");
3010          // Undo the effects of the previous loop trip, which swallowed st:
3011          intcon[0] = 0;        // undo store_constant()
3012          set_req(i-1, st);     // undo set_req(i, zmem)
3013          nodes[j] = NULL;      // undo nodes[j] = st
3014          --old_subword;        // undo ++old_subword
3015        }
3016        continue;               // This StoreI is already optimal.
3017      }
3018    }
3019
3020    // This store is not needed.
3021    set_req(i, zmem);
3022    nodes[j] = st;              // record for the moment
3023    if (st_size < BytesPerLong) // something has changed
3024          ++old_subword;        // includes int/float, but who's counting...
3025    else  ++old_long;
3026  }
3027
3028  if ((old_subword + old_long) == 0)
3029    return;                     // nothing more to do
3030
3031  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3032  // Be sure to insert them before overlapping non-constant stores.
3033  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3034  for (int j = 0; j < num_tiles; j++) {
3035    jlong con  = tiles[j];
3036    jlong init = inits[j];
3037    if (con == 0)  continue;
3038    jint con0,  con1;           // split the constant, address-wise
3039    jint init0, init1;          // split the init map, address-wise
3040    { union { jlong con; jint intcon[2]; } u;
3041      u.con = con;
3042      con0  = u.intcon[0];
3043      con1  = u.intcon[1];
3044      u.con = init;
3045      init0 = u.intcon[0];
3046      init1 = u.intcon[1];
3047    }
3048
3049    Node* old = nodes[j];
3050    assert(old != NULL, "need the prior store");
3051    intptr_t offset = (j * BytesPerLong);
3052
3053    bool split = !Matcher::isSimpleConstant64(con);
3054
3055    if (offset < header_size) {
3056      assert(offset + BytesPerInt >= header_size, "second int counts");
3057      assert(*(jint*)&tiles[j] == 0, "junk in header");
3058      split = true;             // only the second word counts
3059      // Example:  int a[] = { 42 ... }
3060    } else if (con0 == 0 && init0 == -1) {
3061      split = true;             // first word is covered by full inits
3062      // Example:  int a[] = { ... foo(), 42 ... }
3063    } else if (con1 == 0 && init1 == -1) {
3064      split = true;             // second word is covered by full inits
3065      // Example:  int a[] = { ... 42, foo() ... }
3066    }
3067
3068    // Here's a case where init0 is neither 0 nor -1:
3069    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3070    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3071    // In this case the tile is not split; it is (jlong)42.
3072    // The big tile is stored down, and then the foo() value is inserted.
3073    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3074
3075    Node* ctl = old->in(MemNode::Control);
3076    Node* adr = make_raw_address(offset, phase);
3077    const TypePtr* atp = TypeRawPtr::BOTTOM;
3078
3079    // One or two coalesced stores to plop down.
3080    Node*    st[2];
3081    intptr_t off[2];
3082    int  nst = 0;
3083    if (!split) {
3084      ++new_long;
3085      off[nst] = offset;
3086      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3087                                  phase->longcon(con), T_LONG);
3088    } else {
3089      // Omit either if it is a zero.
3090      if (con0 != 0) {
3091        ++new_int;
3092        off[nst]  = offset;
3093        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3094                                    phase->intcon(con0), T_INT);
3095      }
3096      if (con1 != 0) {
3097        ++new_int;
3098        offset += BytesPerInt;
3099        adr = make_raw_address(offset, phase);
3100        off[nst]  = offset;
3101        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3102                                    phase->intcon(con1), T_INT);
3103      }
3104    }
3105
3106    // Insert second store first, then the first before the second.
3107    // Insert each one just before any overlapping non-constant stores.
3108    while (nst > 0) {
3109      Node* st1 = st[--nst];
3110      C->copy_node_notes_to(st1, old);
3111      st1 = phase->transform(st1);
3112      offset = off[nst];
3113      assert(offset >= header_size, "do not smash header");
3114      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3115      guarantee(ins_idx != 0, "must re-insert constant store");
3116      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3117      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3118        set_req(--ins_idx, st1);
3119      else
3120        ins_req(ins_idx, st1);
3121    }
3122  }
3123
3124  if (PrintCompilation && WizardMode)
3125    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3126                  old_subword, old_long, new_int, new_long);
3127  if (C->log() != NULL)
3128    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3129                   old_subword, old_long, new_int, new_long);
3130
3131  // Clean up any remaining occurrences of zmem:
3132  remove_extra_zeroes();
3133}
3134
3135// Explore forward from in(start) to find the first fully initialized
3136// word, and return its offset.  Skip groups of subword stores which
3137// together initialize full words.  If in(start) is itself part of a
3138// fully initialized word, return the offset of in(start).  If there
3139// are no following full-word stores, or if something is fishy, return
3140// a negative value.
3141intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3142  int       int_map = 0;
3143  intptr_t  int_map_off = 0;
3144  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3145
3146  for (uint i = start, limit = req(); i < limit; i++) {
3147    Node* st = in(i);
3148
3149    intptr_t st_off = get_store_offset(st, phase);
3150    if (st_off < 0)  break;  // return conservative answer
3151
3152    int st_size = st->as_Store()->memory_size();
3153    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3154      return st_off;            // we found a complete word init
3155    }
3156
3157    // update the map:
3158
3159    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3160    if (this_int_off != int_map_off) {
3161      // reset the map:
3162      int_map = 0;
3163      int_map_off = this_int_off;
3164    }
3165
3166    int subword_off = st_off - this_int_off;
3167    int_map |= right_n_bits(st_size) << subword_off;
3168    if ((int_map & FULL_MAP) == FULL_MAP) {
3169      return this_int_off;      // we found a complete word init
3170    }
3171
3172    // Did this store hit or cross the word boundary?
3173    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3174    if (next_int_off == this_int_off + BytesPerInt) {
3175      // We passed the current int, without fully initializing it.
3176      int_map_off = next_int_off;
3177      int_map >>= BytesPerInt;
3178    } else if (next_int_off > this_int_off + BytesPerInt) {
3179      // We passed the current and next int.
3180      return this_int_off + BytesPerInt;
3181    }
3182  }
3183
3184  return -1;
3185}
3186
3187
3188// Called when the associated AllocateNode is expanded into CFG.
3189// At this point, we may perform additional optimizations.
3190// Linearize the stores by ascending offset, to make memory
3191// activity as coherent as possible.
3192Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3193                                      intptr_t header_size,
3194                                      Node* size_in_bytes,
3195                                      PhaseGVN* phase) {
3196  assert(!is_complete(), "not already complete");
3197  assert(stores_are_sane(phase), "");
3198  assert(allocation() != NULL, "must be present");
3199
3200  remove_extra_zeroes();
3201
3202  if (ReduceFieldZeroing || ReduceBulkZeroing)
3203    // reduce instruction count for common initialization patterns
3204    coalesce_subword_stores(header_size, size_in_bytes, phase);
3205
3206  Node* zmem = zero_memory();   // initially zero memory state
3207  Node* inits = zmem;           // accumulating a linearized chain of inits
3208  #ifdef ASSERT
3209  intptr_t first_offset = allocation()->minimum_header_size();
3210  intptr_t last_init_off = first_offset;  // previous init offset
3211  intptr_t last_init_end = first_offset;  // previous init offset+size
3212  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3213  #endif
3214  intptr_t zeroes_done = header_size;
3215
3216  bool do_zeroing = true;       // we might give up if inits are very sparse
3217  int  big_init_gaps = 0;       // how many large gaps have we seen?
3218
3219  if (ZeroTLAB)  do_zeroing = false;
3220  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3221
3222  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3223    Node* st = in(i);
3224    intptr_t st_off = get_store_offset(st, phase);
3225    if (st_off < 0)
3226      break;                    // unknown junk in the inits
3227    if (st->in(MemNode::Memory) != zmem)
3228      break;                    // complicated store chains somehow in list
3229
3230    int st_size = st->as_Store()->memory_size();
3231    intptr_t next_init_off = st_off + st_size;
3232
3233    if (do_zeroing && zeroes_done < next_init_off) {
3234      // See if this store needs a zero before it or under it.
3235      intptr_t zeroes_needed = st_off;
3236
3237      if (st_size < BytesPerInt) {
3238        // Look for subword stores which only partially initialize words.
3239        // If we find some, we must lay down some word-level zeroes first,
3240        // underneath the subword stores.
3241        //
3242        // Examples:
3243        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3244        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3245        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3246        //
3247        // Note:  coalesce_subword_stores may have already done this,
3248        // if it was prompted by constant non-zero subword initializers.
3249        // But this case can still arise with non-constant stores.
3250
3251        intptr_t next_full_store = find_next_fullword_store(i, phase);
3252
3253        // In the examples above:
3254        //   in(i)          p   q   r   s     x   y     z
3255        //   st_off        12  13  14  15    12  13    14
3256        //   st_size        1   1   1   1     1   1     1
3257        //   next_full_s.  12  16  16  16    16  16    16
3258        //   z's_done      12  16  16  16    12  16    12
3259        //   z's_needed    12  16  16  16    16  16    16
3260        //   zsize          0   0   0   0     4   0     4
3261        if (next_full_store < 0) {
3262          // Conservative tack:  Zero to end of current word.
3263          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3264        } else {
3265          // Zero to beginning of next fully initialized word.
3266          // Or, don't zero at all, if we are already in that word.
3267          assert(next_full_store >= zeroes_needed, "must go forward");
3268          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3269          zeroes_needed = next_full_store;
3270        }
3271      }
3272
3273      if (zeroes_needed > zeroes_done) {
3274        intptr_t zsize = zeroes_needed - zeroes_done;
3275        // Do some incremental zeroing on rawmem, in parallel with inits.
3276        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3277        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3278                                              zeroes_done, zeroes_needed,
3279                                              phase);
3280        zeroes_done = zeroes_needed;
3281        if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3282          do_zeroing = false;   // leave the hole, next time
3283      }
3284    }
3285
3286    // Collect the store and move on:
3287    st->set_req(MemNode::Memory, inits);
3288    inits = st;                 // put it on the linearized chain
3289    set_req(i, zmem);           // unhook from previous position
3290
3291    if (zeroes_done == st_off)
3292      zeroes_done = next_init_off;
3293
3294    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3295
3296    #ifdef ASSERT
3297    // Various order invariants.  Weaker than stores_are_sane because
3298    // a large constant tile can be filled in by smaller non-constant stores.
3299    assert(st_off >= last_init_off, "inits do not reverse");
3300    last_init_off = st_off;
3301    const Type* val = NULL;
3302    if (st_size >= BytesPerInt &&
3303        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3304        (int)val->basic_type() < (int)T_OBJECT) {
3305      assert(st_off >= last_tile_end, "tiles do not overlap");
3306      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3307      last_tile_end = MAX2(last_tile_end, next_init_off);
3308    } else {
3309      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3310      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3311      assert(st_off      >= last_init_end, "inits do not overlap");
3312      last_init_end = next_init_off;  // it's a non-tile
3313    }
3314    #endif //ASSERT
3315  }
3316
3317  remove_extra_zeroes();        // clear out all the zmems left over
3318  add_req(inits);
3319
3320  if (!ZeroTLAB) {
3321    // If anything remains to be zeroed, zero it all now.
3322    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3323    // if it is the last unused 4 bytes of an instance, forget about it
3324    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3325    if (zeroes_done + BytesPerLong >= size_limit) {
3326      assert(allocation() != NULL, "");
3327      Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3328      ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3329      if (zeroes_done == k->layout_helper())
3330        zeroes_done = size_limit;
3331    }
3332    if (zeroes_done < size_limit) {
3333      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3334                                            zeroes_done, size_in_bytes, phase);
3335    }
3336  }
3337
3338  set_complete(phase);
3339  return rawmem;
3340}
3341
3342
3343#ifdef ASSERT
3344bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3345  if (is_complete())
3346    return true;                // stores could be anything at this point
3347  assert(allocation() != NULL, "must be present");
3348  intptr_t last_off = allocation()->minimum_header_size();
3349  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3350    Node* st = in(i);
3351    intptr_t st_off = get_store_offset(st, phase);
3352    if (st_off < 0)  continue;  // ignore dead garbage
3353    if (last_off > st_off) {
3354      tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3355      this->dump(2);
3356      assert(false, "ascending store offsets");
3357      return false;
3358    }
3359    last_off = st_off + st->as_Store()->memory_size();
3360  }
3361  return true;
3362}
3363#endif //ASSERT
3364
3365
3366
3367
3368//============================MergeMemNode=====================================
3369//
3370// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3371// contributing store or call operations.  Each contributor provides the memory
3372// state for a particular "alias type" (see Compile::alias_type).  For example,
3373// if a MergeMem has an input X for alias category #6, then any memory reference
3374// to alias category #6 may use X as its memory state input, as an exact equivalent
3375// to using the MergeMem as a whole.
3376//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3377//
3378// (Here, the <N> notation gives the index of the relevant adr_type.)
3379//
3380// In one special case (and more cases in the future), alias categories overlap.
3381// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3382// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3383// it is exactly equivalent to that state W:
3384//   MergeMem(<Bot>: W) <==> W
3385//
3386// Usually, the merge has more than one input.  In that case, where inputs
3387// overlap (i.e., one is Bot), the narrower alias type determines the memory
3388// state for that type, and the wider alias type (Bot) fills in everywhere else:
3389//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3390//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3391//
3392// A merge can take a "wide" memory state as one of its narrow inputs.
3393// This simply means that the merge observes out only the relevant parts of
3394// the wide input.  That is, wide memory states arriving at narrow merge inputs
3395// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3396//
3397// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3398// and that memory slices "leak through":
3399//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3400//
3401// But, in such a cascade, repeated memory slices can "block the leak":
3402//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3403//
3404// In the last example, Y is not part of the combined memory state of the
3405// outermost MergeMem.  The system must, of course, prevent unschedulable
3406// memory states from arising, so you can be sure that the state Y is somehow
3407// a precursor to state Y'.
3408//
3409//
3410// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3411// of each MergeMemNode array are exactly the numerical alias indexes, including
3412// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3413// Compile::alias_type (and kin) produce and manage these indexes.
3414//
3415// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3416// (Note that this provides quick access to the top node inside MergeMem methods,
3417// without the need to reach out via TLS to Compile::current.)
3418//
3419// As a consequence of what was just described, a MergeMem that represents a full
3420// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3421// containing all alias categories.
3422//
3423// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3424//
3425// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3426// a memory state for the alias type <N>, or else the top node, meaning that
3427// there is no particular input for that alias type.  Note that the length of
3428// a MergeMem is variable, and may be extended at any time to accommodate new
3429// memory states at larger alias indexes.  When merges grow, they are of course
3430// filled with "top" in the unused in() positions.
3431//
3432// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3433// (Top was chosen because it works smoothly with passes like GCM.)
3434//
3435// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3436// the type of random VM bits like TLS references.)  Since it is always the
3437// first non-Bot memory slice, some low-level loops use it to initialize an
3438// index variable:  for (i = AliasIdxRaw; i < req(); i++).
3439//
3440//
3441// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3442// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3443// the memory state for alias type <N>, or (if there is no particular slice at <N>,
3444// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3445// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3446// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3447//
3448// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3449// really that different from the other memory inputs.  An abbreviation called
3450// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3451//
3452//
3453// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3454// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3455// that "emerges though" the base memory will be marked as excluding the alias types
3456// of the other (narrow-memory) copies which "emerged through" the narrow edges:
3457//
3458//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3459//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3460//
3461// This strange "subtraction" effect is necessary to ensure IGVN convergence.
3462// (It is currently unimplemented.)  As you can see, the resulting merge is
3463// actually a disjoint union of memory states, rather than an overlay.
3464//
3465
3466//------------------------------MergeMemNode-----------------------------------
3467Node* MergeMemNode::make_empty_memory() {
3468  Node* empty_memory = (Node*) Compile::current()->top();
3469  assert(empty_memory->is_top(), "correct sentinel identity");
3470  return empty_memory;
3471}
3472
3473MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3474  init_class_id(Class_MergeMem);
3475  // all inputs are nullified in Node::Node(int)
3476  // set_input(0, NULL);  // no control input
3477
3478  // Initialize the edges uniformly to top, for starters.
3479  Node* empty_mem = make_empty_memory();
3480  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3481    init_req(i,empty_mem);
3482  }
3483  assert(empty_memory() == empty_mem, "");
3484
3485  if( new_base != NULL && new_base->is_MergeMem() ) {
3486    MergeMemNode* mdef = new_base->as_MergeMem();
3487    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3488    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3489      mms.set_memory(mms.memory2());
3490    }
3491    assert(base_memory() == mdef->base_memory(), "");
3492  } else {
3493    set_base_memory(new_base);
3494  }
3495}
3496
3497// Make a new, untransformed MergeMem with the same base as 'mem'.
3498// If mem is itself a MergeMem, populate the result with the same edges.
3499MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3500  return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3501}
3502
3503//------------------------------cmp--------------------------------------------
3504uint MergeMemNode::hash() const { return NO_HASH; }
3505uint MergeMemNode::cmp( const Node &n ) const {
3506  return (&n == this);          // Always fail except on self
3507}
3508
3509//------------------------------Identity---------------------------------------
3510Node* MergeMemNode::Identity(PhaseTransform *phase) {
3511  // Identity if this merge point does not record any interesting memory
3512  // disambiguations.
3513  Node* base_mem = base_memory();
3514  Node* empty_mem = empty_memory();
3515  if (base_mem != empty_mem) {  // Memory path is not dead?
3516    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3517      Node* mem = in(i);
3518      if (mem != empty_mem && mem != base_mem) {
3519        return this;            // Many memory splits; no change
3520      }
3521    }
3522  }
3523  return base_mem;              // No memory splits; ID on the one true input
3524}
3525
3526//------------------------------Ideal------------------------------------------
3527// This method is invoked recursively on chains of MergeMem nodes
3528Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3529  // Remove chain'd MergeMems
3530  //
3531  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3532  // relative to the "in(Bot)".  Since we are patching both at the same time,
3533  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3534  // but rewrite each "in(i)" relative to the new "in(Bot)".
3535  Node *progress = NULL;
3536
3537
3538  Node* old_base = base_memory();
3539  Node* empty_mem = empty_memory();
3540  if (old_base == empty_mem)
3541    return NULL; // Dead memory path.
3542
3543  MergeMemNode* old_mbase;
3544  if (old_base != NULL && old_base->is_MergeMem())
3545    old_mbase = old_base->as_MergeMem();
3546  else
3547    old_mbase = NULL;
3548  Node* new_base = old_base;
3549
3550  // simplify stacked MergeMems in base memory
3551  if (old_mbase)  new_base = old_mbase->base_memory();
3552
3553  // the base memory might contribute new slices beyond my req()
3554  if (old_mbase)  grow_to_match(old_mbase);
3555
3556  // Look carefully at the base node if it is a phi.
3557  PhiNode* phi_base;
3558  if (new_base != NULL && new_base->is_Phi())
3559    phi_base = new_base->as_Phi();
3560  else
3561    phi_base = NULL;
3562
3563  Node*    phi_reg = NULL;
3564  uint     phi_len = (uint)-1;
3565  if (phi_base != NULL && !phi_base->is_copy()) {
3566    // do not examine phi if degraded to a copy
3567    phi_reg = phi_base->region();
3568    phi_len = phi_base->req();
3569    // see if the phi is unfinished
3570    for (uint i = 1; i < phi_len; i++) {
3571      if (phi_base->in(i) == NULL) {
3572        // incomplete phi; do not look at it yet!
3573        phi_reg = NULL;
3574        phi_len = (uint)-1;
3575        break;
3576      }
3577    }
3578  }
3579
3580  // Note:  We do not call verify_sparse on entry, because inputs
3581  // can normalize to the base_memory via subsume_node or similar
3582  // mechanisms.  This method repairs that damage.
3583
3584  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3585
3586  // Look at each slice.
3587  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3588    Node* old_in = in(i);
3589    // calculate the old memory value
3590    Node* old_mem = old_in;
3591    if (old_mem == empty_mem)  old_mem = old_base;
3592    assert(old_mem == memory_at(i), "");
3593
3594    // maybe update (reslice) the old memory value
3595
3596    // simplify stacked MergeMems
3597    Node* new_mem = old_mem;
3598    MergeMemNode* old_mmem;
3599    if (old_mem != NULL && old_mem->is_MergeMem())
3600      old_mmem = old_mem->as_MergeMem();
3601    else
3602      old_mmem = NULL;
3603    if (old_mmem == this) {
3604      // This can happen if loops break up and safepoints disappear.
3605      // A merge of BotPtr (default) with a RawPtr memory derived from a
3606      // safepoint can be rewritten to a merge of the same BotPtr with
3607      // the BotPtr phi coming into the loop.  If that phi disappears
3608      // also, we can end up with a self-loop of the mergemem.
3609      // In general, if loops degenerate and memory effects disappear,
3610      // a mergemem can be left looking at itself.  This simply means
3611      // that the mergemem's default should be used, since there is
3612      // no longer any apparent effect on this slice.
3613      // Note: If a memory slice is a MergeMem cycle, it is unreachable
3614      //       from start.  Update the input to TOP.
3615      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3616    }
3617    else if (old_mmem != NULL) {
3618      new_mem = old_mmem->memory_at(i);
3619    }
3620    // else preceeding memory was not a MergeMem
3621
3622    // replace equivalent phis (unfortunately, they do not GVN together)
3623    if (new_mem != NULL && new_mem != new_base &&
3624        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
3625      if (new_mem->is_Phi()) {
3626        PhiNode* phi_mem = new_mem->as_Phi();
3627        for (uint i = 1; i < phi_len; i++) {
3628          if (phi_base->in(i) != phi_mem->in(i)) {
3629            phi_mem = NULL;
3630            break;
3631          }
3632        }
3633        if (phi_mem != NULL) {
3634          // equivalent phi nodes; revert to the def
3635          new_mem = new_base;
3636        }
3637      }
3638    }
3639
3640    // maybe store down a new value
3641    Node* new_in = new_mem;
3642    if (new_in == new_base)  new_in = empty_mem;
3643
3644    if (new_in != old_in) {
3645      // Warning:  Do not combine this "if" with the previous "if"
3646      // A memory slice might have be be rewritten even if it is semantically
3647      // unchanged, if the base_memory value has changed.
3648      set_req(i, new_in);
3649      progress = this;          // Report progress
3650    }
3651  }
3652
3653  if (new_base != old_base) {
3654    set_req(Compile::AliasIdxBot, new_base);
3655    // Don't use set_base_memory(new_base), because we need to update du.
3656    assert(base_memory() == new_base, "");
3657    progress = this;
3658  }
3659
3660  if( base_memory() == this ) {
3661    // a self cycle indicates this memory path is dead
3662    set_req(Compile::AliasIdxBot, empty_mem);
3663  }
3664
3665  // Resolve external cycles by calling Ideal on a MergeMem base_memory
3666  // Recursion must occur after the self cycle check above
3667  if( base_memory()->is_MergeMem() ) {
3668    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
3669    Node *m = phase->transform(new_mbase);  // Rollup any cycles
3670    if( m != NULL && (m->is_top() ||
3671        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
3672      // propagate rollup of dead cycle to self
3673      set_req(Compile::AliasIdxBot, empty_mem);
3674    }
3675  }
3676
3677  if( base_memory() == empty_mem ) {
3678    progress = this;
3679    // Cut inputs during Parse phase only.
3680    // During Optimize phase a dead MergeMem node will be subsumed by Top.
3681    if( !can_reshape ) {
3682      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3683        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3684      }
3685    }
3686  }
3687
3688  if( !progress && base_memory()->is_Phi() && can_reshape ) {
3689    // Check if PhiNode::Ideal's "Split phis through memory merges"
3690    // transform should be attempted. Look for this->phi->this cycle.
3691    uint merge_width = req();
3692    if (merge_width > Compile::AliasIdxRaw) {
3693      PhiNode* phi = base_memory()->as_Phi();
3694      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3695        if (phi->in(i) == this) {
3696          phase->is_IterGVN()->_worklist.push(phi);
3697          break;
3698        }
3699      }
3700    }
3701  }
3702
3703  assert(progress || verify_sparse(), "please, no dups of base");
3704  return progress;
3705}
3706
3707//-------------------------set_base_memory-------------------------------------
3708void MergeMemNode::set_base_memory(Node *new_base) {
3709  Node* empty_mem = empty_memory();
3710  set_req(Compile::AliasIdxBot, new_base);
3711  assert(memory_at(req()) == new_base, "must set default memory");
3712  // Clear out other occurrences of new_base:
3713  if (new_base != empty_mem) {
3714    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3715      if (in(i) == new_base)  set_req(i, empty_mem);
3716    }
3717  }
3718}
3719
3720//------------------------------out_RegMask------------------------------------
3721const RegMask &MergeMemNode::out_RegMask() const {
3722  return RegMask::Empty;
3723}
3724
3725//------------------------------dump_spec--------------------------------------
3726#ifndef PRODUCT
3727void MergeMemNode::dump_spec(outputStream *st) const {
3728  st->print(" {");
3729  Node* base_mem = base_memory();
3730  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
3731    Node* mem = memory_at(i);
3732    if (mem == base_mem) { st->print(" -"); continue; }
3733    st->print( " N%d:", mem->_idx );
3734    Compile::current()->get_adr_type(i)->dump_on(st);
3735  }
3736  st->print(" }");
3737}
3738#endif // !PRODUCT
3739
3740
3741#ifdef ASSERT
3742static bool might_be_same(Node* a, Node* b) {
3743  if (a == b)  return true;
3744  if (!(a->is_Phi() || b->is_Phi()))  return false;
3745  // phis shift around during optimization
3746  return true;  // pretty stupid...
3747}
3748
3749// verify a narrow slice (either incoming or outgoing)
3750static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
3751  if (!VerifyAliases)       return;  // don't bother to verify unless requested
3752  if (is_error_reported())  return;  // muzzle asserts when debugging an error
3753  if (Node::in_dump())      return;  // muzzle asserts when printing
3754  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
3755  assert(n != NULL, "");
3756  // Elide intervening MergeMem's
3757  while (n->is_MergeMem()) {
3758    n = n->as_MergeMem()->memory_at(alias_idx);
3759  }
3760  Compile* C = Compile::current();
3761  const TypePtr* n_adr_type = n->adr_type();
3762  if (n == m->empty_memory()) {
3763    // Implicit copy of base_memory()
3764  } else if (n_adr_type != TypePtr::BOTTOM) {
3765    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
3766    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
3767  } else {
3768    // A few places like make_runtime_call "know" that VM calls are narrow,
3769    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
3770    bool expected_wide_mem = false;
3771    if (n == m->base_memory()) {
3772      expected_wide_mem = true;
3773    } else if (alias_idx == Compile::AliasIdxRaw ||
3774               n == m->memory_at(Compile::AliasIdxRaw)) {
3775      expected_wide_mem = true;
3776    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
3777      // memory can "leak through" calls on channels that
3778      // are write-once.  Allow this also.
3779      expected_wide_mem = true;
3780    }
3781    assert(expected_wide_mem, "expected narrow slice replacement");
3782  }
3783}
3784#else // !ASSERT
3785#define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
3786#endif
3787
3788
3789//-----------------------------memory_at---------------------------------------
3790Node* MergeMemNode::memory_at(uint alias_idx) const {
3791  assert(alias_idx >= Compile::AliasIdxRaw ||
3792         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
3793         "must avoid base_memory and AliasIdxTop");
3794
3795  // Otherwise, it is a narrow slice.
3796  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
3797  Compile *C = Compile::current();
3798  if (is_empty_memory(n)) {
3799    // the array is sparse; empty slots are the "top" node
3800    n = base_memory();
3801    assert(Node::in_dump()
3802           || n == NULL || n->bottom_type() == Type::TOP
3803           || n->adr_type() == TypePtr::BOTTOM
3804           || n->adr_type() == TypeRawPtr::BOTTOM
3805           || Compile::current()->AliasLevel() == 0,
3806           "must be a wide memory");
3807    // AliasLevel == 0 if we are organizing the memory states manually.
3808    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
3809  } else {
3810    // make sure the stored slice is sane
3811    #ifdef ASSERT
3812    if (is_error_reported() || Node::in_dump()) {
3813    } else if (might_be_same(n, base_memory())) {
3814      // Give it a pass:  It is a mostly harmless repetition of the base.
3815      // This can arise normally from node subsumption during optimization.
3816    } else {
3817      verify_memory_slice(this, alias_idx, n);
3818    }
3819    #endif
3820  }
3821  return n;
3822}
3823
3824//---------------------------set_memory_at-------------------------------------
3825void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
3826  verify_memory_slice(this, alias_idx, n);
3827  Node* empty_mem = empty_memory();
3828  if (n == base_memory())  n = empty_mem;  // collapse default
3829  uint need_req = alias_idx+1;
3830  if (req() < need_req) {
3831    if (n == empty_mem)  return;  // already the default, so do not grow me
3832    // grow the sparse array
3833    do {
3834      add_req(empty_mem);
3835    } while (req() < need_req);
3836  }
3837  set_req( alias_idx, n );
3838}
3839
3840
3841
3842//--------------------------iteration_setup------------------------------------
3843void MergeMemNode::iteration_setup(const MergeMemNode* other) {
3844  if (other != NULL) {
3845    grow_to_match(other);
3846    // invariant:  the finite support of mm2 is within mm->req()
3847    #ifdef ASSERT
3848    for (uint i = req(); i < other->req(); i++) {
3849      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
3850    }
3851    #endif
3852  }
3853  // Replace spurious copies of base_memory by top.
3854  Node* base_mem = base_memory();
3855  if (base_mem != NULL && !base_mem->is_top()) {
3856    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
3857      if (in(i) == base_mem)
3858        set_req(i, empty_memory());
3859    }
3860  }
3861}
3862
3863//---------------------------grow_to_match-------------------------------------
3864void MergeMemNode::grow_to_match(const MergeMemNode* other) {
3865  Node* empty_mem = empty_memory();
3866  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
3867  // look for the finite support of the other memory
3868  for (uint i = other->req(); --i >= req(); ) {
3869    if (other->in(i) != empty_mem) {
3870      uint new_len = i+1;
3871      while (req() < new_len)  add_req(empty_mem);
3872      break;
3873    }
3874  }
3875}
3876
3877//---------------------------verify_sparse-------------------------------------
3878#ifndef PRODUCT
3879bool MergeMemNode::verify_sparse() const {
3880  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
3881  Node* base_mem = base_memory();
3882  // The following can happen in degenerate cases, since empty==top.
3883  if (is_empty_memory(base_mem))  return true;
3884  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3885    assert(in(i) != NULL, "sane slice");
3886    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
3887  }
3888  return true;
3889}
3890
3891bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
3892  Node* n;
3893  n = mm->in(idx);
3894  if (mem == n)  return true;  // might be empty_memory()
3895  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
3896  if (mem == n)  return true;
3897  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
3898    if (mem == n)  return true;
3899    if (n == NULL)  break;
3900  }
3901  return false;
3902}
3903#endif // !PRODUCT
3904